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Abstract

We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar
Astrophysics (MESA). RSP is a new functionality in MESAstar that models the nonlinear radial stellar pulsations
that characterize RRLyrae, Cepheids, and other classes of variable stars. We significantly enhance numerical
energy conservation capabilities, including during mass changes. For example, this enables calculations through
the He flash that conserve energy to better than 0.001%. To improve the modeling of rotating stars in MESA, we
introduce a new approach to modifying the pressure and temperature equations of stellar structure, as well as a
formulation of the projection effects of gravity darkening. A new scheme for tracking convective boundaries yields
reliable values of the convective core mass and allows the natural emergence of adiabatic semiconvection regions
during both core hydrogen- and helium-burning phases. We quantify the parallel performance of MESA on current-
generation multicore architectures and demonstrate improvements in the computational efficiency of radiative
levitation. We report updates to the equation of state and nuclear reaction physics modules. We briefly discuss the
current treatment of fallback in core-collapse supernova models and the thermodynamic evolution of supernova
explosions. We close by discussing the new MESA Testhub software infrastructure to enhance source code
development.

Key words: stars: evolution – stars: general – stars: interiors – stars: oscillations (including pulsations) – stars:
rotation – stars: variables: general

1. Introduction

One of the foundations upon which modern astrophysics
rests is the fundamental properties of stars throughout their
evolution. The advent of transformative capabilities in space-
and ground-based hardware instruments is providing an
unprecedented volume of high-quality measurements of stars,
significantly strengthening and extending the observational
data upon which all of stellar astrophysics ultimately depends.
For example, the Parker Solar Probe will provide new
information on the flow of energy, structure, and dynamics of
the closest star (Parker 1958a; Feng et al. 2010; Cranmer &

Winebarger 2018; Gombosi et al. 2018), and the Daniel K.
Inouye Solar Telescope will provide high temporal and spatial
resolution with adaptive optics to reveal the nature of the outer
layers of the Sun (Parker 1958b; McComas et al. 2018; Snow
et al. 2018).
The exceptional precision of stellar brightness measurements

achieved by the planet-hunting space telescopes Kepler/K2
(Borucki et al. 2010; Howell et al. 2014) and CoRoT (Auvergne
et al. 2009) ushered in a new era in stellar photometric
variability investigations. The Transiting Exoplanet Survey
Satellite is building on this legacy by surveying most of the sky
in roughly month-long sectors covering four 24°× 24° areas
from the ecliptic poles to near the ecliptic plane (Ricker et al.
2016). The mission will produce light curves for about 200,000
nearby late-type stars sampled at a 2-minute cadence to open a
new era of stellar variability exploration (e.g., Ball et al. 2018;
Huang et al. 2018; Shen et al. 2018; Dragomir et al. 2019;
Wang et al. 2019). The Characterizing Exoplanets Satellite will
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complement these surveys by providing a unique, large sample
of high-precision photometric monitoring of selected bright
target stars (Broeg et al. 2013; Gaidos et al. 2017).

The Gaia Data Release 2, containing about 1.7 billion stars,
begins the process of converting the spectrophotometric
measurements to distances, proper motions, luminosities,
effective temperatures, surface gravities, and elemental com-
positions (Bailer-Jones et al. 2018; Gaia Collaboration et al.
2018b; Lindegren et al. 2018; Luri et al. 2018). This stellar
census will revolutionize a range of questions related to the
origin, structure, and evolutionary history of stars in the Milky
Way (e.g., Gaia Collaboration et al. 2018a, 2018c; Riess et al.
2018). The infrared instruments aboard the James Webb Space
Telescope (Gardner et al. 2006; Beichman et al. 2012; Artigau
et al. 2014; Rieke et al. 2015) will search for the first- and
second-generation stars (Rydberg et al. 2013; Kelly et al. 2018;
Windhorst et al. 2018), assess how galaxies evolved from their
formation (Zackrisson et al. 2011), observe the formation of
stars from the initial stages of collapse onward (Senarath et al.
2018), and measure the physical and chemical properties
of stellar–planetary systems (Deming et al. 2009). The
Laser Interferometer Gravitational-Wave Observatory and
Virgo interferometers have demonstrated the existence of
binary stellar-mass black hole systems (Abbott et al. 2017d,
2017e, 2017f) and neutron star mergers (Abbott et al.
2017a, 2017b, 2017c) and will continue to monitor the sky
with improved broadband detectors for gravitational waves
from compact binary inspirals and asymmetrical exploding
massive stars.

In partnership with this ongoing explosion of activity in
stellar astrophysics, community-driven software instruments
are transforming how stellar theory, modeling, and simulations
interact with observations (e.g., Turk et al. 2011; Foreman-
Mackey et al. 2013; Ness et al. 2015; Choi et al. 2016; Astropy
Collaboration et al. 2018). Modules for Experiments in Stellar
Astrophysics (MESA) was introduced in Paxton et al. (2011,
hereafter PaperI) and significantly expanded its range of
capabilities in Paxton et al. (2013, hereafter PaperII), Paxton
et al. (2015, hereafter PaperIII), and Paxton et al. (2018,
hereafter PaperIV). These prior papers, as well as this one, are
software instrument papers that describe the capabilities and
limitations of MESA while also comparing to other available
numerical or analytic results.

This instrument paper describes the major new advances to
MESA for variable stars, numerical energy conservation,
rotation, and convective boundaries. We do not fully explore
the science results and their implications in this paper. The
scientific potential of these new capabilities will be unlocked in
future work via the efforts of the growing, 1000-strong MESA
research community.

Millions of variable stars have been discovered in the Milky
Way and Magellanic Clouds, the Local Group (e.g., Optical
Gravitational Lensing Experiment [OGLE], Udalski et al.
2015; MACHO Project, Alcock et al. 2003; Palomar Transient
Factory, Soraisam et al. 2018), and beyond (e.g., Conroy et al.
2018). Figure 1 shows the broad classifications of these
pulsating stars. Pulsating stars such as RRLyrae and the brighter
δ Cephei (the classical Cepheids) are common, and a strong
direct relationship between their luminosities and pulsation
periods established Cepheids (Leavitt 1908; Freedman et al.
2001; Majaess et al. 2009; Riess et al. 2016, 2018) and RR Lyrae
in infrared bands (Clementini et al. 2001; Benedict et al. 2002;

Klein et al. 2014; Muraveva et al. 2018a, 2018b) as key distance
indicators. New classes of variable stars are still being
discovered: blue large-amplitude pulsators (BLAPs) are a new
family of pulsating variable stars (Pietrukowicz et al. 2017).
BLAPs are rare; only 14 variable stars are attributed by OGLE to
this class after examining ;109 stars. They vary in brightness by
;20% on ;30-minute timescales (Pietrukowicz et al. 2013). An
important new addition to MESA is the capability to model
radially pulsating variable stars.
Numerical energy conservation is rarely discussed by stellar

evolution software instrument papers, or shown in science
papers as part of establishing robustness of the solutions
obtained with the software instrument. Yet stellar evolution
calculations generally use low-order, implicit time integration
with potentially poorly conditioned matrices whose matrix
elements contain limited-precision partial derivatives that can
severely limit the quality of solutions. The cumulative effect of
such errors can be substantial (Reiter et al. 1995). We
implement a set of changes in MESA that, when applicable,
can significantly improve the energy conservation properties of
stellar evolution models at both global and local levels. This
can reduce cumulative errors in energy conservation to 1% or
less for applications such as the evolution of a 1Me model

Figure 1. Classes of pulsating variable stars in the Hertzsprung-Russell (H-R)
diagram, including regions driven by the He II bump (δ Ceph, δ Sct, RRLyrae)
and Fe bump (β Ceph, SPB) in the opacity. Backslash (/) fills represent
pressure modes and slash (/) fills represent gravity modes. The zero-age main
sequence (ZAMS; black dashed curve) is labeled with the locations of selected
masses. The classical instability strip for radial pulsations is shown by the gray
dashed curves. Evolution of a 2.1 Me MESA model (at Z=0.02) from ZAMS
to a white dwarf (WD) is shown by the purple curve. Figure design from
Papics (2013).
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from the pre-main-sequence to the end of core He burning or a
core-collapse supernova (SN) from soon after explosion to
shock breakout.
Rotation modifies a starʼs structure (von Zeipel 1924a;

Maeder & Meynet 2000; Tassoul 2000). We present a new
approach in MESA for calculating the factors that modify the
pressure and temperature equations of stellar structure within
the shellular approximation. A rotating star is also oblate, with
a larger radius at its equator than at its poles. As a result, the
equator has a lower surface gravity and thus a lower effective
temperature Teff (von Zeipel 1924b; Chandrasekhar 1933).
Hence, the equator is “gravity darkened,” the poles are “gravity
brightened,” and this effect can play an important role in the
classification of stars. The new extensions to MESA open a
pathway for correcting Teff and L for aspect-dependent effects.
Stars transport energy by convection, whether within a core,

within an envelope, or throughout the interior. These convec-
tion regions showcase the interplay between composition
mixing, gradients, and diffusion and the transport of energy
through the radial exchange of matter. It is necessary to ensure
that convective boundaries are properly positioned because
their placement can strongly influence the evolution of the
stellar model (Gabriel et al. 2014; Salaris & Cassisi 2017,
PaperIV). We implement an improved algorithm for correctly
locating the convective boundaries and naturally allowing the
emergence of adiabatic semiconvection regions during core H
and He burning.
The paper is organized as follows. Section 2 introduces a

new capability to model large-amplitude radially pulsating
variable stars. Section 3 highlights energy conservation in
MESA. Section 4 describes new rotation and gravity-darkening
factors, Section 5 explores a new treatment of convective
boundaries, and Section 6 examines the parallel performance of
MESAstar. Appendix A reports updates to the equation of
state (EOS) and nuclear reaction modules. Appendix B details
properties of the rotation factors. Appendix C discusses the
current treatment of fallback in core-collapse SNe and the
thermodynamic evolution from massive star explosions.
Appendix D introduces the MESA Testhub for source code
development.
Important symbols are defined in Table 1. Acronyms are

defined in Table 2. Components of MESA, such as modules and
routines, are in typewriter font, e.g., eos.

2. Radial Stellar Pulsations

Cepheids, RR Lyrae, and other classes of variable stars are
observed to brighten and dim periodically. They can be modeled
as radially symmetric, large-amplitude, nonlinear oscillations of
self-gravitating gas spheres. Software instruments for precision
asteroseismology such as GYRE (Townsend & Teitler 2013;

Table 1
Important Symbols

Name Description Appears

 4π r2 area of face Section 2.1
e Specific internal energy Section 2.1
E Energy Section 3
F Flux Section 2.1
L Luminosity Section 1
m Mass coordinate Section 2.1
M Stellar mass Section 1
Φ Roche potential Section 4
p Pressure Section 2.1
P Period Section 2.1
ρ Mass density Section 2.1
r Radial coordinate Section 2.1
s Specific entropy Appendix A.1
T Temperature Section 2.2
u Velocity Section 2.1
V 1/ρ specific volume Section 2.1
Ω Rotation angular frequency Section 4
X Hydrogen mass fraction Section 2.2
Y Helium mass fraction Section 5
Z Metal mass fraction Section 2.2

cp Specific heat at constant pressure Section 1
cV Specific heat at constant volume Appendix A.1
δt Numerical time step Section 3.3
dm Mass of cell Section 3
∇ad Adiabatic temperature gradient Section 3.3
∇L Ledoux temperature gradient Section 5
∇rad Radiative temperature gradient Section 5
irot Specific moment of inertia Section 4
jrot Specific angular momentum Section 4
Teff Effective temperature Section 1

α Mixing-length parameter Section 2.1
αc Convective flux parameter Section 2.1
αcut Artificial viscosity parameter Section 2.1
αd Turbulent dissipation parameter Section 2.1
αm Eddy-viscous dissipation parameter Section 2.1
αp Turbulent pressure parameter Section 2.1
αs Turbulent source parameter Section 2.1
αt Turbulent flux parameter Section 2.1
C S−D−Dr convective coupling Section 2.1
Cq Artificial viscosity parameter Section 2.1
Δu Change in velocity across a cell Section 1
D ( )a ae Hd t

3 2
p turbulent dissipation Section 2.1

Dr ( sg a4 r
2 2) ( )kT V c H ep

3 2
p
2

t Section 2.1

Radiative cooling
òq ( )( )( )r ¶ ¶ -q u r u r4 3 2 Section 2.1

Viscous energy transfer rate
et Specific turbulent energy Section 2.1
Fc aa rTc e Ypc t

1 2
sag convective flux Section 2.1

Fr ( )kr- ¶ ¶acT T r4 33 radiative flux Section 2.1
Ft ( )aa r- ¶ ¶H e e rt p t

1 2
t turbulentflux Section 2.1

γr Radiative cooling parameter Section 2.1
Hp Pressure scale height Section 1
κ Opacity Section 1
pav [ ( )]aD +C p u pVmin , 0q cut

2 Section 2.1

Artificial viscosity pressure
pt αpρet turbulent pressure Section 2.1
q a raH em p t

1 2 kinetic turbulent viscosity Section 2.1

Q ( )∣¶ ¶V T p thermal expansion coefficient Section 1

s Specific entropy Section 1
S ( )aa e TpQ H Ys t

1 2
p sag sourcefunction Section 2.1

Uq
⎡⎣ ⎤⎦( ) ( )/ /r ¶ ¶ ¶ ¶ -r r qr u r u r1 3 4

3
3 Section 2.1

Table 1
(Continued)

Name Description Appears

Viscous momentum transfer rate
Ysag −Hp/cp∂s/∂r superadiabaticgradient Section 1

Note.Single-character symbols are listed first, symbols with modifiers are
listed second, and symbols for the RSP convection model are listed third. Some
symbols may be further subscripted, for example, by c (indicating a central
quantity), by a cell index k, or by species index i.
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Townsend et al. 2018) model the small-amplitude, linear
oscillations of stars. Software instruments such as RSP, described
below, are necessary to model the time evolution of large-
amplitude, self-excited, nonlinear pulsations over many cycles to
produce luminosity and radial velocity histories that can be
compared to observations.

Early nonlinear radial pulsation models considered purely
radiative envelopes (e.g., Christy 1964; Stellingwerf 1975;
Castor et al. 1977; Aikawa & Simon 1983). Later, radiation
hydrodynamic treatments followed with implicit adaptive grids
(Dorfi & Drury 1987; Dorfi & Feuchtinger 1991). While these
purely radiative models qualitatively reproduced light and
radial velocity curves, it was clear that convection driven by
partial ionization of H and He carries most of the flux in the
envelopes of RRLyrae and Cepheids. Prescriptions for
coupling convection with pulsations were developed (e.g.,
Stellingwerf 1982; Kuhfuß, 1986) that reside, with modifica-
tions, in modern software instruments (Bono & Stellingwerf
1994; Yecko et al. 1998; Kolláth et al. 2002; Smolec &
Moskalik 2008). Models from these software instruments can
reproduce the overall morphology of light and radial velocity
curves of classical pulsators (e.g., Feuchtinger et al. 2000;
Marconi et al. 2015), features of specific objects (e.g., Keller &
Wood 2006; Marconi et al. 2013; Smolec et al. 2013), and
dynamical phenomena such as the Hertzsprung progression
(e.g., Hertzsprung 1926; Bono et al. 2000). Unsolved problems
include double-mode pulsations (Kolláth et al. 2002; Smolec &
Moskalik 2010) and the cyclic modulations of RRLyrae light
curves (e.g., the Blazhko effect; Blažko 1907; Szabó et al.
2010). For background material we refer the reader to Gautschy
& Saio (1995, 1996), Buchler (2009), and Marconi (2017).

2.1. Radial Stellar Pulsations—RSP

RSP is a new functionality in MESAstar that models large-
amplitude, self-excited, nonlinear pulsations that stars develop
when they cross instability domains in the H-R diagram (see
Figure 1). RSP is closely integrated with the MESA environ-
ment. Instead of calling the standard MESAstar routine to
evaluate equations and solve for a new model using Newton–
Raphson iterations (see Section 3), a separate routine does the
same for RSP using a different set of equations and a different

Newton–Raphson solver. The different equations include time-
dependent convection in a form appropriate for modeling
nonlinear pulsations, and the different solver uses a band
diagonal matrix approach since the equations as currently
implemented do not fit into a three-block stencil needed for the
standard block tridiagonal solver. Moreover, instead of calling
the usual MESAstar routine to get a starting model, a separate
routine creates an RSP model envelope that is consistent with
the RSP set of equations. RSP uses the same MESA opacity and
EOS modules, inlist structure, profile and history output files,
photo files for saving and restarting runs, run_star_extras
extensions, and hooks for using externally supplied routines.
RSP follows Smolec & Moskalik (2008), where the

momentum and specific internal energy equations are

( ) ( )= -
¶
¶

+ + + -
Du

Dt m
p p p U

Gm

r
, 1t av q 2

( ) [ ( )] ( )+ + = -
¶
¶

+ -
De

Dt
p p

DV

Dt m
F F C, 2av r c

where D Dt is the Lagrangian time derivative. The generation
of a specific turbulent energy, et, is described by the one-
equation Kuhfuß (1986) model

( ) ( )+ = -
¶
¶

+ +
De

Dt
p
DV

Dt m
F C. 3t

t t q

The latter two equations are added to give an equation for the
specific internal and turbulent energies

( ) ( )

[ ( )] ( )

+ + + +

= -
¶
¶

+ + + 

D

Dt
e e p p p

DV

Dt

m
F F F . 4

t t av

r c t q

Definitions for all terms entering these equations are given in
Table 1. RSP solves Equations (1), (3), and (4). The diffusion
approximation is used for the radiative flux Fr, and its
numerical implementation follows Stellingwerf (1975). Num-
erical implementation of the superadiabatic gradient follows
Stellingwerf (1982). All equations are discretized on a
Lagrangian mesh.
Several quantities enter the convection model. For the

momentum equation these are the turbulent pressure pt (Table 1
lists the relationship with the specific turbulent energy et) and
viscous momentum transfer rate Uq. For the turbulent energy
equation these are the work done by turbulent pressure, the
divergence of the turbulent flux Ft, and the viscous energy transfer
rate òq. The convective coupling term C=S−D−Dr appears
with opposite sign in the internal and turbulent energy equations.
Generation of the turbulent energy is driven by the source function
S, while turbulent dissipation D and radiative cooling Dr

contribute to its decay. Radiative cooling of convective eddies
follows Wuchterl & Feuchtinger (1998). Details of the turbulent
convection model are discussed in Kuhfuß (1986), Wuchterl &
Feuchtinger (1998), and Smolec & Moskalik (2008).
These terms in the convection model depend on the free

parameters listed in Table 3. If radiative cooling and turbulent
pressure are neglected, the time-independent version of the
Kuhfuß (1986) convection model reduces to standard mixing-
length theory (MLT) provided that base values are used for αs,
αc, and αd (associated controls set to 1). Base values for αp and γr
follow Yecko et al. (1998) and Wuchterl & Feuchtinger (1998),

Table 2
Acronyms Used in This Paper

Acronym Description Appears

1O First overtone Section 2.2.2
2O Second overtone Section 2.2.2
BEP Binary evolution pulsators Section 2.4.4
BLAP Blue large-amplitude pulsators Section 1
CHeB Core helium burning Section 5
CPM Convective premixing Section 5
EOS Equation of state Section 1
HADS High-amplitude Delta Scuti Section 2.4.6
H-R Hertzsprung-Russell Section 1
LNA Linear nonadiabatic Section 2.2
MLT Mixing-length theory Section 5
MS Main sequence Section 2.4.6
RSP Radial stellar pulsations Section 2.1
TAMS Terminal-age main sequence Section 4.1
WD White dwarf Section 1
ZAMS Zero-age main sequence Section 1
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respectively. Experience suggests that αt;0.01, αm1, and
α2 are useful starting choices.

Periods of pulsation modes depend weakly on the values of
these free parameters. Pulsation growth rates and light and
radial velocity curves are, however, sensitive to the free
parameters. Calibration with multiple observational constraints
is unlikely to yield a unique set of parameters that gives
satisfactory results across the H-R diagram for all pulsation
modes. We stress that parameter surveys are an essential part of
any science application of RSP.

In Equations (1) and (2), pav is the artificial viscosity
pressure (Richtmyer 1957) for numerically handling shocks
that may develop during pulsations. We adopt the Stellingwerf
(1975) two-parameter formulation as the default. The Tschar-
nuter & Winkler (1979) artificial pressure-tensor form, which
was implemented in PaperIII, can also be used in RSP.
The numerical scheme to solve discrete versions of the

equations is based on the intrinsically energy-conserving
method given by Fraley (1968). Details of the numerical
implementation, along with RSPʼs lineage (Stellingwerf 1975;
Kovacs & Buchler 1988), are discussed in Smolec & Moskalik
(2008). During the nonlinear integration, u=0, L=constant,
and et=0 at the inner boundary (See Figure 2). The latter
condition holds also for the outermost boundary, i.e., the
outermost cell is radiative. External pressure is fixed and zero
by default.

2.2. RSP in Action

RSP performs three operations: building an initial model,
conducting a linear nonadiabatic (LNA) stability analysis on
that model, and integrating the time-dependent nonlinear
equations.

2.2.1. Building an Initial Model

Since the energy density of radial pulsations drops rapidly
going inward from a starʼs surface, a full stellar model reaching
to the center is frequently not necessary. The use of RSP is
currently restricted to cases in which pulsations are determined
by the structure of the envelope and are independent of the
detailed structure of the core. RSP begins by building a
chemically homogeneous envelope from given stellar para-
meters (M, L, Teff, X, and Z). These parameters can be freely
chosen and need not originate from a MESAstar model. It is
not yet possible to directly import an envelope from
MESAstar into RSP primarily because of the different
treatments of convection (a version of MLT in MESAstar

vs. detailed time evolution of turbulence in RSP). Tighter
integration of MESAstar and RSP is a future project.
Specifications for the initial model include the number of

cells and the temperature at the base (see Figure 2). This inner
boundary temperature is defined by a chosen temperature
(RSP_T_inner;2×106 K) that should be set hot enough
so that the eigenvector amplitudes generated in the following
stability analysis go to zero and cool enough to exclude regions
of nuclear burning and justify the assumption of chemical
homogeneity. The model is divided into inner and outer regions
at a specified anchor temperature. In the outer region, cells have
the same mass; in the inner region cell masses grow by a
constant factor so that the innermost cells are significantly
larger than the ones at the surface. The anchor temperature
should be in the part of the model driving the pulsations. For
example, for pulsations in the classical instability strip a value
of Tanchor=11,000 K is typical. In the case of Z-bump
pulsations a higher temperature would be appropriate. Proper
choice of the number of outer cells and placement of the anchor
are necessary to ensure that the driving region is well resolved.
The initial model builder iteratively constructs an envelope

in hydrostatic equilibrium that satisfies the RSP equations.
Starting from the outer radius determined by L and Teff, this
process involves selection of a cell mass to be used in the outer
part of the envelope and a scale factor that is used to
progressively increase cell masses in the inner region. Those
choices must match the desired number of cells, both N and
Nouter, and also satisfy the surface boundary conditions and the
required temperatures at the anchor location and at the inner
boundary. The model builder is a complex multistage iterative
procedure that works well for the range of cases presented in
the following but may fail when applied outside of that range.

Table 3
Free Parameters of the RSP Convection Model, Their Base Values, and

Associated MESA Controls That Multiply the Base Values

Parameter = Base Value × Control Value

α 1 RSP_alfa
αm 1 RSP_alfam
αs ( )1 2 2 3 RSP_alfas

αc ( )1 2 2 3 RSP_alfac

αd ( )8 3 2 3 RSP_alfad

αp 2/3 RSP_alfap
αt 1 RSP_alfat
γr 2 3 RSP_gammar

Figure 2. Grid structure in RSP. The inner boundary at the base of the static
envelope is defined by a chosen temperature (RSP_T_inner). The model
surface has a fixed temperature Touter, derived from Teff, and pressure
(RSP_Psurf). The anchor temperature (RSP_T_anchor) is usually located
where H ionizes, shown by the blue curve. The envelope is divided into N
Lagrangian mass cells (RSP_nz). Between the anchor and the surface are Nouter

cells (RSP_nz_outer), each with a constant mass. Between the inner
boundary and the anchor the mass of each cell increases.
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2.2.2. Stability Analysis

The LNA analysis is performed on the initial model using a
full linearization of the RSP equations (for details see
Smolec 2009). These include time-dependent convection,
moving beyond the frozen-in convection approximation made
in software instruments like GYRE. This yields the eigenmodes,
periods, and growth rates. The eigenvectors are used to perturb
the initial model for the time evolution.

Figure 3 shows amplitudes of radial displacements and
differential work for the first three eigenmodes of the classical
Cepheid model in the MESA test_suite. A common
resolution for exploratory model surveys, N=150 and
Nouter=40, is adopted. For T5×105 K, the displacements
and differential work of all three radial eigenmodes are
negligible, indicating that the extent of the computational
domain is sufficient.

2.2.3. Evolution in the Linear Regime

The initial static model is perturbed with a linear combination
of the velocity eigenvectors of the three lowest-order radial
modes. More specifically, the velocity eigenvectors are scaled to
have a surface value of 1. RSP_fraction_1st_overtone
and RSP_fraction_2nd_overtone multiply the 1O and
2O eigenvectors, respectively. The F-mode eigenvector is
then multiplied by (1-RSP_fraction_1st_overtone
- RSP_fraction_2nd_overtone). The linear combination
of these three scaled eigenvectors is then multiplied by the surface
velocity RSP_kick_vsurf_km_per_sec.
The time integration commences with a constant time step

(RSP_target_steps_per_cycle) and continues for a
specified number of pulsation cycles (RSP_max_num_per-
iods). A new cycle begins when the model passes through a
maximum radius. Controls allow filtering out secondary
maxima in the radial velocity curve.

Figure 4 shows Γ, the fractional growth of the kinetic energy
per pulsation period near the start of a time integration, where

( ) ( ) ( )G = - ++ +E E E E2 , 5i i i i
k,max

1
k,max k,max

1
k,max

and E i
k,max is the maximum kinetic energy of the envelope

during pulsation cycle i. Agreement between these three time
integrations and the corresponding LNA analyses is satisfac-
tory. Similarly, the pulsation periods match the linear values
during the low-amplitude phase of development. Consistency
between the time integrations and LNA analyses forms the
basis for interpreting the nonlinear results.

2.2.4. Different Perturbations, Different Periods

Which of the perturbed modes attains large-amplitude pulsa-
tions in the nonlinear regime may depend on the initial conditions
(e.g., Smolec 2014). Figure 5 shows the results of longer time
integrations for the RRLyrae model shown in Figure 4. The
upper triplet of panels, case (a), is for a 1O-mode initialization
with a 4.5 km s−1 amplitude. The middle triplet panel, case (b), is
for an F-mode initialization with 4.5 km s−1 amplitude. The lower
triplet, case (c), is for an F-mode initialization with a 9.5 km s−1

amplitude.
For case (a), the pulsations converge toward a single,

1O-mode pulsation. After a ;500-cycle transient phase, the
pulsation period and radius amplitude barely change and
Γ;0. For case (b), the model has not converged to a single-
periodic mode after 4000 cycles. Despite the pure F-mode
initialization, at ;300 cycles the pulsation switches toward the
1O-mode. This does not prove that the model cannot pulsate in
the F-mode, as case (c) demonstrates. After a transient phase
with beating F and 1O-modes, the 1O-mode decays and the
single-periodic F-mode pulsation grows to saturation.
Figure 5 is an example of two different single-mode

solutions whose selection depends on the initial conditions.
Two stars can have the same physical parameters but pulsate in
different modes depending on their evolutionary history.

2.2.5. Convection Parameter Sensitivity

The final state in the nonlinear regime is usually a single-
periodic oscillation. The shape of the light and radial velocity
curves may depend on the values of the eight free parameters
listed in Table 3. In Table 4 setA corresponds to the simplest
convection model. SetB adds radiative cooling, setC adds
turbulent pressure and turbulent flux, and setD includes these
effects simultaneously. The parameter αm has little effect on
the shape of the light curve but strongly affects its amplitude.

Figure 3. RSP LNA analysis of a classical Cepheid model. Shown are the
displacement amplitudes (black) and the differential work (red) done by the
lowest three radial eigenmodes. The thickest curves are for the fundamental (F)
mode, medium thickness for the first overtone (1O) mode, and the thinnest
curves for the second overtone (2O) mode. The circles indicate the cell
locations. The gray areas show the extent of the convection zones around H
ionization, first He and second He ionization, respectively.

Figure 4. Comparison of the fractional growth rate Γ during the initial cycles
of the time integration. Horizontal lines show the LNA predictions. An
RRLyrae model (M=0.65 Me, L=45 Le, Teff=7100 K, X=0.75, Z=
0.0014) was initialized with a 0.1km s−1 amplitude pure F-mode (circles), 1O-
mode (squares), or 2O-mode (triangles) and evolved.
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Figure 6 shows the effect of varying αm on the Teff=6000 K
Cepheid model. The free parameter αm may thus be used to
match the observed amplitude. For sets A–D, αm was adjusted
so that models with different sets have similar amplitudes.

Figure 7 shows the effect of these parameter sets on the
shapes of the bolometric light, photosphere radial velocity, and
radius variation curves for a saturated F-mode RRLyrae and
two saturated F-mode classical Cepheid models. The pulsation
periods, radial velocity curves, and radius variation curves
show only small differences. For the RRLyrae models, there
are differences in the fine structure of the light curves. For
example, the bump before minimum light is weaker when
turbulent pressure and turbulent flux are included (sets C and
D). The shape of the light curve near maximum light also
differs for both the RRLyrae and Cepheid models.
Figure 8 shows the convective luminosity profiles for the

models of Figure 7. Depending on pulsation phase, one
convective region (darker hues) extends from the surface cells
down to cell ;90. This convective region is associated with
partial ionization of H and He. Another convective region (lighter
hues) lies deeper in the envelope, centered at cell ;110, and is
associated with the second ionization of He. In most of the models
these two convective regions merge at pulsation phase ;0.5
during maximum contraction when both convective regions are at
their strongest and most extended. In the cooler models, the first
convective region carries nearly all of the luminosity throughout a
pulsation cycle. In the hotter models, this convective region
becomes very weak at pulsation phase ;0.8 (before maximum
expansion) and is barely resolved as it progresses deeper into the
envelope. This behavior is pronounced in the RRLyrae models
with radiative cooling (sets B and D), as cooling contributes to
damping the turbulent energy and hence the near disappearance of
the convective region.

Figure 5. Fractional growth rate Γ, period P, and amplitude of radius variation
ΔR during 4000-cycle integrations of the same RRLyrae model as in Figure 4,
with three different initial conditions labeled (a), (b), and (c).

Table 4
Convective Parameter Sets Referred to in the Text as A, B, C, or D

Control Set A Set B Set C Set D

RSP_alfa 1.5 1.5 1.5 1.5
RSP_alfam 0.25 0.50 0.40 0.70
RSP_alfas 1.0 1.0 1.0 1.0
RSP_alfac 1.0 1.0 1.0 1.0
RSP_alfad 1.0 1.0 1.0 1.0
RSP_alfap 0.0 0.0 1.0 1.0
RSP_alfat 0.00 0.00 0.01 0.01
RSP_gammar 0.0 1.0 0.0 1.0

Note.Note that the controls multiply base values (see Table 3).

Figure 6. Bolometric light curve of the Teff=6000 K Cepheid model with
convective parameters of set A but with varying eddy-viscous dissipation αm.
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2.2.6. Artificial Viscosity Sensitivity

There are two parameters, αcut and Cq, that control the
Stellingwerf (1975) artificial viscosity, entering into the
definition of pav (see Table 1). Figure 9 shows the effect of
these parameters on light curves for the Teff=6000 K Cepheid
model. The value of Cq plays a minor role. For Cq=4, the top
panel shows that a different light curve develops only if
αcut=0.0, corresponding to artificial viscosity acting for very
small compressions, which leads to excessive dissipation that
quenches the pulsation amplitude. For αcut�0.01, the light
curves are similar and roughly have the same pulsation
amplitude. When αcut=0.1, artificial viscosity turns on only
for strong shocks, seen as the wiggle on the ascending branch
of the light curve. This choice (αcut=0.1) numerically
captures shocks without excessive dissipation, barely affecting
the light-curve shape and amplitude. While an artificial
viscosity modifies the velocity structure in the envelope at
each epoch, we find that these differences are smaller than the
differences for the bolometric light curves. The bottom panel
shows that the Tscharnuter & Winkler (1979) form of artificial
viscosity yields light curves with the same amplitude and
qualitatively the same shape. Small differences are apparent at
a shock-prone phase shortly before the maximum brightness.

2.2.7. Spatial and Temporal Sensitivity

Figure 10 shows the sensitivity of the bolometric light curve
to the total number of cells N, number of cells above the anchor
Nouter, anchor location Tanchor, and inner boundary location

Tinner for an RRLyrae model (M=0.65Me, L=50 Le,
Teff=7000 K, X=0.75, Z=0.0014) with convective para-
meter set A. For classical pulsators, Tinner is typically placed at
2×106 K, and common choices for Tanchor are 11,000 K or
15,000 K. The top panel shows that the light curves are weakly
sensitive to the choice of Tinner and Tanchor for this RRLyrae
model. Light and radial velocity curves are usually the most
sensitive to N and Nouter. The bottom panel shows that this
effect is small for this RRLyrae model. Section 2.4.4 shows a
case with a much larger sensitivity.
The default value of 600 time steps per pulsation cycle

works well for most cases, but smaller time steps are
recommended for models that include radiative cooling,
turbulent pressure, or turbulent flux, or develop violent
pulsations (e.g., the chaotic models of Section 2.4.3). We
stress that there is no unique choice of grid or time step that
will work for all applications or guarantees convergence. All
nonlinear modeling of variable stars should be accompanied by
sensitivity and convergence tests.

2.3. Current Limitations and Plans for the Future

RSP in its present form covers most of the classical instability
strip, including δCepheids, RRLyrae, high-amplitude δScuti,
and SXPhoenicis stars (see Figure 1), where a single or just a
few dominant radial modes are observed. RSP also has
applications outside of the classical instability strip as we show
below for BLAPs. For stars close to the main sequence (MS),
linear growth rates are very small, and thus, as we show below,

Figure 7. Bolometric light (top panel), radial velocity (middle panel), and radius curves (bottom panel) for an RRLyrae F-mode model (left; M=0.65 Me,
L=45 Le, Teff=6700 K, X=0.75, Z=0.0014) and two F-mode classical Cepheid models (M=4.15 Me, L=1400 Le, X=0.73, Z=0.007) at Teff=6000 K
(middle panel) and Teff=5700 K (right panel). The mass and luminosity for the Cepheid models are close to the values derived for OGLE-LMC-CEP-227 (Pilecki
et al. 2018). Each curve corresponds to a set of convective parameter values listed in Table 4. The mean magnitude of the bolometric light curves is set to zero. Light
curves are vertically offset by 0.3 mag, radial velocity curves by 10 km s−1, and radius curves by 0.2 Re (RRLyrae) or 1 Re (Cepheids).
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Figure 8. Evolution of convective luminosity Lc/L for the models shown in Figure 7. Cell number on the y-axis serves as a spatial coordinate, with cell 0 marking the
stellar surface. The radiative interior of each model is not shown.

Figure 9. Sensitivity of the bolometric light-curve shape of the Cepheid model
on artificial viscosity: αcut (top panel) in the Stellingwerf (1975) formulation,
and αcut in the Tscharnuter & Winkler (1979) formulation (bottom panel). The
light curve with Cq=4.0 and αcut=0.1 is shown as a gray curve.

Figure 10. Sensitivity of the bolometric light curve of an F-mode RRLyrae
model to the grid, labeled as N/Nouter/Tanchor/Tinner. The light curve for the
default grid is shown by the gray curve. The top panel shows the effects of
different Tanchor/Tinner. The bottom panel shows the effects of different N/Nouter

combinations.
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long time integrations are necessary to approach full-amplitude
nonlinear pulsations.

RSP is currently of limited use for strongly nonadiabatic
pulsations with large L/M ratios, including luminous blue
variables, Mira-type variables, and typeII Cepheids. For the
latter, only the shortest-period BLHer class variables can be
reliably modeled (see Section 2.4.3). For the longer-period classes
of WVir and RVTau variables, either static envelopes cannot be
constructed or nonlinear integrations break down at when violent
relaxations develop in the outermost layers. In the extended
envelopes of these variable stars the radiation-diffusion approx-
imation is inadequate owing to the low optical depth. The
inclusion of pulsation-driven mass loss may also be necessary to
study pulsations of these variable stars (Smolec 2016).

Inclusion of turbulent pressure and flux may lead to
convergence difficulties when constructing the static initial
envelope. Cooler stellar envelopes with higher Mach number
convection are also numerically more difficult than hotter
envelope models. These difficulties are rooted in the static grid
structure shown in Figure 2. Future developments of RSP
should include a more versatile initial model builder, adaptive
remeshing during the time integration, and a radiation
hydrodynamic treatment of the radiative energy and flux.

2.4. Applications of RSP

We now apply RSP to variable stars. Examples include the
light curves of classical pulsators, modeling of specific objects,
and models for the dynamics of modulated or chaotic
pulsations.

2.4.1. RRLyrae Variables

We consider two sequences of RRLyrae-type models. The first
sequence has M=0.65Me, L=45 Le, and [Fe/H]=−1.0
(X=0.75, Z=0.0014), with Teff varying in 100 K steps for
convective sets A–D. Figure 11 shows a gallery of I-band light
curves from this sequence. The top panel shows F-mode pulsators
(commonly known as RRab stars), and the bottom panel shows
1O-mode pulsators (known as RRc stars). The latter have smaller
amplitudes and are less nonlinear in shape (i.e., more sinusoidal)
than the F-mode light curves. Models with different convective
settings differ the most near minimum and maximum light. For
example, F-mode models with convective set B develop a bump
preceding minimum light that is absent in the light curves with
convective set D. On the other hand, F-mode models with cooler
Teff from convective set D develop broad, double-peaked light-
curve maxima that are absent in models from convective set B.

To compare the overall morphology of I-band light curves
from these sequences with OGLE observations, we perform a
Fourier decomposition of the synthetic light curves

( ) ( ) ( )å p f= + +I t A A kftsin 2 , 6
k

k k0

where f is the pulsation frequency and Ak and fk are amplitudes
and phases, respectively. We then construct the amplitude
ratios Rk1 and epoch-independent phase differences jk1 (Simon
& Lee 1981):

( )j f f= = -R
A

A
k, . 7k

k
k k1

1
1 1

Observationally derived values of Rk1 and jk1 are taken from
the OGLE catalog (Soszyński et al. 2014) and shown in

Figure 12 by gray circles for RRab (F-mode) stars and blue
circles for RRc (1O-mode) stars. The observations show that
the Fourier parameters follow progressions with pulsation
period, traced by the highest density of data points, but with
significant scatter. Fourier parameters from the model I-band
light curves are shown with colored symbols. Left panels are
for the first sequence of models. Right panels are for the second
sequence, which has M=0.65Me, convective set B, Teff
varying in 100 K steps, and either L=(40, 45, 50) Le at
[Fe/H]=−1.0 or L=45 Le at [Fe/H]=−1.5.
The left panels show that F-mode pulsators with convective

sets A and B progress similarly. Models with convective sets C

Figure 11. I-band light curves of F-mode (top panel) and 1O-mode (bottom
panel) pulsators across the instability strip for M=0.65 Me, L=45 Le,
[Fe/H]=−1.0, and convective sets B (blue) and D (red). Light curves are
labeled with their Teff and period and offset vertically to facilitate comparisons
(by 0.5 in the top panel and 0.4 in the bottom panel).
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and D also progress similarly but are qualitatively different
from those with convective sets A and B. These differences are
more pronounced for cooler, longer-period models. The overall
match of the F-mode decompositions with the OGLE RRab
stars (gray circles) is reasonable but shows some systematic
differences. For example, the model values of j31 are larger
than the observed values. However, the model physical
parameters except Teff are fixed, while this is not the case for
the OGLE RRab stars.

The match between the 1O-mode models and the OGLE
RRc stars (blue circles) is worse. The amplitudes and the
amplitude ratios are systematically too large. The Fourier
phases are systematically too small. This may indicate that

different convective parameters are needed to reproduce the
observed light-curve shapes of F-mode and 1O-mode pulsators.
Note that the 1O-mode instability strip with convective set C is
narrower than the F-mode instability strip at the luminosity
considered. Models from set C, where the 1O-mode is linearly
unstable and the integration is initialized with a 1O-mode
velocity perturbation, all switch to an F-mode pulsation.
The right panels in Figure 12 show that the light-curve

shapes are sensitive to the physical parameters. By varying the
luminosity and metallicity in a narrow range, the model
sequences match the OGLE values. However, no sequence
considered follows the OGLE progression, because RRLyrae
in the Galactic bulge are characterized by mass, luminosity, and

Figure 12. Comparison of the peak-to-peak amplitude and low-order Fourier decomposition parameters of I-band light curves of Galactic bulge RRab stars (gray
circles) and RRc stars (blue circles) with synthetic light curves (symbols). In the left panels physical parameters are fixed, except for Teff and different convective
parameter sets. In the right panels, the convective model is fixed and physical parameters are varied. Observational data are from Soszyński et al. (2014).
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metallicity distributions that cannot be reproduced with a single
sequence.

2.4.2. Classical F-mode Cepheids

Cepheids display a feature known as the Hertzsprung
progression (Hertzsprung 1926). A secondary bump in their
light and radial velocity curves appears near minimum light on
the descending branch when P;5 days. The bump moves
toward earlier phases on the descending branch as the period
increases and is coincident with maximum light when
P;10 days. The bump then moves onto the ascending branch
for longer periods and disappears at P;20 days. The bump is
driven by a 2:1 resonance between the F-mode and a damped
2O-mode (e.g., Simon & Schmidt 1976; Buchler et al. 1990).
This behavior is reflected in Cepheids’ Fourier parameters,
which follow more complex progressions with pulsation period
than the RRLyrae stars.

We consider 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0Me models
with X=0.736, Z=0.008, and convective parameter sets A–
D. Further details are in the test suite example 5M_cepheid_
blue_loop. Figure 13 shows the evolutionary tracks during
the core He-burning, blue-loop phase for a selection of masses.
Blue and red edges of the instability strip computed with RSP
for convective sets B and D are shown. Edges for convective
sets A and C largely overlap those for convective sets B and D,
respectively. Nonlinear pulsation models are computed with a
ΔTeff=300 K or 500 K offset from the blue edge.

Figure 14 shows I-band light curves and radial velocity
curves for the ΔTeff=300 K models. Due to the shift in the
location of blue edge models, models from convective sets B
and D have different Teff and consequently different pulsation
periods. Figure 15 compares Fourier parameters of the Cepheid
models with those derived from LMC Cepheid light curves (left
panel; Ulaczyk et al. 2013; Soszyński et al. 2015) and Galactic
F-mode Cepheid radial velocity curves (right panel; Storm et al.
2011). The I-band light curves are more sensitive to the
convective parameters than the radial velocity curves for both
ΔTeff offsets. As with the RRLyrae models, the Fourier
parameters for convective sets A and B are similar to each

other, as are those for sets C and D. The radial velocity Fourier
parameters follow tighter progressions than the I-band light
curves.
The Fourier phases in the left panels of Figure 15 are

systematically larger than the observationally inferred values
for P10 days, with the difference being larger for the cooler
ΔTeff=500 K models. For P10 days the model Fourier
phases are systematically smaller. Large discrepancies for the
radial velocity curves are absent in the right panels of
Figure 15, except for the amplitudes and R21 ratio at the
shortest periods. The projection (or p) factor is the ratio of the
pulsation velocity to the radial velocity deduced from spectral
line-profile observations, dependent on at least rotation and
gravity darkening (see Section 4), and plays a role in the

Figure 13. Evolutionary tracks in the H-R diagram, shaded to show the core He
mass fraction, Yc. Blue and red edges of the instability strip for convective sets
B and D are shown, along with the locations where nonlinear Cepheid models
are computed (symbols).

Figure 14. I-band light curves (top panel) and radial velocity curves (bottom
panel) for the Cepheid models with a ΔTeff=300 K offset from the blue edge
and convective sets B and D. Light curves are labeled with their pulsation
periods and offset vertically by 0.5 mag or 35 km s−1to facilitate comparison.
Radial velocity curves follow the same order.
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amplitudes. We use p=1.3, close to the average value of
determinations based on eclipsing binary Cepheid systems
(Pilecki et al. 2018) and interferometric methods (e.g.,
Breitfelder et al. 2016).

This brief survey is not exhaustive, as only a few masses and
two model sequences are explored. The M−L relation is also
important for Cepheids, as evolutionary tracks depend on
overshooting, rotation, and metallicity.

2.4.3. Type II Cepheids

TypeII Cepheids are more similar to RRLyrae stars than to
classical Cepheids owing to their lower masses (M;0.5Me),
Population II chemical composition, and evolutionary history.

Their masses are similar to RRLyrae, but they cross the
instability strip at larger luminosities and pulsate with longer
periods (P>1 day). Type II Cepheids are F-mode pulsators
except for a few double-mode stars pulsating simultaneously in
the F- and 1O-modes (Smolec et al. 2018; Udalski et al. 2018)
and two recently discovered 1O-mode pulsators (Soszyński
et al. 2019). BL Her variables are a subclass of Type II
Cepheids with P4 days.
Nonlinear radiative models of TypeII Cepheids revealed a

variety of complex dynamics, including period-doubled and
deterministic chaos pulsations (e.g., Buchler & Kovacs 1987;
Kovacs & Buchler 1988; Buchler & Moskalik 1992). With
convective pulsation models, modulated pulsations were also

Figure 15. Amplitudes and Fourier parameters for I-band light curves (left panel) and radial velocity curves (right panel). Observations are marked with gray circles.
Light-curve data are from Soszyński et al. (2015) and Ulaczyk et al. (2013), and radial velocity curve data are from Storm et al. (2011). For the light curves the peak-
to-peak amplitude is shown, while for radial velocity curves the Fourier amplitude is scaled with a p-factor of 1.3. Models are plotted with colored symbols.
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found (Smolec & Moskalik 2012). Buchler & Moskalik (1992)
discovered period-doubled pulsations in their survey of BLHer
models and predicted that they should be observed in BLHer
variables. The period doubling is caused by a 3:2 resonance of
the F- and 1O-modes and nonlinear phase synchronization
(Moskalik & Buchler 1990); pulsations repeat only after two
cycles of the F-mode.

Soszyński et al. (2011) report a period-doubled BLHer star,
OGLE-BLG-T2CEP-279. We adoptM=0.6Me, L=184 Le,
Teff=6050 K, X=0.76, Z=0.01, and convective parameter
set A. These are nearly the same physical parameters Smolec
et al. (2012) chose for a T2CEP-279 model survey. The
observed and model light curves are shown in Figure 16. The
model amplitudes of the bump at minimum light of the period-
doubled cycle are larger and the shape of the light maximum is
more pronounced relative to the observed features. The model
period, Pmodel=2.6976 days, is longer than the observed
period, Pobs=2.3993 days. Still, the light curves are qualita-
tively similar, devoid of fine-tuning, and demonstrate that RSP
can be used to model specific stars.

Figure 17 shows the radius variation for two models with
M=0.55Me, L=136 Le, X=0.76, Z=0.0001, and con-
vective set A but with a reduced eddy viscosity, αm=0.05

(yielding unrealistic light curves). The two models differ only
in Teff=5932 K (top panel) and Teff=6410 K (bottom panel).
Figure 18 shows the return map of maximum radii for these
two models, plotting the maximum radii for each pulsation
cycle R n

max versus the preceding -R n
max

1.
For the cooler Teff=5932 K model, the top panel of

Figure 17 shows a cyclic modulation in the envelope of the
period-doubled pulsation. The modulation period of ;57 days
is longer than the pulsation period of ;2.3 days. The return
map in the top panel of Figure 18 is constructed from ;8000
pulsation cycles and shows two loops, corresponding to
alternating smaller and larger maximum radii. Since the
modulation period is not commensurate with the pulsation
period, the return maps develop a locus of points that form the
closed lobes. Light-curve modulation is common in RRLyrae
stars (Blazhko effect), and periodic pulsation modulation was
recently discovered in BLHer variables (Smolec et al. 2018).

Figure 16. Comparison of the observed I-band light curve of OGLE-BLG-
T2CEP-279 (blue circles) with the pulsation model (red curve). The period-
doubling effect is recognizable upon comparing consecutive maxima and
minima. The model is vertically offset by 0.6.

Figure 17. Radius variation in two models differing only in their Teffthat show
periodic modulation (top panel) and deterministic chaos (bottom panel).

Figure 18. Maximum radius return maps for the models in Figure 17.
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For the hotter Teff=6410K model, the radius variation
appears irregular in the bottom panel of Figure 17. The return
map in the bottom panel of Figure 18 reveals a strange attractor,
an example of deterministic chaos in nonlinear models. Tracing
time series from models is simple, but tracing chaotic dynamics in
observations is difficult (e.g., Plachy et al. 2018). Chaotic
dynamics is reported in a few type II Cepheids with longer
periods, in the RVTau variable star range, and in semiregular
variable stars (e.g., Buchler et al. 1996, 2004; Kollath et al. 1998;
Plachy et al. 2018). While the Teff=6410 K model has a shorter
period, in the BLHer range, such models may provide insight
into chaotic dynamics in pulsating stars (see Plachy et al. 2013;
Smolec & Moskalik 2014).

2.4.4. Binary Evolution Pulsators

Very low mass stars do not enter the classical instability strip
within a Hubble time. However, mass loss from the more
massive component in a close interacting binary can lead to a
low-mass star that then evolves through the instability strip.
The Binary Evolution Pulsator (BEP, OGLE-BLG-RRLYR-
02792) is the prototype of this new class of pulsators
(Pietrzynski et al. 2012; Smolec et al. 2013). The BEPʼs
variability is similar to an F-mode RRLyrae pulsator but with a
dynamical mass of ;0.26Me.

Following Smolec et al. (2013), we adopt M=0.26Me,
L=33 Le, Teff=6910 K, X=0.7, Z=0.01, and convective
set A. Figure 19 shows I-band light curves and radial velocity

curves for the BEP models. Results for a coarse grid
(N/Nouter=150/40, gold curves) qualitatively match these
observations and have a period of 0.6373 days close to the
observed 0.6275-day period. We also show results for a
medium grid (300/120, orange curves) and a fine grid (300/
120, red curves). The differences are most pronounced around
maximum and minimum light. The shape of the light and radial
velocity curves approach convergence only on grids with 600
cells. The amplitude of the model curves is sensitive to
convective parameters and can be fine-tuned for a better match
with observations.

2.4.5. Blue Large-amplitude Pulsators

The origin of BLAPs, introduced in Section 1, is unknown.
They have been modeled as ;0.3Me shell H-burning stars that
are progenitors of low-mass WDs and ;1.0Me stars under-
going core He burning (Pietrukowicz et al. 2017; Byrne &
Jeffery 2018; Romero et al. 2018; Wu & Li 2018). Though
mass loss in a close interacting binary must be invoked for both
hypotheses, none of the BLAPs are known to be in a binary.
Figure 1 shows that BLAPs are located near sdBVs in the H-R
diagram. The latter have noncanonical abundance profiles that
are strongly affected by radiative levitation (see Section 6.2).
Following the linear study of Romero et al. (2018), we adopt
Z=0.05, to account for the increased envelope metallicity
caused by radiative levitation.

Figure 19. I-band light (top panel) and radial velocity (bottom panel) curves of
the BEP OGLE-BLG-RRLYR-02792 as a function of pulsation phase.
Observations are shown as circles (Pietrzynski et al. 2012), with the radial
velocity multiplied by a projection factor of p=1.2. Model curves are shown
at three resolutions labeled by (N/Nouter).

Figure 20. I-band light (top panel) and radial velocity (bottom panel) curves
for OGLE-BLAP-011. Observations are shown as circles (Pietrukowicz
et al. 2017). RSP models for three convective sets are shown under the
;1.0 Me core He-burning hypothesis. Pulsation periods of the models range
between 34.27 and 34.34minutes, and the observed period is 34.87minutes.
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We explored nonlinear models with M=1.0Me, Teff=
30,000 K, L=430 Le, and three convection parameter sets.
These envelope models used N=280, Nouter=140, Tanchor=
2×105 K, and Tinner=6×106 K. The LNA analyses show that
the F- and 1O-modes are unstable. Figure 20 compares the
OGLE-BLAP-011 and 1O-mode (P;35minutes) model I-band
light curves. The qualitative agreement is reasonable. Figure 20
shows that the model radial velocity curves have amplitudes of
;200 km s−1, a pronounced temporal asymmetry, and light
maxima that are narrower than light minima.

These BLAP models lie far off the classical instability strip
so that the initial model builder (see Section 2.2.1), which is
optimized for classical pulsators, failed to relax the initial
models to complete hydrostatic equilibrium. An option is to
switch off the relaxation process and commence the time
integration with a near-hydrostatic-equilibrium initial model.
The price to pay is that the LNA growth rates are only
indicative, not accurate.

Figure 21 shows the evolution of Γ for the (α, αm)=(1.5,
0.1) model in Figure 20. Before ;10 days, Γ fluctuates around
a mean of ;7.5×10−3. The fluctuations diminish with time,
but Γ remains above the LNA value of 6.25×10−3 up to
;30 days. Between 30 and 50 days Γ diminishes and
approaches zero, the sign that the nonlinear pulsation saturates
at its terminal amplitude, yielding the results of Figure 20. In
contrast to Γ, the period of the nonlinear pulsations remains
close to the LNA period. In cases where the initial model
cannot be relaxed, the initial Γ should not be expected to match
the LNA analysis.

2.4.6. High-amplitude Delta Scuti

High-amplitude δ Scuti (HADS) pulsators are defined to
have V-band light-curve amplitudes greater than 0.1 mag.
HADS pulsators lie close to the MS (see Figure 1), where
growth rates are usually much smaller than those for RRLyrae
stars or classical Cepheids. This implies that long time
integrations are needed to drive nonlinear pulsations to
saturation.

We consider a stellar model with M=2Me, L=30 Le,
Teff=6900 K, X=0.7, Z=0.01, and convective set A. This
represents a star evolving toward the Hertzsprung gap. The
LNA analysis of the initial model reveals that the F- and 1O-
modes are linearly unstable, with growth rates of 1×10−6 and
6×10−5, respectively.
Section 3 emphasizes the importance of numerical energy

conservation. Figure 22 shows the evolution of the relative
cumulative error in the energy for a 250,000-cycle integration
(;150 million time steps, at 600 steps per cycle). The relative
cumulative error grows from ;3×10−11 after about 15 cycles
to ;3×10−7 after 250,000 cycles. The inset figure shows that
the per-step relative error in the energy scatters around
−2.5×10−15 but is systematically different than zero.
Figure 23 shows that after 70,000 cycles the asymmetric

V-band light curves have an amplitude of ;0.2 mag. The

Figure 21. Evolution of the RSP growth rate Γ starting from the unrelaxed
initial model for convection set b in Figure 20. The horizontal line shows the
LNA growth rate computed from the unrelaxed initial model. Figure 22. Evolution of the relative cumulative energy error from model

10,000 (;15 cycles) to ;150 million (at ;250,000 cycles). The inset shows
the per-step relative energy error over a cycle (600 steps).

Figure 23. V-band light curves of the δSct model at three stages during a very
long (;150 million time steps) integration. For each stage, we plot the light
curve for 5 pulsation cycles. The legend gives the cycle numbers when the
snapshots were taken.
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dominant pulsation period is 0.127days, close to the LNA period
of 0.1269 days for the 1O-mode. The amplitude, though, varies
cyclically over about four pulsation cycles, reflecting the presence
of the F-mode. Continuing the integration to 130,000 cycles leads
to a more saturated light curve with an amplitude of;0.3mag and
an unchanged dominant pulsation period. Extending the integra-
tion to 250,000 cycles does not lead to any significant changes.

The robustness in the light curves between 130,000 and
250,000 cycles might suggest that the long-term behavior is
that of a double-mode HADS model. However, additional
integrations with different initial perturbations, chosen to more
adequately sample the neighboring amplitude phase space, are
necessary to assess the possible mode selection. Figure 24
shows the evolution of these integrations in the amplitude–
amplitude diagram using the analytical signal method (e.g.,
Kolláth et al. 2002). The amplitude behavior of the model
integration shown in Figure 23 is traced out by the red line.
After initially rapid evolution, all the amplitude trajectories
develop an arc along which evolution slows markedly. The
model in Figure 23 and neighboring trajectories bend to the left
toward smaller F-mode amplitudes. Their likely final state is
that of a single-periodic 1O pulsation. In contrast, the two
rightmost trajectories bend to the right toward larger, more
dominant F-mode amplitudes. Despite the limited sampling of
phase space in Figure 24, we cautiously conclude that the most
likely long-term outcome of this δSct model is a single-
periodic 1O-mode or F-mode pulsator depending on the initial
conditions (see Section 2.2.4).

3. Energy Conservation

For the following discussion we define the total energy E of a
model to be the sum of the internal, potential, and kinetic energies,
ignoring rotational energy and turbulent energy, which are
currently not included in the energy accounting. To support
improved numerical energy conservation,19 MESAstar provides
an option to use what we call the dedt-form of the energy
equation:
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This form was introduced in PaperIV and provides an
alternative to the dLdm-form of the energy equation (Equation
(11) in PaperI). When the time derivative terms are combined,
the result is more easily recognizable as an equation for the
time evolution of local specific total energy (left-hand side) due
to local source terms20 (ò) and local fluxes between cells (the
∂/∂m term):
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The error in numerical energy conservation Eerror is the extent
to which the time- and mass-integrated Equation (9) is not

satisfied when solved in a discretized, finite-mass form. This
section discusses recent efforts to improve numerical energy
conservation in MESAstar.
Recall (from PaperI, Section 6.3) the generalized Newton–

Raphson scheme used by MESAstar to solve the stellar
equations
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where yi is the trial solution for the ith iteration, ( )F yi is the
residual, dyi is the correction, and [ ]F yd d i is the Jacobian
matrix. The residual is the leftover difference between the left-
and right-hand sides of the equation we are trying to solve,
while the correction is the change in the primary variable that is
calculated by Newtonʼs rule. The solver generates a series of
trial solutions until it produces one that is acceptable according
to given convergence criteria. In MESAstar the trial solution
is not accepted until the magnitudes of all corrections and
residuals become smaller than specified tolerances.21 If no
acceptable trial solution has been found in the allowed
maximum number of iterations, the solver rejects the attempt
and forces a retry with a smaller time step.
If the numerical accuracy of the partial derivatives forming

the Jacobian matrix is not excellent, the reduction in magnitude
of the residuals can stall after a few iterations. For this reason,
MESAstar has provided a means to use a tight tolerance on
residuals for an initial sequence of iterations and then switch to
a much relaxed tolerance if no acceptable solution has been
found. The benefit of this is that residuals will be driven down

Figure 24. Evolution of fractional radius amplitude, δR/R, for the 1O-mode,
A1, and F-mode, A0. Eight trajectories begin at locations marked with a cross.
Circles mark 1000-day intervals along trajectories. The red curve corresponds
to the model in Figure 23, with the three open circles marking the amplitudes
after 70,000, 130,000, and 250,000 cycles. The inset on the upper right zooms
into the slowing amplitude evolution of the red curve late in the simulation.

19 Note that we are discussing numerical issues in the code rather than
questions of the physical completeness and validity of the equations. We will
often use the term “numerical energy conservation” to make this distinction
explicit.
20 This includes energy from nuclear reactions (ònuc) and thermal neutrino
losses (−òν), as well as terms associated with other processes such as accretion
(see Section 3.3). Importantly, ò does not include ògrav, the specific rate of
change of gravothermal energy, as that source term is not present when using a
total form of the energy equation (see PaperIV, Section 8).

21 GARching STellar Evolution Code (GARSTEC) and MONSTAR are the
only other stellar evolution software instruments we are aware of that consider
residuals as well as corrections in deciding when to accept a trial solution
(Weiss & Schlattl 2008; J. Lattanzio 2019, private communication). Several
other codes consider corrections but not, as far as we can tell, residuals
(Faulkner 1968; Christensen-Dalsgaard 2008; Demarque et al. 2008;
Roxburgh 2008; Scuflaire et al. 2008).
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when possible, but if the residuals stall at a level above the
initial tolerance, the system will still be able to take a step as
long as the corrections can be adequately reduced. The cost of
relaxing the tolerance for residuals of the total energy equation
is the creation of numerical energy conservation errors. To
obtain good numerical energy conservation we must be able to
drive down residuals to low levels, and to do that we must have
numerically accurate partial derivatives. This has motivated a
major effort to improve partials, and we can now require the
solver to keep iterating until it reduces the residuals to a low
level that gives good numerical energy conservation. The most
significant changes to improve the numerical accuracy of
partials were in the eos module and are discussed in
Appendix A.1.

3.1. Gold Tolerances

To improve energy conservation, a new standard “gold
tolerances” is now the default in MESAstar. This uses tight
tolerances that apply even after an arbitrarily large number of
iterations. As a result, steps with poor residuals will be rejected,
thereby ensuring that if a run succeeds with gold tolerances

enabled while using the total energy equation given above, it
will have good energy conservation. To show example
improvements from this new strategy, in Table 5 we report
the results of calculations of a 1Me model during the MS and
the He flash with gold tolerances and compare to the old
approach. The 1Me models are evolved from the ZAMS until
the core H mass fraction reaches a value of 10−6. The He flash
models start at off-center He ignition and terminate when the
core He mass fraction drops to 10−3. The cumulative energy
error is the sum of the energy conservation errors at each of the
steps. The relative cumulative energy error is the cumulative
energy error divided by the final total energy. This is now much
less than 1% during the He flash, a notoriously difficult

Table 5
Relative Cumulative Energy Error for 1 Me Runs

Main Sequence He Flash

dedt + gold tolerances 0.3% 0.0006%
dLdm 14% 12%

Figure 25. Evolution of a 1 Me model during the He flash and core He burning using gold tolerances and the dedt-form of the energy equation (left panel), and
without gold tolerances and using the dLdm-form of the energy equation (right panel). The first panel shows a Kippenhahn plot, where green hatched regions are
convective and blue shading shows region of nuclear energy generation. The second panel shows the absolute error in energy conservation divided by the total stellar
energy, both per step and cumulative. The third panel shows the time step, while in the fourth panel we report the number of iterations required by the Newton–
Raphson solver. Gold tolerances keep the cumulative errors small during the He flash at the price of a larger number of iterations during the first ≈200 time steps.
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evolutionary phase from the numerical perspective. The
evolution of the errors in energy conservation, as well as the
number of iterations required by the solver and the adopted
time step, are shown in Figure 25 for the He flash runs. This
figure clearly shows the superiority of the model adopting gold
tolerances and the dedt-form of the equation in terms of
energy conservation.

Not all cases in the MESAstar test suite are currently able
to use gold tolerances. This is primarily because of remaining
problems with the numerical accuracy of certain partials,
especially in the PC EOS (Potekhin & Chabrier 2010) that is
used by WD models (see Appendix A.1) and on the boundary
between the OPAL EOS (Rogers & Nayfonov 2002) and the
SCVH EOS (Saumon et al. 1995). There are also problems
with the numerical accuracy of some partials associated with
nuclear reactions at the high temperatures encountered during
late stages of evolution, such as Si burning. To address these
situations, there are controls to allow gold tolerances to be
turned off automatically for steps that either require use of the
PC EOS or have extremely high temperatures. To provide
feedback, the value of the relative cumulative energy error is
monitored, and a warning message is written if it exceeds a
specified value (2% is the default setting).

3.2. Definition of ònuc Source Term

Previous MESA papers have not given a precise definition of
ònuc. Motivated by numerical convenience, MESA formerly
exploited the fact that the ò source term contained the sum of
ògrav and ònuc and included the response of the internal energy
to composition changes due to nuclear reactions in ònuc instead
of in ògrav. However, since the dedt-form does not include
ògrav, this is no longer an appropriate choice.

In the current approach, ònuc is evaluated in the net module
as a sum over reactions. Schematically,

( ) ( )å= - n N Q Q R , 11i i inuc A
reactions

,

where Ri is the molar rate of reaction i, Qi is the change in rest-
mass energy between the products and reactants, and Qν,i is the
per-reaction average energy of the neutrino (if present). We
note the equivalence

˙ ( )å åº -Q R M c Y , 12i i i i
reactions isotopes

2

whereMi is the rest mass of isotope i and Ẏi is the rate of change
of the molar fraction. The approx family of MESA nuclear
networks exploits this equivalence and does not strictly follow
Equation (11). The right-hand side of Equation (12) is a
common nuclear physics definition of ònuc (e.g., Equation (11)
in Hix & Meyer 2006). The MESA definition of ònuc differs in
subtracting off the nuclear neutrino losses, thus enforcing the
assumption that they free-stream out of the star.

3.3. Mass Changes

The methods described above perform well for numerical
energy conservation when the stellar mass is constant, but
extensions are necessary for cases where the mass changes. For
energy accounting, we must specify the amount of energy we
expect the new mass to introduce and the amount we expect
departing mass to remove. To that end we assume that mass
being added has the same specific energy as the surface of the

model at the start of the step. For mass being removed, we
assume that it leaves with a specific energy between what it had
at the start of the step and the value at the surface at the start of
the step. The exact amount depends on the amount of energy
that leaks out of the material as it approaches the surface during
the time step. For low rates of mass loss there will be adequate
time for the material to adjust so that it leaves with the initial
surface value, but for high rates there may not be enough time
for adjustment, so that it leaves with a specific energy closer to
its starting value. The details of this are presented below.
In addition to providing accurate accounting for the total

energy of the model, it is important to ensure that the energy
changes from mass loss or gain are distributed properly within
the model. As a guide for this we use the analytic calculations
of Townsley & Bildsten (2004). Our new procedure improves
on these by also calculating the distribution of energy in
systems with long thermal times, allowing MESA to handle the
limit of rapid accretion. We confirm the numerical energy
conservation of this method using the >20 cases in the
MESAstar test suite that have mass changes and fully support
gold tolerances and the dedt-form of the energy equation.
Using the new scheme, each of these completes the test run
with a cumulative error in total energy <2%. In addition, test
cases that depend on the internal distribution of accretion
heating continue to yield the expected results.

3.3.1. Methodology

Because MESA works on a Lagrangian mesh, it handles
accretion and mass loss in a two-stage process (PaperIII,
Section 7). In stage I the masses of certain cells are increased or
decreased as needed to give the desired end-of-step total mass,
but no attempt is made to ensure energy conservation at this
stage. In stage II the model thus produced is evolved in time by
an amount dt. This separation of stages means that the time step
is only taken for a model of fixed mass. However, because the
energy of the model changes in stage I, a correction must be
added to stage II to make the overall step consistent with
energy conservation. Thus, we introduce a new source term ˙ M
that accounts for the heating associated with mass changes.
The change in the mass of cell k during stage I results from

the difference between the outward22 mass flux Fm through
each cell face. This flux obeys

( ) ( )d- = -+dm dm t F F 13k k m k m kmid, start, , 1 ,

and

˙ ( )d d- = - =M M tF tM. 14mmid start ,1

During stageI the temperature, density, and velocity of each
cell are held fixed, but the composition is updated to track the
flow of material between cells. The subscript start is used for
quantities at the start of stageI. The subscript mid is used for
quantities at end of stage I, which is the start of stageII. No
subscript is used for quantities evaluated at the end of the time
step (after stageII). There is no mass change during stageII, so
dmk=dmmid,k. In the following we write dmk rather than
dmmid,k.

22 For k>1, this flux is from cell k to cell k−1; for k=1 this flux is out of
the model.
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The change in energy for cell k during stage I is
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where k is the total specific energy of cell k, given by the sum
of specific potential, kinetic, and internal energies. Neglecting
changes in specific energy owing to changes in composition,
the difference in k across stage I is
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where mk,C and rk,C are the mass coordinate and radius,
respectively, at the center of mass of the cell (PaperIV).

We now introduce òk,I, the effective source term in cell k
during stage I. This is defined by writing the change in energy
in flux-conservative form as

( ) ( )d- = + -+E E t dm F F , 17k k k k e k e kmid, start, ,I , 1,I , ,I

where Fe,k,I is the outward flux of energy across face k owing to
work and material passing through face k. Inserting
Equation (15) and rearranging we obtain
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The energy flux is
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and the face values face are interpolated
23 from the cell values

start. The radial coordinate after stateI is calculated using the
updated cell masses, holding cell densities fixed. The change in
total energy of the model during stageI is
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The term in parentheses on the right-hand side accounts for the
energy of new material entering or leaving the model and
the work done in the process. The additional òk,I term implies
the need for a corrective source term ˙ M that must be added
during stageII so that energy is properly accounted for.

To determine this new source, we consider the ratio of the
thermal timescale,
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to the mass-change timescale
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where xm,k is the mass above face k. When this ratio is small,
the thermodynamic state of material is a function primarily of
depth (Sugimoto 1970; Sugimoto & Nomoto 1975). This
means that as material moves from cell to cell it is a good
approximation to the time evolution to suppose that it adopts
the state of whichever cell it is in (PaperIII). In the opposing
limit (τth?τm) the entropy of material adjusts minimally as it
moves from cell to cell.
We account for the effects of the thermal and mass-change

timescales by tracking the heating of material as it moves from
cell to cell in stage I and estimating what fraction of that heat is
released as part of L versus carried by the material. Consider
the path taken by an infinitesimal fluid element as it moves
from face k to face k+1 due to accretion. Over the course of
this adjustment the material changes state and releases some
heat. We take this heat to be given by
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is the total mass of material that at any point during stage I was
inside cell k. This evenly distributes the heating that occurs in a
cell over all material that starts in, ends in, or passes through
the cell. When the thermal time is long, however, the fluid does
not have a chance to release all of this heat before it has
finished crossing the cell. We estimate the fraction of this heat
it releases as the leak fraction

⎛
⎝⎜

⎞
⎠⎟ ( )t

t
ºf min 1, . 26k

k

k
leak,

m,

th,

This parameterizes the extent to which material flowing through
a cell follows the implied energy gradient ( fleak,k≈1) versus
evolving adiabatically ( fleak,k=1).
We define δEk,j to be the amount of energy that the material

that ends up in cell j had not leaked by the time it reached face
k. This is zero for k=1 and for k>j, and for all other faces it
is given by

( )( ) ( )d d= - ++ E f E dq1 , 27k j k k j k k j1, leak, , ,

where k j, is the amount of material that ends in cell j that
passes through cell k during stage I. The heat that is actually
released in cell k is then given by

( )
( )˙

åd d

d
=

+ +
¹


E f E dq

tdm
. 28M k

k k j k k k j k k j

k
,

, leak, , ,

This is our new corrective source term. The same procedure
may be used in the case of mass loss, but with δEN+1,j=0
instead of δE1,j and −1 in the subscript on the left-hand side of
Equation (27) rather than +1. In the limit of long thermal times
most heat is retained and the resulting evolution is adiabatic. In

23 To ensure that face has smooth derivatives, this is done in the same manner
as T̄ in PaperI. At the surface = face,1 start,1.
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the limit of short thermal times we recover the results of
PaperIII.

Along the lines of Equation (17), the energy change of cell k
during stage II may now be written in flux-conservative form as

[ ( ) ] ( )˙d- = + + -+ E E t dm F F , 29k k k M k e k e kmid, , , 1,II , ,II

where

ˆ ( )= + F L p v 30e k k k k k, ,II face, ,II

and

ˆ ( )
d

º
-

v
r r

t
. 31k

k k
,II

mid,

MESA solves Equation (29) when using the dedt-form with
mass changes. Because the time evolution is implicit, all
sources are evaluated at the end of stage II. Nuclear burning is
evaluated as if material spends the whole step in the cell in
which it ends stage I. While this is usually a good
approximation, it may break down when ˙dtM is large relative
to the masses of cells in burning regions.

When Ṁ�0, the above procedure for redistributing energy
is conservative, so that

( )˙å åd d+ = tdm tdm 0. 32
k

k k
k

M k k,I ,

The first sum represents the effect of stage I; the second sum
represents the effect of stage II. When Ṁ<0, the equality is
instead

( )˙å åd d d+ = - tdm tdm E , 33
k

k k
k

M k k,I , 1,0

with the additional term δE1,0 being the energy carried out of
the star. This term is explicitly accounted for in the MESA
energy budget, so in both cases energy is properly
accounted for.

3.3.2. Results

To examine the behavior of ˙ M , we modeled a 0.33Me WD
accreting He and N at a rate of 10−5Me yr−1. The first panel of
Figure 26 shows a profile of ˙ M along with the analytic
accretion heating calculations of Townsley & Bildsten (2004).
For the most part the two agree closely. The second panel
shows the mass integral of the same inward from the surface,
while the third shows their ratio. Around xm≈1026 g, τth
becomes long relative to τm, and the two prescriptions differ
because that of Townsley & Bildsten (2004) is only applicable
where τth=τm. The ˙ M term handles both limits.

To demonstrate improved energy conservation during mass
changes with the dedt-form, we model accretion onto a
0.3Me He WD with an initial ( ) =Tlog K 6.7c . The accretion
rate is fixed at 10−10Me yr−1. Nuclear reactions are disabled
throughout the run. This is repeated with the dLdm-form. The
relative cumulative error in energy conservation is shown in the
top panel of Figure 27, and the relative error in each step is
shown in the bottom panel. Near the beginning of the run there
is a period where the dLdm-form performs better; however, at
those early times both forms do a good job, conserving energy
to 1 part in ∼105. At later times the dedt-form produces less
error, staying below 1 part in 104, while the dLdm-form yields
cumulative errors greater than 1 part in 103.

We prefer using the dedt-form because of its improved
energy conservation and handling of long thermal times. We
now explore the consequences for stellar evolution of these
different prescriptions. The top panel of Figure 28 shows the
luminosity for the same case as Figure 27, again for both the
dedt-form and the dLdm-form. The difference is shown in
the bottom panel. The largest differences are at early times as
the models adjust to the accretion. After that, both yield results
similar to a few percent, and the relative difference only
improves as the luminosity increases. Figure 29 shows Tc for
the same two runs as a function of time. The differences are
small. This is because the core lies beneath the region where
cell masses are adjusted significantly, so the precise handling of
mass changes only matters for the core insofar as the core
temperature is sensitive to the luminosity.
Mass changes are ubiquitous in binary stellar evolution. To

demonstrate the effect of the dedt-form, we model the

Figure 26. Comparison of ˙ M and the analytic accreting heating expression
from Townsley & Bildsten (2004) (TB04) for a 0.33 Me He WD accreting He
and N at a rate of 10−5 Me yr−1. The first panel shows both as functions of
depth xm. The second panel shows the same but integrated inward with respect
to mass. The third panel shows the ratio of the TB04 expression to ˙ M . The
final panel shows the thermal timescale τth and the mass-change timescale τm.
All material to the left of the red vertical line is material that is new in this time
step. To the right of the vertical black line MESA transitions to a Lagrangian
mesh that continues over the remainder of the core.
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evolution of a binary system with an 8Me primary and a
6.5Me secondary with an initial orbital period of 3 days. This
is the same example as in Figure4 of PaperIII. The relative
cumulative error in energy conservation is shown in the top
panel of Figure 30. The model is also run with the dLdm-form.

The errors are shown independently for the primary and the
secondary. Figure 31 compares the mass transfer rate for this
system computed using each energy equation. The differences
are typically of order 1%.

Figure 27. Comparison of energy conservation for a 0.3 Me He WD model
accreting an H/He mixture at a rate of 10−10 Me yr−1. The top panel shows the
relative cumulative error, and the bottom panel shows the error in each step.

Figure 28. Comparison of the surface luminosity for a 0.3 Me He WD model
accreting an H/He mixture at 10−10 Me yr−1 (same as Figure 27). The top
panel shows the surface luminosity, and the bottom panel shows the relative
difference between the dLdm-form and the dedt-form, all as functions of time
since the start of accretion.

Figure 29. Comparison of the central temperature for a 0.3 Me He WD model
accreting an H/He mixture at 10−10 Me yr−1 (same as Figure 27). The top
panel shows the central temperature, and the bottom panel shows the relative
difference between the dLdm-form and the dedt-form, all as functions of time
since the start of accretion.

Figure 30. Comparison of energy conservation for the case of Figure4 of
PaperIII: a binary system with mass transfer from the 8 Me primary to the
6.5Me secondary and an initial orbital period of 3 days. The relative
cumulative energy error computed using both the dedt- and dLdm-forms is
shown as a function of time after the start of accretion.
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4. Rotation

For a rigidly rotating star in hydrostatic equilibrium, surfaces
of constant pressure (isobars) coincide with the equipotential
surfaces defined by the Roche potential Ψ,

( ) ( ) ( )q q
q

Y = F -
W

r r
r

, ,
sin

2
, 34

2 2 2

where Φ is the standard Newtonian potential, θ is the polar
angle, and Ω is the angular frequency of rotation. In one-
dimensional stellar evolution calculations the effects of rotation
on the stellar structure are usually captured by a simple
modification of the stellar equations. These retain their regular
form but include two correction factors,
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where rΨ is the volume-equivalent radius of an isobar and mΨ

and SΨ are the mass inside that isobar and its surface area,
respectively (Kippenhahn & Thomas 1970; Endal & Sofia
1976). The effective gravity is ∣ ∣= Yg , while á ñg and á ñ-g 1

are surface averages over the equipotential.24

This approach is still applicable to the case of a differentially
rotating star under the assumption of shellular rotation, in
which shells are rigidly rotating, isobaric surfaces with rotation
frequency ΩΨ (Endal & Sofia 1976; Zahn 1992). The averages
in Equation (35) are performed over each isobar (Meynet &
Maeder 1997).

Until now, MESA used the method of Endal & Sofia (1976),
which considers deviations of the Roche potential from
spherical symmetry (Kopal 1959), to compute the fP and fT
factors. One issue is that to ensure numerical stability, this
approach requires a floor on the correction factors ( fP=0.75
and fT=0.95; PaperII), corresponding to a maximum rotation
rate of 60% of critical rotation (the angular frequency at which
the centrifugal force would match gravity at the stellar equator).
As stars are centrally condensed and rotational frequencies

close to critical are typically reached only in the outermost layers,
Ψ is well approximated by the potential of a point mass in rapidly
rotating layers (e.g., Maeder 2009). This justifies using the
Newtonian potential as Φ=−GmΨ/r for the calculation of fP and
fT, such that they are only functions of the fraction of critical
rotation /w º W W = WY Y Y YGm rcrit, e

3 . Here re is the
equatorial radius of the isobar and Ωcrit,Ψ is the rotational
frequency at which the centrifugal force is equal to gravity at the
equator of the isobar.
We describe a new implementation of centrifugal effects in

MESA, which makes use of analytical fits to the Roche potential
of a point mass, improving the calculation of rotating stars
to ω≈0.9.

4.1. The Roche Potential of a Rigidly Rotating, Single Star

For a point mass mΨ, the dimensionless Roche potential
( )Y¢ = Y WYGm 2 3 can be written in terms of the dimension-

less radius ( )¢ = WYr r Gm 2 1 3 as

( )q
Y¢ = -

¢
-

¢
r

r1 sin

2
. 36
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such that evaluating Equation (36) for θ=0 ( ¢ = ¢r rp) and

θ=π/2 ( ¢ = ¢r re ) provides the ratio of the polar radius rp to re

Figure 31. Comparison of mass transfer rates for the case of Figure4 of
PaperIII: a binary system with mass transfer from the 8Me primary to the
6.5Me secondary and an initial orbital period of 3 days. The top panel shows the
mass transfer rate computed using both the dedt- and dLdm-forms as a function
of time after the start of accretion. Both are similar to the corresponding curves in
Figure4 of PaperIII. The bottom panel shows the relative difference between Ṁ
computed with the dedt- and dLdm-forms. The spike at the end is due to mass
transfer terminating at slightly different times.

Figure 32. Equipotential lines of the dimensionless Roche potential Ψ’ given
by Equation (36). Solid lines show the equipotentials for which ω is equal to
0.25, 0.5, 0.75, and 1. Dashed lines show ellipses with the same polar and
equatorial radii as the actual equipotentials.

24 In PaperII we defined the volume-equivalent radius as rP, while here we
adopt the symbol rΨ as used by Endal & Sofia (1976). This change is to prevent
confusion between rΨ and the polar radius of an isobar, which we denote as rp.
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as a function of ω,

( )w= +
r

r
1

1

2
. 38e

p

2

Figure 32 shows how the equipotential surfaces change with
increasing ω. For ω0.5 the equipotentials are approximately
given by oblate spheroids, while for ω close to unity a cusp
develops at the equator. For this critically rotating surface, the
polar radius is two-thirds of the equatorial one.

By determining the asymptotic behavior of the Roche
potential in the limit w  0, and, when possible, also in the
limit w  1, we have constructed analytic fits to properties of
interest. These are described in Appendix B and include fits for
the equatorial radius re(rΨ, ω), the centrifugal corrections fP(ω)
and fT(ω), and the volumes and surface areas of Roche
equipotentials, VΨ(re, ω) and SΨ(re, ω). Previous versions of
MESA approximated the specific moment of inertia of isobaric
surfaces as that of a thin spherical shell with radius rΨ,

= Yi r2 3rot
2 , but now default to a fit of the form irot(re, ω).

Figure 33 shows the resulting fits for irot, fP, and fT. The new
implementation results in values of the specific moment of
inertia that are larger by a factor of two as w  1.

4.2. Implementation in Stellar Evolution Instruments

To include these fits in a stellar evolution calculation that
uses the shellular approximation, a value of ω must be
determined for a given specific angular momentum jrot, mΨ, and
rΨ. From w wW = W =Y Y YGm rcrit, e

3 and jrot=irotΩΨ, we
find

( )w=
Y Y Y
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For a given jrot, mΨ, and rΨ, the left-hand side can be directly
evaluated, while the right-hand side is a monotonic function of
ω for 0�ω�1. We compute the solution to this equation for
each cell in the stellar model using a bisection method. Given
ω, we then use the computed fits to determine the values
required by the structure equations: re, rp, irot, ΩΨ, fP, and fT. As
in the previous implementation of rotation in MESA, we
evaluate these quantities explicitly at the beginning and at
the end of a step. The analytical nature of the fits allows the
possibility of a fully coupled and implicit implementation in the
future.
Figure 34 shows a 3Me solar-metallicity model with

different initial rotational velocities, evolved using the current
and previous implementations of rotation in MESA. Both
methods agree for rotation rates ω<0.5. Differences at higher
rotation rates are due to the aforementioned floor on fP and fT.
In our current approach we also define a floor on fP and fT in
terms of a maximum value ωmax, beyond which the effects are
truncated to fP(ωmax) and fT(ωmax). We find that calculations
using the new strategy are numerically stable near critical
rotation, with the simulations shown in Figure 34 being
performed with ωmax=0.9. This is in comparison to the
previous method, which for rapidly rotating models set a floor
on fP and fT corresponding to their values at ω≈0.6.
Therefore, MESA can now consistently calculate shellular
rotation models closer to critical rotation.

4.3. Gravity-darkening Corrections

Rotating stars are subject to gravity darkening (von
Zeipel 1924a, 1924b). The variation of flux over the surface
and the distorted stellar shape imply that the observed
properties of the star vary with the angle between the rotation
axis of the star and the line of sight (LOS). Here we describe
our approach to calculating geometric factors that allow the
intrinsic surface quantities L and Teff to be corrected for
projection effects along a given LOS. By intrinsic we mean the
total L emitted by the star and the Teff associated with this L

Figure 33. Top panel shows the specific moment of inertia for a shell of
material at different values of ω, normalized by Yr2 3 2. The model implemented
previously in MESA is shown with a dot-dashed green line, and the new
ω-dependent model for irot is shown with a solid orange line. As w  1, the
moment of inertia becomes that of a ring with radius re. The bottom panel
shows the fP and fT factors as a function of ω=Ω/Ωcrit.

Figure 34. Stellar evolution calculations with initial mass 3 Me and solar
metallicity, from ZAMS up to TAMS. Different colors indicate different initial
rotation rates, defined in terms of the ratio of the rotational frequency to the
critical value at the surface at ZAMS. Solid and dotted lines indicate
calculations done with the current and the previous implementations of rotation
in MESA, respectively.
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given the total surface area of the star and the Stefan–
Boltzmann law. This is done in two steps. First, we solve the
gravity-darkening problem for an arbitrary surface element of a
rotating star, and second, we calculate the projection of the
gravity-darkened surface along the LOS.

4.3.1. The Gravity-darkening Model

We use the gravity-darkening model of Espinosa Lara &
Rieutord (2011, hereafter ELR), where it is assumed that the
radiative flux is directed antiparallel to the effective surface
gravity. At a point on the stellar surface with polar angle θ, we
find the value of the scaled photosphere radius ˜ =r R Re by
solving

˜
˜ ( )w
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w

+ = +
r

r
1

2
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2
. 40
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We then solve

( ) ˜ ( )

( )

J J w q q q+ = + +rcos ln tan 2
1

3
cos cos ln tan 2 ,

41

2 3 3

for the modified angular variable ϑ. Using ELR Equation (31),
we use this value to obtain the local Teff.

Figure 35 shows the variation of ˜ [ ( )]ps= -T T L R4eff eff e
2 1 4

over a range of θ for a series of curves with different values of
ω. When ω=0, ˜ =T 1eff for all θ. When ω=1, T̃eff varies by
nearly a factor of 2 between the pole and the equator.

4.3.2. Projection Effects and Correction Factors

We are interested in the projected—the directional average
over the surface along the LOS—Teff and L. The two
parameters governing the problem are ω and the inclination
angle, i, of the LOS with respect to the rotation axis of the star:
i=90° when the LOS is in the plane of the equator. We denote
the LOS unit vector ˆ ( )l i and the projected surface area Σproj.
Figure 36 shows a grid of Roche equipotential surfaces for
different values of ω and i. The color describes the variation of
T̃eff over the surface.

To calculate the luminosity projected along the LOS, Lproj,
requires the surface integral

∬ · ˆ ( )
·ˆ
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S >

L Fd l4 , 42

d l
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where only the flux projected toward the observer, i.e.,
· ˆS >d l 0, is kept. The emergent specific intensity from each

surface element is assumed to be isotropic. Once Lproj and Σproj

are known, the projected Teff can be obtained from the Stefan–
Boltzmann law
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As noted by Georgy et al. (2014), the ratio of Lproj/L and,
likewise, the ratio of Teff,proj/Teff are geometric factors that
depend only on ω and i. We define gravity-darkening
coefficients

( ) ( ) ( )w wºC i L i L, , 44L proj

and

( ) ( ) ( )w wºC i T i T, , . 45T eff,proj eff

CT and CL are tabulated in MESA for the valid domain of ω
and i; values are readily obtained via bicubic interpolation. The
projected L and Teff as viewed from the pole and the equator
can be output in the MESA history file; other inclination angles
can be accessed via run_star_extras.
Figure 37 shows how CT and CL vary over the (ω,i)-plane.

These can be compared with the top panels of Figure2 in
Georgy et al. (2014). The variation of CL is greater than that of
CT owing to the one-fourth-power relationship between L and
Teff. At ω=1, where the geometric factors are the largest, CL

varies from −20% to +50%, while CT varies by only
about ±2.5%.
Figure 37 shows a slight, but noticeable, decrease in CT for

ω;1, whereas the comparable figures from Georgy et al.
(2014) do not. When we calculate the coefficients using oblate
spheroids instead of Roche equipotential surfaces, we see no
such decrease in CT for near-critical rotation.
Figure 38 demonstrates the effect of gravity darkening on

three of the 3Me tracks from Figure 34 in the H-R diagram. In
each panel of Figure 38 the nonrotating track is shown for
reference as the dotted line. The magnitude of the gravity-
darkening effect increases with ω and is more substantial for L
than for Teff. Relative to the intrinsic track, the polar projection
is brighter and hotter, and the equatorial projection is cooler
and fainter.

5. Convective Boundaries and Semiconvection Regions

The correct treatment of convective boundaries continues to
be a challenging problem. In this section, we discuss three
approaches: the “sign-change” algorithm (PapersI, II), an
improved approach called “predictive mixing” (PaperIV), and
a new “convective premixing (CPM)” scheme that addresses
several remaining issues.
Early versions of MESA located convective boundaries by

searching for sign changes in the discriminant y, defined by
y=yS≡∇rad−∇ad when the Schwarzschild criterion is used
to assess convective stability, or by y=yL≡∇rad−∇L when
the Ledoux criterion is used; here ∇rad, ∇ad, and ∇L are the

Figure 35. Solution of the ELR model for 0�ω�1; each curve plots the
variation of T̃eff as a function of ( )qcos for a different value of ω. Recall that

( )q =cos 1 corresponds to the pole and ( )q =cos 0 to the equator.
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radiative, adiabatic, and Ledoux temperature gradients, respec-
tively. As demonstrated in PaperIV, this sign-change algo-
rithm can fail at convective boundaries that exhibit composition
discontinuities. Typically, the failing cases exhibit ∇rad

appreciably larger than ∇ad on the convective side of the
boundary. Instead, as argued by Gabriel et al. (2014), physical
consistency within local MLT dictates that ∇rad=∇ad should
hold on the convective side.

In PaperIV we introduced the predictive mixing scheme for
treatment of convective boundaries. This scheme improves on
the sign-change algorithm by allowing each convection region
to expand during a time step until its boundaries satisfy
∇rad=∇ad on their convective side. The expansion is
achieved by modifying convective diffusivities in the cells on
the radiative side of a boundary. In PaperIV, we applied
predictive mixing in five scenarios: a growing convective core
in a 1.5Me star on the MS, a retreating convective core in a
16Me star on the MS, growing convective cores in 1 and 3Me
stars during the core helium-burning (CHeB) phase, and an
evolving convective envelope in a 1Me star on the MS.
Predictive mixing is able to achieve the desired ∇rad=∇ad

outcome in most of these cases.
However, two cases shown in PaperIV continue to exhibit

∇rad>∇ad on the convective side of a boundary of a
convection region, highlighting the need for further work and
motivating us to develop a new scheme for treating convective
boundaries. This CPM scheme, draws inspiration from earlier
work by Castellani et al. (1985) and Mowlavi & Forestini
(1994). In the following, we first discuss why predictive mixing
sometimes fails. Then, we describe the new CPM scheme in
detail (Section 5.2) and demonstrate its application in various
evolutionary scenarios (Sections 5.3–5.5).

5.1. The Failure of Predictive Mixing

The 16Me MS scenario presented in Figure4 of PaperIV
exhibits a convective shell above the abundance gradient region

with ∇rad>∇ad at its lower boundary. If predictive mixing is
applied to the shell, the lower boundary advances downward to
merge with the core, while the upper boundary remains fixed in
position. The end result is that the entire abundance gradient
region mixes into the core, delivering significant quantities of
fresh H. Such behavior is unphysical, and in PaperIV we made
the pragmatic choice to avoid this outcome by disabling
predictive mixing for the convective shell.
Additionally, the 1Me CHeB scenario presented in Figure6

of PaperIV exhibits ∇rad>∇ad at the upper boundary of its
convective core. This issue cannot be resolved by predictive
mixing, as discussed in PaperIV.
In both of these scenarios, the problem encountered is an

unavoidable consequence of the design of the predictive
mixing scheme, which manipulates the diffusion coefficients
at cell faces and then relies on MESAʼs abundance solver
(PaperI, Section 6.2) to update the model. In contrast, the new
CPM scheme directly updates the abundances, as we now
describe.

5.2. The Convective Premixing Scheme

The CPM scheme is applied at the start of each time step,
before any structural or compositional changes that arise owing
to the evolution of the star. It proceeds by finding the cells
where y>0 on one face (convective) and y<0 on the other
face (radiative). For each of these initial boundary cells, the
algorithm considers whether y on the radiative face would
change if the adjacent cell outside the convection region is
mixed completely with the rest of the convection region. This
putative mixing is performed at constant cell pressure and
temperature and involves recalculating abundances, densities,
opacities, and the various temperature gradients (∇rad, ∇ad,
∇L) throughout the convection region plus the adjacent cell.
If the radiative face of the boundary cell becomes convective

during this putative mixing, then the mixing is committed to the
model, overwriting the composition profile throughout the

Figure 36. Grid of Roche equipotential surfaces for a range of rotation rates (ω) and inclination angles (i). The color of the surface corresponds to the variation in T̃eff ,
with red corresponding to 0.87 and pale yellow to 1.25; the stars with ω=0 have ˜ =T 1eff .
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entire (newly extended) convection region. Then, the next
adjacent cell outside the convection region is considered for
incorporation. This process continues iteratively until the
radiative face of the current convective boundary remains
radiative during the putative mixing.

At a given point in its evolution, a star typically exhibits
multiple convective boundaries (for instance, the left panel of
Figure 39 shows three). The order in which CPM processes
these boundaries is determined by evaluating a characteristic
mixing timescale dr/vconv for the initial boundary cells;
here vconv is the convective velocity on the y>0 face of the
boundary cell, and dr is its radial extent. The boundary with
the smallest timescale is processed first, then the boundary with
the next-smallest timescale, and so on.

In CPM the mixing is treated as instantaneous. Given that the
convective diffusivity Dconv is well in excess of 1010 cm2 s−1

even near convective boundaries (see, e.g., Figures11 and
29 of PaperII), the characteristic mixing timescale is
τ∼Δr2/Dconv104 yr for a typical region with extent
ΔrRe. This is small compared to typical nuclear timescales,
and so the assumption of instantaneous mixing seems
warranted for all but the most rapid evolutionary phases.

During its iterations, CPM naturally handles the transition of
cell faces inside the convection region from convective to

radiative. This typically happens either at the boundary
opposite to the advancing one (causing that boundary to
retreat) or at a point inside the convection region (causing the
region to split). Because mixing through a face ceases when it
transitions from convective to radiative, newly transitioned
faces should be very close to convective neutrality. To improve
how closely neutrality is achieved, our CPM implementation
divides the cell outside the advancing boundary into a number
of virtual subcells. Each of these subcells is mixed into the
convective region in turn, until all have been incorporated. The
number of subcells is automatically adjusted to ensure that,
during each subcell mix, at most a single face within the current
convective region transitions to radiative.

5.3. Evolution of a Retreating Convective Core on the Main
Sequence

We evolve a 16Me star from the ZAMS to the TAMS. This
is the scenario considered in Section2.3 of PaperIV and
illustrates the behavior of MS stars with retreating convective
cores. Here, and for the scenarios presented in the following
sections, we assume an initial He mass fraction Y=0.28 and
an initial metal mass fraction Z=0.02, and we ignore rotation
and mass loss. Figure 39 plots the profiles of ∇rad, ∇ad, ∇L,

Figure 37. Variation of CT (left panel) and CL (right panel) in the (ω, i)-plane. Note that the color scale is different in the two panels.

Figure 38. Three rotating tracks from Figure 34 showing the effect of gravity darkening in the H-R diagram of a 3 Me model from ZAMS to TAMS. The orange line
plots the intrinsic values, the yellow line plots the polar projection, and the red line plots the equatorial projection. The dotted line shows the evolution of the
nonrotating track.
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and X in the inner parts of the star, at a point nearing the TAMS
(Xc=0.15). The left panel illustrates a run using the predictive
mixing scheme applied at the boundary of the convective core,
while the right panel shows a run using the CPM scheme; in
both calculations, the Ledoux criterion is used to assess
convective stability, so that y=yL.

In the left panel, the convective shell discussed in Section 5.1
can clearly be seen at the top of the abundance gradient region,
spanning mass coordinates 6.2m/Me7.1. In the right panel,
the shell is absent and the abundance gradient region is wider and
shallower, extending all the way out to m/Me≈7.2. Moreover,
the region is very close to adiabatic (∇rad=∇ad), in contrast to
the superadiabatic stratification (∇rad>∇ad) seen in the left
panel.

Schwarzschild & Härm (1958) were the first to predict the
appearance of adiabatically stratified abundance gradient
regions outside the convective cores of massive MS stars,
labeling them “semiconvection regions.” The key feature of a
semiconvection region is that the adiabatic stratification is
continuously maintained by a gradual adjustment of opacity
due to the changing abundance profile.

To illustrate how this adjustment naturally arises within the
CPM scheme, we simulate a single evolutionary time step of
the 16Me star where we artificially switch from the predictive
scheme to CPM. The starting configuration is the profile shown
in the left panel of Figure 39. This panel is reproduced as the
top left panel of Figure 40; the subsequent panels then show
the evolving profiles at selective intermediate stages during the
CPM iterations. A clear narrative emerges from these panels: as
the lower boundary of the convective shell advances inward,
the cell faces near the upper boundary of the shell transition
from convective to radiative, causing that boundary to retreat
inward. Because there are no abundance gradients within
the shell itself, the Ledoux and Schwarzschild criteria give the
same condition for this transition to occur: ∇rad=∇ad. The
overall effect is that the shell propagates inward as a whole,
leaving behind it a “wake” with an adiabatic stratification.
Eventually, the propagating shell merges with the core, leading
to a final state (seen in the bottom right panel of Figure 40) that
closely resembles the right panel of Figure 39 (the small
differences are because the former has an evolutionary history

determined by the predictive mixing scheme, while the latter
has a history determined by CPM).
The seminal paper by Schwarzschild & Härm (1958)

triggered significant interest in semiconvection regions, with
a particular focus on their final stratification. Sakashita &
Hayashi (1961) argued that yL=0 should apply in semi-
convection regions, rather than yS=0 as originally proposed.
However, Kato (1966) reasoned that because the former
stratification is superadiabatic (∇rad>∇ad), slow mixing by
overstable g-mode oscillations will drive it toward the same
yS=0 outcome. Subsequently, Gabriel (1970) suggested that
Katoʼs mechanism is superfluous, due to the appearance of
propagating convective shells that continually adjust the
abundance profile to achieve yS=0. Gabrielʼs narrative
closely mirrors the one we give above, and the correspondence
between his Figure 1 and our Figure 40 is striking.
A possible source of confusion in this discussion is the

relationship between the semiconvection region shown in the
right panel of Figure 39 and the semiconvective mixing
discussed in Section4.1 of PaperII. The latter implements the
mixing envisaged by Kato (1966); while it will ultimately yield
a yS=0 stratification, it is a fundamentally different mech-
anism than the propagating convective shells shown in
Figure 40. A critical distinction lies in the role played by the
convective stability criterion. While our calculations adopt
the Ledoux criterion (y=yL), repeating them with the
Schwarzschild criterion (y=yS) leads to results very similar
to the ones already shown (although the abundance profiles are
rather more jagged). In contrast, Katoʼs mechanism requires
the Ledoux criterion to establish an initially superadiabatic
stratification, which the mechanism then drives toward
adiabaticity. In hindsight, it seems prudent to reserve the label
“semiconvection” for the adiabatically stratified regions
envisaged by Schwarzschild & Härm (1958) and avoid using
it as in PaperII to describe a mechanism that can generate these
regions (for additional examples of this conflation, see, e.g.,
Silva Aguirre et al. 2010; Noels et al. 2010; Ding & Li 2014;
Moore & Garaud 2016).
To summarize the core and near-core evolution of the 16Me

star, Figure 41 plots the mass coordinate mc of the convective
core boundary as a function of MS age for the separate runs

Figure 39. Profiles of ∇rad, ∇ad, ∇L, and X as a function of mass coordinate, in the inner part of the 16Me MS star at Xc=0.15. The panels show the separate runs
described in the text. Gray (gold) shading indicates convection (semiconvection) regions.
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using the predictive mixing and CPM schemes. We also show
the mass coordinate ma of the top of the abundance gradient
region outside the core; this coincides with the maximal extent
of the core in the predictive mixing case and the top of the
semiconvection region in the CPM case. During the starʼs
evolution, the opacity change due to progressive H depletion at
the center lowers ∇rad throughout the core, causing its
boundary to retreat inward. In the CPM case, this retreat is
mirrored by an outward growth of the semiconvection region, a
behavior first noted by Schwarzschild & Härm (1958). The
growth slowly feeds fresh H from the envelope down into the

core, which causes the core to shrink slightly less rapidly than
in the predictive mixing case, thereby marginally prolonging
the starʼs MS lifetime.
As the star nears the TAMS, the mass ma−mc of the abundance

gradient region is ≈30% larger in the CPM case than with
predictive mixing. This region plays a key role in determining the
shape of the Brunt–Väisälä frequency near the core, and the two
cases should therefore exhibit differences in their g-mode
oscillation spectra. We explore this by using release 5.2 of GYRE
(Townsend & Teitler 2013; Townsend et al. 2018) to evaluate the
starʼs normal-mode frequencies at Xc=0.15. Figure 42 plots the

Figure 40. Profiles of ∇rad, ∇ad, ∇L, and X as a function of mass coordinate, in the inner part of the 16 Me MS star at Xc=0.15. The panels show the outcome of an
artificial switch from the predictive mixing scheme to the CPM scheme. The initial state (a) is shown in the top left panel, and the subsequent panels, running in
alphabetical order (b), K, (f), show how this state evolves during the CPM iterations. Gray (gold) shading indicates convection (semiconvection) regions.
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resulting period echelle diagram (period P vs. period spacingΔP)
for ℓ=2 g-modes in the period range 0.5–5 days. Both cases
show significant departures from the uniform period spacing
ΔP≈104 s predicted by asymptotic theory; these departures are
caused by the abundance gradient region and therefore are an
asteroseismic diagnostic of the starʼs age (e.g., Miglio et al. 2008).
As the figure shows, the CPM scheme yields significantly smaller
nonuniformity in ΔP for P2 days than the predictive mixing
scheme. These different outcomes are potentially testable by the
TESS mission (Ricker et al. 2016), which will observe many
massive stars, some with the long time baselines necessary to
detect g-modes with multiday periods. It will first be necessary to
explore whether the differences persist when the additional effects
of core overshoot and rotation are included.

5.4. Evolution of the Convective Core during Core He Burning

We now evolve a 1Me star through the CHeB phase; this is
the scenario considered in Section2.4 of PaperIV and
illustrates the behavior of He-burning stars with growing
convective cores. Figure 43 plots the profiles of ∇rad, ∇ad, and
Y in the inner parts of the star, at three points during its

evolution corresponding to Yc=0.9, 0.6, and 0.3. The left
panels show a run using the predictive mixing scheme, while
the right panels show a run using the CPM scheme; in both
calculations, the Ledoux criterion is used to assess convective
stability.
The left panels, which reprise Figure6 of PaperIV, show

how a local minimum in ∇rad has developed by Yc=0.6. This
minimum is held just above the ∇ad threshold using the
predictive_superad_thresh control, with the result
that the core continues to grow slowly without splitting. With
the CPM scheme, a growing semiconvection region develops
above a smaller convective core.
The emergence of semiconvection regions during the CHeB

phase may have first been proposed by Schwarzschild and
Härm (1969), but it was Castellani et al. (1971) and Eggleton
(1972) who considered the possibility in detail. Later,
Castellani et al. (1985) described a “concatenated convective
mixings” scheme for simulating the formation of the
semiconvection region; their Figure 3, which can be regarded
as a CHeB analog to our Figure 40, reveals how the core splits
to form a convective shell, which then propagates outward,
leaving a wake with an adiabatic stratification. Mowlavi &
Forestini (1994) demonstrated how the Castellani et al. (1985)
scheme can be generalized to work in other evolutionary
phases, and together these two papers provided the original
inspiration for the CPM scheme.
To summarize the core and near-core evolution of the 1Me

star, Figure 44 plots the mass coordinate mc of the convective
core boundary as a function of CHeB age, for the separate
runs using the predictive mixing and CPM schemes. For the
CPM run, we also show the mass coordinate ma of the top of
the abundance gradient region outside the core; there is no
abundance gradient region in the predictive mixing run. The
figure shows that the semiconvection region forms in the
CPM run at an age of ≈25 Myr. The top of the semiconvec-
tion region then closely tracks the outward growth of the core
boundary from the predictive mixing run, through to an age
of ≈95 Myr. At this juncture, oscillations start to occur in mc

for the CPM run. These oscillations are due to breathing
pulses, which disrupt the semiconvection region and
introduce discontinuities in the abundance profile. Because
ma becomes ill-defined when the discontinuities appear, we
do not plot it beyond this point. After two final, large-
amplitude pulses, the star reaches the end of the CHeB at an
age of ≈125 Myr, slightly later than the final age for the
predictive mixing run.
Debate continues as to whether core breathing pulses during

the CHeB phase are physical or numerical (see, e.g., Salaris &
Cassisi 2017, and references therein). In the present context, we
note that the instantaneous mixing assumed in the CPM scheme
will tend to exacerbate the pulses, because it does not account
for the finite time required for He ingested at the top of the
semiconvection region to be transported down to the core. We
are currently considering improvements that address this
shortcoming, but in the meantime we recommend that the
CPM scheme be used with caution in the late stages
(Yc0.15) of the CHeB phase.

5.5. Evolution of a Growing Convective Core on the Main
Sequence

We now evolve a 1.5Me star from the ZAMS to the TAMS;
this is the scenario considered in Section2.4 of PaperIV and

Figure 41. Mass coordinates of the convective core boundary (mc) and the top
of the abundance gradient region (ma) as a function of MS age, for the 16 Me
star. Different line colors show the separate runs discussed in the text.

Figure 42. Period spacings ΔP plotted as a function of period P, for ℓ=2
g-modes of the 16 Me MS star at Xc=0.15. Different symbols show the
separate runs discussed in the text.
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illustrates the behavior of MS stars with initially growing
convective cores. Figure 45 plots the profiles of ∇rad, ∇ad, ∇L,
and X in the inner parts of the star when Xc=0.30. The left
panel illustrates a run using the predictive mixing scheme,
while the right panel shows a run using the CPM scheme; in
both calculations, the Ledoux criterion is used to assess
convective stability.

The left panel shows a small superadiabatic region just
outside the core that is stabilized against convection by the
abundance gradient (∇ad<∇rad<∇L). If slow mixing via the
Kato (1966) mechanism were allowed to proceed, this region

would eventually transform into a semiconvection region. The
right panel shows that the CPM scheme naturally reproduces
this semiconvection region. Ledoux (1947) suggests the
existence of this semiconvection region (though not labeled
as such). The mean molecular weight profile μ∝m p7/5 he
obtains for the abundance gradient region outside the core
yields an adiabatic stratification (∇rad=∇ad).
To bring the present analysis to a close, Figure 46 plots the

mass coordinate mc of the convective core boundary as a
function of MS age, for the separate 1.5Me runs using the
predictive mixing and CPM schemes. We also show the mass

Figure 43. Profiles of ∇rad, ∇ad, and Y as a function of mass coordinate, in the inner part of the 1 Me star. The panels correspond to different stages during the CHeB
phase: Yc=0.9 (top), Yc=0.6 (middle), and Yc=0.3 (bottom). The left panels show the run using the predictive mixing scheme, and the right panels show the run
using CPM. Gray (gold) shading indicates convection (semiconvection) regions.
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coordinate ma of the top of the abundance gradient region
outside the core. In the predictive mixing case, this region first
appears at an age of ≈1.5 Gyr, when the core boundary
reverses direction and begins to retreat inward. In the CPM
case, the abundance gradient region is present from the start
and coincides with the semiconvection region up until an age
≈1.75 Gyr. At this point, ∇rad outside the core drops below
∇ad, and the semiconvection region becomes radiative; then,
without any further ingestion of H from the envelope, ma

remains fixed.

6. Parallel Performance

Here we provide updates on the parallel performance of
MESAstar. For each test, simulations with different numbers
of parallel threads were performed on the same computer with
no other CPU-intensive tasks taking place. The tests were
performed on one Intel Xeon E5-2699V4 processor with 22
physical cores. Although this processor allows hyperthreading
(i.e., two threads running on one physical core), we restrict
these tests to one thread per physical core because tests found
that enabling hyperthreading results in a performance penalty
rather than a benefit.

6.1. Parallel Scaling of MESAstar

MESA uses the OpenMP application programming interface
to parallelize certain operations. Among these, we distinguish
three categories. The first category is operations that are
parallel per cell in the stellar model, including the EOS,
opacity, and nuclear network. The next category concerns parts
of the problem that are a mixture of parallel and serial
execution. These include matrix manipulations, the Newton–
Raphson solver, and atomic diffusion calculations. The final
category is those operations that are serial, such as the main
evolve loop and the adjustment of the total mass of the star via
mass loss or accretion.

Three MESA test_suite cases are considered: black_
hole, 7M_prems_to_agb, and 1M_pre_ms_to_wd.25 The
black_hole test uses six structure variables and a nuclear
network with 22 isotopes. The 7M_prems_to_AGB test uses
four structure variables and a nuclear network with 10 isotopes.
The 1M_pre_ms_to_wd test uses four structure variables and
a nuclear network with eight isotopes and includes rotation.

As a metric, we define “speedup” to be the ratio of the
measured run time on 1 thread to that on N threads. The
theoretical speedup,

( ) ( )
( )

- +p p s

1

1
, 46

is predicted by Amdahl (1967), where, for our purposes, s is the
number of parallel threads and p is the fraction of the code that
will benefit from parallel execution for a given test case.

Figure 47 shows the speedup for each of the three cases. In
general, we expect cases with more variables (both structure
and network) to benefit more from parallel execution. Indeed,
the black_hole case shows the best scalability with
p≈0.96, followed by 7M_prems_to_AGB with p≈0.90
and 1M_pre_ms_to_wd with p≈0.81. These results are

consistent with the numbers of variables included in the
respective tests.
For each case, Figure 48 shows the relative fraction for the

three categories described above and the speedup. The parts of
MESAstar that are parallel-per-cell scale nearly linearly with
the number of threads, while the mixed category scales weakly
and the serial component is essentially flat. The serial portion
becomes an increasing fraction of the total run time as the other
categories decrease with an increasing number of parallel
threads. This may become a greater issue with the move toward
many-core processors in the future.

6.2. OP Monochromatic Opacities and Radiative Levitation

PaperIII (Section 9) describes the inclusion of radiative
levitation in MESA via the work of Hu et al. (2011). These
capabilities were originally developed as part of STARS
(Eggleton 1971; Pols et al. 1995) and evaluate the opacity
and radiative acceleration using the OP monochromatic opacity
tables (Seaton 2005). Due to the differing approaches of
STARS and MESA, a number of derivatives were being
calculated but not used in the MESA implementation of the
opacity routines. By eliminating the evaluation of these unused
quantities, and by pre-computing some frequently reused
stimulated emission factors, we achieved at least a factor of 5
reduction in the time required to evaluate opacities and
radiative accelerations. These optimizations translate into an
improvement in total run time relative to previous versions of
MESA when making use of the OP monochromatic opacities or
radiative levitation capabilities without any compromise to the
numerical results.
We demonstrate in Figure 49 the difference in execution

time for runs of the radiative_levitation test suite
case using MESA versions before and after the changes
described herein. The computational expense of calculating
the radiative accelerations continues to dominate the run time
of such models, accounting for more than 65% of run time even
when using 20 parallel threads, meaning that these capabilities
can benefit from progress toward many-core architectures.

Figure 44. Mass coordinates of the convective core boundary (mc) and the top
of the abundance gradient region (ma) as a function of CHeB age, for the 1 Me
star. Different line colors show the separate runs discussed in the text.

25 The test suite cases are generally split into distinct, sequential parts. For the
timing tests we used the longest part of each test.
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7. Summary

We explain significant new capabilities and improvements
implemented in MESA since the publication of PapersI, II, III,
and IV. The addition of the RSP radial pulsation functionality
in MESAstar (Section 2) provides a new capability to model
radially pulsating variable stars. Advances to MESA in
numerical energy conservation (Section 3), rotation factors
and gravity darkening (Section 4 and Appendix B), and
convective boundaries (Section 5) will open opportunities for
future investigations in stellar evolution. Improvements in the
computational efficiency of MESA on current-generation
multicore x86 instruction set architectures (Section 6) will
inform future development directions. Upgrades to the EOS
and nuclear reaction physics (Appendix A) will increase the
robustness of stellar evolution models. Discussion of the
current treatment of fallback and comparisons of the thermo-
dynamic evolution of SN models from different software
instruments (Appendix C) will enhance the study of massive
star explosions. Introduction of the MESA Testhub software
infrastructure (Appendix D) for web-based, automated, daily
examination of the MESAstar and MESAbinary test suites

will lead to more efficient source code development. Input files
and related materials for all the figures are available at http://
mesastar.org and Paxton et al. (2019).
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Figure 45. Profiles of ∇rad, ∇ad, ∇L, and X as a function of mass coordinate, in the inner part of the 1.5 Me MS star at Xc=0.30. The panels show the separate runs
described in the text. Gray (gold) shading indicates convection (semiconvection) regions.

Figure 46. Mass coordinates of the convective core boundary (mc) and the top
of the abundance gradient region (ma) as a function of MS age, for the 1.5 Me
star. Different line colors show the separate runs discussed in the text.

Figure 47. Speedup for the three test cases described in the text when run on
different numbers of parallel threads from 1 to 22. Lines are illustrations of
Equation (46) for different values of p.
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Appendix A
Updates To Physics Modules

A.1. Equation of State

The EOS is evaluated by the eos module. Figure 50 shows
the default coverage in the ρ–T plane. The new PTEH option
extends the eos coverage to lower densities (to 10−18g cm−3)
and higher metallicities (Z up to 1.0) than allowed by OPAL
(ρ10−10 g cm−3 and Z�0.04 only). Previous versions of
eos use HELM to provide approximate results for the low-
density or Z>0.04 cases now covered by PTEH. The PTEH
tables are created using the approach of Pols et al. (1995) as
implemented by Paxton (2004) in a program derived from
Eggleton (1971). PTEH includes a solution to the Saha
equations to obtain the dissociation and ionization stages H+,
H, H2, He, He

+, and He++ and assumes full ionization of C, N,
O, Ne, Mg, Si, and Fe.

In addition to PTEH, there are two other new eos options, DT2
and ELM.26 These are motivated by the need for more numerically
accurate partials as discussed in Section 3. In this context, the
desired numerical accuracy of the partials is achieved by evaluating
analytic partials of the interpolating polynomials rather than by
interpolating values of tabulated partials (as is done with OPAL
and SCVH data in MESA). As a result, the partials correspond to
how the interpolated eos values will actually change in response
to small changes of the parameters, whereas interpolated values of
partials will be less accurate predictors of the response to such
variations. All three new options use bicubic spline interpolation in
high-resolution tables of (plog gas/erg cm

−3), (elog /erg g−1), and
(slog /erg g−1 K−1) to obtain first and second partial derivatives of

these quantities with respect to log(ρ/g cm−3) and log(T/K). The
options DT2 and ELM use tables holding values derived from
OPAL/SCVH and HELM, respectively. Figure 51 shows∇ad in a
region of the ρ–T plane covered by DT2 and PTEH.

A.1.1. Blending

The control structure for blending the various EOS sources
in Figure 50 considers a particular source EOS (PTEH, PC,
HELM, etc.) to determine what fraction f of the final result
comes from that source. A recursive calling structure is used:

Figure 50. The ρ–T coverage of the EOS used by the eos module. PTEH is
from Pols et al. (1995), HELM is from Timmes & Swesty (2000), PC is from
Potekhin & Chabrier (2010), OPAL is from Rogers & Nayfonov (2002),
SCVH is from Saumon et al. (1995), and the low-density cold region in the
lower left is treated as an ideal neutral gas. The region between SCVH and PC
is currently problematic from input physics and numerical perspectives and
treated as an ideal gas (see Chabrier et al. 2019 for a recent treatment that is not
yet in MESA). The blue curve shows the profile of a 25Me star that has reached
an iron core infall speed of 1000 km s−1, and the purple curve shows the profile
of a 0.8 Me WD.

Figure 51. Adiabatic gradient in the ρ–T plane for X=0.70 and Z=0.02.
Regions undergoing H2, H, He, or He

+ dissociation/ionization are colored blue
and labeled. Previous versions of eos truncated the H2 dissociation region at
log(ρ/g cm−3)=−10, the limit of the SCVH data in eos. Other ionization
bands occur at a high enough temperature to be mainly covered by OPAL.

26 DT2 is a second way to access OPAL/SCVH data using density and
temperature. ELM is a subset of HELM.
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Level 1: If fPTEH=0, then return result of level 2. If fPTEH=1,
then evaluate PTEH and return. Otherwise, call level 2,
blend result with that of PTEH, and return.

Level 2: If fPC=0, then return result of level 3. If fPC=1,
then evaluate PC and return result to level 1. Otherwise,
call level 3, blend result with that of PC, and return the
blended result to level 1.

Level 3: If fPTEH,Z=0 (i.e., Z0.04), then call level 4 with
DT2 and return the result to level 2. If fPTEH,Z=1 (i.e.,
Z0.04), then call level 4 with PTEH and return the
result to level 2. Otherwise (i.e., Z near 0.04), call level 4
with each of DT2 and PTEH, blend the result in Z and
return the blended result to level 2.

Level 4: If fPTEH/DT2=0, then return result of level 5. If
fPTEH/DT2=1, then evaluate PTEH/DT227 and return
result to level 3. Otherwise, call level 5, blend the result
with that of PTEH/DT2, and return the blended result to
level 3.

Level 5: If fELM=0, then return result of level 6. If fELM=1,
then evaluate ELM and return result to level 4. Otherwise,
call level 6, blend the result with that of ELM, and return
the blended result to level 4.

Level 6: Evaluate HELM and return result to level 5.

The blends use a quintic polynomial with zero slope at
boundaries. The partial derivatives of the blend polynomial are
included in the calculation of the final result to maintain high
numerical consistency in the blend region and across EOS
region boundaries.

There remain challenges to providing a broad coverage EOS
given the current need to combine multiple sources, some of
which may not provide the necessary thermodynamic informa-
tion. For example, when the (rlog /g cm−3) blend region
extended from 3.0 to 3.1, a negative χρ,gas resulted because

(plog gas/erg cm
−3) from DT2 were slightly greater than

(plog gas/erg cm
−3) from ELM. This could give a drop in pgas

as (rlog /g cm−3) transitions from DT2 to ELM. Extending the
blend region from 2.98 to 3.12 is enough to ensure χρ,gas>0
in the DT2-to-ELM transition.

A.1.2. Numerical Accuracy of Partials

To check the numerical accuracy of partials using the new
options, we have compared their results with iteratively
acquired high-precision numerical derivatives (Ridders 1982;
Press et al. 1992). For example, Figure 52 shows the relative
difference between the eos derivative and a Richardson
iterative numerical derivative across the ρ–T plane for χρ,gas.
The right panel shows that new options give relative errors of
;10−7, while the left panel shows that the previous options
have larger errors, particularly in the OPAL/SCVH regions. As
mentioned in Section 3, those larger errors limit the ability of
the MESAstar Newton–Raphson solver to reduce residuals,
and that in turn can lead to increased errors in numerical energy
conservation.

A.1.3. Thermodynamic Consistency

The first law of thermodynamics is an exact differential,
which implies
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An EOS is thermodynamically consistent if these relations are
satisfied. Thermodynamic inconsistency may manifest itself as
an artificial buildup or decay of the entropy during what should
be an adiabatic flow. Models that are sensitive to the entropy
may suffer inaccuracies if thermodynamic consistency is

Figure 52. Relative difference in χρ,gas between the eos derivative and a Richardson-limit-based numerical derivative across the ρ–T plane. The left panel shows the
results for the OPAL/SCVH and HELM options, and the right panel shows the results for the PTEH, DT2, and ELM options. Relative differences for the new eos
options are ;10−7, except for a region between SCVH and PC. Note the large difference in accuracy between the old OPAL/SCVH options using interpolated partials
and the new DT2 option using partials of interpolating polynomials.

27 Read as PTEH or DT2. There are separate level 4 routines for PTEH
and DT2.
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systematically violated over sufficiently long timescales.
Equation (47) may be recast in a form suitable for evaluating
numerical inconsistencies
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Ideally, dpe, dse, and dsp are zero. Figure 53 shows the first
thermodynamic consistency quantity, dpe, across the ρ–T
plane for an older (MESAr8845) and current version of eos.
The other two thermodynamic consistency metrics, dse and
dsp, show similar magnitudes. In general, the thermodynamic
consistency with DT2 and ELM is reduced relative to the older
options directly using OPAL/SCVH and HELM. This is
because the thermodynamic consistency relations can only be
approximated by bicubic splines. If possible, Hermite inter-
polation of the Helmholtz free energy would make use of
partial derivatives from the EOS and guarantee thermodynamic
consistency (e.g., Timmes & Swesty 2000). However, a bicubic
Hermite interpolation produces discontinuities in second-
derivative quantities (e.g., ∣r¶ ¶p T Ygas , i

) that are problematic
for MESAʼs Newton–Raphson solver, and a biquintic Hermite
interpolation requires partial derivatives that are unavailable
from some constituents of the EOS patchwork. So for now, we
compromise by providing the previous options that give better
thermodynamic consistency and the new options that provide
better numerical accuracy of partials. The impact of the
thermodynamic inconsistencies of the new approach must be
evaluated on a case-by-case basis.

A.2. Nuclear Physics

A.2.1. Nuclear Reaction Rates

The Joint Institute for Nuclear Astrophysics (JINA)
REACLIB library, which provides the default nuclear reaction
rates for MESA, has been updated from the jina_reaclib_
results_v2.2 snapshot to the default snapshot.28 This update
includes changes to the fitting formula for a few neutron
capture rates that previously returned erroneous values at
T8×109 K. We have modified the default snapshot to
include a missing, temperature-independent Al Mg26 26

weak reaction rate. Reaction rates between the 26Al ground
and meta-stable states now use Gupta & Meyer (2001). Nuclear
partition functions use JINA winvne_v2.0.dat table29 and JINA
masslib_library_5.data30 provides atomic masses.
A cellʼs temperature may exceed ( )Tlog K =10.0 in shocks

and explosive burning, which is beyond the range of validity
for the fits to the reaction rates and the partition functions.
Previously, MESA extrapolated for ( )Tlog K >10.0, leading
to erroneous reaction rates. Reaction rates are now set equal to
their ( )Tlog K =10.0 values when ( )Tlog K >10.0.
MESA now includes the option to use the electron-capture

and β-decay rates from Suzuki et al. (2016), which cover sd-
shell nuclei with A=17–28. The primary application for these
tables is the evolution of high-density oxygen-neon cores (e.g.,
Miyaji et al. 1980; Miyaji & Nomoto 1987; Jones et al. 2013).
Compared to the on-the-fly weak-rate approach described
in PaperIII, these tabulated rates are less computationally
expensive and more accurate at high temperatures (T109 K)
but less accurate at low temperatures (T108 K) and do not
allow explicit updating of nuclear physics.

Figure 53. Thermodynamic consistency metric dpe; see Equation (48) for the definition. The left panel shows the results for OPAL/SCVH and HELM, and the right
panel shows the results for PTEH, DT2, and ELM. As expected, HELM gives machine-precision consistency and so is superior in this to ELM. OPAL and SCVH
have an advantage over DT2 because they use interpolated values of thermodynamically consistent partials—which degrades their numerical accuracy as shown in
Figure 52.

28 Dated 2017 October 20. Available from http://reaclib.jinaweb.org/library.
php?action=viewsnapshots.
29 Available from http://reaclib.jinaweb.org/associated_files/v2.2/winvne_
v2.0.dat.
30 See the MESA directory chem/preprocessor/chem_input_data.
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A.2.2. Reaction Rate Screening

The plasma coupling parameter of two reactants Γi,j and the
ion sphere radius ai are
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where Zi is the atomic charge of isotope i, e is the electron
charge, kB is the Boltzmann constant, and ni is the ion number
density of species i. MESA applies screening factors to correct
nuclear reaction rates for plasma interactions (e.g., Salpeter
1954). Previous versions defaulted to using one set of
expressions for the weak screening regime (Γi,j�0.3; Dewitt
et al. 1973; Graboske et al. 1973) and another set of
expressions for the strong screening regime (Γi,j�0.8,
Alastuey & Jancovici 1978; Itoh et al. 1979). A linear blend
of the weak and strong screening factors is used in the
0.3<Γi,j<0.8 intermediate regime. Silicon-burning reactions
in the cores of massive stars often operate in this intermediate
regime. The numerical blending provides a smooth and
continuous function that equals the nonblended values and
their derivatives at the edges. A new default for screening,
based on Chugunov et al. (2007), includes a physical
parameterization for the intermediate screening regime and
reduces to the familiar weak and strong limits at small and large
Γ values. We extend the Chugunov et al. (2007) one-
component plasma results to a multicomponent plasma
following Itoh et al. (1979), where the Zi are replaced with
the average charge Z̄ .

Figure 54 compares three MESA nuclear reaction rate
screening options on the evolution of a 25Me model. The
differences are small from H burning to the onset of core
collapse. However, the Chugunov et al. (2007) implementation
takes ≈20% fewer time steps, retries, and backups, which
indicates a numerically smoother solution.

Appendix B
Analytical Approximations to the Roche Geometry of a

Single Star

In this appendix we compute various properties of the Roche
potential of a single star. These are used for the computation of
centrifugal effects in stellar structure, as discussed in Section 4.
Through these derivations we denote dimensionless properties
using an apostrophe, with distances being normalized as

( )¢ = WYr r Gm 2 1 3 and the potential as ( )Y¢ = Y WYGm 2 3.

B.1. Volume of Roche Equipotentials

Following the diagram in Figure 55, the dimensionless
volume-equivalent radius ¢Yr can be computed in terms of ω as
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where the expression for y′(x′) can be derived directly from the
Roche potential. The integral can be solved analytically for the
case of ω=1, providing the volume of a critically rotating star
in terms of its equatorial radius (Kopal 1959),
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In the opposite case where ω→0, the equipotential is well
approximated by an ellipsoid of revolution with
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By numerically integrating Equation (50), a simple polynomial
approximation to the volume can then be constructed, which is
consistent with the value at critical rotation given by Equation (51)
and the asymptotic behavior at small ω given by Equation (53):
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This expression has an error <0.25% for 0�ω�1. In all the
asymptotic expressions considered in this work ω appears in
series of even powers, so we do not include odd terms in any
fit. Also, since the value for ω=1 is fixed, Equation (54) is a
fit with only one free parameter.
Stellar evolution instruments typically use the radial

coordinate rΨ, so it is useful to have polynomial fits for rΨ
(ω) as well. In the limit of w  0,
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Figure 54. Evolution in the central (ρ–T) plane of a 25 Me star until the onset
of Fe core collapse with three different nuclear reaction rate screening options.
“Previous” denotes the previous MESA default option, “Chugunov” is the new
default option, and “None” applies no screening correction to any nuclear
reaction rate. Locations when a fuel undergoes central ignition are labeled.
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A polynomial fit that matches this and the value at critical
rotation 0.8149re from Equation (51) is
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which has an error <0.15% for 0�ω�1. Similarly, the
expression
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has an error <0.2% in the same range.

B.2. Surface Area of Roche Equipotentials

The computation of the dimensionless surface area ¢YS is
given by
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In the limit w  0, dS′/dx′ can be approximated as
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which upon integration provides the approximate form of the
surface area of a slowly rotating equipotential,
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This result is consistent with that for an oblate spheroid. Using
Equation (60) and the numerically computed value

( )w = =YS r1 8.832 e
2, a fit to SΨ that has an error <0.01%

in the range 0<ω<1 is
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B.3. Surface Averages of Gravity

The surface average of the dimensionless gravity á ¢ñg is
computed as
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with an equivalent expression for á ¢ ñ-g 1 . For reference, the
dimensionless gravity is given by ( )¢ = WYg g Gm 4 1 3. In the
limit of ω → 0, it can be shown that
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which, combined with Equations (59) and (62), results in
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By numerically computing this integral, a simple fit that
matches the computed value at ω=1 and has an error <0.35%
for 0�ω�1 is
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Similarly, the average of the inverse gravity, in the limit of
ω→0, can be shown to be
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However, this integral diverges for ω=1, as for a critically rotating
star the effective gravity at its equator becomes zero. Although the
expression for á ¢ ñY

-S g 1 cannot be integrated in the limit w  1, by
comparing it to the numerical results we have verified that it is
approximately given by ( )wá ñ µ - -Y

-S g ln 11 4 . Combining
this information with Equation (66), we have found the following

Figure 55. Quantities used for the integration of the fP and fT factors, which require the computation of volume and surface areas of equipotentials.
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fit with an error <0.85% in the range 0�ω�0.9999:
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B.4. Moments of Inertia

The specific moment of inertia irot is needed to determine ΩΨ

from the specific angular momentum jrot and volume-
equivalent radius rΨ. To compute irot, consider a shell of
material extending from Ψ to Ψ+dΨ. At each point in its
surface, its thickness is given by

∣ ∣ ( )= Y Y = Y- -ds d g d . 681 1

Assuming a constant density ρ in the shell (as in the shellular
approximation),
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where dm′=dm/mΨ and [ ( ) ]r r¢ = WY Y
-m Gm 2 3 2 . From

Equation (69),
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with the dimensionless specific moment of inertia defined as
( )¢ = WYi i Gmrot rot

2 . Preserving the fit for á ñY
-S g 1 given by

Equation (67) and using Equations (59) and (63), in the limit of
ω→0
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Equation (68) implies that ( )w = =i r1rot e
2, as in the extreme

of critical rotation g=0 at the equator and almost all mass
between two close equipotentials lies in a ring of radius re

2.
Using this information, we construct the following fit, which
has an error <0.9% for 0�ω�0.9999:
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where the 3/2 factor in the last term ensures the desired result
as ω→1.

B.5. Computation of fP and fT

Using all the fits constructed so far, fP and fT can be
evaluated directly. However, to provide a more compact
expression, we keep only the fit for á ñY

-S g 1 and use
Equations (35), (56), and (64) to determine the behavior of

the remaining terms when w  0,
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The following fits for fP and fT are derived, which have errors
<0.8% and <1.6% in the range 0�ω�0.9999, respectively:
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B.6. Determination of ω

For given values of rΨ, mΨ, and jrot, ω can be determined
from the implicit equation
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The left-hand side can be directly evaluated, while the right-
hand side is a monotonic function of ω for 0�ω�1.
We compute a fit to the right-hand side of Equation (75).

Equations (55) and (71) can be used to determine the form of
this term in the limit w  0. In the limit of w  1 all material
is concentrated in an equatorial ring, such that (w =jrot ) =1

YGm re . Using this information, we find the following fit,
which has an error <0.8% in the range 0�ω�0.9999:
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Appendix C
Core-collapse Supernova Explosions

PaperIV described modeling the evolution of core-collapse
SN ejecta up to shock breakout with MESA, and with STELLA
beyond shock breakout. Modifications since PaperIV have
focused on fallback in weak explosions of red supergiant
(RSG) stars. In these weak explosions, the total final explosion
energy is positive but insufficient to unbind all material. Thus,
some material falls back onto the central object during the
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subsequent evolution. To quantify and remove this material, we
introduce two new user controls. First, we implement a new
criterion to select which material is excised from the model
during the ejecta evolution.31 At each time step, MESA
calculates the integrated total energy from the innermost cell
to cell j above it:

⎛
⎝⎜

⎞
⎠⎟ ( )å= - +

=

E e
Gm

r
u dm

1

2
. 78j

i

j

i
i

i
i i

inner

2

If Ej<0, then there is a bound inner region, and MESA
continues this sum outward until it reaches a cell k with local
positive total energy ( - + >e Gm r u 2 0k k k k

2 ). MESA
removes material inside this cell, making cell k the new
innermost cell. Second, to remove any slow-moving, nearly
hydrostatic material left near the inner boundary, a minimum
innermost velocity can be specified at handoff to STELLA. All
material below the innermost cell that has a velocity above this
specified velocity is not included in STELLA input files.32 A
velocity cut between 100 and 500 km s−1 has little effect on
light-curve properties and the photospheric evolution of SNe
IIP and can greatly reduce numerical artifacts that may arise
from an inward-propagating shock hitting the inner boundary
in STELLA. Such a cut can also lead to a factor of 10 or more
reduction in the number of time steps required to produce a
light curve. While this scheme is useful in quantifying and
excising fallback material, it is not a satisfactory treatment of
fallback. For a more complete description of these fallback
criteria, see Appendix A of Goldberg et al. (2019).
Next, we look at the evolution of material deep within the

ejecta of an SN IIP, at such large optical depths that the
outcome is not sensitive to any particular treatment of radiation
transport in different software instruments. For this restricted
regime, we compare results using MESA+STELLA to quantities
derived from the open-source 1D gray radiation hydrodynamics
code SNEC (Morozova et al. 2015), both using the same MESA
Type IIP ejecta model at shock breakout. This should yield
meaningful density and velocity comparisons nearly every-
where in the ejecta and meaningful temperature comparisons
very deep within the ejecta.

We explode (with Eexp=1051 erg) the 99em_19 RSG
progenitor model from PaperIV, which has a ZAMS mass of
19Me and a mass of 17.8Me and a radius of 603 Re at time of
explosion. We excise the inner 1.5 Me and explode the
remaining 16.3Me of ejecta using a thermal bomb as described
in PaperIV. The mass of radioactive 56Ni is set to
MNi=0.03Me. The resulting ejecta is influenced by the
inclusion of the Duffell (2016) prescription for mixing due to
the Rayleigh–Taylor instability in MESA. We then pass our
MESA models at shock breakout to both STELLA and SNEC.
To mimic the additional line opacities from metals, SNEC
employs an opacity floor. We use SNECʼs default opacity floor
recommended in Bersten et al. (2011), which is set to
κfloor,core=0.24 cm2 g−1 for the metal-rich core material,
κfloor,envelope=0.01 cm2 g−1 for the envelope, and proportional
to metallicity for the intermediate region.

Figure 56 shows density and temperature profiles as a
function of mass coordinate, with color corresponding to the
number of days after shock breakout. Both instruments agree in
the density evolution of the expanding ejecta. The temperature

Figure 56. Density (top panel) and temperature (bottom panel) profiles in
STELLA (solid colored lines) and SNEC (dashed lines) on the plateau of a Type
IIP SN model withMNi=0.03 Me at 5–70 days after shock breakout in MESA.
Lighter colors indicate later days.

Figure 57. Density (top panel), velocity (middle panel), and temperature
(bottom panel) profiles of the 99em_19 progenitor, exploded with 1051 erg, up
to 20 days after shock breakout. The reverse shock originating at the H/He
boundary makes its way back through the expanding ejecta. The MESA profile
at shock breakout (thick gray line) is used as the input for subsequent evolution
in STELLA (solid curves) and SNEC (dashed curves). Numbers in the legend
correspond to the day after shock breakout for each profile.

31 Triggered when fallback_check_total_energy=.true. in star_
job.
32 Controlled by the star_job inlist parameter stella_skip_inner_v_
limit.
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evolution is also in agreement in the very optically thick inner
ejecta. Temperature differences at the surface reflect the
differing treatments of opacity and radiation transfer between
SNEC and STELLA.

Figure 57 focuses on the deep core during the first days of
the evolution after shock breakout at the location of the reverse
shock generated at the H/He boundary of the initial model.
Density, velocity, and temperature profiles over the first
20 days are plotted with the corresponding MESA profile at
shock breakout, which serves as the common input in both
STELLA and SNEC. By day 20 the reverse shock has reached
the inner boundary in both models. Although there are slight
differences within the first day, both instruments agree on
global properties of the reverse shock and its effects on the
temperature and density profiles out to day 20.

Appendix D
MESA Testhub

Development of the MESA source code is a collaborative
process with multiple commits each day from developers
working on separate parts of the codebase. In addition to
serving as starting templates for science projects, the test cases
in MESAstar and MESAbinary exist to detect when changes
to the codebase cause unintended deviations from expected
behavior (i.e., bugs). The number of test cases grows with time
and is currently more than 100, with a total run time on the
order of 10 hr on multicore workstations. Since MESA is
committed to supporting reproducibility by giving bit-for-bit
identical results on a variety of different hardware and software
platforms (PaperIII, Section 10), the test suite must be checked
on a representative sample of host systems; just as it takes a
team to create MESA, it takes a team to test it.

To prevent slowdowns in development that would be caused
by running the test suite on multiple hosts before every commit,
we have developed the MESA Testhub (https://testhub.
mesastar.org). The Testhub is a web application that collects
and organizes the results of test suite submissions via a
companion Ruby gem called mesa_test. Every day,
submissions from multiple computers and clusters with diverse
hardware, operating systems, and compilers check out the most
recent revision of MESA, run the test suite, and upload their
results to the Testhub. Each day, a summary email is sent to
developers detailing which, if any, revisions had failing test
cases submitted in the previous 24 hr. With a quick check of the
daily email from the Testhub, developers are able to detect
cases that fail to give the expected output with bit-for-bit
identical results on different computers, or take more than the
specified number of time steps, retries, or backups. With daily
coverage, we can promptly diagnose issues as soon as they
arise by looking at changes from only a handful of commits
while maintaining a brisk development pace. The addition of
the Testhub has yielded a significant improvement in the pace
and quality of MESA development.
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