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ABSTRACT
Cognitive tests have been long used as a measure of student knowl-
edge, ability, and as a predictor for success in engineering and
computer science. However, these tests are not without their own
problems relating to priming, difficulty (resulting in test fatigue)
and time on exam. This paper discusses efforts to modify Parker et
al.’s Second CS1 aptitude test (SCS1) [13] to reduce the time spent on
the exam, provide greater customization to match concepts taught
across three universities, and reduce redundancy of test questions
all while maintaining the instrument’s reliability. This instrument
was modified for use on an ongoing grant investigating whether
spatial abilities impact the success of students in introductory CS
courses. The instrument developed in this paper is a revised short-
ened version of Second Computer Science 1 (SCS1) aptitude test,
designated as SCS1R.

CCS CONCEPTS
• Social and Professional topics → Student assessment;

KEYWORDS
Assessment; CS1; Validity; Replication

ACM Reference Format:
Ryan Bockmon, Stephen Cooper, Jonathan Gratch, and Mohsen Dorodchi.
2019. (Re)Validating Cognitive Introductory Computing Instruments. In
Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ’19), February 27-March 2, 2019, Minneapolis, MN, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3287324.3287372

1 INTRODUCTION
Computer science instructional intervention projects center on
determining the impact that they have on student learning. To accu-
rately measure the level of success of an intervention, researchers
must have and use valid and reliable instruments. However, the field
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of computing has few valid and reliable assessments for pedagogical
or research purposes [2].

Our goal was to identify valid and reliable instruments to collect
baseline data used for our research grant investigating whether
improving first year computing students’ spatial skills impacts their
success in computer science, as well as looking into how other
factors might play a role in student success in first year computing
classes. To meet these needs, the project required a valid instrument
to test students’ computing ability, a valid instrument to measure
affective interests, and a valid instrument to test students’ spatial
skills. Many of the instruments available for use did not completely
fit project needs.

During the summer of 2014 Cooper et al. ran a two-week summer
coding workshop where they taught both a control and a treatment
group of rising twelfth grade students [8]. The treatment group
received a 45-minute spatial skills training session each morning in
place of a review of the previous day’s material. Four instruments
were used to collect data. The first instrument collected data on
demographics. The second instrument gathered information about
students’ confidence towards learning computing as well as gender
roles concerning computing. The third and fourth instruments were
the AP Computer Science exam [6] to test students’ programming
abilities and the Revised Purdue Spatial Visualization Test: Rota-
tions (PSVT:R) to assess student spatial visual acuity [20]. At the
end of the workshop, the researchers concluded that the treatment
group had a greater gain between pre-test and post-test scores on
the computer science instrument as well as having higher confi-
dence with respect to their perceived programming experience.

In planning to replicate and expand on Cooper’s study we ran
into a few issues. One of which was the use of the AP Computer
Science exam. While Cooper study was ran on a small group of
students our project is being conducted across three universities,
where each participating university teaches CS1 using different
programming languages while the AP Computer Science exam is
written for Java. This paper discuses the efforts of finding and re-
validating a CS1 aptitude test for our study. While the validity of
the other three instruments are of interest to us as well they fall
outside the scope of this paper.

1.1 CS Aptitude Tests
Aptitude tests are a systemic means of testing a learner’s abilities
to perform specific tasks and react to different situations. Gener-
ally, the exam has a standardized method of administration and
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scoring, with results quantified and compared to other test takers.
For CS, these competencies can include concepts such as logical or
numerical reasoning, pattern recognition, or program simulations.
As they represent a standardized exam, they can be used to measure
a CS student’s overall aptitude toward success in the field. However,
variations within required competencies and curriculum valued or
accepted at a specific location may differ resulting in incongruous
matches between taught content and exam content.

Our spatial skills project is being conducted at three universities.
Each participating university teaches CS1 using different program-
ming languages, so the project required a single content instrument
that could be used at our three schools. There are a few attempts
to create and validate content instruments.

Themost well-known CS content instrument is the AP Computer
Science exam [6]. However, the AP CS asks questions in Java, which
does not work for our study, given that two of our schools teach
CS1 in other languages.

Tew’s Foundational CS1 Assessment instrument (FCS1) [18] at-
tempted to create a CS assessment test independent of any single
programming language. FCS1 tests student ability using pseudo
code written in the style of imperative languages. The validation
process was conducted through a multi-step process that included
an expert review panel, large-scale comparison between the FCS1
and language-dependent isomorphic tests [17, 18]. The study was
conducted with 952 participants across two different universities
with three different programming languages being taught: Java,
Matlab, and Python. Because there was no other test validated be-
forehand they used the final exam scores of each participant and
tested for correlations. Results showed that Java having the highest
correlations with a Pearson’s r = .511, p < 0.001. Python originally
had the lowest correlation, but after splitting into two subgroups
results showed that the CS-python focused section had a Pearson’s
r = .679, p < 0.001 and Media-Python had a Pearson’s r = .262, p
< 0.001. It was concluded that the FSC1 is a valid instrument [18].
This instrument met our multi-language needs. Unfortunately this
instrument was unavailable for use.

The Second CS1 (SCS1) exam [13], a successor of the FCS1, was
created in 2016. The study was conducted by testing a group of
students (n = 183) on both the SCS1 and the FCS1 exams. The results
found that there was a strong positive correlation between student
scores on both the SCS1 and the FCS1 with a Pearson’s correlation =
0.566, p < 0.001. Running a quantitative analysis using a 3 parameter
Item Response Theory (IRT), the researchers indicated that both the
FCS1 and the SCS1 were quite difficult. Testing reliability showed
that both the FCS1 and the SCS1 failed to reach a Cronbach’s alpha
of a 0.65 [9] with their FCS1 having a Cronbach’s alpha of a 0.53
and the SCS1 with a Cronbach’s alpha of a 0.59 [13]. Like the FCS1,
the SCS1 is multi-language (and was validated in Java, Python,
and Matlab). The problem with using this exam as written was the
length of time it takes students to complete.

The Computer Programming Aptitude Test was created by the
University of Kent and designed to be free of any knowledge of
programming languages. It consists of 26 questions composed of
numerical problem solving, logical reasoning, attention to detail,
pattern recognition and the ability to follow complex procedures
[1]. To date, there has been no attempt to fully validate this test. A
study has indicated that there is a correlation between scores on

Computer Programming Aptitude Test and final grades [11]. The
lack of formal validation and the requirement of an instrument that
consisted of programming questions resulted in this instrument
not being selected.

Despite concerns over the instrument’s length, we decided to
use the SCS1 and modify the instrument by taking a subset of the
original SCS1 questions. The modification to the original SCS1
required us to establish the reliability for the new version of the
test.

2 METHODS
Our data was collected in a pre-post format in introductory comput-
ing classes during the fall semester of 2017 across three universities:
the University of North Carolina at Charlotte, Texas Woman’s Uni-
versity, and the University of Nebraska - Lincoln. The instrument
was available for students to take during the first 3 weeks of class
as a pre-test and offered during the final 3 weeks as a post-test. 635
students took our modified SCS1R.

As part of the study, students were administered four differ-
ent surveys: SCS1R to measure student computer science content
knowledge, an attitudes instrument to examine the students’ cur-
rent attitudes and perceptions on CS, the Revised Purdue Spatial
Visualization Test: Rotations (RPSVT:R) to assess student spatial
visual acuity, and a demographics survey to collect information on
students’ background. To help reduce test fatigue we aimed to keep
the time to complete all four surveys under 45 minutes. All partici-
pation was voluntary, with incentives used to encourage students
to participate. All incentives were approved by each institution’s
IRB process and varied between institutions, consisting of either
time slotted during labs, $10 gift cards, and/or extra credit.

2.1 SCS1R Design
The original SCS1 consists of 27 pseudo code questions, covering
the typical CS1 topic coverage. Faculty taking the test required over
an hour to complete. Students pre-flighting the test required 2 to 3
hours to complete it. The researchers wanted the test duration to be
no more than 20-30 minutes to complete given that the spatial skills
test would take up to 20 minutes and the demographics survey
combined with the attitudes test would take about 10 minutes to
finish. To keep the test length to a maximum of 20 minutes we
selected 9 questions, retaining one item for each major topic cov-
ered at each of the first year computing course at the participating
universities. These topics include; i f statements, logic operations,
variable declaration, arrays, return values, code completion, code
tracing, and f or andwhile loops. When multiple questions covered
a given topic, we selected the one question we judged to be the
best fit for our study. In the end we retained questions 1, 3, 8, 9, 11,
22, 25, 26, and 27 from the original SCS1, now labeled as Q1 - Q9.
Question 1 covered basic f or loop logic. Question 3 covered infinite
while loops. Question 8 covered more advanced f or loops having
embedded loops. Question 9 covered more advancedwhile loops
with themod operator and basic boolean logic. Question 11 covered
function calls and boolean logic. Question 22 covered arrays and
array adding and subtracting. Question 25 covered converting math
equations to code. Question 26 covered advanced boolean logic, and
question 27 covered function calls and variable declaration. The
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interested reader should contact the instrument authors [13] for
access to the questions.

3 ANALYSIS
A Rasch Model (Item Response Theory (IRT)) was used to test
reliability and validity of the SCS1R. We used Ganz Rasch, a free
software program, to apply IRT [3]. Running IRT on the SCS1R we
were able to calculate the difficulty level of each question, plotted
each question’s item characteristic curve (ICC), and tested the fit
of each item. There also exist 1-par, 2-par and 3-par IRT Models.
The recommend sample size to run a 1-par is N = 150 for a 10 item
test and N = 750 for a 2-par and 3-par IRT [15]. Due to the sample
size (N = 635) and limited access to software, the Rasch model was
decided to be the best fit. The researchers intend to switch over to
a 2-par or 3-par as the sample population increases.

Calculations of Cronbach’s α was used to test reliability of the
SCS1R. An acceptable minimum value of .70 is considered accept-
able for both Cronbach’s α and ordinal α in educational research
[12].

We used a t-test to compare students SCS1R scores to their final
letter grades. Where the final letter grades was split into two groups.
A t-test was used to determine if there was a significant difference
of SCS1R scores between the two groups. While a chi-square and an
ANOVA tests for significance differences of scores betweenmultiple
groups, a t-test is the best fit for comparing two groups [16].

3.1 Item Response Theory
Item response theory attempts to model the relationship between
an examinee’s ability, Θ, and the probability, P, of the examinee
correctly responding to any particular test question, i [5]. The Rasch
Model is defined below. β is the difficulty of a given question, i, and
θ the ability of an examinee.

Pi (Θ) =
e(Θ−βi )

1 + e(Θ−βi )
(1)

Abilities are calculated based on how well an examinee does on
the overall test (equation 2). Equation 2 does not work for examinees
who score a 100% or 0%.While youmight want the examinee to get a
100% on the test, that does not assist in developing an understanding
of their abilities and points to other typical explanations such as
a low difficulty level of the exam. The same is true for examinees
who score 0. The specific details, while beyond the scope of this
paper, can be found in Baker and Kim [5].

Θj = ln
%Correct

1 − %Correct
(2)

Difficulties are calculated based on how many examinees answer
a question correctly. Equation 3 displays a rough estimate on the
calculation of a question’s difficulty. We used conditional maximum
likelihood (CML) estimation. Further details are available in [4, 5].
Similarly to equation 2, equation 3 does not work for questions that
have 100% correct responses or 0% correct responses. In a similar
way as not wanting an examinee to get a score of 100 or 0, having
a question that examinees get right 100% or 0% of the time will not
benefit the research when trying to accurately measure examinees’
abilities.

βj = ln
1 − %CorrectResponses
%CorrectResponses

(3)

Figure 1: An example ICC

Both abilities and difficulties range from -3 to 3. An ability of -3
means the lowest ability, 0 is average, and 3 is the highest ability.
As for difficulties -3 means the easiest difficulty, 0 is average, and 3
is the hardest. Using equation 1 and the difficulty of a test question,
we can calculate the probability over the spectrum of all abilities
ranging from -3 to 3 giving us an Item Characteristic Curve (ICC)
of the question (equation 4).

Pi (Θ) =
e(Θj−βi )

1 + e(Θj−βi )
(4)

The ICC represents the probability of an examinee obtaining the
correct response to a question. The X axis ranges across examinees’
ability. The Y axis is the probability an examinee of ability(x ) getting
a correct response to the question, ranging from 0 to 1 where 1
means that the chance of an examinee with ability(x) getting the
correct response to the given test question is 100% [7, 10]. Figure 1
shows a sample ICC of a slightly difficult question β(0.5), where an
average examinee (Θ = 0) has a 40% chance of getting the answer
correct.

Plotting every test question’s ICC gives the distribution of test
items and how difficult a test is. A good test would have a large
distribution across all items. "In developing any test, our aim would
be to put enough stepping-stones along the path to represent all
the stepping-points useful for our testing purposes, between little
development and much development" [7]. Another way to look at
it is, while testing the physical strength of a group of people you
will not start them off by lifting 200lbs and increasing from there.
Though some people might be able to lift that at first it does not give
a good representation of how weak someone might be. Someone
who can lift 190lbs will be considered just as weak as someone who
can lift 10lbs. The same logic applies for not having a high enough
difficulty.

Another aspect when creating a valid test is looking at the fit of
each question. If a question is difficult, was that difficulty because
it was designed to be challenging, or was there a misunderstanding
in comprehension? Calculating the likelihood ratio (LR, equation
5) [5] can help. LR is calculated by splitting up the sample into two
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Figure 2: SCS1R ICC’s

subgroups by the median score, where β̂i consists of all students
who scored below the median score and ˆβiд consists of all students
who scored above the median score. l(β̂i ) is the likelihood func-
tion under the overall approach. lд( ˆβiд ) is the likelihood function
under the restricted approach. In other words, theoretically, the
high ability students should have more correct responses across
all test questions than low ability students. If low ability students
are getting close to the same number of correct responses as high
ability students to a certain question, there might be something
wrong with the question. More detail can be found in [5].

LR =
l(β̂i )∑n−1

д=1 lд(
ˆβiд )

(5)

The Likelihood Test Statistic or z-value (Equation 6) provides a
measurement as to the extent to which higher ability students per-
form better on a question than lower ability students. A significant
z value indicates the item difficulty parameters differ across the
raw score groups and that the Rasch model does not hold for that
question [5]. Desirable values are routinely accepted to be those
where |z | ≤ 2 [7].

z = −2loд(LR) = 2
n−1∑
д=1

loдlд( ˆβiд ) − 2loд(l(β̂i )) (6)

As mentioned before, there is also a 1-par, 2-par and 3-par IRT.
A 1-par IRT is commonly referred to as the Rasch model because
it has the same number of parameters, but there are two signif-
icant differences. One difference is that difficulties of items in a
1-par IRT are centered around the average abilities of all exam-
ines while the difficulties of items in a Rasch model are centered
around the average difficulty or all items. A second difference is
that the discrimination parameter(α ) of a Rasch model is set at a
constant of 1 while a 1-par IRT can be set to a different constant. A
2-par IRT allows α to vary among test items. A 3-par adds in c , a
lower asymptote or guessing parameter (equation 7). Changing α
causes the slope of the ICC to either steepen or flatten out based

Table 1: SCS1R Difficulties (N = 635)

Question n+ % correct CML

Q1 195 30.7 0.063
Q2 304 47.9 -0.740
Q3 179 28.2 0.199
Q4 185 29.1 0.148
Q5 138 21.7 0.589
Q6 241 38.0 -0.296
Q7 293 46.1 -0.665
Q8 182 28.7 0.173
Q9 144 22.7 0.528

on whether the question has high discrimination or not. A higher
discrimination leads to a steeper slope. Changing c will cause the y
asymptote to move up or down based on how easily a question can
be guessed correctly [7, 10, 14].

Pi (Θ) = 1 − c(
eα (Θj−βi )

1 + eα (Θj−βi )
) (7)

4 RESULTS
4.1 IRT

4.1.1 Difficulties. Table 1 shows each item and its difficulty
parameter (CML) after running a Rasch Model. n+ indicates the
number of students that answered the question correctly. Arranging
the questions from easiest to hardest we get Q2 being the least
difficult of -0.740 followed by Q7, Q6, Q1, Q8, Q3, Q9 and Q5 being
the most difficult of 0.589.

All questions had less than 50% of students correctly answering
the questions, labeling all questions as hard. Parker et al. [13] note
that a moderate question is one where between 50% and 85% of
participants answer the question correctly, while an easy question
is answered correctly by more that 85% of the respondents.

4.1.2 ICC. With the difficulties calculated we are able to plot the
ICC of every question. Figure 2 shows the ICC for each question.
Our results indicate that there is little variation between the 9
questions. Grouping questions based on their difficulties, 4 main
groups emerge. Questions 2 and 7mark the lower end, then question
6, then questions 1, 4, 8 and 3 and questions 9 and 5 being the last
and most difficult. Even though the range of difficulty is small we
can still categorize students into 5 main categories; 0 questions
correct, 1-2 questions correct, 3 questions correct, 4-7 questions
correct, and 8+ questions correct.

4.1.3 Fit. Table 2 shows the results of running a likelihood ratio
test. After splitting the population into the 2 subgroups, where the
first group (indicated as low abilities in Table 2) is all students who
scored below the median score of 4 and the second group (indicated
as high abilities in Table 2) is those students who scored a 4 or above.
An ideal test should have a significant difference between the two
groups and the percentage of students who answered the question
correctly for each question. Question 7 is the best fit having a z-
value of 0.659. We see that 32.7% of low ability students answered
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Table 2: SCS1R Frequencies and Estimates

Total Low Abilities High Abilities |z- value|
Question n+ % correct CML n+ % correct CML n+ % correct CML

Q1 195 30.7 0.063 69 15.9 0.260 126 62.7 -0.190 2.229
Q2 304 47.9 -0.740 145 33.4 -0.654 159 79.1 -0.973 1.566
Q3 179 28.2 0.199 77 17.7 0.135 102 50.7 0.289 0.786
Q4 185 29.1 0.148 72 16.6 0.212 113 56.2 0.072 0.702
Q5 138 21.7 0.589 46 10.6 0.708 92 45.8 0.488 1.022
Q6 241 38.0 -0.296 114 26.3 -0.337 127 63.2 -0.210 0.666
Q7 293 46.1 -0.665 142 32.7 -0.625 151 75.1 -0.755 0.659
Q8 182 28.7 0.173 66 15.2 0.310 116 57.7 0.013 1.477
Q9 144 22.7 0.528 87 20.0 -0.008 57 28.4 1.266 6.197

that question correctly, while 75.1% of high ability students an-
swered that question correctly. Question 9 had the worst |z |-value
at a 6.197. We see little difference between the two groups: 20.0% of
the low ability students and only 28.4% of the high ability students
answering the question correctly. Since question 9’s |z |-value is so
much greater than 2 it should be either edited or removed.

4.2 Reliability
For reliability, we calculated a Cronbach’s alpha of a 0.499, indi-
cating that at least 49.9% of the total score variance was due to
true score variance in this sample. With further analysis, we deter-
mined that question 9 had a negative impact on the total reliability.
After removing question 9, we calculated a Cronbach’s alpha of
a 0.57, still below our .70 minimum cut off [12]. We note that the
low Cronbach’s alpha is in line with the original SCS1 reliability of
0.59 as reported by [13], suggesting a practical level of reliability in
keeping with the original unmodified exam.

4.3 Comparison
We used a t-test to compare students’ SCS1R scores and their final
letter grades. Because we didn’t plan on collecting final letter grades
until later in the collection process, the total number of final letter
grades that were collected was 148. Final letter grades were split
up into two groups. Group 1 consisted of students received a B+ or
higher(n = 102) and group 2 consisted of students who receiving
a B or below(n = 46). We wanted to split students up between a B
and above and a B- and below. We were unable to do so because
group 2 sample size wouldn’t be large enough.

Running a t-test showed that there was a significant difference
of scores between students who received a B+ or above (Mean =
3.4, Median = 3, SD = 1.7) and students who received a B and below
(Mean = 2.7, Median = 3, SD = 1.3) at a p-value < 0.04 which is
below the minimum cut off of a 0.05 [19]. Figure 3 Shows the the
box plot of both groups. While the median of both groups are the
same there was a significant difference between the two means
(statistic=2.1, p-value=0.039). Stating that students who received
a final letter grade of a B+ or higher scored higher on the SCS1R
than those who received a final letter grade of a B or below.

Figure 3: Violin Plot of Final letter grades and SCS1R scores
(n = 148)

5 DISCUSSION
Conducting this study provided us a better understanding of the
reliability of the instruments selected for use and enabled us to
catch mistakes early in the data collection process for our overall
study of spatial skills. Overall the SCS1R was found to be quite
difficult for students, confirming the results obtained by Parker et
al. [13]. Resulting data analysis suggests that this test should be
further revised for difficulty and re-validated, a notion also sug-
gested by the original authors. In our findings, beyond the difficulty
level, question 9 specifically should be revised for better clarity or
removed. In the case of question 1, which also fell (slightly) out-
side the recommended |z |-value, we determined that the item was
necessary and beneficial to the study, while its removal caused the
reliability of the SCS1R results to drop.

We where unable to reach significance while running a linear
regression across all final letter grades and SCS1R scores. We chose
to split students letter grades into two groups to show that the
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instrument is still able to differentiate between student of higher
ability (course grades B+ and above) and students with lower abil-
ities (as signified by those students earning a grade in CS1 of B
and bellow). There were a few factors that play a role in why we
couldn’t reach significance of the chi-squared (linear regression).
The biggest one is that the SCS1R is difficult. Students who received
a B or below obtained scores that were not demonstrably different
from guessing. There was also a strong bias when looking at final
letter grades where the majority of students who participated re-
ceived a grade in the A range. Another factor is that grading is not
consistent across each university and their CS1 courses. Different
professors have different grading scales and foci (e.g. emphasizing
projects versus exams).

6 CONCLUSION
After taking a subset of the original SCS1 we were able to reduce
time and redundancy, and alleviate student apprehension in taking
a long and hard exam. Our Cronbach’s alpha of 0.57 was close to the
original Cronbach’s alpha of 0.59 as reported by [13]. We also note
that there was a clear correlation between student performance on
the SCS1R and their performance in the CS1 course. This helped
to convince us that the SCS1R exam is a reasonable predictor of
student comprehension of CS1 content across the three universities
data was collected.
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