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We study a data analyst’s problem of acquiring data from self-interested individuals to obtain an accurate

estimation of some statistic of a population, subject to an expected budget constraint. Each data holder incurs a

cost, which is unknown to the data analyst, to acquire and report his data. The cost can be arbitrarily correlated

with the data. The data analyst has an expected budget that she can use to incentivize individuals to provide

their data. The goal is to design a joint acquisition-estimation mechanism to optimize the performance of

the produced estimator, without any prior information on the underlying distribution of cost and data. We

investigate two types of estimations: unbiased point estimation and confidence interval estimation.

Unbiased estimators: We design a truthful, individually rational, online mechanism to acquire data

from individuals and output an unbiased estimator of the population mean when the data analyst

has no prior information on the cost-data distribution and individuals arrive in a random order. The

performance of this mechanism matches that of the optimal mechanism, which knows the true cost

distribution, within a constant factor. The performance of an estimator is evaluated by its variance

under the worst-case cost-data correlation.

Confidence intervals: We characterize an approximately optimal (within a factor 2) mechanism for

obtaining a confidence interval of the population mean when the data analyst knows the true cost

distribution at the beginning. This mechanism is efficiently computable. We then design a truthful,

individually rational, online algorithm that is only worse than the approximately optimal mechanism

by a constant factor. The performance of an estimator is evaluated by its expected length under the

worst-case cost-data correlation.

CCS Concepts: • Theory of computation→ Algorithmic game theory and mechanism design; Online
algorithms; • Mathematics of computing → Probabilistic inference problems.
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1 INTRODUCTION
We study a data analyst’s problem of estimating a population statistic (e.g. mean workout time in

November) when data need to be acquired from self-interested data holders and the analyst has

an expected budget constraint. Each data holder has a heterogeneous private cost to acquire and

report his data (e.g. record duration of each workout in a month and report the total) and needs to

be compensated at least by this cost to reveal his data. Individuals cannot fabricate their data if

they decide to reveal it. Moreover, the values of the data and the private costs can be arbitrarily
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correlated in the population (e.g. those who work out regularly may use some fitness tracker which

automatically records workout durations) and the correlation is unknown to the analyst a priori. A

naive way for the analyst to acquire data in this setting is to offer a fixed compensation for each

individual’s data. But unless the payment level is higher than everyone’s cost, in which case the

analyst may run out of budget quickly and only be able to obtain a small sample, the collected

sample will bias toward a low-cost subpopulation. Thus, the problem is how to design a joint

pricing-estimation mechanism to get accurate estimations when data holders are strategic.

The problem of purchasing data for unbiased estimation of population mean was first formulated

by Roth and Schoenebeck [26] and then further studied by Chen et al. [4]. Both works however

assume that the cost distribution is known to the analyst and aim at obtaining an optimal unbiased

estimator with minimum worst-case variance for population mean, where the worst-case is over

all data-cost distributions consistent with the known cost distribution, subject to an expected

budget constraint. The mechanism proposed by Roth and Schoenebeck [26] achieves optimality

approximately when the cost distribution has piece-wise differentiable PDF, while the mechanism

proposed by Chen et al. [4] achieves the exact optimality when the cost distribution is regular.

Chen et al. [4] also extend the result to linear regression. The high-level idea of both mechanisms

is to acquire a data point with reported cost ci with a positive probability A(ci ) (and some payment

that is greater than or equal to ci ), then remove the sampling bias by re-weighting each collected

data by 1/A(ci ), and finally average the re-weighted data to obtain an unbiased estimation (the

Horvitz-Thompson Estimator). The assumption that the cost distribution is known allows the

analyst to turn the mechanism design problem into a constrained optimization problem for finding

an optimal allocation rule A(ci ).
Our paper makes two novel contributions, both of which do away from the main limiting

assumptions of the prior works. First, we consider a data analyst with no prior information on

the data holders’ costs. We design an online mechanism that outputs an unbiased estimation of

population mean, with the same goal as in the prior works: minimize the variance of the unbiased

estimator subject to a budget constraint. Our only assumption is that data holders show up in a

uniformly random order. Here the challenge is that, in order to price well, the analyst needs to

learn the cost distribution, but the pricing decisions need to be made for every arriving data holder.

Our second contribution is to consider the bias-variance trade-off of the estimator. The previous

works only consider unbiased estimators and the goal is to minimize the variance of the estimator.

In this work, we allow the estimator to be biased and try to minimize the length of the confidence

interval around the population mean, given a budget constraint. This necessarily requires us to

reason about bias-variance trade-off together with data pricing, an aspect that, to the best of our

knowledge, has not been explored in the literature. We design mechanisms for both the scenario

where the analyst knows the cost distribution and the scenario where there is no prior information

on costs.

1.1 Summary of Our Results and Techniques
Our work mainly addresses two questions:

(1) If the data analyst does not have any prior information on data holders’ private costs (as

well as their private data), is it possible to design an online data acquisition mechanism for

unbiased estimation of population mean that is competitive with the optimal mechanism

that knows the cost distribution a priori?

(2) Can we design an optimal joint acquisition-estimation mechanism for estimating confidence

intervals of population mean, when cost distribution is known? Optimality here means

minimum length of the confidence interval. When cost distribution is unknown, can we
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design an online joint acquisition-estimation mechanism for confidence intervals that is

competitive with the optimal mechanism that knows the cost distribution a priori?

For the first question, we design an onlinemechanism that is onlyworse than the optimalmechanism

by a constant factor. The only substantial assumption we make in our setting is that the data holders

come in random order, so if there are n data holders in total, the cost-data distribution at each

round is the discrete uniform distribution over the set of cost-data pairs of these n data holders.

Our mechanism satisfies the budget constraint in expectation, with the guarantee that the data

holders will always be willing to participate and truthfully report their costs.

Theorem 1.1 (Informal). For the problem of purchasing data to get an unbiased estimator of
population mean, assuming that the data holders come in random order, our online mechanism satisfies
the following properties: (1) it is truthful and individually rational, (2) it satisfies the expected budget
constraint, and (3) for any cost distribution, the variance of the produced unbiased estimator approaches
that of the benchmark within a constant factor, where the benchmark is the optimal mechanism that
knows the true cost distribution a priori.

For the second question, we extend our mechanism to output a confidence interval (using

sample mean and sample variance). The mechanism may introduce some bias to mean estimation

in exchange for a lower variance, so that the length of the confidence interval is approximately

optimized. We provide the characterization of the approximately optimal confidence interval

mechanism when the cost distribution is known. This characterization allows us to efficiently

compute the mechanism. We then design an online mechanism that matches the performance of

the optimal mechanism that knows the cost distribution within a constant factor.

Theorem 1.2 (Informal). For the problem of purchasing data to obtain a confidence interval, the
approximately optimal mechanism that knows the cost distribution can be computed in polynomial
time.

This approximately optimal mechanism with known costs is constructed by analyzing the bias

and variance trade-off for estimators for the mean. At any given bias level, by producing an estimator

that has the lowest variance (for that bias level), we can construct a confidence interval using

this biased mean estimation. We hence can design a mechanism to optimize for the length of the

confidence interval. Since the optimal mechanism is difficult to compute, we approximate it to gain

computational efficiency.

Theorem 1.3 (Informal). For the problem of purchasing data to obtain a confidence interval,
assuming that the data holders come in random order, our online mechanism has the following
properties: (1) it is truthful and individually rational, (2) it satisfies the expected budget constraint, and
(3) for any cost distribution, the performance of the produced confidence interval approaches that of
the benchmark within a constant factor, where the benchmark is the optimal mechanism that knows
the true cost distribution a priori.

Our online mechanisms for both unbiased mean estimation and confidence interval are designed

using approximately optimal mechanisms with known costs as building blocks. At any round i , the
reported costs in previous rounds gives us an empirical cost distribution. We then apply the optimal

mechanism for this cost distribution for data holder i . Each round’s mechanism has a fraction of

the total expected budget. Our online mechanisms allocate more budget for early rounds in a way

so that the performance of the final produced estimator is only worse than the benchmark by a

constant factor.

Most of the proofs of our results are omitted but can be found in the full version of the paper
1
.

1
https://arxiv.org/abs/1811.12655
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1.2 Other Related Work
There is a growing interest in understanding statistical estimation and learning in environments

with strategic agents. The works can be put in a few categories depending on the sources and types

of strategic considerations.

In this work, as well as [26] and [4], agents do not derive utility or disutility from the estimation

outcome, cannot fabricate their data, and have a cost for revealing their data. The mechanism

uses payment to incentivize data revelation. [1] is similar on these fronts, but the work considers

general supervised learning. They do not seek to achieve a notion of optimality. Instead, they take

a learning-theoretic approach and design mechanisms to obtain learning guarantees (risk bounds).

Cai et al. [3] focused on incentivizing individuals to exert effort to obtain high-quality data for the

purpose of linear regression.

Another line of research examines data acquisition using differential privacy [6, 9–11, 23]. Agents

care about their privacy and hence may be reluctant to reveal their data. The mechanism designer

uses payments to balance the trade-off between privacy and accuracy. In this work, we implicitly

assume that data holders to not have a privacy cost and hence they don’t worry about potential

leaking of their data by reporting their cost. In Section 6, we discuss the complication when data

holders care about their privacy and their data and costs are correlated.

A third line of research studies settings where data holders may strategically misreport their

data, there is no ground truth to verify the acquired data, and the analyst would like to design

payment mechanisms to incentivize truthful data reporting for the purpose of regression or other

analyses [14–16]. Because of the lack of verification, this line of work is closely related to the

literature on peer prediction [20, 27].

In a fourth line of research, individuals’ utilities directly depend on the inference or learning

outcome (e.g. they want a regression line to be as close to their own data point as possible) and they

can manipulate their reported data to influence the outcome. In these works, there often is no cost

for reporting one’s data and the data analyst doesn’t use monetary payments. These works attempt

to design or identify mechanisms (inference or learning processes) that are robust to potential data

manipulations [5, 7, 8, 13, 18, 19, 24, 25].

1.3 Organization of the Paper
In the rest of the paper, we first formulate and characterize the optimal (or approximately optimal)

mechanisms for the unbiased mean estimation and the confidence interval estimation when the
cost distribution is known (Section 3 and Section 4 respectively). These mechanisms serve both

as building blocks for developing our online mechanisms when the cost distribution is unknown

and as benchmarks to which our online mechanisms are compared. Section 5 turns to the setting

when the cost distribution is unknown. We develop online mechanisms with proven performance

guarantees for both the unbiased mean estimation and the confidence interval estimation. We

conclude with discussions and future directions in Section 6.

2 MODEL
Consider a data analyst who conducts a survey to estimate some statistic of a population of n
people. In this work we focus on estimating the mean of some parameter of interest (e.g. alcohol

consumption or BMI of an individual), denoted by z, and the confidence interval of the mean. Each

individual incurs a cost ci , unknown to the data analyst, to acquire and report his data zi . The
cost and data pair can be correlated (e.g. those who consume more alcohol may have a higher

cost recording their consumption), and follows an unknown distribution D supported on (C,Z).

We assume that the cost is bounded by C , i.e., C ⊆ [0,C]. The parameter z is also bounded, and,

EC’19 Session 6b: Data Markets

662



without loss of generality, we assume z is between 0 and 1, i.e., Z ⊆ [0, 1]. The data analyst has a

budget B = nB that she can use to purchase data from the data holders.

We study an online setting where data holders arrive one by one to the survey, and no prior

information on the distribution D (including the marginal distribution of the cost) is available

before the survey. The analyst can gradually learn the distribution as data holders report their data.

We make the following assumptions about the data sequence: (1) each individual only appears once,

and (2) the data holders arrive in a random order, i.e., each permutation of the n people is equally

likely. We use (c, z) = (c1, z1), . . . , (cn , zn) to denote a random sequence of costs and data points,

and {(c1, z1), . . . , (cn , zn)} to represent a set of people’s cost and data without the consideration of

order.

When data holder i arrives, the analyst asks the data holder to report his cost. We use ĉi to
denote the reported cost of data holder i . Based on the reported cost, the analyst may offer a price

to acquire the data zi . Formally, the analyst uses a survey mechanism,M = (A, P), which consists of

an allocation rule A : C → [0, 1] and a payment rule P : C → R. With probability A(̂ci ), the analyst
offers payment P (̂ci ) to purchase data zi . If the data holder accepts this payment, he gives his data

zi to the analyst. We assume that data holders do not misreport their data zi . This assumption

holds in situations when data can be verified once collected (e.g. medical records). The data holder

walks away without revealing his data if P (̂ci ) < ci . With probability 1−A(̂ci ), the analyst does not
attempt to acquire the data.

2

The analyst can adaptively choose a survey mechanism for each arriving data holder. We use

M = (A, P) = (A1, P1), . . . , (An , Pn) to represent a sequence of survey mechanisms. At round i , the
analyst chooses an allocation rule Ai

and a payment rule P i based on all observed information

before round i , denoted byHi−1.Hi−1 includes the reported costs of the previous i − 1 data holders

and data points that have been acquired. The survey mechanism (Ai , P i ) applies to the i-th arriving

data holder. At the end of round n, the data analyst outputs an estimator S(M, (c, z)) based on all

observed informationHn .

We want to design survey mechanisms that have the following incentive and budget properties:

Individual rationality: The utility of each data holder is always non-negative, i.e., P i (̂ci ) ≥ ĉi
for all i and ĉi .

Truthfulness in expectation: A data holder maximizes his expected utility by reporting his

cost truthfully, i.e., Ai (ci )(P
i (ci ) − ci ) ≥ Ai (̂ci )(P

i (̂ci ) − ci ) for all i and ĉi , ci .

Expected budget feasibility: E
[∑n

i=1A
i (ci ) · P

i (ci )
]
≤ B = n · B, where the expectation is

taken over the random arriving order of the data holders and the internal randomness of the

mechanism.

In this work we mainly investigate two types of estimation tasks: (1) get an unbiased estimator

of the population mean, with the goal that the variance of the estimator is minimized; (2) find a

confidence interval of the population mean, with the goal that the length of the confidence interval

is minimized. As an estimator uses data obtained via survey mechanisms M, it necessarily depends

on M. We now formally define unbiased estimator and confidence interval of population mean

in our setting. The randomness of an estimator S(M, (c, z)) comes in two parts: (1) the external

randomness, which is the random order of (c, z), and (2) the internal randomness of the mechanisms

M. Our definitions require the estimators to be unbiased or a valid confidence interval for any

realization of the external randomness.

2
We describe survey mechanisms as direct-revelation mechanisms, where date holders report their costs. Any survey

mechanism can be implemented as a posted-price mechanism, where a menu of (price, probability) pairs are presented and

each data holder chooses one from the menu [4, 26].

EC’19 Session 6b: Data Markets

663



Definition 2.1 (Unbiased estimator of population mean). An estimator S(M, (c, z)) is an
unbiased estimator of the population mean E[z] = 1

n
∑n

i=1 zi if for any fixed sequence (c̃, z̃),

E[S(M, (c̃, z̃)] = E[z],

where the expectation in E[S(M, (c̃, z̃))] is taken over the internal randomness of the mechanismsM.

Definition 2.2 (Confidence interval of population mean). An estimator S(M, (c, z)) is a
confidence interval for the population mean E[z] = 1

n
∑n

i=1 zi with confidence level γ if it is an interval
and for any fixed sequence (c̃, z̃),

Pr (E[z] ∈ S(M, (c̃, z̃))) ≥ γ ,

where the randomness is due to the internal randomness of the mechanismsM.

Our goal is to design joint survey and estimation mechanisms, (M, S(M, (c, z)), such that the

estimator S(M, (c, z)) has good statistical performance on the population. For unbiased estimators,

we prefer estimators with smaller variance. For confidence intervals, we prefer ones with smaller

length. However, the performance of a mechanism on a population depends on the correlation

between the population’s cost and data, i.e. the distributionD.
3
We hence take a worst-case analysis

approach: measure the performance of a mechanism under worst-case cost-data correlation.

Definition 2.3 (Worst-case variance). Given that the set of data holders’ costs isC = {c1, . . . , cn},
the worst-case variance of a point estimator S(M, (c, z)) is defined as

Var∗(S) = max

D consistent with C
VarD(S(M, (c, z)))

where the maximum is taken over all distributionsD consistent with the set of costsC . The randomness
is due to the random order of (c1, z1), . . . , (cn , zn) and the internal randomness of the mechanismM.

Definition 2.4 (Worst-case expected length). Given that the set of data holders’ costs is
C = {c1, . . . , cn}, the worst-case expected length of a confidence interval S(M, (c, z)) is defined as

L∗(S) = max

D consistent with C
E(|S(M, (c, z))|)

where |S(M, (c, z))| represents the length of the confidence interval. The maximum is taken over all
distributions D consistent with the set of costs C . The randomness is due to the random order of
(c1, z1), . . . , (cn , zn) and the internal randomness of the mechanismsM.

Roth and Schoenebeck [26] and Chen et al. [4] have also considered the design of joint survey

and estimation mechanism for statistical estimation. The main differences between their model

and our model are: (1) they assume the marginal cost distribution is known to the data analyst,

while our data analyst doesn’t have such information, (2) they have the same survey mechanism

for all individuals, while we consider an online setting where the analyst can adaptively change the

survey mechanism, and (3) they only consider the estimation of mean, while we also investigate

the estimation of confidence intervals.

3
For example, consider a mechanism that purchases each agent’s data zi with a constant probability p = B/

∑n
i=1 ci and

payment ci , then outputs 1/(pn) times the sum of all purchased data as an unbiased estimation of population mean. When

z is always equal to 0, the variance will be zero; when z is always equal to 1, the variance will be (1/p − 1)/n.
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3 PRELIMINARIES
In this section, we first show that we can easily extend known results on one-shot truthful mech-

anisms to achieve truthfulness and individual rationality for a sequence of survey mechanisms

M. Then, we introduce the formulation proposed by Chen et al. [4] for obtaining the optimal

unbiased estimator of population mean when the cost distribution is known to the analyst. Later
in Section 5 we will use this known cost case as our benchmark for evaluating the performance

of our optimal unbiased estimator when the cost distribution is unknown. While this optimal

unbiased estimator has been studied by Chen et al. [4], their optimal mechanism requires the cost

distribution to be regular. This is often not satisfied when we consider the costs of a finite set

of data holders. We develop the characterization of the optimal unbiased estimator for arbitrary

discrete cost distribution without any regularity assumption. We show that the optimal purchasing

rule of cost-c data is decided by a quantity which we define as regularized virtual costs of the data.

3.1 Truthful and Individually Rational Survey Mechanisms
Since each data holder appears only once in our setting, requiring a sequence of survey mechanisms

to be truthful and individually rational is equivalent to requiring that each (Ai , P i ) is truthful and
individually rational, which can be achieved by a straight-forward extension of known results for

truthful mechanisms.

The well-known Myerson’s lemma states that monotonicity is the necessary and sufficient

condition for an allocation rule to be truthful with some payment rule.

Lemma 3.1 (Myerson and Satterthwaite [22]). An allocation rule A(c) is the allocation rule of
some truthful survey mechanism (A(c), P(c)) if and only if A(c) is monotone non-increasing in c .

The following lemmas from [4] are analogies of the original Myerson’s Lemma, which are tailored

for discrete cost distributions. Firstly, they show that given a fixed monotone non-increasing

allocation rule A(c) defined on a discrete cost set {c1, . . . , cm}, there exists an optimal payment rule

P(c) that guarantees truthfulness and individual rationality.

Lemma 3.2 (Chen et al. [4], Claim 2 in Section B.1.2). Let A(c) be a monotone non-increasing
allocation rule defined for set {c1, . . . , cm} with c1 ≤ · · · ≤ cm . Define payment rule P(ci ) =
ci +

1

A(ci )
∑m

j=i+1A(c j )(c j − c j−1). Then (A(c), P(c)) is truthful and individually rational for all c ∈

{c1, . . . , cm}, and any payment rule P ′(c) that guarantees the truthfulness and individual rationality
of (A(c), P ′(c)) must have P ′(c) ≥ P(c) for all c ∈ {c1, . . . , cm}.

Furthermore for any cost distribution supported on {c1, . . . , cm}, the expected total payment

of (A(c), P(c)), with the optimal payment rule P(c) defined in Lemma 3.2, can be equivalently

represented in a simpler form in terms of virtual costs.

Definition 3.1 (Virtual costs). Let f (c) and F (c) be the PDF and the CDF of a cost distribution
F supported on {c1, . . . , cm} with c1 ≤ · · · ≤ cm . Let c0 = 0. The virtual cost functionψ (c) of this cost
distribution is defined as

ψ (ci ) = ci +
ci − ci−1
f (ci )

F (ci−1)

for all 1 ≤ t ≤ m.

We remark that it is very likely thatψ (ci ) is not regular, i.e., is not a monotone non-decreasing

function of ci . Consider when the cost distribution is the uniform distribution over a finite set,

ψ (ci ) = ci + (ci − ci−1) ∗ (i − 1). If ci is very close to ci−1, thenψ (ci ) will be roughly equal to ci . If ci
is much larger than ci−1,ψ (ci ) can be close to i ∗ ci . So if there exist three consecutive costs, the

difference between the first two costs is large, and the difference between the last two is small, the
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virtual costs will very likely be irregular. For example, c1 = 1, c2 = 10, c3 = 11, thenψ (c2) = 19 and

ψ (c3) = 13, soψ is not monotone non-decreasing.

Lemma 3.3 (Chen et al. [4], Lemma 10 in Section B.1.2). Let A(c) be a monotone non-increasing
allocation rule defined on set {c1, . . . , cm} with c1 ≤ · · · ≤ cm . Let P(c) be the optimal truthful
and individually rational payment rule defined in Lemma 3.2. When cost follows a distribution F

supported on {c1, . . . , cm}, the expected total payment Ec∼F[A(c)P(c)] is equal to the expected virtual
cost Ec∼F[A(c)ψ (c)] whereψ (c) is the virtual cost function of F .

The above lemmas assume that costs are from a finite discrete set. Our benchmark mechanism

where the analyst already knows all the costs satisfies this assumption. We’ll use the above result

to establish the performance of our benchmark mechanism. However, our mechanisms developed

in this paper for the unknown cost case do not have any restriction on the set of possible costs.

The allocation rules and the payment rules of our mechanisms are first computed on a discrete

set using the above result, and then extended to all other values of cost. We show below that such

extension preserves truthfulness and individual rationality.

Definition 3.2 (Extended allocation rule and payment rule). Given a survey mechanism
(Ad , Pd ) that is defined on a discrete cost set {c1, . . . , cm} with c1 ≤ · · · ≤ cm . The extended allocation
rule and payment rule A, P are defined as follows

A(c) = Ad (⌈c⌉), P(c) = Pd (⌈c⌉), for all c ∈ [0, cm],

where ⌈c⌉ is the minimum cost in {c1, . . . , cm} that is greater than or equal to c .

Lemma 3.4. Let Ad (c) be a monotone non-increasing allocation rule defined on set {c1, . . . , cm}

with c1 ≤ · · · ≤ cm . Let Pd (c) be the optimal payment rule defined in Lemma 3.2. Then the extended
allocation rule and payment rule of (Ad , Pd ) is still truthful and individually rational.

The proof of the lemma can be found in the full version of the paper.

3.2 Formulating the Optimal Unbiased Estimator with Known Costs
In this section, we formulate an optimization problem that solves the optimal survey mechanism

for an unbiased estimator when the cost distribution is known, based on the results of [4]. The

optimization problem is only slightly different from [4] in the objective function because in our

setting, the agents are not i.i.d. drawn from the same distribution but come as a random permutation.

The value of statistic z is assumed to be bounded and without loss of generality 0 ≤ z ≤ 1.

Horvitz-Thompson Estimator: When we use truthful survey mechanisms M = (A1, P1), . . . ,
(An , Pn) to purchase the data points, the data of agent i will be collected with probability Ai (ci ).
Define

x̂i =

{
zi , with probability Ai (ci )
0, otherwise

to be the observed data point which is set to zero if no purchase is made. Define yi =
x̂i

Ai (ci )
. To get

unbiased estimation, we use Horvitz-Thompson Estimator, which is the unique unbiased linear

estimator in our setting (see [26] for more details),

S(M, (c, z)) =
1

n

n∑
i=1

yi .

Notice that an unbiased estimator always buys the data points with probability greater than 0, i.e.,

Ai (ci ) > 0 for all i and ci . If A
i (ci ) = 0, the mechanism will never know the value of zi and thus

cannot be unbiased.
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When the cost set C = {c1, . . . , cn} is known to the analyst, the optimal mechanism that uses

the same survey mechanism for all data holders has been derived by Chen et al. [4]. They reduce

the mechanism design problem to a min-max optimization problem. The optimal allocation rule

that minimizes the worst-case variance of the Horvitz-Thompson Estimator can be formulated as

the solution of an optimization problem OPT (n,C,B), which is defined as follows,

OPT (n,C,B) = argmin

A
max

z∈[0,1]n

1

n2

(
n∑
i=1

z2i
A(ci )

−

n∑
i=1

z2i

)
(1)

s.t.

n∑
i=1

A(ci )ψ (ci ) ≤ B

A(c) is monotone non-increasing in c

0 ≤ A(c) ≤ 1, ∀c
Here the objective function is changed from the original formulation in [4] so that it is equal

to the worst-case variance of the Horvitz-Thompson Estimator in our setting. According to the

law of total variance, Var(S(M, (c, z))) = E[Var(S |(c, z))] + Var(E[S |(c, z)]). Since the estimator is

always unbiased for any order (c, z), the second term is zero. Furthermore, when conditioning on

a sequence, yi =
x̂i

A(ci )
become independent when a fixed allocation rule A is used. Therefore the

variance of the Horvitz-Thompson Estimator is equal to

Var(S(M, (c, z))) =E(c,z)[Var(S |(c, z))] = E(c,z)

[
1

n2

n∑
i=1

Var (yi |(c, z))

]
=
1

n2
· E(c,z)

[
n∑
i=1

E[y2i |(c, z)] − E[yi |(c, z)]
2

]
.

For any arriving sequence (c, z),
∑n

i=1 E[y
2

i |(c, z)] − E[yi |(c, z)]
2
stays the same, which is equal

to

∑n
i=1

z2i
A(ci )

−
∑n

i=1 z
2

i . Therefore by maximizing over z, we get the worst-case variance of the
Horvitz-Thompson estimator

max

z∈[0,1]n

1

n2

(
n∑
i=1

z2i
A(ci )

−

n∑
i=1

z2i

)
.

The last constraint 0 ≤ A(c) ≤ 1 makes sure that A is an allocation rule of a survey mechanism.

The second constraint is the sufficient and necessary condition for A to be the allocation rule of

a truthful mechanism. The first constraint guarantees expected budget feasibility according to

Lemma 3.3, whereψ (c) is the virtual cost function.
To simplify the analysis, in this work we will use an approximation of the above optimization

problem, which is defined as APPROX (n,C,B) by removing the second term of the objective

function of OPT (n,C,B),

APPROX (n,C,B) = argmin

A
max

z∈[0,1]n

n∑
i=1

z2i
A(ci )

(2)

s.t.

n∑
i=1

A(ci )ψ (ci ) ≤ B

A(c) is monotone non-increasing in c

0 ≤ A(c) ≤ 1, ∀c
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Lemma 3.5. The worst-case variance of APPROX (n,C,B) is no more than the worst-case variance
of OPT (n,C,B) plus 1

n .

Proof. As zi ∈ [0, 1], the second term of the objective function of OPT (n,C,B) ≤ 1/n. □

3.3 Characterization of the Optimal Unbiased Estimator
The characterization of the optimal unbiased estimator when the cost distribution is known has

been studied in both [4] and [26]. But neither of the solutions can be directly applied to our problem.

Roth and Schoenebeck [26] require the PDF of the cost distribution to be piecewise differentiable

except on a measure zero set, and Chen et al. [4] assume that the cost distribution is regular, i.e., the

virtual cost functionψ (c) is monotone non-decreasing in c . Although the optimization problem (2)

has a convex objective function and thus can be solved efficiently by the convex optimization

algorithms (see [2]), the closed-form solution is still non-trivial to derive. Below we give the exact

characterization of the optimal solution, which has a very simple form and will further be used to

derive the optimal confidence interval mechanism: the optimal allocation rule Ai (c) is inversely
proportional to the square root of the regularized virtual cost of c , which is defined as follows,

Definition 3.3 (Regularized virtual costs). For a discrete uniform distribution supported on
{c1, . . . , cm} with c1 ≤ · · · ≤ cm and its virtual costs function ψ (c1), . . . ,ψ (cm). For every i ≤ k , let
Avд(i,k) be the average ofψ (ci ), . . . ,ψ (ck ). We define regularized virtual cost ϕ(ci ) as follows

ϕ(ci ) = max{ψ ′(c1), . . . ,ψ
′(ci )},

ψ ′(ci ) = min

k :k≥i
Avд(i,k).

The form of the regularized virtual costs is very similar to the ironed virtual value used in

revenue-maximizing auction design [21]. The idea is to replace the exact virtual cost (value) with

the average virtual cost (value) on an interval that has non-regular virtual cost (value). But our

proof is different because the underlying optimization problem is not the same.

Theorem 3.1. The optimal solution of APPROX (n,C,B) is

A(c(k )) = min

{
1,

λ√
ϕ(c(k ))

}
, for all 1 ≤ k ≤ n,

where ϕ(c) is the regularized virtual cost function when the cost distribution is the uniform distribution
over C , and λ is chosen such that the budget constraint is satisfied with equality

n∑
k=1

A(c(k ))ψ (c(k)) = B.

The value of λ can be computed using binary search within time O(log |C |).

The proof of the theorem can be found in the full version of the paper, in which we demonstrate

some properties of the regularized virtual cost function, and show that the KKT conditions are

satisfied because of these properties.

4 OPTIMAL CONFIDENCE INTERVAL WITH KNOWN COSTS
In this section, we design purchasing mechanisms to get the best confidence interval of the statistic

when the cost distribution is known to the analyst at the beginning of the survey. In this case,

the optimal mechanism needs to find the optimal trade-off of the bias and the variance in order

to minimize the length of the interval. We consider the class of confidence intervals that are

defined around the sample mean, and the length of which is decided by a bias term and the sample
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variance. We will first introduce an extended survey mechanism that allows biased estimation, e.g.,

by ignoring the high-cost data. Then again we formulate an optimization problem and present the

characterization of the optimal solution.

Before introducing the new estimator, we first show how to convert our unbiased estimator

into a confidence interval. In this work, we use the most classic approach to construct confidence

interval based on sample mean and sample variance.

Construct confidence interval using unbiased estimator: Consider an unbiased estimator S(M, (c, z))
that uses survey mechanism M = (A, P), and we want to construct a confidence interval for

E[z] = 1

n
∑n

i=1 zi . Again we use

x̂i =

{
zi , with probability Ai (ci )
0, otherwise

to denote the observed data point and defineyi =
x̂i

Ai (ci )
. Notice that the random variablesy1, . . . ,yn

are not independent since the allocation ruleAi
can depend on c1, . . . , ci−1. But if we consider a fixed

realization (c̃, z̃), the mechanisms (A1, P1), . . . , (An , Pn) will also be fixed. Then y1, . . . ,yn become

independent, because when the probability of purchasing each data pointA1(c1), . . . ,A
n(cn) is fixed,

whether to purchase each data point or not is independently decided. Therefore given a confidence

level γ , we can construct a confidence interval of the expected mean E
[∑

yi/n
��(c̃, z̃)] using the

sample mean

∑n
i=1 yi/n and sample variance σ̂ 2 =

∑n
i=1

(
yi −

∑n
i=1 yi/n

)
2

/(n − 1) according to

Bernstein’s inequality (see more details in the full version):[
n∑
i=1

yi/n −
αγ
√
n
· σ̂ ,

n∑
i=1

yi/n +
αγ
√
n
· σ̂

]
where αγ is a constant that is chosen to achieve confidence level γ . When the estimator is unbiased,

E
[∑

yi/n
��(c̃, z̃)] = E[z] for all (c̃, z̃), this interval is just a confidence interval ofE[z]with confidence

level γ .

4.1 Confidence Interval and Bias-variance Tradeoff
This “unbiased” confidence interval does not necessarily have the minimum length. Observe that

a small portion of high-cost data can drastically increase the variance of the unbiased estimator

as A(c) must be small. We can allow the mechanism to simply ignore these data points, i.e., to

have Ai (ci ) = 0 for some i and set yi = 0. This can probably reduce the variance of the estimator.

However, doing so causes the estimator to be biased. Therefore, we need to increase the length of

the confidence interval to compensate for this added bias.

For this reason, we extend the standard survey mechanism to incorporate biased estimation.

The mechanism ignores a data point with probability U (c). The added bias can be represented

as a function ofU (c). Although the mechanisms now have a new componentU (c), the results in
Section 3 can nevertheless be applied by seeing (1 −U (c))A(c) as the allocation rule.

Survey mechanisms that allow bias: We add a new component U = (U 1, . . . ,U n) into our alloca-

tion rule to allow biased estimation, where eachU i
is a function of reported cost ci . A mechanism

that allows bias consists of (A,U, P). When a data point with cost ci comes at time i , the mechanism

first flips a coin Ûi to decide whether to ignore this data point or not, and the probability of Ûi
being 1 (which means ignoring the data) is equal toU i (ci ). If the data is ignored, a bias term will be

added into the final estimation to compensate the error. If Ûi = 0, then the mechanism purchases

the data with probability Ai (ci ) > 0 and pays P i (ci ) if the data is purchased. Then the observed
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data x̂i follows

x̂i =


zi , with probability (1 −U i (ci ))A

i (ci )
0, with probability (1 −U i (ci ))(1 −Ai (ci ))
ignored, with probabilityU i (ci ).

We re-define yi as

yi =

{
x̂i

Ai (ci )
, if Ûi = 0

0, if Ûi = 1.

Then for a fixed arriving sequence (c̃, z̃), the bias of estimator

∑
yi/n is equal to

err = E[z] −
1

n

n∑
i=1

E[yi |(c̃, z̃)] =
1

n

n∑
i=1

zi −
1

n

n∑
i=1

(1 − Ûi )z̃i =
1

n

n∑
i=1

z̃i · Ûi .

Notice that this bias is not observable because the mechanism does not know the z̃i that is not
purchased. But since z̃i is between 0 and 1 and we use worst-case analysis in this work, we can just

assume z̃i equals its worst-case value 1. (This can be seen more clearly in our formulation of the

optimization problem in the next section.) Then the confidence interval of E[z] with confidence

level γ can be constructed as follows[
n∑
i=1

yi/n −
αγ
√
n
· σ̂ ,

n∑
i=1

yi/n +
1

n

n∑
i=1

Ûi +
αγ
√
n
· σ̂

]
where Ûi is the indicator of whether the i-th data point is ignored and σ̂ 2

is the sample variance of

y1, . . . ,yn .
For convenience, in the rest of the paper, we writeU i

c = U
i (c) for short, and in cases when the

costs are indexed as c1, . . . , cn or c(1), . . . , c(n), we useU
i
j to representU i (c j ) orU

i (c(j)).

4.2 Formulation of the Optimal Confidence Interval
We formulate a min-max optimization problem that approximately solves the optimal allocation

rule. The expected length of the interval we construct is 2 ·
αγ
√
n ·E[σ̂ ]+E[err ]. Since the expectation

of sample standard deviation E[σ̂ ] is difficult to compute, we estimate E[σ̂ ] with
√
E

∑n
i=1 y

2

i /n.

When 0 ≤ E[yi ] ≤ 1, the difference between E[σ̂ ] and
√
E

∑n
i=1 y

2

i /n is no more than 1 +O(1/n)

(see the full version for more details).

The approximate expected length of the confidence interval can thus be written into a function

of A andU and z

2 ·
αγ
√
n
·

√√
E

n∑
i=1

y2i /n + E[err ] = 2 ·
αγ
√
n
·

√√
1

n

n∑
i=1

(1 −Ui )z
2

i

A(ci )
+
1

n

n∑
i=1

zi ·Ui .

Then we only need to take maximum over all possible z to get the worst-case expected length.

Therefore, suppose the underlying cost set is C = {c(1), . . . , c(n)} with c(1) ≤ · · · ≤ c(n), then
the approximately optimal allocation rule (A∗,U ∗) can be again formulated as the solution of
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OPTCI (n,C,B), which is defined as

OPTCI (n,C,B) = argmin

A,U
max

z∈[0,1]n
β ·

√√
1

n
·

n∑
i=1

(1 −Ui )z
2

i

A(c(i))
+

∑n
i=1 zi ·Ui

n
(3)

s.t.

n∑
i=1

(1 −Ui ) · A(c(i))ψ (c(i)) ≤ B

(1 −Uc )A(c) is monotone non-increasing in c

0 ≤ A(c) ≤ 1, 0 ≤ Uc ≤ 1, ∀c
where β = 2 ·

αγ
√
n .

Lemma 4.1. Let L∗ be the value of the objective function (3) when A∗ and U ∗ is used. ( L∗ is an
approximation of the worst-case expected length of the confidence interval produced by (A∗,U ∗). )
Then the difference between L∗ and the worst-case expected length of the actual optimal confidence
intervalMIN is no more than 2β(1 +O(1/n)) = 4 ·

αγ
√
n (1 +O(1/n)).

The optimal solution of (3) is still difficult to solve. But if we replace the objective function by

the sum of the squares of its two terms

APPROXCI (n,C,B) = argmin

A,U
max

z∈[0,1]n
β2 ·

1

n
·

n∑
i=1

(1 −Ui )z
2

i

A(c(i))
+

(∑n
i=1 zi ·Ui

n

)
2

(4)

the optimal solution can be computed efficiently. The optimization problem with the new objective

function will give a 2-approximation of (3) because a2 + b2 ≤ (a + b)2 ≤ 2(a2 + b2).

Lemma 4.2. APPROXCI (n,C,B) will give a 2-approximation of OPTCI (n,C,B).

In this work, we consider the bias-variance tradeoff in the setting of getting the shortest con-

fidence interval. By changing the value of β in the objective function, our mechanism can also

be applied to other estimation tasks that involve the bias-variance tradeoff. For example, if we

want to minimize the mean squared error of the output estimator, or equivalently the risk of the

estimator when the loss function is the squared error function, we can set β = 1 and apply the

same mechanism.

4.3 Characterization of the Optimal Confidence Interval
So how should the optimal mechanism look like when some data can simply be ignored? It is

natural to believe that the optimal mechanism should ignore the data points with the highest costs.

This is corroborated in the following theorem that the optimal mechanism ignores all the data

points with regularized virtual costs above a threshold H , and purchases (with probability) all the

data points below the threshold. The characterization of the optimal A remains the same as the

unbiased case.

Theorem 4.1. The optimal solution of APPROXCI (n,C,B) is as follows:

Uj =


0, if ϕ(c(j)) < H
p ∈ (0, 1], if ϕ(c(j)) = H
1, if ϕ(c(j)) > H

A(c(j)) = min

{
1,

λ√
ϕ(c(j))

}
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where p is a constant in (0, 1], and ϕ(c) is the regularized virtual cost function (Definition 3.3) when
the cost distribution is the uniform distribution over C , and λ is chosen such that the budget constraint
is satisfied with equality. The value of λ and H can be computed using binary search over set C within
time O(log |C |).

The proof can be found in the full version of the paper. The optimal H can be found by binary

search because it can be proved that the objective function is a convex function ofM =
∑n

j=1Uj ,

when A is optimized after U is decided. Let д(M) be the the optimal value of the first term β2 ·
1

n
∑n

j=1
1−Uj
A(c(j ))

when

∑n
j=1Uj is set toM . Then the objective function is just д(M)+

(M
n

)
2

. The second

term

(M
n

)
2

is a convex function ofM . We prove that д(M) is also a convex function ofM .

Lemma 4.3. The function д(M) is a convex function of M . Furthermore, let AM be an optimal
allocation rule when

∑n
j=1Uj = M and let c(r ) be the largest cost that is not ignored with probability 1.

Then for non-integerM that has AM (c(r )) < 1,

∂д(M)

∂M
= −β2 ·

2

n
·

1

AM (c(r ))
.

which is an non-decreasing function ofM .

Therefore the optimalH can be found by binary search over the optimalM such that
∂д(M )

∂M +
2M
n2

≥

0 on the right and
∂д(M )

∂M + 2M
n2

≤ 0 on the left. The complete proof of the lemma can be found in

the full version of the paper.

5 ONLINE MECHANISMS
We now move to the case when the cost distribution is unknown at the beginning. The idea of our

mechanism is very simple: at time i , use the approximately optimal allocation rule APPROX (·) as if

(1) there are i data holders with costs c1, . . . , ci−1 and {C}, and (2) the analyst’s total budget for these

i data points is proportional to
√
i , so that the average budget for each data point is proportional to

1√
i
. So the average budget is a decreasing function of i , which means we use more budget in the

earlier stages when the estimation of the cost distribution is not accurate. We prove that for both

of the unbiased estimator problem and the confidence interval problem, such an online mechanism

will only be worse for a constant factor compared to the optimal mechanisms OPT (n,C,B) that
knows the cost distribution at the beginning.

Mechanism 1: Online Mechanism Outline

for i = 1,. . . ,n do
1) Let Ai = APPROX

(
i, Ti , ξnB

√
i
)
be the optimal allocation rule when there are i data

holders with costs

Ti = {c1, . . . , ci−1,C},

and the total budget for these i data points is ξnB
√
i .

2) Ask agent i to report cost ci and purchase the data using (an approximation of) (Ai , P i ),
where P i is computed as in Lemma 3.2.

end for
Aggregate all collected to output an estimator.

The outline of our online mechanisms (for both the unbiased estimator and the confidence

interval) is given in Mechanism 1.
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We will describe the specifics of the online mechanism for the unbiased estimation of mean and

the confidence interval respectively in the next two parts. For each, we’ll prove that the online

mechanism is optimal within a constant factor. We sketch the high-level idea of our proofs as

follows.

(1) We compare both of our online algorithm and the benchmarkwith an intermediatemechanism

(A′,i , P ′,i ) = APPROX
(
i, {c1, . . . , ci−1, ci }, ξnB

√
i
)

at each step i . This intermediate mechanism (A′,i , P ′,i ) is basically the same as (Ai , P i ), but
is “one-step-ahead”. (A′, P ′) is the optimal mechanism when the same amount of budget is

assigned, but knows an additional piece of information, the value of ci , beforehand.
(2) We show that the difference between (A′,i , P ′,i ) and (Ai , P i ) is no more than a constant factor.

This is mainly due to the similarity of (A′,i , P ′,i )and (Ai , P i ). Since the two mechanisms only

differ in one element in the cost set, the regularized virtual costs are not going to change a

lot, and so is the allocation rule.

(3) Then we prove that if (A′,i , P ′,i ) is used at each round, the performance of the output estimator

is no worse than a constant times the benchmark. Our budget allocation method and the

random arriving order play crucial roles here. We give the basic idea of our budget allocation

rule below.

A simplified modeling of the budget allocation. We’re able to show that if we allocate average

budget bi at round i , the “loss” (of performance) occurred by our mechanism at round i is bounded
by

r ·B
i ·b i

times the “loss” occurred by the benchmark A∗
, where r is a constant. So the optimal budget

allocation is essentially the following problem

min

b i
r · B

n∑
i=1

1

i · bi

s.t.

n∑
i=1

bi ≤ B,

bi ≥ 0.

which gives bi ∝
1√
i
. In addition, it can be shown that the total “loss” of our mechanism is no more

than a constant times the total “loss” of the benchmark when this budget allocation rule is applied.

Optimality of the online mechanisms. Our mechanisms are proved to be optimal within constant

factors. But it remains open whether our constant factors are optimal. One possible method to

improve the constant is to only collect agents’ costs without purchasing any data at the beginning

and start collecting data after a more accurate cost estimation is acquired. But such a method would

weaken the incentive guarantee for the agents to report their true costs: if the agents’ report costs

are not going to affect their rewards, why would they report the true costs? It is also challenging to

analyze the performance of such a method. As we’ve shown in Theorem 3.1 and Theorem 4.1, the

optimal allocation rule is defined by the regularized virtual costs. It may not be easy to estimate

the regularized virtual costs because (1) the regularized virtual cost function is a global property

of the cost distribution; (2) the value of the virtual cost function is very sensitive to the PDF of

the cost distribution, which appears in the denominator of the second term: f (ci )/(ci − ci−1) in
ψ (ci ) = ci +

1

f (ci )/(ci−ci−1)
F (ci−1) (see Definition 3.1). The analysis of our online mechanisms is

possible because the intermediate mechanism (A′,i , P ′,i ) only differs from the optimal mechanism

(Ai , P i ) in one element in the cost set, which doesn’t affect the regularized virtual costs much.
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However, our analysis cannot be easily extended to analyze the performance of the above mentioned

alternate method as its difficult to bound the estimation error of the regularized virtual costs. The

performance of this alternate method remains an open question.

5.1 Unbiased Estimator
We first introduce the benchmark to which we compare our online algorithm.

Definition 5.1. Let c(1) ≤ · · · ≤ c(n) be the n data holders’ costs ordered from smallest to largest.
Suppose there is onemore data holder with costC . We define the benchmark (A∗, P∗) to be themechanism
that purchases data from these n + 1 data holders, and minimizes the worst case variance when it
knows the set of costs {c(1), c(2), . . . , c(n),C} at the beginning.

A∗ = OPT (n + 1, {c(1), c(2), . . . , c(n),C}, B). (5)

This additional cost C can be interpreted as the loss of unknown upper bound of the possible

cost. When the cost distribution is known, the mechanism knows the exact maximum cost c(n), and
thus the optimal mechanism will never have a positive probability to buy a data point with cost

higher than c(n). But when c(n) is unknown, the mechanism always has to buy any data point (with

cost under C) with a positive probability.

We show that our online mechanism satisfies all three constraints and its worst-case variance is

roughly within a constant times the benchmark.

Theorem 5.1. If we use Mechanism 1 with

• ξn =
1

4

√
n .

• At round i , use the extended allocation rule and payment rule (Definition 3.2) of (Ai , P i ), where

Ai = APPROX
(
i, Ti , ξnB

√
i
)

and P i is computed as in Lemma 3.2. Let the collected data be x̂i .
• Output unbiased estimator S = 1

n
∑n

i=1 yi =
1

n
∑n

i=1
x̂i

Ai (ci )
at last.

Then the mechanism satisfies (1) truthfulness and individually rationality, (2) the expected total
spending is no more than B = nB, and (3) for any cost distribution {c1, . . . , cn} the worst-case variance
of the final estimator S is no more than

16 ·

((
1 +

1

n

)
2

· Var∗(A∗) +
1

n
+

1

n
√
n
·

1

A∗(C)

)
,

where A∗ is the benchmark defined in Definition 5.1.

Discussion: We have the factor

(
1 + 1

n

)
2

in the first term of our upper bound because the bench-

mark mechanism has one more data point. It is no more than 4 when n ≥ 1 and goes to 1 when

n gets large. The second additive term
1

n is due to our estimation of Var(S) by E[S2]. We know

that Var
∗(A∗) is roughly 1

n+1 · E[ 1

A∗(c) ]. So when the problem is non-trivial, we should have the

average
1

A∗(c) much larger than 1, and
1

n will be small compared to Var
∗(A∗). The last additive term

1

n
√
n · 1

A∗(C)
is dominated by

1

n . It is only comparable to Var
∗(A∗) when

√
n ≤ 1

A∗(C)·E[ 1

A∗(c ) ]

The complete proof can be found in the full version of the paper.
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5.2 Confidence Interval
Our benchmark for the online mechanism is again the optimal mechanism that knows the cost

distribution at the beginning and uses a single optimal mechanism (A∗,U ∗, P∗) throughout the

survey. We still add an additional cost C into the underlying cost set of the benchmark mechanism,

in order to make the comparison possible without knowing the exact maximum cost.

Definition 5.2. Let c(1) ≤ · · · ≤ c(n) be the n data holders’ costs ordered from smallest to largest.
Suppose there is one more data holder with cost C . We define the benchmark (A∗,U ∗, P∗) to be the
mechanism that purchases data from these n + 1 data holders, and minimizes the worst case variance
when it knows the set of costs {c(1), c(2), . . . , c(n),C} at the beginning.

A∗,U ∗ = OPTCI (n + 1, {c(1), c(2), . . . , c(n),C}, B). (6)

Theorem 5.2. If we use Mechanism 1 with
• ξn =

1

16

√
n .

• At round i , compute
(Ai ,U i ) = APPROXCI (i, Ti , ξnB

√
i).

Let 1
(
U i (c) ≥ 1

2

)
be the rule that completely ignores data with cost c ifU i (c) ≥ 1

2
, and never

ignores the data ifU i (c) < 1

2
. Then the mechanism purchases agent i’s data using the extended

allocation and payment rule of (
Ai ,1

(
U i (c) ≥

1

2

)
, P i

)
,

where P i is computed as in Lemma 3.2. Let the collected data be x̂i .
• Output confidence interval[

n∑
i=1

yi/n −
αγ
√
n
· σ̂ ,

n∑
i=1

yi/n +

∑n
i=1 Ûi

n
+
αγ
√
n
· σ̂

]
,

where yi =
x̂i

Ai (ci )
and σ̂ 2 is the sample variance of y1, . . . ,yn , and Ûi represents whether the

i-th data point is ignored or not.
Then the mechanism is (1) truthful in expectation and individually rational; (2) satisfies the budget
constraint B = nB in expectation; (3) and the for any cost distribution {c1, . . . , cn}, the worst-case
expected length of the output confidence interval is no more than

8

√
10 · L∗ +

2

√
10

√
n
+ o

(
1

√
n

)
,

where L∗ is the approximate worst-case expected length of the benchmark as defined in Lemma 4.1.

Corollary 5.1. The worst-case expected length of our mechanism’s output confidence interval is
no more than

8

√
10 ·MIN +

2

√
10 + 32

√
10 · αγ

√
n

+ o

(
1

√
n

)
,

whereMIN is the worst-case expected length of the optimal confidence interval estimator.

Discussion: As we show in the previous section, L∗ is roughly 1√
n ·

(
2αγ

√
E[

1−U ∗
c

A∗(c) ] +
√
n · E[U ∗

c ]

)
.

If the problem is non-trivial, we should have
1√
n dominated by L∗. The complete proof can be found

in the full version of the paper .
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6 DISCUSSIONS
In this work, we restrict our estimators to use only the collected data. When the data are correlated

with the costs, the data analyst may gradually learn the cost-data correlation based on the collected

pairs. This means that if a data holder arrives and reports his cost, the data analyst may form a

prediction for his data based on his reported cost and the learned cost-data correlation, even if

the data is not collected. This leads to an interesting open question: can the final estimation be

improved if the data analyst makes use of such predicted data?

Allowing the data analyst to leverage on the cost-data correlation brings up an additional level

of challenge when the data holders care about the privacy of their data. Such data holders may

hesitate to report their costs, because reporting the cost itself reveals some information about his

data. This makes it more challenging to achieve truthfulness in design an online mechanism.

Another open problem is whether it is possible to do better than the worst-case analysis. The

optimality of our mechanism is based on the worst-case cost-data correlation. When the designer

can gradually learn the cost-data correlation, is it possible to adjust the purchasing mechanism

accordingly so that it achieves optimality with respect to the actual cost-data correlation?

More generally, it would be interesting to develop mechanisms for other more complicated

statistical estimation tasks, such as hypothesis testing.
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