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PLANAR AND POLY-ARC LOMBARDI DRAWINGS∗

Christian A. Duncan,†David Eppstein,‡Michael T. Goodrich,‡ Stephen G. Kobourov,§

Maarten Löffler,¶Martin Nöllenburg‖

Abstract. In Lombardi drawings of graphs, edges are represented as circular arcs and the
edges incident on vertices have perfect angular resolution. It is known that not every planar
graph has a planar Lombardi drawing. We give an example of a planar 3-tree that has
no planar Lombardi drawing and we show that all outerpaths do have a planar Lombardi
drawing. Further, we show that there are graphs that do not even have any Lombardi
drawing at all. With this in mind, we generalize the notion of Lombardi drawings to that
of (smooth) k-Lombardi drawings, in which each edge may be drawn as a (differentiable)
sequence of k circular arcs; we show that every graph has a smooth 2-Lombardi drawing
and every planar graph has a smooth planar 3-Lombardi drawing. We further investigate
related topics connecting planarity and Lombardi drawings.

1 Introduction

Motivated by the work of the American abstract artist Mark Lombardi [28], who specialized
in drawings that illustrate financial and political networks (see Figures 1 and 2), Duncan et
al. [15, 16] proposed a graph visualization style called Lombardi drawings. These types of
drawings attempt to capture some of the visual aesthetics used by Mark Lombardi, including
his use of circular-arc edges and well-distributed edges around each vertex.

A vertex with circular arc edges extending from it has perfect angular resolution if
the smaller of the two angles between any two consecutive edges, as measured between the
tangents to the circular arcs at the vertex, all have the same (arc) degree. A Lombardi
drawing of a graph G = (V,E) is a drawing of a graph where every vertex is represented as
a point, the edges incident to each vertex have perfect angular resolution, and every edge is
represented as a circular arc or a line segment (i.e., a circular arc of infinite radius) between
the points associated with the incident vertices of the edge.
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Figure 1: Mark Lombardi, Hans Kopp,
Trans K-B and Shakarchi Trading AG of
Zurich, ca. 1981–89 (3rd Version), 1999,
20.25 × 30.75 inches (cat. no. 22) [28].
Image courtesy Pierogi Gallery and the
Lombardi Family.

Figure 2: Clipping of Mark Lombardi, Chicago
Outfit and Satellite Regimes, ca. 1931–83,
1998, 48.125×96.6225 inches (cat. no. 11) [28].
Image Courtesy Pierogi Gallery and the Lom-
bardi Family. Private Collection.

One drawback of previous work on Lombardi drawings is that not every graph has
a Lombardi drawing. In this paper we attempt to remedy this by considering drawings
in which edges are represented by poly-arcs, i.e., sequences of circular arcs. This added
generality will allow us to draw any graph.

Drawing planar graphs without crossings is a natural goal for graph drawing algo-
rithms, and one that is easy to achieve when angular resolution is ignored. Lombardi himself
avoided crossings in many of his drawings, as shown in Figure 1. We say that a graph is pla-
nar Lombardi if it has a planar Lombardi drawing. Interestingly, there are planar graphs that
are not planar Lombardi [15, 18] and an immediate question is to characterize those planar
graphs that are planar Lombardi. For example, it is known that trees [16], Halin graphs [15]
and their generalizations called D3-reducible graphs [19], subcubic planar graphs and some
(but not all) 4-regular graphs [18] are planar Lombardi. Here we continue the investiga-
tion of planar Lombardi drawings. A well-studied subclass of planar graphs are outerplanar
graphs, but in terms of Lombardi drawings it remains open whether all outerplanar graphs
are planar Lombardi. In this paper we show that all outerpaths, i.e., outerplanar graphs
whose weak dual is a path, are planar Lombardi. Moreover, we extend our investigations to
the planarity of poly-arc Lombardi drawings.

We define a k-Lombardi drawing to be a poly-arc drawing with at most k circular
arcs per edge, with a 1-Lombardi drawing being equivalent to the earlier definition of a
Lombardi drawing. We say that a k-Lombardi drawing is smooth if every edge is continuously
differentiable, i.e., no edge in the drawing has a sharp bend. If a k-Lombardi drawing is not
smooth, we say it is pointed. Fortunately, we do not need large values of k to be able to draw
all graphs: as we show, every graph has a smooth 2-Lombardi drawing. Interestingly, this
result is hinted at in the work of Lombardi himself—Figure 2 shows a portion of a drawing
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by Lombardi that uses smooth edges consisting of two near-circular arcs.

New Results. In this paper we provide the following results:

• We prove that every outerpath is planar Lombardi. However, we find examples of
planar 3-trees with no planar Lombardi drawing, strengthening an example from [15]
of a planar graph with treewidth greater than three that is not planar Lombardi. These
results are described in Section 3.

• We find examples of graphs that do not have a Lombardi drawing, regardless of the
ordering of edges around each vertex, thus strengthening an example from [15] of
graphs for which a specific edge ordering cannot be drawn. In contrast, we show how
to construct a smooth 2-Lombardi drawing for any graph. These results are described
in Section 4.

• We show how to represent any planar graph with a pointed 2-Lombardi planar drawing
or a smooth 3-Lombardi planar drawing. These results are described in Section 5.

Related Work. In addition to the earlier theoretical work on Lombardi drawings discussed
above, there is considerable prior work on graph drawing with circular-arc or curvilinear
edges for the sake of achieving good, but not necessarily perfect, angular resolution [10, 23].
Confluent drawings, which use a crossing-free system of smooth arcs and junctions (similar
to train tracks) to represent non-planar graphs, have been introduced by Dickerson et al. [13].
In a confluent drawing, two vertices are connected if and only if there exists a smooth, locally
monotone path between them through this system of arcs and junctions. Similarly, edge
bundling [27] refers to a set of heuristic techniques used in network visualization to reduce
visual clutter by spatially grouping edges with similar geometric or structural properties as
smooth curves. Both techniques, however, do not aim at optimizing angular resolution, but
to the contrary use curvilinear arcs for merging individual edges at angles of 0◦.

Brandes and Wagner [9] provided a force-directed algorithm for visualizing train
schedules using Bézier curves for edges and fixed positions for vertices. Finkel and Tamas-
sia [21] extended this work by giving a force-directed method for drawing graphs with curvi-
linear edges where vertex positions are not fixed. Aichholzer et al. [1] showed, for a given
embedded planar triangulation with fixed vertex positions, it is possible to find a circular-
arc drawing that maximizes the minimum angular resolution by solving a linear program.
Chernobelskiy et al. [11] described functional Lombardi force-directed schemes, which are
based on the use of dummy vertices and tangent forces, but may not always achieve perfect
angular resolution. Interestingly, Efrat et al. [17] showed that, given a fixed placement of the
vertices of a planar graph, it is NP-complete to determine whether the edges can be drawn
with circular arcs so that there are no crossings. Thus, to the best of our knowledge, none
of this related work correctly results in drawings of graphs having perfect angular resolution
and curvilinear edges.

Graph layouts representing edges as circular or curvilinear arcs have also been in-
vestigated from a user’s perspective. Two studies compared straight-line drawings with
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circular-arc or curvilinear drawings [31, 32] but remained inconclusive in their findings; the
former reports aesthetic preference for Lombardi-like layouts but worse task performance,
while the latter study reports aesthetic preference for straight-line drawings. A study by
Huang et al. [25] investigated the effects of curves on graph perception, when curved arcs
are used to reduce edge crossings.

Alternatively, some previous work achieves good angular resolution using straight-
line drawings [12, 22, 30] or piecewise-linear poly-arc drawings [20, 24, 26]. Di Battista
and Vismara [12] characterized straight-line drawings of planar graphs with a prescribed
assignment of angles between consecutive edges incident on the same vertex.

Bekos et al. [8] proposed smooth orthogonal drawings, in which every edge is a
sequence of axis-aligned segments and circular arc segments with common axis-aligned tan-
gents. Such drawings are a combination of orthogonal graph layouts and Lombardi drawings
as vertices have an angular resolution of 90◦ and edges are either straight-line segments or
quarter/half/three-quarter arc segments. Alam et al. [2] described an algorithm for pla-
nar graphs with maximum degree 4 that constructs smooth orthogonal drawings with edge
complexity 2, which matches the corresponding lower bound. Bekos et al. [7] showed how
to obtain bendless smooth orthogonal drawings for the subclass of planar graphs of maxi-
mum degree 3. Recently, Bekos et al. [6] showed NP-hardness for a restricted version of the
bendless drawing problem for smooth orthogonal drawing and Argyriou et al. [4] studied the
curve complexity of 1-plane smooth orthogonal drawings, i.e., drawings with at most one
crossing per edge.

2 Preliminaries

In a Lombardi drawing, each vertex v has deg(v) outgoing edges equally spaced around v.
We denote the tangent vector of any such edge as the stub of that edge. Further, a k-
degenerate graph is a graph that can be reduced to the empty graph by iteratively removing
vertices of degree at most k.

Before establishing our main results, we review several useful geometric properties
related to Lombardi drawings and circular arcs. We begin by reviewing two key properties
partially established by Duncan et al. [15]:

Property 1 ([15], Property 1). Let A be a circular arc or line segment connecting two
points p and q that both lie on circle O. Then A makes the same angle to O at p that it
makes at q. Moreover, for any p and q on O and any angle 0 ≤ θ ≤ π, there exist either two
arcs or a line segment and pair of collinear rays connecting p and q, making angle θ with O,
one lying inside and one outside of O.

Property 2 ([15], Property 2). Suppose we are given two points p = (px, py) and q = (qx, qy)
and associated angles θph and θqh and an angle θpq. Consider all pairs of circular arcs that
leave p and q with angles θph and θqh respectively (measured with respect to the positive
horizontal axis) and meet at an angle θpq in a point. The locus of meeting points for these
pairs of arcs is a circle C. Moreover, the circle C has radius rc = dpq cscα/2 and center
(px+rc sin(α+β), py−rc cos(α+β)), where α = (θph−θqh−θpq)/2, β is the angle formed by
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Figure 3: An arc quadrilateral ♦abcd.

the ray from p through q with respect to the positive horizontal axis, and dpq is the distance
between the points p and q.

Proof. The first part of this property was established by Duncan et al. [15]. Hence, for
the remainder of the proof concerning the radius of C, we assume the reader is familiar
with the arguments by Duncan et al. [15]. For simplicity at the moment, let us assume
that p and q are aligned horizontally, that is β = 0. Let C represent the circular locus with
center c = (xc, yc) and radius rc. From [15] we know that the angle formed by the center of
the circle and the two points q and p is ∠qcp = θph−θqh−θpq = 2α. Analyzing the isosceles
triangle 4qcp, we determine the radius rc = dpq/(2 sinα).

Now, if β 6= 0, a simple rotation of −β about p can be applied yielding α = θph −
β − θqh + β − θpq and hence the angle α and the radius rc are unaffected.

Using basic trigonometry and geometry, we can also determine the center of this
circle as c = (px + rc sin(α+ β), py − rc cos(α+ β)).

We denote the circle C of Property 2 as the placement circle of a new vertex with
respect to its neighbors p and q and the angle θpq. An arc quadrilateral is a cycle consisting
of four points in R2, and four arcs connecting the points. We say an arc quadrilateral is
planar if the arcs only intersect at the points. We denote the points by a, b, c, and d,
and the arcs by ıab, Ùbc, ıcd, and ıda. Let α be the angle at a between ıda and ıab, measured
counter-clockwise. Similarly, let β be the angle at b between ıab and Ùbc, let γ be the angle
at c between Ùbc and ıcd, and let δ be the angle at c between ıcd and ıda. Figure 3 shows an
example.

Property 3. Let ♦abcd be an arc quadrilateral. Then a, b, c, and d are concyclic iff
α+ γ − β − δ = 0 mod 360◦.

Proof. Let σ = α + γ − β − δ. Observe that if we change the radius of an arc, say ıab,
while keeping a and b fixed, α and β change by the same amounts. Therefore, σ is invariant
under this operation unless a pair of arcs changes order. When an order change does occur, α
(or β) either changes from 0◦ to 360◦ or from 360◦ to 0◦. Therefore, σ mod 360◦ is invariant
under any radius changes. Now, change the radii of all arcs until we obtain a straight-edge
quadrilateral �abcd. If �abcd is planar, it is well-known that a, b, c, and d are concyclic
iff α + γ = 180◦. Since in this case α + β + γ + δ = 360◦, the claim follows. If �abcd
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Figure 4: (a) An arc quadrilateral without flips. (b) An arc quadrilateral with one flip. (c) An
arc quadrilateral with two flips.
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Figure 5: If σ = 360◦, then a, b, c, and d are concyclic on C. Therefore, the arcs need to be on
opposite sides of C to make a planar drawing. (a) A non-planar arc quadrilateral. (b) A planar arc
quadrilateral.

is not planar, assume w.l.o.g. ab and cd cross. In this case, a, b, c, and d are concyclic
iff α+ γ = β + δ = 360◦; again the claim follows.

Let Q = ♦abcd be a simple arc quadrilateral whose vertices are labeled a, b, c, d in
counterclockwise order. Let P be the straight-edge quadrilateral �abcd. Then P could have
the same orientation as Q, be non-simple, or have reversed orientation, see Figure 4.

Property 4. Let α, β, γ, and δ be four angles such that σ = α+γ−β− δ < 360◦. Let a, b,
and c be three points in the plane on a circle C, and let ıab and Ùbc be two arcs that meet at b
at an angle of β such that ıab and Ùbc lie on the same side of C. Then the placement arc for d
such that the four angles satisfy their specification lies on the same side of C as ıab and Ùbc.
Furthermore, there is a placement of d that results in a planar arc quadrilateral ♦abcd.

Proof. Let σ = α + γ − β − δ. By Property 2, there is a circle of possible placements for d
that satisfies the angle constraints given by α and γ. If σ = 360◦, by Property 3, this circle
is C. If ıab and Ùbc are on the same side of C, then so are ıcd and ıda. Figure 5(a) illustrates
this situation and ♦abcd is non-planar for any placement of d. (Note that if ıab and Ùbc are
on different sides of C, then a planar arc quadrilateral ♦abcd exists, see Figure 5(b).) Now
if σ < 360◦, the placement circle C ′ of d is different from C and C ′ and C intersect in
points a and c. Figure 6 depicts the situation. Placing d on C ′ in between the two arcs ıab
and Ùbc results in a planar arc quadrilateral ♦abcd.

3 Planar Lombardi Drawings

In this section, we investigate planar (non-crossing) Lombardi drawings.
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Figure 6: If σ < 360◦, then the placement circle C ′ for d intersects C in a and c. (a) For some
positions of d on C ′ the arc quadrilateral remains non-planar. (b) If d is placed on C ′ in between
the arcs Ùab and Ùbc the arc quadrilateral becomes planar.
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Figure 7: (a) Nested triangles graph with four levels that has no planar Lombardi drawing [15]. (b)
Left: A planar 3-tree that has no planar Lombardi drawing. Right: For the K4 subgraph defined
by the four vertices a, b, c, and d, a drawing with the correct angles at each vertex must necessarily
have crossings.

3.1 A Planar 3-tree with no Planar Lombardi Drawing

It is known that planar graphs do not necessarily have planar Lombardi drawings. For
example, Duncan et al. [15] show that the nested triangles graph must have edge crossings
whenever there are 4 or more levels of nesting, see Figure 7(a). While this graph is 4-degen-
erate, even more constrained classes of planar graphs have no planar Lombardi drawings.
Specifically, we can show that there exists a planar 3-tree that has no 1-Lombardi planar re-
alization. The planar 3-trees, also known as Apollonian networks and stacked triangulations,
are the planar graphs that can be formed, starting from a triangle, by repeatedly adding a
vertex within a triangular face, connected to the three triangle vertices, subdividing the face
into three smaller triangles. These graphs have attracted much attention within the physics
research community both as models of porous media with heterogeneous particle sizes, and
as models of social networks [3]. In addition, 3-trees are relevant for Lombardi drawings be-
cause they are examples of 3-degenerate graphs, which have nonplanar Lombardi drawings
if vertex-vertex and vertex-edge overlaps are allowed.

An example of a planar 3-tree that has no planar Lombardi drawing is given in
Figure 7(b); in the figure, there sixteen vertices other than a, b and c, but our construction
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requires a sufficient number (which we do not specify precisely) in order to force the angle
between arcs ıad and ıab to be arbitrarily close to 180◦. The numbers of vertices on the top
and bottom of the figure should be equal. Because of this equality, the three arcs ıab, Ùbc,
and ıca split the graph into two isomorphic subgraphs, and due to this symmetry they must
meet at 180◦ angles to each other, necessarily forming a circle in any Lombardi drawing.
By performing a Möbius transformation1 on the drawing, we may assume without loss of
generality that these three points form the vertices of an equilateral triangle inscribed within
the circle, as shown in the right of the figure. Then, according to the previous analysis of
3-degenerate Lombardi graph drawing [15], there is a unique point in the plane at which
vertex d may be located so that the arcs ıad, ıbd, and ıcd form the correct 120◦ angles to each
other and the correct angles to the three previous arcs ıab, Ùbc, and ıca. However, as shown
on the right of the figure, that unique point lies outside circle abc and causes multiple edge
crossings in the drawing.

3.2 Outerpaths

We define an outerpath to be a triangulation (we later lift this restriction) of the convex
hull of a set of points on two parallel lines, or equivalently to be a triangulated outerplanar
graph whose weak dual (the adjacency graph of the triangular faces) is a path. Like all out-
erplanar graphs, outerpaths have treewidth at most two. As we now show, every outerpath
is Lombardi.

The idea is to look at the ordered dual of the given outerpath G, which keeps track
of left and right turns made by the dual path. Each group of consecutive turns of the same
type defines a fan of triangles. We can draw the path with straight-line segments so that
each k-fan corresponds to a nearly complete drawing of a regular k-gon. These k-gons are
stitched together by edges whose duals correspond to edges in adjacent fans.

We define the spine of G to be the path connecting all vertices of degree greater
than 3. We root the spine at one of its endpoints, v1, and denote the remaining spine
vertices as v2, . . . , vs along the rooted path. We define the hull of G to be the cycle bounding
the outer face. Finally, we define the petals of G to be the remaining edges, grouped into
connected components called flowers. Figure 8 shows an example.

Applying Property 2 along the dual path of G and drawing all petals with straight
edges fixes the whole structure of each flower (up to rigid transformations and scaling), with
one remaining degree of freedom in the connection of each pair of flowers. In Figure 8(b),
we used the remaining degree of freedom to fix all spine edges to be straight-line edges as
well, leading to a nice drawing. Such drawings, however, are not necessarily planar. We
note that once one flower is drawn, the allowed locations of the next spine vertex lie on a
circle by Property 2, which determines the scale of the next flower.

For a vertex v of G, we write χv to denote its degree. For a spine vertex vi we say
that it is an upward (downward) vertex if in counterclockwise order of its neighbors vi−1
is the predecessor (successor) of vi+1. Note that along the spine, upward and downward

1A Möbius transformation [5] is a transformation of the plane, which maps circles to circles and preserves
angles. Hence a Lombardi drawing is transformed into another Lombardi drawing.

http://jocg.org/


JoCG 9(1), 328–355, 2018 336

Journal of Computational Geometry jocg.org

(a) (b)

Figure 8: (a) An outerpath. (b) A Lombardi drawing of the outerpath. The spine consists of the
red edges, the hull consists of the blue edges, petals are yellow, and connected components of petals
form flowers.

vertices alternate. For every vertex v we define its (spine/hull/petal) stubs as the χv equally
spaced tangent vectors that describe the orientations of all incident (spine/hull/petal) edges
of v.

The next lemma classifies the problematic quadrilaterals that can appear in outer-
paths. Let α, β, γ, δ be the four inner angles of a quadrilateral and let σ = α+ γ − β − δ as
in Section 2. There are two types of quadrilaterals in outerpaths that are characterized as
follows.

Lemma 1. Let P be an outerpath with n vertices. Every arc quadrilateral formed by two
adjacent triangles of P has σ < 360◦ in a planar Lombardi drawing of P , unless it is
formed by one hull vertex and three consecutive spine vertices a, b, and c with χb = 5 and
1/χa + 1/χc ≤ 1/15.

Proof. Let ♦abcd be a quadrilateral with σ ≥ 360◦ that is part of a planar Lombardi
drawing of P . Note that two of the opposite angles involved are formed by neighboring
edges and thus are Lombardi angles (they are 360◦/χv for some vertex v), and the other
two are double Lombardi angles (they are 720◦/χv for some vertex v) as they span over the
diagonal of ♦abcd. Lombardi angles are at most 120◦, so the two Lombardi angles cannot
sum to more than 240◦ < 360◦. So, assume w.l.o.g. that α and γ are the double Lombardi
angles and that α + γ − β − δ ≥ 360◦. Now, α + γ > 360◦, since no angles are 0◦, so at
least one of α or γ needs to be larger than 180◦. In fact, this means one of them must be
240◦, say α = 240◦, and χa = 3. This further implies that the two triangular faces of the
quadrilateral are incident to two adjacent hull edges. Now, χc > 3 (unless there are only
four vertices in G), so γ ≤ 180◦. If either b or d has degree 3, then β or δ is 120◦, which
means that α+ γ − β − δ would be smaller than 360◦. Therefore, b, c, and d are all vertices
of degree greater than 3, i.e., they are part of the spine. This implies χc = 5 (there is only
one petal edge between the two spine edges, and then there are two hull edges), so γ = 144◦.
This means β + δ ≤ 240◦+ 144◦− 360◦ = 24◦. That is, the degrees of b and d are such that
1/χb + 1/χd ≤ 1/15.
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Figure 9: A Lombardi drawing of an outerpath with spine degrees 7, 6, 4, 5, 8, 4, 4, 4, 30, 5, 30,
and 9, which exhibits the different cases considered by our algorithm (we did cheat a little in that
we used a larger value for ε for all vertices except v11, for better visibility).

3.2.1 Algorithm for Planar Drawing of Outerpaths

The main idea for drawing an outerpath in Lombardi style is to draw the spine in an x-
monotone fashion, and draw the petals in sufficiently small circles around the spine vertices
so that they do not intersect each other. To this end, we align every spine vertex so that
both of its spine stubs leave it at opposite angles with respect to a vertical line. This method
works well as long as all spine vertices have sufficiently high degree; however, we need to
abort this general scheme in several cases involving spine vertices of degree 4 or 5.

Our algorithm to draw outerpaths proceeds in two main phases. In the first phase,
we draw the spine and all hull edges connecting two spine vertices. In the second phase we
draw the flowers for each spine vertex by incrementally adding the petals. Figure 9 shows
an example output as produced by the algorithm.

Spine. Let the spine vertices be v1, . . . , vs as they occur along the spine. We initially put
vertex v1 at the origin (0, 0) and rotate it so that the vertical line `1 : x = 0 bisects the angle
between the tangents of its two incident hull edges. In all subsequent steps, the placement of
the next vertex vi depends on its degree χvi and the degrees of its neighbors. In the general
case χvi > 5 we place vi on the vertical line `i at distance 1 from vi−1 at the unique position
where a circular arc from vi−1 tangent to the outgoing spine stub of vi−1 intersects `i at an
angle of ±1.5 · 360◦/χvi depending on whether vi is an upward or downward spine vertex.
We draw the circular arc that defined the position of vi as the spine edge from vi−1 to vi;
see Figure 9. The same procedure still applies if χvi = 5 and 1/χvi−1 + 1/χvi+1 > 1/15.

If χvi = 5 and 1/χvi−1 + 1/χvi+1 ≤ 1/15, we switch from a horizontal placement
mode to a vertical one, see Figure 10. This is necessary to avoid edge crossings according to
Lemma 1. The first step is to modify vi−1 by rotating it so that the spine stub towards vi is
left of `i−1 by 12◦. We skip vi for the moment and place vi+1 vertically above or below vi−1,
depending on whether vi−1 is a downward or upward vertex, and so that its hull stub
towards vi+2 is vertical. If vi+1 is placed below vi−1, the position is chosen such that there
is a vertical distance of 1 to the lower of vi−1 and vi−2; we choose the analogous position if
it is placed above vi−1. Now that both vi−1 and vi+1 are placed, we construct the placement
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Figure 10: Vertical placement of a degree-5
vertex vi with two high-degree neighbors.

Figure 11: Placement of a chain of degree-4
spine vertices vi, . . . , vj .

circle C for vi based on its two spine neighbors and the angle θvi−1vi+1 = 3 · 72◦ = 216◦, see
Figure 10. We choose a position for vi on C that has a small vertical distance ∆ from vi+1

(see Lemma 3) and connect it with two arcs to its spine neighbors. Note that this vertical
structure repeats if another degree-5 vertex with the same properties follows; otherwise we
continue by placing vi+2 horizontally to the right on a vertical line `i+2 that has the same
distance to vi+1 as the distance between the first and third vertex of the vertical structure.

If χvi = 4 and χvi+1 > 4, we make an exception and first draw vi+1, and the hull
edge connecting it to vi−1 in this case. Vertex vi+1 is placed on the vertical line `i+1 at
distance 2 from vi−1. The position is the unique intersection point of `i+1 and the circular
arc from vi−1 tangent to the outgoing hull stub of vi−1, where the angle between the arc
and `i+1 is ±0.5 · 360◦/χvi+1 depending on whether vi+1 is upward or downward. Now
that vi−1 and vi+1 are both placed, we put vi at the intersection point of the vertical line `i
centered between `i−1 and `i+1 and the placement circle of vi with respect to vi−1, vi+1 and
an enclosed angle of θvi−1vi+1 = 90◦ according to Property 2. See vertex v3 on line `3 in
Figure 9 for an example.

Finally, if χvi = · · · = χvj = 4 (i < j) for a maximal sequence of j + 1 − i vertices,
we place the whole sequence at once, see Figure 11. Both the spine edge from vi−1 to vi
and the hull edge from vi−1 to vi+1 should intersect the vertical lines `i and `i+1 at an
angle of ±45◦. In order to achieve this, we place `i at distance 1 from vi−1 and find the
position of vi as done before. Since vi+1 is connected by a spine edge to vi and by a hull edge
to vi−1 this defines a placement circle for vi+1 and we pick the unique position for which
the edge vivi+1 is straight, see Figure 11. Now we can draw the whole chain of degree-4
vertices in a zigzag fashion using the horizontal spacing defined by `i and `i+1. For the
vertex vj+1 with χvj+1 > 4 we construct the placement circle with respect to vj−1, vj , and
the angle θvj−1vj = 360◦/χvj+1 and choose the position for which the angle between the
vertical line `j+1 and the arc˚�vjvj+1 is ±1.5 · 360◦/χvj+1 .

Lemma 2. The spine does not intersect itself.

Proof. Recall that if vi and vi+1 are two vertices of degree not 5, then they are placed on
vertical lines `i and `i+1. Since the spine stub of vi points to the right and that of vi+1 points
to the left, the spine edge stays within this vertical strip and no two spine edges intersect.
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Now, let vi be a vertex with χvi = 5 and its spine neighbors with 1/χvi−1 +1/χvi+1 ≤
1/15; they are placed on a common vertical line `. Assume w.l.o.g. that vi−1 and vi+1 are
upward vertices as in Figure 10. Then both arcs v̇i−1vi and v̇ivi+1 lie completely to the
left of `. On the left of `, ˝�vi−2vi−1 and v̇ivi+1 could intersect, but since the left spine stub
of vi−1 has a nonzero slope, there is a placement of vi on its placement circle where v̇ivi+1

lies completely to the right of the line supported by this stub.

Flowers. Let ε′ > 0 be a number such that we can place a disk of radius ε′ around every
spine vertex such that it does not intersect any spine edges other than those incident to the
vertex, and such that no two such disks intersect. Lemma 2 implies this number exists. To
compute a suitable value for ε′, we check for each spine vertex which spine edge is closest
to it; because of the monotone structure in our construction there are only constantly many
candidates so this takes O(n) time in total. Now, for each spine vertex of degree at least 6,
we preliminarily place the two outermost petal vertices at the intersection of their placement
circles and these disks of radius ε′.2 The hull edges connecting them to their neighboring
spine vertices together with any hull edges that are incident to at least one spine vertex are
called the preliminary hull.

Lemma 3. The preliminary hull edges do not have intersections with each other or the
spine.

Proof. The proof of this lemma is similar to that of Lemma 2, but some extra care needs
to be taken. First, let vi and vi+1 be two vertices of degree at least 6. Then the hull edges
connecting vi to the first petal vertex of vi+1 and connecting vi+1 to the last petal vertex
of vi still lie completely in the vertical strip between `i and `i+1.

Chains of multiple vertices of degree 4 are still vertically aligned, so the same argu-
ment applies. Now, let vi be a degree 4 vertex with spine neighbors of degree at least 5.
Then vi could be drawn slanted. However, then˝�vi−1vi+1 is the only hull edge on one side of
the spine inside the vertical strip between `i−1 and `i+1, and the two hull edges on the other
side that connect vi to the petal vertices of vi−1 and vi+1 are adjacent and also lie within
this strip. So, they do not intersect each other either.

Finally, consider again the vertical case where vi is a degree-5 vertex with spine
neighbors whose degrees satisfy 1/χvi−1 + 1/χvi+1 ≤ 1/15 as in Figure 10. Let z be the
single petal vertex of vi. On the left, we first need to argue that z̆vi−1 does not intersect
any other arc. Obviously, it runs below the arc from vi−1 to the last petal of vi−2 until
the height of vi−2; thereafter it has either already reached its leftmost point and goes right
towards vi or is short enough to not reach too far left anyway. Secondly, we need to argue
that z̆vi+1 does not intersect the leftward hull edge emanating from vi−1; as before we can
ensure this by moving the location of vi (and therefore, also z) sufficiently close to vi+1; this
vertical distance is denoted ∆ in the algorithm. On the right, we need to argue that the
hull edge emanating from vi toward the flower of vi−1 does not intersect the leftward hull
edge emanating from vi+2. Since 1/χvi−1 + 1/χvi+1 ≤ 1/15 we know that χvi+1 ≥ 15 and
hence the angle between two neighboring stubs of vi+1 is at least 24◦. Now, let λ be the

2Note that for a spine vertex of degree 5 there is a unique position for placing its only petal vertex.
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Figure 12: Illustration for the proof of Lemma 4

line through vi+1 that makes an angle of 114◦ with `i−1. If vi is sufficiently close to vi+1, its
hull stub forms an angle of less than 66◦ with `i−1, so its hull edge lies completely above λ.
The angle at which the spine arc ˝�vi+1vi+2 meets `i−1 is at most 24◦; since χvi+2 ≥ 4 this
means that the angle at which the hull edge towards the flower of vi+1 comes in is at most
90◦ + 24◦ = 114◦. Hence, this hull edge lies below λ, and the two hull edges in the strip
between `vi−1 and `vi+2 do not intersect.

By Lemma 3, the preliminary hull does not intersect itself or the spine, but it could
still intersect some of the ε′-disks. Therefore, we now compute a new value ε < ε′ such that
disks of radius ε placed at the spine vertices do not intersect any spine or hull edges. We
will draw the flowers inside these ε-disks; Lemma 4 implies that the resulting drawing of the
hull edges will still be planar after shrinking the disks to radius ε.

Lemma 4. Let u, v be two adjacent spine vertices and w the first petal vertex of v (this
implies that w is connected to u by a hull edge). Let w1 and w2 be two possible locations
for w on its placement circle W through u and v, such that w1 lies closer to u and w2 lies
closer to v. Then the hull edge connecting u to w2 lies completely inside the region bounded
by ıuv, ūw1, and the circle centered at v of radius |vw1|.

Proof. Consider the circle W of possible placements for w as shown in Figure 12. Both w1

and w2 lie on W . The edges ūw1 and ūw2 both leave u in the same direction and with the
same tangent. Hence, they are arcs of two touching circles, which do not intersect other
than at u. Furthermore, since w1 is closer to u, the edge ūw2 lies completely inside the
region bounded by ıuv, ūw1, and the circle centered at v of radius |vw1| as claimed in the
lemma statement.

We now describe how to draw the actual flowers recursively. Let C be a circle
centered at a spine vertex v; let u and w be two points on C and let ıuv and v̂w be two arcs
that lie completely inside C and have nonnegative curvature, and let ν ≥ 0 be an integer.
We will create ν stubs at v, equally spaced between ıvu and v̂w, and draw ν+2 petal vertices
(including u and w, which could be moved).

If ν ≥ 2, we keep both u and w where they are, and we proceed by drawing a
circle D slightly smaller than C (say, of radius n−1

n times smaller). By Property 2, there is a
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Figure 13: (a) A partially drawn flower. (b) A possible completion of the flower. (c) In the worst
case, the petals do not protrude more than a factor 1.2 out of C. (d) If Lombardi edges from u and
w do not match up, then one of them overshoots the other and the other one undershoots the first
(dotted).

circle U of possible placements of the petal vertex u′ adjacent to u, that connects to v at the
next stub and makes an angle of 120◦ at u′. Symmetrically, there is a circle W of possible
placements of the petal vertex w′ adjacent to w. We intersect U andW with D, and place u′

and v′ at the intersection points to the right (resp. to the left) of ıuv (resp. v̂w). Figure 13(a)
illustrates this. Now, we recurse on the smaller problem defined by D, u′, and w′.

If ν = 1, we simply compute the circles U and W and place the last vertex x at one
of the intersection points of U and W . One of the two intersection points is v; we place x
at the other one.

Finally, if ν = 0, we cannot generally place u and w at their given location. Instead,
either we fix u and place w(u) at the intersection between the two placement circles based
on where u is, or we fix w and place u(w) at the intersection between the two placement
circles. If we fix u and w(u) is closer to v than w, we are done. Otherwise, it must be
the case that if we fix w then u(w) is closer to v than u is, and we are also done. To see
this, draw an arc that leaves u at the correct angle until it has the angle at which it should
enter w, and vice versa; if one of these “overshoots” its target the other must “undershoot”
it (refer to Figure 13(d)).

We apply the above algorithm to each spine vertex, choosing C to be the circle
centered at v of radius 5

6ε, and choosing u and w to be the two petal vertices we get at the
intersection of C with their respective placement circles. As soon as we fix any petal vertex,
we can immediately draw the hull edge connecting it to the previously fixed petal neighbor
(or the spine neighbor in case of the two outermost petals).

The only remaining case is to draw a flower with exactly one petal. Let vi be the
spine vertex and w the adjacent petal vertex. In this case we know that w connects to vi−1
and to vi+1 by two hull edges. We can simply intersect the two placement circles for w
and and meeting angle of 120◦, one with respect to vi−1 and vi, the other with respect
to vi and vi+1. One intersection point is vi, at the other one we place w and draw its three
incident edges. This concludes the second phase of the algorithm.
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Lemma 5. The flower algorithm produces an internally planar drawing that is contained
within a circle of radius at most 1.2 times bigger than C.

Proof. For the first part of the lemma, we need to show that each time we place a petal
vertex, it lies on the correct side of the previous petal edge. In the ν ≥ 2 case, we note
that D separates v from u and w, U passes through v and u, and W passes through v
and w, so D intersects both U and W . Since the curvature of ıuv is nonnegative, there must
be at least one intersection point of D and U to the right of this arc; similarly since v̂w is
non-negative there must be at least one intersection point of D and W to the left of this
arc. If the radius of D is sufficiently close to that of C, the ordering is correct (i.e. u′ lies
to the left of w′).

In the ν = 1 case, we need to use the fact that this is the last point to be placed, so
the angle between ıuv and v̂w at v is at most 2 · 360◦/7. Since the angle at x is 240◦, and
240 + 2

7360 < 360, we clearly have σ < 360◦. When χvi = 5 or 6, planarity is clear since
there are only one or two petal vertices; if χvi = 5, this clearly relies on 1/χvi−1 + 1/χvi+1

being greater than 1/15.

Finally, we argue that this construction stays inside a circle C ′ of radius at most 1.2
times larger than C. We only need to consider the arcs incident to u and w; then the
rest follow again by induction. Now, note that the amount of protrusion of the hull edges
between petal vertices depends on the outgoing angle at u (or w), as well as the distance to
the next vertex. The outgoing angle is 30◦ in the worst case, because the curvature of ıuv is
nonnegative. The distance to the next vertex is 360◦/6 in the worst case, because χv ≥ 6.
The claim now follows from basic goniometry. Figure 13(c) shows an example.

Once we have placed the spine and all flowers as described above, it is clear that by
construction the resulting drawing satisfies the Lombardi properties, i.e., circular-arc edges
and perfect angular resolution. The previous lemmas prove that the drawing produced by
our algorithm is indeed planar. Since every vertex is placed by computing local information
only, the algorithm takes linear time. We summarize the result.

Theorem 1. Every outerpath has an outerplanar Lombardi drawing that can be constructed
in linear time.

Non-Triangulated Outerpaths The algorithm we presented assumes the input outerpath
is triangulated. This is not a restriction, as the next corollary shows.

Corollary 1. Given an algorithm to draw triangulated outerpaths, we can draw any outer-
path.

Proof. For a face of size four or more we distinguish two cases. It is clear that in an outerpath
there can be at most two non-hull edges in each face. If all hull edges form one connected
path in the face, then we can replace this path by a single hull edge to get a triangular face
and re-insert the degree-2 vertices in the end. Since that subdivides a circular arc, all angles
are 180◦ as necessary.
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If the hull edges form two disconnected paths, we temporarily remove all degree-2
vertices on the two hull paths as before. This yields a quadrilateral face f that interrupts
the spine and is bounded by two hull edges and two petals. Next, we introduce a diagonal
dummy spine edge e = uv that connects the left vertex u of one hull edge with the right
vertex v of the other hull edge. To get the Lombardi angles right in the end, we make sure
that the dummy edge does not count towards the vertex degrees χu and χv and hence does
not affect the prescribed angles around the two vertices. The only exception is that the four
angles defined by uv and the four edges of f are set to 1/2 · 360◦/χu and 1/2 · 360◦/χv,
respectively, i.e., each dummy edge bisects the two Lombardi angles on either endpoint.
Hence, the drawing obtained by removing all dummy edges and re-inserting all omitted
degree-2 vertices is a planar Lombardi drawing of the given outerpath.

4 k-Lombardi Drawings

In this section, we investigate k-Lombardi drawings. First, we establish the need to use
poly-arc edges in order to be able to draw any graph.

4.1 Non-Lombardi Graphs

Duncan et al. [15] show a graph, Figure 14(a), for which no Lombardi drawing is possible
while preserving the given ordering of edges around each vertex. However, as Figure 14(b)
shows, if the ordering is not fixed, it is possible to create a valid Lombardi drawing for the
graph. In this section, we provide a graph that has no Lombardi drawing regardless of the
edge ordering.

There are some complications that arise when proving that a graph is non-Lombardi,
compared to proving that a graph is not part of a graph class in traditional straight-line
planar drawings. For example, if graph G is non-Lombardi, this does not imply that all
graphs H ⊃ G are non-Lombardi because the addition of edges changes the angular res-
olution and can therefore dramatically change the subsequent placement of vertices. In
addition, since the edge ordering is not fixed by the input, we must argue that any ordering
forces a conflict.

Additional complications concern the density and symmetry of any possible coun-
terexample. The graph in Figure 14 is 3-degenerate, and 3-degenerate graphs can be drawn
Lombardi-style if we are willing to ignore vertex-vertex and vertex-edge overlaps [15] (as
shown in Figure 14(a)). Consequently, if a 3-degenerate graph is to be a counterexample,
we must show that all vertex orderings force at least two vertices to overlap. Intuitively,
4-degenerate graphs should be more restrictive, but the simplest 4-degenerate graph, K5,
nevertheless has a circular Lombardi drawing. One issue is the fact that K5 is extremely
symmetrical. Therefore, we shall modify this graph to break its symmetry. We define our
counterexample graph G8 to be K5 with the addition of three degree-one vertices causing
one of the vertices of the original K5 to have degree 5 and another to have degree 6, while
the other three remain with degree 4; see Figure 15(a).
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Figure 14: A 7-vertex 3-degenerate graph that has no Lombardi drawing with the given edge
ordering. (a) A Möbius transformation makes one triangle equilateral, forcing the other 4 vertices
to be placed at the centroid and the point at infinity; (b) A different ordering that does provide a
Lombardi drawing.
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Figure 15: (a) G8 with K5 part drawn Lombardi-style and additional edges shown. (b) Computing
the twist for the three vertices 0, 1, and 2. The twist for vertex 0 is ξ.

4.1.1 Proof of Non-Lombardiness

Theorem 2. The graph G8 is non-Lombardi.

Proof. Let v0, v1, v2 be the three vertices of G8 with degree four. Let v3 and v4 be the
vertices with degree five and six, respectively. We do not care about the final placement of
the degree-one vertices, whose main purpose is to alter the angular resolution of v3 and v4.
Using a Möbius transformation we can assume that the first three vertices v0, v1, and v2 are
placed on the corners of a unit equilateral triangle such that v0 and v1 have positions (0, 0)
and (1, 0) respectively. We shall show that for every edge ordering, the two vertices v3 and v4
cannot both be placed to maintain correctly their angular resolution and be connected to
each other. We do this by establishing the algebraic equations for their positions based on
the edge orderings of all vertices. We then show that such a set of equations has no solution
for any valid assignment of orderings.

We first establish a notation for representing a specific edge ordering. For every
vertex vi with neighbor vj , let kij represent the cyclic ordering of edge (vi, vj) about vi
with k01 = 0 and ki0 = 0 for i > 0. For example, in Figure 15(a), the edge ordering
around v4 has k41 = 2, k42 = 4, k43 = 5, k46 = 1, and k47 = 3. The twist ϕi of a vertex vi
is the angle made by the arc extending from vi to the neighbor vj with kij = 0. From
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the initial placement of v0, v1, and v2 on an equilateral triangle and their respective edge
orderings, we can uniquely determine the twists for each of these vertices; see Figure 15(b).
Since the three vertices lie on an equilateral triangle, the tangents to the circle defined by
the three points also form an equilateral triangle. From Property 1, the angles formed by
the arcs connecting each pair of vertices to the tangents at the circle yield matching (but
undetermined) angles, labeled ψa, ψc, and ψe. The angles ψb, ψd, and ψf are determined
uniquely by the edge orderings as follows:

ψb = 2π − k02π/2 (1)
ψd = k12π/2 (2)
ψf = 2π − k21π/2 (3)

Noting that certain triplets of angles yield a value of π modulo 2π, we have the following
three equations with i0, i1, i2 ∈ {0, 1}:

ψa + ψb + ψc = π + 2i0π (4)
ψc + ψd + ψe = π + 2i1π (5)
ψe + ψf + ψa = π + 2i2π. (6)

Solving for ψa yields:

(ψa + ψb + ψc)− (ψc + ψd + ψe) + (ψe + ψf + ψa) = (π + 2i0π)− (π + 2i1π) + (π + 2i2π)

2ψa + ψb − ψd + ψf = 2π + 2(i0 − i1 + i2)π

2ψa = π − ψb + ψd − ψf + 2(i0 − i1 + i2)π.
(7)

For the twist for v0, we wish to know the value of ξ, the angle for the arc from v0 to v1.
Noting that ξ = ψa+ψb+2π/3−2i0π and substituting in Equations (1-3) with Equations (7)
yields

2ξ = 2ψa + 2ψb + 4π/3− 4i0π

2ξ = (π − ψb + ψd − ψf + 2(i0 − i1 + i2)π) + 2ψb + 4π/3− 4i0π

2ξ = 7π/3 + ψb + ψd − ψf + 2(i2 − i0 − i1)π
2ξ = 7π/3 + (2π − k02π/2) + (k12π/2)− (2π − k21π/2) + 2(i2 − i0 − i1)π
2ξ = 7π/3 + (k12 + k21 − k02)π/2 + 2(i2 − i0 − i1)π

ϕ0 = ξ = 7π/6 + (k12 + k21 − k02)π/4 + (i2 − i0 − i1)π. (8)

Noting that ϕ0 + ψc + π/3 = 2π yields ϕ1 = π − ϕ0. Similarly, ϕ2 = π − ψa = 5π/3− ϕ0 −
k02π/2 + 2(1− i0)π.

The positions and orienting twists of the first three vertices also yield a unique
position and twist for vertices v3 and v4. After determining these values, we shall show that
in all orderings it is not possible to connect v3 to v4 with a single circular arc while still
maintaining the proper angular resolution.

From Property 2, v3 must lie on a circle C01 defined by the neighbors v0 and v1
and their corresponding arc tangents. Similarly, it must lie on circles C02 and C12. The
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intersection of these three circles determines the position and orientation of v3. Let us
proceed to determine C01. Letting p = v0 and q = v1, we have θph = ϕ0 + πk03/4 and
θqh = ϕ1 + πk13/4 and θpq = π(k31 − k30)/5 = πk31/5. From Property 2 and the fact
that dpq = 1, we can determine that C01 has radius r01 = cscα01/2 and center c01 =
(r01 sinα01,−r01 cosα01) = (1/2,− cotα01/2) with α01 = (θph − θqh − θpq)/2 = ϕ0 − π/2 +
π(5k03 − 5k13 − 4k31)/40. Similarly, C02 has radius r02 = cscα02/2 and center c02 =
(r02 sin(α02 + π/3),−r02 cos(α02 + π/3) with α02 = ϕ0 − 5π/6 + π(5k03 + 10k02 − 5k23 −
4k32)/40 + (i0 − 1)π.

Given the circles and the position of v0 at the origin, it is easy to determine the
intersection of the two circles, one of which is v0 and the other, if it even exists, must
be v3. Since v0 must lie on the intersection, the line from v0 to v3 is perpendicular to the
line, `, through the two centers. Moreover, v3 is the reflection of p about `. Thus, letting
~v = (vx, vy) = c02 − c01, ~c = v0 − c01 = −c01, and ~v⊥ = (−vy, vx) yields

v3 =
−2~c · ~v⊥
~v · ~v ~v⊥. (9)

To establish the twist ϕ3 at v3 we observe from Property 1 that the angle α formed by
the line `03 from v0 to v3 and the tangent of the curve from v0 to v3 is the same as the
tangent of the curve from v3 to v0 and the line `03. Moreover, θ03 = ϕ0 + k03π/4 = α+ β03
and ϕ3 = θ30 = π − α+ β03 where β03 = arctan(v3(y)/v3(x)) is the slope of `03. From this,
we can deduce that ϕ3 = π − ϕ0 − k03π/4 + 2β03. The exact same calculations can be used
to compute v4 and ϕ4.

As with the twists for ϕ3 and ϕ4, we can use Property 1 to determine the angles
formed by the arc from v3 to v4 given their positions and twists. We know that the angles of
the tangents to the arc at v3 and v4 are θ34 = ϕ3+k34π/5 and θ43 = ϕ4+k43π/6 respectively.
Letting β34 = arctan((v4(y)− v3(y))/(v4(x)− v3(x))) be the slope of the line from v3 to v4,
we have that θ34 − β34 = α and π − α = θ43 − β34. Consequently, we have

θ34 + θ43 = π + 2β34. (10)

Each specific edge ordering therefore yields a unique set of positions and twists for v3
and v4 as outlined above. To show that no Lombardi drawing is possible one must simply
show that Equation 10 does not hold for any edge ordering. Though there are a finite
number of possible orderings and though symmetries could be used to reduce that number,
the individual case analysis for such a proof appears to be quite unwieldy. Instead, we simply
iterate over every possible edge ordering, applying these equations to a numerical algorithm
that searches for a valid non-contradictory assignment. The Python code for this program is
shown in Table 1. As can be seen from the code, it verifies using floating-point calculations
with 100-bit precision that each edge ordering has angles that are farther than ε = 10−6 from
satisfying Equation 10. By running this program, one can see that no valid assignments are
possible concluding our proof.

Corollary 2. There are an infinite number of biconnected non-Lombardi graphs.

http://jocg.org/


JoCG 9(1), 328–355, 2018 347

Journal of Computational Geometry jocg.org

#!/usr/bin/python

from itertools import *
from bigfloat import *

def match(k0,k1,k2,k3,k4,i0,i1,i2):
(k01,k02,k03,k04)=(0,k0[0],k0[1],k0[2])
(k10,k12,k13,k14)=(0,k1[0],k1[1],k1[2])
(k20,k21,k23,k24)=(0,k2[0],k2[1],k2[2])
(k30,k31,k32,k34)=(0,k3[0],k3[1],k3[2])
(k40,k41,k42,k43)=(0,k4[0],k4[1],k4[2])
b,d,f = 2 - k02/2.0, k12/2.0, 2-k21/2.0 # Eqs 1-3
t0 = 7.0/6.0 + (k12 + k21 - k02)/4.0 + (i2-i0-i1) # The twists

# Compute v3 and t3
a01 = t0 - 0.5 + (5*k03 - 5*k13 - 4*k31)/40.0
a02 = t0 + i0-11.0/6.0 + (5*k03 + 10*k02 - 5*k23 - 4*k32)/40.0
r01, r02 = 0.5/sin(a01 * const_pi()), 0.5/sin(a02 * const_pi())
c01 = (0.5, -0.5/tan(a01*const_pi()))
c02 = (r02*sin((a02 + 1.0/3.0)*const_pi()), -r02*cos((a02 + 1.0/3.0)*const_pi()))
v = (c02[0] - c01[0], c02[1] - c01[1])
M = 2.0 * (c01[1] * v[0] - c01[0] * v[1])/(v[0]*v[0]+v[1]*v[1])
v3 = (-v[1] * M, v[0] * M)
b03 = atan2(v3[1], v3[0])/const_pi()
t3 = 1 - t0 - k03/4.0 + 2*b03

# Compute v4 and t4
a01 = t0 - 0.5 + (3*k04 - 3*k14 - 2*k41)/24.0
a02 = t0 + i0-11.0/6.0 + (3*k04 + 6*k02 - 3*k24 - 2*k42)/24.0
r01, r02 = 0.5/sin(a01 * const_pi()), 0.5/sin(a02 * const_pi())
c01 = (0.5, -0.5/tan(a01*const_pi()))
c02 = (r02*sin((a02 + 1.0/3.0)*const_pi()), -r02*cos((a02 + 1.0/3.0)*const_pi()))
v = (c02[0] - c01[0], c02[1] - c01[1])
M = 2.0 * (c01[1] * v[0] - c01[0] * v[1])/(v[0]*v[0]+v[1]*v[1])
v4 = (-v[1] * M, v[0] * M)
b04 = atan2(v4[1], v4[0])/const_pi()
t4 = 1 - t0 - k04/4.0 + 2*b04

# Compare v3,t3 and v4,t4
t34,t43 = t3 + k34/5.0, t4 + k43/6.0
b34 = atan2(v4[1]-v3[1], v4[0]-v3[0])/const_pi()

# Compare and account for small errors in round-off
lhs, rhs = (t34 + t43, 1 + 2 * b34)
diff = mod((lhs - rhs) if lhs > rhs else (rhs - lhs), 2)
epsilon = 0.000001
if (diff < epsilon or diff > 2-epsilon):

return True # Found a valid assignment

for k0 in permutations(range(1,4)):
for k1 in permutations(range(1,4)):

for k2 in permutations(range(1,4)):
for k3 in permutations(range(1,5),r=3):

for k4 in permutations(range(1,6),r=3):
for (i0,i1,i2) in product(range(0,2), repeat=3):

with precision(100):
if match(k0,k1,k2,k3,k4,i0,i1,i2):

print "Valid match found."

Table 1: Python code to verify G8 is non-Lombardi
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Proof. Let G be formed from a graph G′, having at least two degree-one vertices u and v that
do not share a common neighbor, by merging u and v and creating a degree-two vertex w.
If G is Lombardi, then so is G′ as we can take a Lombardi drawing of G, split w, and place u
and v on the arcs between w and its respective neighbor, and still maintain a valid Lombardi
drawing. Thus, we can take any collection of disjoint copies of G8 and combine degree-one
vertices as described above to form a biconnected non-Lombardi graph.

4.2 Smooth 2-Lombardi Drawings

If we want to draw Lombardi style drawings for any given graph we have to relax one of the
two requirements that specify Lombardi drawings. Ideally, we would like to avoid relaxing
the requirement that edges have perfect angular resolution. Fortunately, as the following
theorem shows, we can achieve a “close-to-Lombardi” drawing for any graph if we allow two
circular arcs per edge.

Theorem 3. Every graph has a smooth 2-Lombardi drawing. Furthermore, the vertices can
be chosen to be in any fixed position.

Proof. Starting with the given graph G, subdivide every edge by dividing it in two and
adding a “dummy” vertex incident to these two new edges. Let G2 denote the resulting
2-degenerate graph. Duncan et al. [15] show that any 2-degenerate graph has a Lombardi
drawing. Furthermore, each dummy vertex of G2 that was added to subdivide an edge of G
has degree 2; hence, in a Lombardi drawing of G2 the edges incident on each such dummy
vertex have tangents that meet at 180 degrees. Thus, when we consider these two circular
arcs of G2 as a single edge of G they define a smooth two-arc edge. See Figure 16(a).

The 2-degenerate drawing algorithm orders the vertices in such a way that each vertex
has at most two earlier neighbors; it places vertices with zero or one previous neighbor freely,
but vertices with two previous neighbors are constrained to lie on a circular arc. For G2,
we can choose an ordering in which only the dummy vertices have two previous neighbors;
therefore, the vertices of G can have any initial placement.

As Figure 16(b) illustrates, although we can place the vertices in any position with
any initial orientation, an arc’s smooth bend point might be an inflection point.

5 Planar k-Lombardi Drawings

We have seen that with k-Lombardi drawing we can represent many more graphs than with
the standard Lombardi drawing. Planar Lombardi drawings, however are limited to only a
subset of the planar graphs. In this section we investigate the combination of planarity and
k-Lombardi drawing.3

3In the conference version [14] of this paper we proved that planar graphs of maximum degree 3 have a
planar smooth 2-Lombardi drawing. We dropped this result as in the meantime Eppstein [18] showed that
these graphs are actually even planar Lombardi.
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Figure 16: (a) An example 2-Lombardi drawing of G8. The bend points (not all of which are
necessary) are shown with crossed marks. (b) An example 2-Lombardi drawing of K4 with the
vertices placed on a line and tangents oriented to force numerous inflection points.

5.1 Planar 2-Lombardi Pointed Drawings for Planar Graphs

We now show that every planar graph allows a planar 2-Lombardi drawing with pointed
joints. The approach is similar to the previous section, but the drawing method inside the
disks is different.

Assume that we are given a circle C, a set P of n points on C, and four integers
n1, n2, n3, n4 that sum up to n and that satisfy the inequalities bn/4c ≤ ni ≤ dn/4e and
bn/2c ≤ ni + n(i+1) mod 4 ≤ dn/2e. We will show (Lemma 7) that there exist two circles A
and B disjoint from P such that A, B, and C are pairwise perpendicular and such that A
and B subdivide P into four sets of cardinality n1, n2, n3 and n4.

It is convenient to begin with a continuous analogue of the lemma. We define a
smooth probability distribution on C to be a distribution that assigns a nonzero probability
to any arc of C, such that arbitrarily short arcs have a probability that approaches zero.

Lemma 6. Let C be a circle, and Π be a smooth probability distribution on C. Then there
exist two circles A and B such that A, B, and C are pairwise perpendicular and such that
the four arcs of C formed by its crossing points with A and B each have probability 1/4
under distribution Π.

Proof. We may view A and B as arcs inside C (ignoring part of the circles) that end
perpendicular to C, and cross each other at a 90◦ angle. Figure 17(b) illustrates this. We
can consider C as a hyperbolic plane in the Poincaré disc model. With this interpretation,
A and B represent perpendicular lines in this plane, and C is the set of points at infinity.

Let X be a line that divides C into two arcs that each have probability 1/2. There
exists a (combinatorially) unique line Y perpendicular to X that also divides C into two
arcs with probability 1/2. The four arcs formed by the crossings of C with both X and Y
necessarily have probabilities 1/4 + x, 1/4 − x, 1/4 + x, 1/4 − x for some x, but it will not
necessarily be the case that x = 0. Now, we conceptually rotate X and Y , keeping them
perpendicular and maintaining invariant the property that each of X and Y divides P into
two equal-probability arcs. As we do so, x will change continuously; by the time we rotate X
into the position initially occupied by Y , x will have negated its original value. Therefore,

http://jocg.org/


JoCG 9(1), 328–355, 2018 350

Journal of Computational Geometry jocg.org

(a) (b) (c)

Figure 17: (a) A disk with a set of connection points on its boundary. (b) A placement for the
vertex in the disk that divides the connection points into four quadrants. (c) The actual connections
are not fixed, and guaranteed to not intersect.

by the intermediate value theorem, there must be some position during the rotation at
which x = 0. The circles A and B formed by extending X and Y outside the model of the
hyperbolic plane, for this position, satisfy the statement of the lemma.

Lemma 7. Let C be a circle, and P be a set of n points on C. Additionally suppose that the
four integers n1, n2, n3, n4 sum up to n and satisfy the inequalities bn/4c ≤ ni ≤ dn/4e and
bn/2c ≤ ni + n(i+1) mod 4 ≤ dn/2e. Then there exist two circles A and B disjoint from P
such that A, B, and C are pairwise perpendicular and such that A and B subdivide P into
four sets of cardinality n1, n2, n3 and n4.

Proof. For any sufficiently small number ε, let Πε be the smooth probability distribution
formed by adding a uniform distribution with total probability ε on all of C to a uniform
distribution with total probability 1−ε on the points within distance ε of P . Apply Lemma 6
to Πε, and let A and B be pairs of circles obtained in the limit as ε goes to zero. Then (if
points on the boundaries of the arcs are assigned fractionally to the two arcs they bound
as appropriate) the number of points assigned to each of the four arcs of C disjoint from A
and B is exactly n/4.

Next, rotate A and B by a small amount around their crossing point (as hyperbolic
lines), that is, preserving their perpendicularity to each other and to C. This rotation causes
them to become disjoint from all points in P . Each of the four arcs determined by the four
crossing points, and each of the two longer arcs determined by two of the four crossing points,
gains or loses only a fractional point by this rotation, so the inequalities bn/4c ≤ ni ≤ dn/4e
and bn/2c ≤ ni + n(i+1) mod 4 ≤ dn/2e (where ni denotes the size of the ith arc) remain
true after this rotation. However, there may be more than one solution to this system of
inequalities, so we analyze cases according to the value of n modulo four to determine that
the solution obtained geometrically in this way matches the values of ni given to us in the
lemma:

• If n = 0 (mod 4), the only choice for the values of ni is that all of them are equal to
n/4.

• If n = 1 (mod 4), then three of the ni must be bn/4c and one must be dn/4e. By
exchanging the roles of A and B as necessary we can ensure that the quadrant that is
supposed to contain the larger number of points is the one that actually does.
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• If n = 2 (mod 4) then the only solution to the inequalities is that two opposite quad-
rants have bn/4c points and the other two have dn/4e. Again, by exchanging A and
B if necessary we can ensure that the correct two quadrants have the larger number
of points.

• If n = 3 (mod 4), then one of the ni must be bn/4c and the remaining three must be
dn/4e. Again, by exchanging the roles of A and B as necessary we can ensure that
the quadrant that is supposed to contain the smaller number of points is the one that
actually does.

Thus, in each case the partition satisfies the requirements of the lemma.

Now, we apply the lemma to draw the neighborhood of each vertex inside a circle in
such a way that their half-edges can be connected into 2-Lombardi edges.

Lemma 8. Given a circle C and a set P of n points on C, there exists a point p in C
such that we can draw n edges from p to the points in P as circular arcs that lie completely
inside C, do not cross each other, and meet in p at 360/n◦ angles.

Proof. Draw n ports around a point with equal angles, and draw two perpendicular lines
through the point (not coinciding with any ports), and count the number of points in each
quadrant. Let these numbers be n1, . . . , n4 and find two circles A and B as in Lemma 7.
Then we place p at their intersection point inside C. Now orient the ports at p such that
each quadrant has the correct number of ports.

Within any quadrant, there is a circular arc tangent to C at the point where it is
crossed by B, and tangent to A at point p; this can be seen by using a Möbius transformation
to transform A and B into a pair of perpendicular lines, after which the desired arc has half
the radius of C. By the intermediate value theorem, there are two circular arcs from p to
any point q on the boundary arc of the quadrant that remain entirely within the quadrant
and are tangent to A and B respectively. By a second application of the intermediate value
theorem, there is a unique circular arc that connects p to each connection point on the
boundary of C, such that the outgoing direction at p matches the port, and such that the
arc remains entirely within its quadrant.

Any two arcs that belong to the same quadrant belong to two circles that cross
at p and at one more point. Whether that second crossing point is inside or outside of
the quadrant can be determined by the relative ordering of the two arcs at p and on the
boundary of the quadrant. However, since the ordering of the ports and of the connection
points is the same, none of the crossings of these circles are within the quadrant, so no two
arcs cross.

Figure 17(c) illustrates the lemma. We now have all ingredients to prove the main
result of this section.

Theorem 4. Every planar graph has a planar pointed 2-Lombardi drawing.
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Proof. We first obtain a touching-circles representation of a the given graph G using the
Koebe–Andreev–Thurston theorem. Each vertex v in G is represented by a circle C; place v
together with arcs connecting it to the set of contact points on C using Lemma 8. The arcs
meet up at the contact points to form (non-smooth) 2-Lombardi edges.

5.2 Smooth 3-Lombardi Planar Realization for Planar Graphs

Note that the 2-Lombardi planar realization of the previous section has non-smooth bends
in each edge. As we now show, every planar graph also has a smooth 3-Lombardi drawing.

It seems likely that every planar graph G has a smooth 3-Lombardi drawing formed
by perturbing each edge of a straight-line drawing of G into a curve formed by two very
small circular arcs near each endpoint of the edge, connected to each other by a straight
segment. However, the details of this construction are messy. An alternative construction
is much simpler, once Theorem 4 is available:

Theorem 5. Every planar graph has a planar smooth 3-Lombardi drawing.

Proof. Find a pointed planar 2-Lombardi drawing by Theorem 4. For each pointed bend
of the drawing formed by two circular arcs a1 and a2, replace the bend by a third circular
arc tangent to both a1 and a2, with the two points of tangency close enough to the bend to
avoid crossing any other edge.

6 Conclusions

We have proven several new results about planarity of Lombardi drawings and about classes
of graphs that can be drawn with k-Lombardi drawings rather than Lombardi drawings.
However, several problems remain open, including the following:

1. Characterize the subclass of planar graphs that are planar Lombardi. In particular, are
all outerplanar graphs planar Lombardi? What is the complexity of testing Lombardi
planarity?

2. Characterize the subclass of planar graphs that have smooth 2-Lombardi planar real-
izations.

3. Address the questions of the area and resolution needed for Lombardi drawings of
graphs.

4. Finally, it would be valuable to investigate the readability of the planar and k-Lombardi
drawings created by our algorithms, and more specifically, which of our two methods
to create smooth 3-Lombardi planar drawings yields visually more pleasing results.
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