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Abstract

The actor model is a well-established way to approach to
modularly designing and implementing concurrent and/or
distributed systems, seeing increasing adoption in industry.
But deductive verification tailored to actor programs remains
underexplored; general concurrent logics could be used, but
the logics are complex and full of features to reason about
behaviors the actor model strives to avoid.

We explore a relatively lightweight approach of extending
a system for proving sequential program correctness with
means to prove safety properties of actor programs (cur-
rently, assuming no faults). We borrow ideas from hybrid
logic, a modal logic for stating assertions are true at a partic-
ular point in a model (in this case, a particular actor’s local
state). To make such assertions useful, we stabilize them
using rely-guarantee-style reasoning over local actor states,
and only permit sending stable versions of these assertions
to other actors. By carefully restricting the formation of as-
sertions that a proposition is true at a certain actor, we avoid
the need for actors to handle each others’ rely-guarantee
relations explicitly. Finally, we argue that the approach re-
quires only modest adjustments beyond applying traditional
sequential techniques to actors with immutable messages,
by implementing most of the logic as a Dafny library.

CCS Concepts < Theory of computation — Modal and
temporal logics; Program specifications; « Computing
methodologies — Concurrent computing methodolo-
gies.
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1 Introduction

The actor model [23] is a well-established approach to struc-
turing concurrent or distributed programs, addressing the
most prominent challenge of concurrent shared-memory pro-
gramming with threads (i.e., data races) by completely forbid-
ding shared mutable state, instead requiring actor processes
to exchange immutable messages to update exclusively-actor-
local mutable state. Data race freedom [8, 21] for actors re-
moves some of the most brittle concurrency bugs and makes
it sound to use purely sequential reasoning techniques to
verify properties of an actor’s local behavior. Unfortunately
reasoning about a single actor’s behavior at a time is often
insufficient. One actor’s correctness may depend on know-
ing information about other actors, such as in consensus
algorithms, where an operation is committed if a majority
of nodes have agreed to it — so specifications must refer
to other nodes’ states, and proofs must ensure other nodes
preserve truth of the shared information.

This idea of one part of a program interfering with the
proof assumptions of another part is how Owicki and Gries
[36] approached verification of shared memory concurrent
programs using threads. This attacks the essence of how con-
currency complicates program reasoning, but requires check-
ing that every operation in every thread preserves the truth
of every assertion in every other thread’s proof. Jones [26]
proposed rely-guarantee reasoning to simplify this: summa-
rizing for each thread (1) a guarantee to other threads of the
system that its interference on global state would not exceed
a certain threshold (given as a binary relation on the state
before and after each statement in the thread), and (2) a rely
relation stating an upper bound on what that thread’s proof
assumed other threads might do. Then each thread’s proof
was conducted using only (3) stable assertions (those whose
truth was preserved by any action whose specification fell
within the rely relation) and (4) when threads were composed
in parallel they were checked for compatibility: that each
thread’s guarantee was a subrelation of the other’s rely rela-
tion, ensuring the assumptions each thread made about the
other’s behavior were sound. Rely-guarantee style reasoning
has since been integrated into various flavors of separation
logic [13, 15, 44], and become an implicit reasoning princi-
ple underlying a variety of newer concurrent program logic
constructs [12, 27, 35, 39]. Gordon et al. [19, 20] and Militdo
et al. [33, 34] even adapted rely-guarantee reasoning to treat
interference between aliases, regardless of whether the inter-
ference was concurrent or not. These ideas could be applied
to actor programs, but this is a heavyweight approach: these
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techniques include rich support for varieties of interference
that actor systems are designed to avoid by construction. For
programs designed to suit the strengths of the actor model,
it would be appealing to have a lightweight way to extend
the local sequential reasoning supported by data-race-free
actors to permit useful reasoning about other actors.

We give a lightweight adaptation of rely-guarantee-style
reasoning to actors, borrowing ideas from hybrid logic. We
extend a sequential program logic with an assertion @;(P),
stating that P is true of the state at actor i. Thus one actor’s
verification assumptions may refer to facts about another ac-
tor’s state, but at runtime an actor’s state remains accessible
only to the actor itself. Of course, this alone might permit
an actor to assume another is in exactly a specific state even
when the actor might change its state, so additional con-
straints are required. We ensure such assertions are stable
(in the rely-guarantee sense) by equipping each actor with
a guarantee relation describing how it may update its own
state upon processing a message. Assertions about an actor’s
state are required to be stable with respect to its guarantee,
and this is enforced at the time such a property is established:
only actor i may initially prove a proposition of the form
@;(P). To support our “lightweight” claim, we also show that
assuming reference immutability [8, 21], a sequential verifi-
cation system (i.e., Dafny [28]) can provide these principles
mostly as a library.

2 A Motivating Example

Let us consider a simple actor program to motivate some
informal reasoning; later we verify the example, but for now
we describe it only in prose (Figure 6 shows code). Let us
assume a model similar to that used by Akka [30]. In Akka,
actors are implemented as a JVM class with a single message
handling method that handles all incoming messages. Actors
are referred to using ActorRefs, which are essentially handles
to specific actors in place of direct object references. Each
actor has a single mailbox, and the actor system itself is re-
sponsible for invoking an actor’s message handling method
once for each message received. Sending messages is asyn-
chronous: the message handler can send many messages, but
send is non-blocking and no success or failure indication is
provided; the only way for an actor to know another actor re-
ceived and processed a message is to later receive a response
message, in a later invocation of the message handler.

The system we are interested in verifying consists of two
actors. The first is a simple counter actor: it keeps a counter
locally, accepts messages indicating the actor should incre-
ment by a certain amount, and replies with the new value.
The second is a “manager” of sorts, which acts as a sort of
proxy to the counter: it can forward increment requests from
external clients (for simplicity assume it does not forward
along the counter’s reply), and it can respond to client re-
quests for a lower bound on the counter’s value. The value it
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provides is in caching a lower bound on the counter locally.
If a client requests a lower bound it can reply immediately.
If a client requests an increment, the manager forwards it
along and will later receive a reply from the counter with a
newer value, which it can use to update its lower bound.

Let us consider an informal argument we might use to con-
vince ourselves the manager and counter are correct. There is
one key system invariant: the manager’s local cached value is
always a lower bound on the actual counter’s value. As long
as this is true, it will always be correct for the manager to re-
ply with its latest cached value. Ensuring this is true requires
a two-state invariant [29] on the messages from the counter
to the manager: that the value contained in the message is
and remains less than or equal to the current value. Assum-
ing immutable messages, the only way this could be violated
is if the counter might decrement its local value. This will not
occur for reasonable implementations of an increment-only
counter. So as long as every value sent to the manager is
already no larger than its local count (trivially true if it sim-
ply always sends exactly its current count at that time), this
two-state invariant [29] — an invariant on how any two suc-
cessive states are related — holds. This means every time the
manager receives an update from the counter, it can safely
update its local cached copy and preserve the invariant.

Making this informal argument formal requires support-
ing a few key styles of reasoning:

e The invariant of the manager must be able to mention
state of the counter

e Some part of the proof must be able to check that
the manager’s invariant is stable with respect to the
behavior of the counter

e Some part of the proof must check that the counter
only sends true lower bounds

o Messages from the counter with lower bounds must
also communicate the lower bound property

This actually permits a wide range of formalizations. Ideally,
though, the local proof of the manager’s code should not
concern itself directly with the details of the counter’s local
behavior: the only things the manager’s proof must know
locally are (1) the lower bound and (2) the fact that the lower
bound remains a lower bound (it does not necessarily need to
know why). An intuitive adaptation of classic rely-guarantee
techniques would require the manager’s proof to explicitly
contain a bound on the counter’s behavior and check stability
of the lower bound assertion. Alternatively, an intuitive adap-
tation of something like rely-guarantee references [19, 20]
to actor references would do the same, exposing summaries
of the counter’s possible state changes to the manager. But
Vafeiadis [43] showed there are a range of possible ways to
organize stability checks in rely-guarantee-style systems. So
we would prefer to shift the burden of stability checks — and
therefore, all explicit knowledge of the counter’s behaviors
— to the proofs of the counter itself.
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We would like to take the following high-level approach:

1. Extend the assertion language over local state with a
way to talk about an assertion true at another actor

2. Equip each actor with a binary relation that upper-
bounds how its receive method changes its local state

3. Require any proofs that something is true at a particu-
lar actor to originate with that actor

4. Allow actors to attach logical claims to messages

5. Require actors to “promise” any logical claim sent in a
message will be upheld

3 Hybrid Logic for Actors

Modal logics are logics that study some form of contingent
truth, with operators reflecting that something may not cur-
rently be true, but may be true in a different circumstance,
time, or place. The classic example is the modal logic of neces-
sity, where OP means P is necessarily true. Modal logics play
an outsized role in program verification, because execution of
program fragments corresponds to constructing alternative
situations, in which different claims about program state may
be true. This includes temporal logic [37], as well as standard
program logics. Dynamic logic [16, 22, 38] includes a modal-
ity indexed by programs: [a](P) is the statement that P is true
after executing program « — it is true in exactly those states
where executing o will make P true, making it equivalent to
the weakest precondition [11] of & with respect to P. This can
be exploited for verification directly [1], or used to recover
Hoare triples: {P} C {Q} is representable in dynamic logic as
P — [C](Q) — that the precondition P implies that after exe-
cuting C, Q will be true. This is how Iris [27] derives triples.

A class of modal logics that has not, to the best of our
knowledge, been exploited in verification is that of hybrid
logic [6, 17, 18]. Hybrid logics extends a modal logic’s lan-
guage of propositions with two key ideas. Nominals 1 € N
uniquely identify points in a model (e.g., a particular state),
so there is exactly one point in the model where a nominal
1 is true. Satisfaction operators are modal operators indexed
by nominals, which enable claims about the truth of another
proposition at some arbitrary point in the model identified
by a nominal: @,(P) asserts that P is true in the (unique)
state identified by the nominal .

This style of reasoning seems well-suited to reasoning
about actors: nominals correspond to the existing notion of
a reference to a specific actor, so @,(P) would then represent
the assertion that P was true of the local state of actor :. This
section outlines an approach to making this idea useful for
verifying actor programs subject to some simplifying assump-
tions. So for example, the invariant of the manager from Sec-
tion 2 could be characterized as Jv. b = v A @.(v < count),
assuming local variable b at the manager holds logical value
v (valid in both actors’ states), and at the counter (nominal
¢) this logical value is a lower bound.
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Of course, hybrid logic’s satisfaction operators by them-
selves assume all possible states are named by nominals,
which would correspond to a single global program state
with many actors. To reason about actor programs we must
combine this with the ability to model program changes —
in this case, dynamic logic. This leads to model / program
states consisting of sets of individual actor states, where the
truth of a proposition depends on both the general program
state and (informally) a choice of which actor’s point of view
to adopt when interpreting propositions — so an actor’s code
will be verified from the “point of view” of that actor. From
a modal logic perspective, this makes our endeavor a kind
of 2-dimensional modal logic [40], with different modalities
acting on different aspects of states.

3.1 A Multi-Dimensional Multi-Modal Model

We will give a Kripke model for a combined dynamic logic
of actors’ message handlers with hybrid logic to model each
others’ state. In modal logics, Kripke models are commonly
used to give semantics to a logic. They consist of a set W of
worlds and a family of binary relations on worlds describing
their relationships. Worlds are intuitively the set of “situa-
tions” in which the truth of a formula may be considered —
in our case, program states. The relations are used to give
semantics to modal assertions that relate different states. In
dynamic logics like ours, these correspond to programs that
may modify program state.

We assume a universe R of actor references as nominals.
We assume a basic propositional dynamic logic for purely-
local actions (i.e., no send primitives) over a local state LState =
Var — Nat U R, whose commands are drawn from a €
Primitive, with (possibly-non-deterministic) command se-
mantics given as [—] : Primitive — BinRel(LState). In our
examples we assume this set of primitives includes assign-
ment between variables and basic arithmetic expressions.

We construct our models M = (W, Rcecommand) accord-
ing to Figure 1. A world (program state) is an R-indexed
finite set of actor states. An actor state is a triple of a local
state (LState as above), a set of messages the actor has sent
(message type, destination, and value), and a binary relation
giving an upper bound on any local behavior they might have
— the guarantee relation of each actor. Our semantics will
only collect messages sent: in distributed settings, networks
may reorder, duplicate, or drop messages, so we only enforce
that if a message is delivered, then it was previously sent.

The transition relation is indexed by a particular command
and a particular actor: Re () relates pre- and post-states of a
particular actor referenced by 1 executing command C. This
updates the state of the actor in question differently than
those of other possible actors: the state of the actor that
is assumed to execute C is updated in accordance with C’s
local semantics. Each other actor’s state is updated in some
way corresponding to the reflexive transitive closures of
its guarantee relation, possibly also sending messages. We
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W =R — ((LState X set (Token X R X (Nat U R)})) X BinRel(LState))

Re(t) = {(W, W) dom(W) = dom(W’)A

[send(z, x, )] (L m) = (I, m U (2, I(x), [(y)))

(V,s,9. W) = (s,9) = 3. W) = (s',9) A (if (1 = V') then (s,s”) € [C] else (s,5") € (g*X ©)) }
[C:C'] = {(a,¢) | 3b.(a,b) € [C] A (bc) € [T}

Figure 1. Kripke model for an actor-based hybrid modal logic.

M, w, 1 E true always
Mw,tEPVQ S M,w,iEPor M,w,1EP
MwiEPANQ & M,w,iEPand M, w,1EP
M,w,ieE-P < M,w,1£P
M, w, 1 E ActorRef(x) © w(x) € (R N dom(w))
Mwiel! ©i1=0
M, w,1E @,/(P) © stable(w,t’,P) A M, w,l’ EP
M, w,1E Guar(g) © 3s,g’. w(t) = (s,g')AgC g
M, w, £ [C](P) © YW € Rc()). M,w/,LEP
M,w, 1k dx. P & for some v, M, w, 1 E P[x — v]
M, w,1EVx.P < for any v, M, w, 1 E P[x  v]
Mw,iex<ne w(lx)<n
Mwiex=vo wl)x)=0v
Mow,1Ex <y e w()(x) < wi)(y)
Mow, i Ex =y © wi)(x) =w()(y)
Mwiex=y®v o w(i)(x)=wl)(y) ®v
where stable(w, 1, P) =

Yw'.w =wlt (s',9) | s(t) =(s,9) A(s,s") e g] =

M, W, LEP

Figure 2. Semantics of assertions

build the full programming language by specifying the set
C € Command := a | send(t,x,y) | C;C. Sends accept
a Token indicating the message type (used to select which
invariants are intended to hold at the sender, in terms of the
value sent), and their semantics add the message to the set
of messages sent by the current actor. We lift the semantics
of primitives to operate on a pair of LState and message
sets. Sequential composition’s semantics is the relational
composition of the nested command semantics. For brevity
we omit loops and assume primitives include conditional
updates (guarded [11] primitives).

This allows us to define the semantics of assertions in
our language, relative to both a global state and a particular
actor; Figure 2 defines the relation M, w,: £ P which is read
as “in model M, when considering truth from global state
w € W and actor 1, P is considered true.” Standard assertions
are defined in the standard way (e.g., P V Q is true if either
P or Q is true). We include an assertion that a certain value
is a valid actor reference. Actor references may be used as
assertions, asserting that the code is running in the named
actor (the standard interpretation of nominals).

The key case in the semantics is the interpretation of
@,(P). This requires, as suggested in Section 2, that P be
true from the viewpoint of actor i (note the change in actor
reference when checking P in that case). It also requires P to

be stable. This stability check has the same intuitive meaning
as in traditional rely-guarantee reasoning (that P’s truth is
preserved by changes within an upper bound), but notice
that this check occurs in the semantics of assertions rather
than in the proof theory of the logic. This means that proofs
(1) do not need to concern themselves with stability checks
for other actors’ satisfaction assertions, and (2) do not even
need to know what other actors’ guarantees are!

From the perspective of the model, the assertion carries its
own stability proof with it. Of course, stability must still be
proven somewhere (in the rule for introducing a satisfaction
assertion). The model’s stability check has additional subtlety.
Notice that it only checks stability (directly) with respect to
changing the single actor’s local state: the check is that the
actor where P is true cannot perform any local action that
invalidates P. Critically, this restriction allows us to give rules
for introducing a satisfaction assertion that are also local
to a single actor. If P contains further satisfaction operators
referring to truth at other actors, those assertions’ stability is
already guaranteed separately, and these nested assertions’
stability proofs for other actors’ assertions can be combined
with that for P’s stability at : to show all actors preserve P.

The assertion Guar(g) asserts that g under-approximates
the local actor’s guarantee. This is used in every proof rule
for every primitive: in addition to handling the logical conse-
quences of each primitive on what assertions are true, each
action must fall within the guarantee.

The class of assertions [C](P) are standard for dynamic
logic, adapted to our non-standard model: it asserts that P
should be true — at the same actor — after executing com-
mand C. We include universal and existential quantification,
though we assume quantified variables are distinct from
program variables. Finally we assume a range of basic propo-
sitions with their natural meanings, a subset of which are
shown in Figure 2.

3.2 A Multi-Dimensional Modal Logic

Figure 3 gives selected natural deduction rules of our logic,
where T' ranges over sets of propositions. We elide most
rules for reasons of space and to focus on the novel aspects
of our work, but they are standard for natural deduction pre-
sentations of dynamic logic [25]; readers less familiar with
dynamic logics but familiar with classic Hoare logic [24]
would find no surprises after adjusting to the different judg-
ment form. To give some sense for those more comfortable
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LrICNCe) Lx = DO TrGuar(g) [r:=1]cC T p "P
SEQ m X = Xol, X = X '—>FX(|)_ )[x g t](Q) uar(g IIx = ]] 9 @- I‘l_—@l(l) @- URE WL(P)
'+t @,(P) T + Guar(g) F'+P | N I + ActorRef(x)
) 'r@,(P— Q) ) Tk Stable(g, P) ) ki '+ @,(P) l'ry=vo I'rZ(t)(,v)
'+t @,(0) '+ @,P) TrP T+ [send(t, x, y)](P)

Figure 3. Selected rules for verifying actors

with Hoare logics, we consider the rule for sequential com-
position (SEQ), which decomposes proofs about a sequential
composition into proofs about each of the sequence com-
mands (just as in Hoare logic). We also show one primitive
rule, for assignment; this is the dynamic logic version [25]
of Hoare’s axiom of assignment [24], using substitution to
handle where the right hand side mentions the variable be-
ing assigned, and additionally modified to ensure the action
satisfies the local guarantee.

Standard for hybrid logic, a nominal is always true at the
corresponding location (@-T) — here, an actor is always itself.
@-Pure allows the injection of a fact that is true under no
assumptions into a satisfaction modality. By itself this is not
a terribly useful rule, but it works well in conjunction with
the next rule. @-K is a restricted form of the typical axiom
K from modal logics, which allow applying modus ponens
to draw inference under a modality: intuitively if P is true
at 1, and P — Q is true at 1, then Q must also be true. This
is where @-Pure becomes useful: it makes it easy to inject
“common-sense” implications into the satisfaction modality
for a different actor, to draw further inferences from any
assertions that other actor may have sent.

@-1is key: it introduces satisfaction assertions. It says that
assuming P is true at the current actor (I + 1), and P is also
stable with respect to the current guarantee, then it can be
concluded that @,(P). Its dual @-E is an elimination rule for
satisfaction: if P is true at ¢, and : is the current actor, then P
is true at the current actor.

Finally the Send rule permits sending messages to other
actors, if the invariant 7 (¢)(1, v) for that message type can
be proven of the data sent. This might include basic validity
constraints (e.g., that a number to increment should be non-
negative), or the requirement that the sender has witnessed
some fact (like a value being a lower bound of a counter).
The invariant for each message type ¢ leaves the sender and
data sent open, so it may be checked on the sender side and
assumed on the recipient’s side. We require that message
invariants do not mention program variables outside satisfac-
tion operators, which prevents the recipient from assuming
random constraints on its local state.

Theorem 3.1 (Local Soundness). The logic is sound: For allT,
O, M, w, andi € dom(M), if T+ Q andVP e T. M, w,1 £ P,
then M, w,1 £ Q.

Proof. By induction on the derivation I + Q. For a simple
example consider SEQ: there the assumptions and induc-
tion hypotheses give that M, w, 1 £ [C][C"](P), and the case
requires proving M, w,: £ [C;C"](P). Because the seman-
tics of the latter are given by relational composition of the
semantics for C and C’ this is straightforward (including ad-
ditionally dealing with repetition of the guarantee on other
actors’ states, and the growth in their message sets). More
interesting are the cases for @-K and @-1. For the former,
the antecedents give that P and P — Q are true at some
other actor; the assertion semantics for those assertions es-
sentially allow repeating the reasoning for the basic modus
ponens rule, but at a different actor, and additionally combin-
ing the stability information from the model interpretation
of the antecedents to show stability of Q. For the latter, the
antecedents O

3.3 Actor Correctness

We have yet to actually define what an actor is in our formal
model. We view an actor as a set of handler routines, one for
any message class (i.e., Token) the actor wishes to handle:
Actor = Token — Command. An actor specification is a pair
(¢, g) of an invariant over the actor’s state and the actor’s
local guarantee. We say an actor A is correct with respect
to specification (¢, g) under token invariants 7 — written

I+ A:(¢,g) when:

Vi,t € dom(A).
1A P AGuar(g) AZ(t)s,v) Ax=sAy=vF [AD)](P)

TrA:(¢,9)

We can extend this to correctness of a uniquely-labeled set
of actors with a group specification 7~ mapping actor names
to actor specifications:

V(,A) e A.Fp,9.T (1) = (P, g) AL + A:(d,9g)
IT+A:T

This is sound with respect to interleaved handler-at-a-
time semantics of a system of actors: assuming that initially
every actor’s invariant holds, all message invariants (from
T') hold at the sender for every message in the state, and the
guarantees in 7 under-approximate the guarantees of each
actor, then executing any actor’s handler for any message
that has been sent to it (i.e., is in the message output set of
some other actor) will lead to another state where all local
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invariants hold, 7~ underapproximates the guarantees, and
all message invariants hold (including for new messages).
Because our semantics is data-race free by construction, this
is then equivalent to interleaving execution at a statement
granularity as well.

3.4 Counters, Formally
We can model the example of Section 2 formally. Assume:

Token = LowerBound | IncRequest
I (LowerBound)(x,y) = Fv.y = v A @x(v < ¢)
T (IncRequest)(x,y) = ActorRef(x) A0 <y

Then we can model the counter’s one handler as:

cC = Cc *t Yy,
send (LowerBound, self, c)

And we can verify 7 + Counter : (0 < ¢,c < ¢’) with the
single derivation in Figure 4. Likewise, we can model the
manager handler that receives updates from the counter as:

when (x=cntr A 1b < y): 1lb :=y;

The manager code may be verified similarly, though we omit
the derivation for space:

I + Manager :
(Fo.lb=v A @cntr(v < C)),
(Ib < Ib" Acntr = cntr’ A Ju. lb’ = v A @cntr(v < ©))

As intended, neither actor’s verification requires any rela-
tional description of any other actor’s behavior — all knowl-
edge of other actors comes from satisfaction operators, which
witness either tautologies proven without assumptions (and
therefore trivially true at all actors), or information witnessed
to be stable by the actor where it is true (as in the use of @-I
in the counter’s proof).

4 Working with Satisfaction in Dafny

This section gives a nearly-complete encoding of the logic
into Dafny, a C#-like language with integrated support for
program verification, to support our claim that this is a light-
weight extension to sequential reasoning principles. We also
highlight where additional modifications would be required
(such as object or reference immutability, or additional ver-
ification checks) to make the implementation sound. We
assume typed asynchronous actors, as in a variant of Typed
Akka [30].! An object of type ActorRef <M> is a handle to
a particular actor in the system, which can be sent messages
of type M. Figure 5 models satisfaction assertions as a higher-
order predicate. We tweak the theory to allow an actor to
only allow some of its state — which we call publicly acknowl-
edged — to be referenced by other actors’ assertions. This is
akin to committing to a public interface for assertions about
that actor — state that is not publicly-acknowledged can
be refactored or removed without invalidating other actors’

!Dafny lacks a mechanism like Java’s instanceof to discover more pre-
cise types for an object.
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assertions. at<T ,M>(i,p) is an assertion that the actor
referred to by actor reference i (of type ActorRef <M>)
exposes publicly-acknowledged state of type T, for which
p is true — if x is the acknowledged state of the actor at i,
then p (x) evaluates to true.

The next two pieces of code are two lemmas (really ax-
ioms), which in Dafny take the form of computationally-
irrelevant methods. The preconditions of these “methods”
are antecedents in an implication, and the postconditions
are the conclusion of the lemma. atImpl (“at-implication”)
models a combination of @-Pure and @-K from the logic.
The extra preconditions ensure that the conclusion (Q) is
well-defined whenever the assumption (P) is well-defined.
The . requires clauses refer to the precondition of the
predicates P and Q; they are logical functions that may be
applied to specific inputs (or in this case, all inputs), and so
may have their own preconditions.? atImp1 is axiomatized
as a lemma (and later, explicitly invoked when verifying
actors) because we have not taught Dafny’s translation to
Boogie about at assertions.’ Such a modification would be
desirable, but for now it also has the pedagogical benefit of
highlighting where extra at-related reasoning is required.

Figure 5 gives the declaration for the base Actor class
we assume, which is a simplification of the interface used
by Akka. The guarantee G () is given as a two-state [29]
predicate — a binary relation on states written in terms of
an “old” and “new” state, used to constrain how state may
change during execution. Akka actors have a self reference
that is the actor reference for the current actor. We assume
actors also carry a distinguished explicit representation of
their own state, some actor-specific invariant (a single-state
predicate), a method for sending messages to actors, and
a method receive which handles all messages — and thus
assumes and must re-establish the actor’s invariant, and must
ensure the updates performed adhere to G ().

Dafny’s twostate invariants are useful for specifying
guarantees, but when asserting a two-state invariant in a
method, the old version of the state used for the check is
always the state at method entry: this encoding into Dafny
does not enforce that every atomic action obeys the guar-
antee, only that the aggregate effects of the receive handler
do. This makes it possible in this encoding for a counter to
increment the counter by 500, send that as a lower bound,
then decrement by 499. The net effect of these updates is still
an increment. Even asserting G () between every statement
permits this, as even after the decrement the value is still

2This was not required when defining at because that definition did not
explicitly apply the predicate to any arguments.

3Experts in Dafny or dynamic frames may notice that at has no reads
clause indicating which heap cells its truth relies on. This is intentional:
its introduction is restricted to stable predicates, whose stability is en-
forced elsewhere, and need not be checked explicitly when manipulating
at assertions.
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.. @1
vk @gelf(c < ¢)

-1

... Fself ... F ActorRef(x)

A
... F ActorRef(x) A Number(c) A @sei(c < ¢)

SEND

self A0 < co A Guar(c < ¢”) A ActorRef(x) A0 < y A c =y +y + [send(LowerBound, x, ¢)](¢)

ASSIGN

self A0 < ¢ A Guar(c < ¢’) A ActorRef(x) A0 < y + [c := ¢ + y][send(LowerBound, x, ¢)](¢)

SEQ

self A0 < ¢ A Guar(c < ¢’) A ActorRef(x) A0 < y + [c := ¢ + y; send(LowerBound, x, ¢)](¢#)

Figure 4. Proving correctness of the counter actor

larger than it was initially. This is one place Dafny (or a sim-
ilar system) would require change to soundly implement our
calculus (essentially, the guarantee check from the axiom
rule is not performed here). However, since Dafny already
includes two-state predicates, the change would be to en-
force the existing checks between more pairs of states, not
building new functionality. This would affect the program-
ming model, but is within the reach of current verification
systems.

Readers may have noticed that the method signature for
sending messages is not as restrictive as that in the SEND
rule in Section 3. Instead of directly encoding the invariant
map J from the formal calculus, we provide a Witness
class to bundle data and assertions when sending messages.
The implementations can choose the invariant over their
data, which necessarily includes an actor reference to the
sender and thanks to the reads this clause is required to
only mention message state. This is how we impose stability
proofs and control introduction of satisfaction assumptions
(i.e., @-I) as well. Witnesses have a method stability
that must prove stability of the message’s predicate with re-
spect to the given actor’s guarantee. The witness constructor
accepts a direct object reference to the actor that will send
the message, from which all state is accessible. Implementa-
tions of Witness will choose more selective preconditions
depending on the predicate, and must prove the predicate
holds at that actor. Typically the only way to do this is for an
actor to establish some fact about its state locally, and pass
itself (this) into the witness constructor. The constructor
can then use the introAt (@-I) axiom to convert this in-
formation into a satisfaction assertion. Recipients, instead
of having complex preconditions on receive, can simply use
the postcondition of the static Unpack method.

This touches on the other class of extensions Dafny would
require to soundly implement our calculus, which is some-
thing akin to the reference immutability type systems already
present in some actor systems [8, 21]. Two things could go
awry with this Witness construction in Dafny today: the
constructor could use Unpack itself to prove the satisfac-
tion assertion without sufficient evidence, or an actor could
send the object reference to itself to another actor, enabling
data races (and specifically, letting another actor observe
possibly-unstable properties). Reference immutability could

fix both issues, as well as enforcing message immutability:
the signatures for sending or unpacking Wi tnesses could
be refined to require deeply-immutable inputs. This prevents
actors from sending their own this reference, since that
reference must be mutable in the receive handler. It also pre-
vents a Witness constructor from using Unpack, since
the receiver would be mutable inside the constructor. Actor
code would then need to freeze the witness after construc-
tion, send it as immutable, and the recipient could then use
Unpack.*

4.1 Counter and Manager in Dafny

If this sounds very abstract, seeing code for the counter and
manager example may help. Both are implemented as module
refinements of the DafnyActor module. The counter also
refines the witness, whose constructor accepts a (counter)
actor and copies out the current value as a new lower bound,
establishing the witness predicate. The stability lemma in-
cludes a workaround to state that the lower bound of the
witness does not change; Dafny lacks a way to specify that
all fields of an object remain the same after construction, but
an extension with reference immutability could assume this.
The counter actor itself has the expected behavior: its mes-
sage handler replies to the sender with a new witness for the
lower bound. Both actors have the invariants and guarantees
from Section 3.4. The manager unpacks the witness to be
able to assume the message contains a lower bound, and uses
atImpl to guide Dafny’s unmodified core to transfer this
to a new lower bound. A slightly elaborated version of this
code is available online.’

4.2 Generality

The approach taken here could be adapted to any sequential
verification system capable of encoding (or being extended
to encode) guarantee relations, stability checks, higher-order
predicates, immutability, and checks that every individual
step satisfies the guarantee. Liquid Haskell [46] and KeY [1]
can encode all but the last natively; we considered them
for our axiomatization experiment, but Haskell has no well-
established actor framework to mimic (with an eye towards

“This ignores the opportunity to send externally unique object graphs safely
between actors, but this could also be accommodated: mutable references
in these systems cannot be considered externally unique, either.
Shttps://gist.github.com/csgordon/b9173c2b28099e8353c36eb19c058691
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class {:extern} ActorRef<Ms> {}
predicate at<T,Ms>(i: ActorRef<Ms>, p: (T ~ bool))
lemma atImpl<T,M>(c: ActorRef<M>,
P: T~bool, Q: T~bool)

requires V x: T e P.requires(x) = Q.requires(x)
requires V x: T e P.requires(x) = P(x) = Q(x)
ensures at(c, P) = at(c, Q)
/*Utility class for packing a sender & messagex*/
class MsgBox<T,U> {

var sender: ActorRef<T>

var msg: U

constructor (s: ActorRef<T>, m:U) {

sender := s;
msg := m;
32
abstract module DafnyActor {
type State
type Msgs

twostate predicate stable(a: Actor,P: State~bool)
reads a, P.reads {
(old(P.requires(a.state)AP(a.state))Aa.G())
= (P.requires(a.state))AP(a.state)
3
class Actor {
twostate predicate G() reads this
function method self(): ActorRef<Msgs>
reads this
var state: State
constructor {:extern} () ensures inv()
predicate inv() reads this
method send<T>(dest: ActorRef<T>, msg:T)
method receive(message: Msgs)
modifies this
requires inv ()
ensures inv ()
ensures G()
3
class Witness {
var loc: ActorRef<Msgs>
predicate P(s: State) reads this
twostate lemma stability(x:Actor)
ensures stable(x, P)
constructor(r: Actor)
ensures P(r.state) A at(r.self(), P)
lemma introAt(r: Actor)
requires r.self () = loc A P(r.state)
ensures at(r.self (), P)
{ assume at(r.self(), P); }
static method Unpack(w: Witness)
ensures at(w.loc, w.P)
{ assume at(w.loc, w.P); }

33

Figure 5. Core Dafny definitions of satisfaction modality, id-
iomatic combination of @-Pure with @-K, and actor classes.

Colin S. Gordon

module CounterMod refines DafnyActor {
type State = nat
type Msgs = MsgBox<Witness,bnat>
class Witness {
var 1lb: nat
predicate P(s:State) { 1b < s }
twostate lemma stability(x:Actor)
ensures stable(x, P) {
assume 1lb = old(lb);//Immutability workaround
}
constructor (r: Actor)
ensures P(r.state) A at(r.self(), P) {

1b := r.state;
loc := r.self();
new;

introAt(r);
T}
class Actor {
constructor () ensures inv() { state := 0; }
twostate predicate G() reads this {
old(this.state) < state
}
predicate inv() { @ < this.state }
method receive(message: Msgs) {

state := state + message.msg;
var w := new Witness(this);
send(message.sender, w);

3}
module ManagerMod refines DafnyActor {
type State = nat
type Msgs = CounterMod.Witness
class Actor {
var child:
ActorRef <MsgBox<CounterMod.Witness,nat> >
twostate predicate G() reads this {
old(child)=child A old(state) < state
at(child, (s:nat) reads this = state < s)
3
predicate inv() {
at(child, (s:nat) reads this = state < s)

>

3
method receive(message: Msgs)
{

var sender := message.loc;

CounterMod.Witness.Unpack(message);
atImpl (sender, message.P,
(s:nat) reads message = message.lb < s);
if (sender = child A state < message.lb) {
state := message.lb;
atImpl(child,
(s: nat) reads message = message.lb < s,
(s: nat) reads this = this.state < s);

Y33

Figure 6. Dafny code for Counter and Manager
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extraction of verified actors), and KeY’s specification lan-
guage has great power at the cost of great verbosity. There
are known extensions to KeY’s foundations that support the
required guarantee checks as well [4], but they are not imple-
mented in KeY. Alternatively, construction of a verification
tool for a language like Pony that already has reference im-
mutability [8] would require only small extensions beyond
standard sequential verification tools.

5 Related Work

Some related work was addressed earlier in the course of
presenting background material for our technical develop-
ment. This section focuses on two further clusters of related
work: means of proving correctness for actor programs, and
related variants of dynamic and/or hybrid logic.

Actor Correctness There are many possible approaches to
verifying actor programs. The most successful work in this
space has been the use of reference capabilities to prevent
data races [2, 8, 21] or ordering races [3] in actor systems, but
these are only capable of controlling interference between
actors, not of proving any sort of invariants.

Work on static analysis on actor programs [9, 14, 41] gen-
erally requires analysis of a closed program — one where all
actors appear — rather than analyzing open programs con-
sisting of some actors but not all (as required for separately
verifying libraries). Recently Desai et al. [10] addressed the
open program issue by modeling actors and an environment
abstraction as input/output automata [31], then performing
automata-theoretic refinement checking against an abstract
specification. We are unaware of work applying program
logics specifically to actor programs.

Most work on rely-guarantee reasoning separates rely and
guarantee relations (even in work that uses transition sys-
tems rather than binary relations [27, 35, 42]). In general this
makes sense, as different threads may have asymmetric roles
(e.g., producer and consumer threads) in a shared-memory
setting. The cost of this is that every thread’s proof must
reason explicitly at times about other threads’ behavior. We
made a specific choice to encapsulate all relational specifi-
cation of an actor (its guarantee relation) to the actor itself.
In principle one could imagine providing separate rely and
guarantee relations, where different handles to each actor
granted the holder the rights to send different messages af-
fecting the recipient’s state differently, in a manner similar
to rely-guarantee references [19, 20] or rely-guarantee proto-
cols [33, 34]. This might grant additional verification power,
but at the cost of substantial complexity: rely relations for
even modest data structures (e.g., the union-find data struc-
ture studied by Gordon et al. [20]) can be quite complex,
and such an approach would require clients of an actor to
to check that their local assertions were stable with respect
to the rely relations specific to their handle to a peer actor.
This not only complicates the amount of reasoning actors
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must do about each other, but hurts modularity as well: if
an actor makes some new action possible, any actor making
assumptions about it must have its stability proofs redone
even if all assertions it makes are stable.

Modal Logics As mentioned earlier, dynamic logic [38] is
a well-established form of weakest precondition approach to
imperative program correctness, underlying Hoare Logic in
a way that has fed into recent developments [1, 27]. Hybrid
logic is a smaller, but also well-established [6, 7] class of
modal logics. The logic we presented in Section 3 is a combi-
nation of these two forms of logic, technically classified as a
multi-dimensional modal logic [32], since the points at which
formulas are evaluated have internal structure with different
pieces addressed by different modalities in the logic. Our
model diverges from common practice in multi-dimensional
modal logics: while most n-dimensional modal logics take
points of formula evaluation to be n-tuples of a common
world state, our (2-dimensional) points of evaluation are het-
erogeneous: a collection of actors, and a choice of a particular
actor’s point of view.

There are many modal logics combining state change and
notions of place (e.g., spatio-temporal logics [5] or dynamic
epistemic logic [45]), but to the best of our knowledge we are
the first to propose using hybrid logic for places in dynamic
systems, or to address assertion stability in a dynamic logic.
Dynamic epistemic logic is probably most similar to our
work, as a combination of dynamic logic with epistemic logic
(logic of what participants have what knowledge). How-
ever, this branch of logic typically focuses on reasoning
about what knowledge is preserved across specific actions
that modify the world rather than limiting the logic to sta-
ble knowledge based on other restrictions on allowable ac-
tions. It typically also concerns global knowledge rather than
knowledge of facts about individuals, permitting inferences
such as “if a knows P, then [ know P,” the equivalent of which
in our system would be “if P is true at a, then P is true here”
which is obviously incorrect if P’s truth depends on which
actor considers the formula.

6 Conclusions & Future Work

This paper outlines the core of an approach to enable deduc-
tive verification of actor systems with only modest exten-
sions beyond established techniques, and demonstrates some
promise, but the version presented here is limited. We have
not considered actor creation or use of “become” to switch
behaviors; both should be possible as long as the new behav-
iors satisfy the relevant guarantee. We have also not given
proofs about use of local actor state with heaps; the Dafny
prototype should be sound if extended so the only state that
could be mentioned in at assertions was immutable (e.g.,
immutable Wi tnesses), but further work is needed to both
prove this and determine if additional flexibility is possible.
We have also not considered failure and restarting of actors,
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which is likely to require some extension. Moreover, further
investigation of the technique’s practical limits are needed
to determine how broadly useful this approach is.
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