High Performance Pattern Matching using the Automata Processor

Indranil Roy*, Ankit Srivastava*, Marziyeh Nourian®, Michela Becchi' and Srinivas Aluru*

Email:{iroy, asrivast}@gatech.edu, mndk3 @mail. missouri.edu, becchim@missouri.edu and aluru@cc.gatech.edu

*School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

TDepartment of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA

Abstract—In this paper, we study the acceleration of appli-
cations that require searching for all occurrences of thousands
of string-patterns in an input data-stream, using the Automata
Processor (AP). For this purpose, we use two applications
from two fields, namely, network security and bioinformatics.
The first application, called Fast-SNAP (for Fast-SNort using
AP), scans network data for 4312 signatures of intrusion
derived from the popular open-source Snort database. Using
the resources of a single AP board, Fast-SNAP can scan for
all these signatures at 10.3 Gbps. The second application,
called PROTOMATA (for PROTein autOMATA), looks for
all occurrences of 1308 protein motifs from the PROSITE
database in protein sequences. PROTOMATA is up to half
a million times faster than its single-CPU-based counterpart.
The techniques developed to program these applications may
be useful in the design and development of similar applications
using this new hardware accelerator.

Keywords-Finite Automata, Regular Expressions, Automata
Processor, FPGAs, Intrusion detection, Protein motifs.

I. INTRODUCTION

Acceleration of applications that find all occurrences
of thousands of patterns in an input data-stream presents
significant challenges. While GPU-based solutions struggle
with handling execution divergence [1]], custom-made ASICs
are either too specific or limited by the available memory
bandwidth [2]. Solutions using Ternary Content Addressable
Memory (TCAM) have also been developed [3]]; however,
they lack in scalability. Some of the best results have been
reported by solutions exploiting the reconfigurability and
parallelism of FPGAs. Through the concurrent execution
of multiple Nondeterministic Finite Automata (NFAs) in
hardware, significant speed-up is obtained without any state-
space explosion. However, even the largest FPGAs cannot
fit beyond a few hundred NFAs at a time. Therefore, large
rulesets have to be partitioned and handled by multiple
devices.

In this paper, we investigate the use of the Automata
Processor (AP) [4]], [S] which was specifically designed to
accelerate such applications. The AP is a reconfigurable
accelerator co-processor based on the Multiple Instruction
Single Data (MISD) architecture. It can be programmed
to execute numerous NFAs in parallel on a single data-
stream. Owing to its specific programmability, it provides
significant advantage over FPGA based solutions in terms
of the number of NFAs that can be executed concurrently
on a single device.

We have developed two applications as demonstrators.
The first application, called Fast-SNAP (for Fast-SNort
using AP), scans network data-streams for occurrences of
signatures of intrusion derived from the Snort database [6].
The second application, called PROTOMATA (for PROTein
autOMATA), inspects protein sequences for existing occur-
rences of protein motifs listed in the PROSITE database [7].
The NFAs developed for these applications illustrate simple
design techniques to extract maximum performance benefits
from the AP.

Recently, the first engineering samples of AP chips were
demonstrated at the International Supercomputing Confer-
ence (ISC-15), with our design and implementation of the
PROTOMATA application running in hardware with 40.X-
speedup over the de facto CPU based implementation. These
engineering samples suffer from a variety of software and
hardware limitations hindering overall performance. With
these limitations eradicated in the production samples to
be marketed by the end of 2016, we estimate that our
PROTOMATA application would run hundreds of thousands
of times faster than its single-CPU counterparts. Similarly,
we estimate that our Fast-SNAP algorithm will support Deep
Packet Inspection (DPI) of 4312 signatures of malicious
traffic at 10.3 Gbps. In contrast to the existing methods,
Fast-SNAP is able to handle close to the whole Snort active
ruleset. These estimates are based on accurately known run-
time features which are described in detail in this paper.
For thoroughness and a meaningful comparison, we have
included results obtained by implementing these NFAs in
FPGAs as well.

The rest of the paper is organized as follows. In Section I}
we briefly describe the programming model and run-time
environment of the AP. We then outline our optimization
strategies in Section Subsequently, Fast-SNAP and PRO-
TOMATA are detailed in Sections and [V] respectively.
Finally, the estimated speedup of these applications vis-a-
vis other state-of-the-art implementations and our FPGA
implementations are presented in Section

II. AUTOMATA PROCESSOR
A. Overview
The rules to be executed on the AP are defined as regular
expressions using the Perl Compatible Regular Expression
(PCRE) syntax or as NFAs, using a proprietary language
called Automata Network Markup Language (ANML, pro-



nounced as “animal”). These can be compiled into machine-
loadable Finite State Machines (AP-FSMs) using an AP-
compiler. Once compiled, a large number of AP-FSMs can
be loaded into the processor and executed in parallel against
a single dataflow streamed to the processor. If one or more
rules are matched in any given compute-cycle (henceforth
called a symbol-cycle), then the host CPU program is notified
with a report identifying the rule(s) and the offset in the
dataflow where the match(es) occurred.

B. Automata Design

The PCRE syntax [8] is well known to the program-
ming community. Features of PCRE supported by the AP-
compiler are listed online [9]. However, ANML is propri-
etary to the AP and therefore we provide a brief description
of the same.

1) ANML Representation: The programmable elements
in an AP chip consist of processing elements called State
Transition Elements (STEs), Counter Elements and Boolean
Elements; and a reconfigurable routing network. Represen-
tation of an NFA in ANML (henceforth called ANML-
NFA) depicts the connections of these native programmable
elements using the routing network. Although an ANML-
NFA is different from a classical state-diagram, we describe
an easy way to convert the latter to the former.

The NFA depicted by the state-diagram in Figure [Ia]
accepts any string from the alphabet {a,b} containing a
substring of length 103 symbols whose first symbol is an a
and whose last two symbols are a followed by b. Notice that
the conversion of this NFA to its equivalent DFA leads to
state-space explosion according to well-known theory [10].
The equivalent ANML-NFA is shown in Figure [Tb] Edge
transitions are modeled as STEs in ANML-NFA. An STE
is depicted using a circle with its label placed inside it.
The label of an STE can be any character-class from the
8-bit symbol space. STEs corresponding to outgoing edges
of a start state are marked as star-STEs and denoted by
triangles on top. Similarly, STEs representing incoming
edges of the final states are marked as reporting-STEs,
denoted by double-outlines. All internal states are captured
by connecting STEs representing incoming edges of the state
to all STEs representing outgoing edges of that state.

The processing of a dataflow by an ANML-NFA can be
described as follows. In every symbol-cycle, a single 8-bit
symbol from the dataflow is processed. In the first symbol-
cycle, only the start-STEs are active. If the first symbol in
the dataflow matches the label of a start-STE, then all STEs
connected to its outgoing edges are activated for the next
symbol-cycle. The processing continues in the next cycle by
processing the second symbol in the dataflow and so on. If a
reporting-STE is matched, then an output event is generated
which identifies the reporting-STE (and hence the rule it
belongs to), along with the offset in the dataflow where the
match occurred.
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(a) NFA in classical state diagram representation.
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(b) Equivalent ANML-NFA using start-of-data STEs.
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(c) Equivalent ANML-NFA using all-input-start STE.

Figure 1: Representation of automata in ANML.

2) Special Features:

All-input-start STEs: A start-STE can be classified as a
start-of-data STE or an all-input-start STE, depicted with a
solid triangle. While a start-of-data STE is active only during
the first symbol of the dataflow, an all-input-start STE is
active in every symbol-cycle. Therefore, the occurrences of
rules defined using the latter need not be anchored to the
beginning of the dataflow. For example, the ANML-NFA in
Figure [Tb] can also be represented using an all-input-start

STE as shown in Figure .

Latched STEs: The out-
put of an STE may be latched

Figure 2: Latched-STE to
identify the symbol ‘a’.

so that the STEs connected
to its outgoing routing lines
remain activated, until the end
of the dataflow, after the STE is matched for the first time.
Such an STE is denoted by a I” sign as shown in Figure [2]
Counter Elements: If a rule contains a repeated pattern,
then a counter element may be used to compress the ANML-
NFA. For example, the ANML-NFA shown in Figure|Ic|can
be defined as the compact automaton shown in Figure|3| The
counter element is represented using a rectangle with two
input lines shown as triangles along the left boundary and a
single output line on the right boundary. The first input line,
called the count-line, is denoted by the letter C, whereas the
other input line, called the reset-line, is denoted by the letter
R. The element also has a programmable 12-bit target-value
shown within a solid rectangle.
Counter elements do not process symbols themselves and
do not consume any symbol-cycles. At the beginning of the
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Figure 3: Compressed ANML-NFA using a counter-element
with pulsed-output.



first symbol-cycle, the counter-value is set to 0. It can be
incremented by 1 by activating the count-line, or reset to 0
by activating the reset-line. If the counter-value reaches the
target-value, the counter element activates its output-line. If
the counter element is programmed to generate a pulsed-
output, denoted by the L sign, then the outgoing-line is
activated only for the next symbol-cycle. However, if it is
programmed to generate a latched-output, denoted by the I
sign, then the output line is activated until either the counter
element is reset or the end of the dataflow is encountered.

Boolean Elements: The AP chip contains several 16-
input boolean elements which can perform different boolean
operations namely OR, AND, NOR, NAND, sum-of-product
and product-of-sum. Similar to counter elements, boolean
elements do not process any symbols or consume any
symbol-cycles. If, within a symbol-cycle, the input lines are
simultaneously activated in a manner such that the boolean
operation is satisfied, then the output line of the boolean
element is activated. An example of utilizing a boolean
element for combining multiple ANML-NFA is described
in Section IV-CTl

C. ANML Macro

Parts of ANML-NFA can be defined modularly as an
ANML macro. These macros not only help in creating
building blocks for larger ANML-NFA (or macros), but also
reduce the compile time of larger automata. A macro, once
compiled, obtains a partial mapping of the programmable
elements and routing lines to logical entities in the AP
chip. Therefore, compiling automata with these constituent
macros does not incur this overhead. Different instances of a
macro are identical in structure, but may differ in the labels
of the STEs. These labels are declared as parameters of
the macro which may be defined at run-time, just before
loading, with negligible overhead. The use of these features
of ANML macros are illustrated in Section [V-B1l

D. Software Development Kit (SDK)

The AP board is accompanied with an SDK which enables
the user to define, compile, debug, load and execute rules.

Design environment: The ANML-NFA may be defined
programmatically, or graphically using a workbench. The
AP-compiler can then be used to compile these designs
into loadable AP-FSMs. If the compiler is presented with
PCRE patterns, it converts them into equivalent ANML-NFA
internally before creating the AP-FSMs.

Debug environment: The execution of the native
ANML-NFA can be simulated using the workbench or an
AP-emulator against test dataflow(s). The AP-emulator may
also be used to emulate the execution of AP-FSMs. The
feedback from these simulations and emulations can be used
to correct the original ANML-NFA designs.

Run-time environment: The SDK provides API calls to
load the AP-FSMs into the AP board, stream dataflows and
handle output at run-time.

E. Programming Resources

Each AP chip contains 49,152 STEs, 768 counter ele-
ments and 2, 304 boolean elements. An AP board consists
of 48 such chips arranged into 6 physical ranks. Therefore,
a single AP board cumulatively contains 2,359,296 STEs,
36,864 counter elements and 115,344 boolean elements.
This is sufficient to accommodate very large rulesets. For
example, all the rules in Snort and PROSITE databases can
be programmed into 18 and 1 AP chips, respectively.

The chips on a board can be organized into logical cores
containing 2, 4 or 8 chips in each rank. Every logical core
is presented with a separate dataflow in parallel and each
dataflow is processed at 128 million symbols per second,
or at 1 Gbps. However, if the loaded automata contains
cascaded boolean and/or counter elements, the processing
rate gets reduced by an integer factor called the clock divisor,
which depends on the maximum number of these elements
connected in succession. The size of logical cores is there-
fore chosen to derive maximum data parallelization and
hence performance from the AP board which is connected
to the CPU through a high-speed PCle interconnect.

III. APPLICATION DESIGN GUIDELINES

1) Using Precompiled Automata: Compilation of
ANML-NFA involves complex place-and-route algorithms
which may take considerable time. Therefore, whenever
possible, the automata should be compiled beforehand.
Fortunately, for the applications discussed in this paper, the
rules are known a priori and hence the automata can be
defined and compiled in advance.

2) Batching Output Generation: The output handling rate
of the AP is much slower than the input processing rate
and may end up as the rate-constraining step. The output
handling on the AP is described as follows: The reporting
STEs in the AP chip are organized into 6 output regions.
If any STE(s) from an output region reports during a cycle,
then an output-vector for that region is stored into an output-
buffer. The length of this output-vector is independent of
the number of STE(s) that reported in that cycle. If the
buffer has space for the incoming vectors, then they can be
stored within the same clock-cycle and the input processing
continues unabated from the next cycle. On the other hand,
if the buffer is full, then the entire processing pipeline
is stalled, so that the buffer can be sufficiently emptied.
Reading out vectors from the buffer takes 16 4 40p cycles,
where 16 is the initial set-up latency for the transfer, 40
is the number of cycles required to transfer each output
vector and p is the number of output vectors generated
in that cycle. Depending on the value of p, this can be
between 56 and 256 times slower. Although the user has
no control over the placement of the reporting STEs in
these regions, applications can gain significantly by batching
multiple output generating events into a single symbol-cycle.
This will be demonstrated in Section



IV. FAST-SNAP

A. Background

Fast-SNAP is a Network Intrusion Detection (NID) tool
which scans for signatures of intrusion in network data based
on rules described in the widely used Snort database [6]]. Pat-
tern matching rules in the database define string patterns for
identifying signatures of anomalous activity in the network
data. This ruleset is updated as and when new signatures
are discovered. Currently, the ruleset contains 5,310 active
pattern matching rules, which provides a significant compu-
tational challenge for current bandwidth requirements and
frequency of cyber-attacks. Therefore, accelerated solutions
using GPUs and FPGAs have received considerable attention
in literature.

Cascarano et al. [L1] proposed the first NFA-based
pattern-matching engine using GPUs, which involved main-
taining a global NFA transition table along with vectors
for active and future states. They reported a maximum
throughput of about 1.5 Gbps for Snort534 ruleset from
Becchi et al. [12], which contains 534 regular expressions.
Zu et al. [1] noted that this approach suffered from the
problem of serialization of threads because of execution
divergence. They tried to address the problem by identifying
states that cannot be simultaneously active in the original
NFAs and creating virtual-NFAs. Using the virtual-NFAs,
they reported a maximum throughput of nearly 13 Gbps on
small datasets consisting of only 16 to 36 patterns.

FPGA based solutions rely on configuring the processor
to concurrently execute multiple NFAs in hardware. Yang
et al. [[13] used a modified version of McNaughton-Yamada
algorithm to convert PCRE-based regexes to modular NFAs
with multi-character transition labels. This allowed them
to reach a maximum throughput of 10.3 Gbps. Mitra et
al. [14] reported an interface throughput of 12.9 Gbps on
the SGI RASC RC 100 blade connected to SGI ALTIX
supercomputing system, by transforming PCRE op-codes
generated by the Snort rules compiler to VHDL code. How-
ever, the capacity of even the largest FPGAs is not enough
to accommodate large rulesets [[13], [15], requiring them to
be partitioned and handled by multiple FPGA devices.

RegX [[16] is a regular expression matching engine which
uses compressed DFAs and a variant of XFAs [17] as
underlying automata. They reported a throughput of 45
Gbps for up to 600 synthetic patterns. RegX throughput,
however, is sensitive to the complexity of the patterns and
it drops below 10 Gbps for datasets including more than
5000 complex patterns (that is, patterns including wild-
card repetitions and counting constraints). Fang et al. [[18]
proposed a programmable Unified Automata Processor, a
special purpose automata processing architecture that can
achieve throughputs up to 295 Gbps on datasets consisting
of hundreds to thousands regular expressions.

B. Snort Rules

Snort rules are written in a lightweight description lan-
guage [6]]. Each rule contains a header section and an
options section. The header section specifies the protocol,
source and destination of the network packet for which the
rule is active and the type of action to be taken if the rule
is matched. The options section consists of one or more
keywords belonging to the following categories: general,
non-payload detection, payload detection and post-detection.

General keywords provide generic information about the
rule such as an sid, a unique integer identifier for the
rule. Non-payload detection keywords describe anomalous
values for various fields in the header section of a network
packet. On the other hand, payload detection keywords
define patterns to identify in the data section of a network
packet. Post-detection keywords specify actions to be taken
if an occurrence of the signature is detected.

For example, consider the following sample rule.
alert tcp any any —-> any 80 ( sid:42;
content:"foo"; content:"bar"; distance:10;
pcre:"/foo[0-9]{10}bar"; content:"kludge";
http_header; content:"cluft"; http_header;
content:"baz"; http_header; content:"qux";
http_header; content:"abc"; http_uri; )
The header section is specified in the beginning and states
that the rule is active for zcp packets going to port 80 and
an alert should be raised if the rule is matched. The options
section is specified within parenthesis and lists multiple key-
words separated by semicolons. The first keyword specifies
that the sid of the rule is 42 while the following keywords
are of payload detection type.

Most of the patterns in the Snort rules are defined using
payload detection keywords. These keywords either specify
strings to be matched exactly (designated by the keyword
content) or PCRE (designated by the keyword pcre).
Our sample rule contains seven strings to be matched (foo,
bar, kludge, etc.) and one PCRE (namely /foo[0-9]
{10}bar). Matching of the patterns can be constrained
by two types of modifier keywords: location-modifier and
distance-modifier, both of which are described in Sec-
tion A rule is said to be triggered if all the patterns
defined in the rule are matched, along with the constraints
specified by the modifiers.

C. Methodology

1) Automata Design: 81% of the active pattern matching
rules in Snort can be efficiently implemented using the AP.
17% rules contain the keywords byte_test, byte_jump
or byte_extract. These rules extract various parameters
for the pattern matching operations from specific bytes in
the input data-stream. The implementation of these rules on
the AP would require reprogramming the device based on
the input data, which is inefficient. The remaining 2% of
the rules cannot be implemented using the AP because of



known issues with the AP-compiler, which are documented
in [9]. Checking for the rules which cannot be implemented
efficiently using the AP should be carried out using existing
methods.

For each rule defined in the Snort ruleset, we create the
corresponding ANML-NFA in four steps. These steps are de-
scribed below, using the sample rule defined in Section {IV-B

Step 1. Handling Location-Modifiers: Searching for the
occurrences of a pattern can be restricted to a particular sec-
tion of the payload through the use of the location-modifiers.
Additionally, location-modifiers can specify whether the pat-
tern should be matched in the raw data or in the normalized
data. For example, using the keyword http_uri, our
sample rule restricts the search for the pattern abc to the
normalized request URI section of the data.

In the first step, separate buckets are created corresponding
to each location-modifier defined in Snort. Then, for each
rule, patterns qualified by different location-modifiers are
placed in their respective buckets, along with the sid of
the rule. This allows us to program patterns from different
buckets into different logical cores and stream only the
data relevant to the location-modifier to the corresponding
logical core. For our sample rule, the patterns foo, bar
and /foo [0-9]{10}bar are placed in the general bucket;
kludge, cluft, baz and qux in the http_header bucket;
and abc in the http_uri bucket.

Step 2. Handling Distance-Modifiers: Distance-
modifiers specify constraints on the location of the
occurrence of a pattern in the data-stream, relative to an
anchor. This anchor could either be the beginning of the
stream or the end of the occurrence of the previous pattern.
Keywords offset and depth are used to specify minimum
and maximum distances from the beginning of the stream;
whereas, keywords distance and within define minimum
and maximum distances relative to the occurrence of the
previous pattern. For example, our sample rule contains
the modifier distance with an argument of 10. This
modifier mandates that the occurrences of the two preceding
patterns (namely foo and bar) are separated by at least
10 characters.

In the second step, patterns within each bucket are consid-
ered separately. Patterns belonging to the same rule which
are related through distance-constraints are combined into a
single PCRE using repetition quantifiers. In our sample rule,
patterns foo and bar in the general bucket are combined
to get the PCRE: foo.{10, }bar.

Step 3. Handling PCRE Back-References: In a PCRE,
back-references are used for matching the same string as
the one matched by a previous sub-pattern [8]. 6% of
the supported rules contain patterns with back-references.
However, since the match depends on the input stream, the
AP cannot handle back-references efficiently.

In the third step, back-references in patterns are substi-
tuted with the corresponding sub-patterns being referred to.

Figure 4: ANML-NFA corresponding to the http_header
bucket of the sample rule.

The language of the resulting pattern, after substitutions, is
a superset of the language of the original pattern. Therefore,
sid of the corresponding rule and the original pattern is
recorded for eliminating false positive matches during ex-
ecution stage.

Step 4. Generating Final ANML-NFA: After combining
patterns into PCRE in the second step, multiple PCREs for a
rule may be left in a bucket. All such PCREs should match
in the data-stream (in any order) for a rule to be triggered.

In the fourth and final step, PCRE(s) for a rule in a
bucket are converted into an ANML-NFA. In the case of
multiple PCREs for a rule, a boolean AND element and
latched-STEs are used. For example, there are four patterns
in the http_header bucket: kludge, cluft, baz and
qux. The combined ANML-NFA for the same is shown in
Figure [4] Notice that the classical NFA for this automaton
is fairly complex and large because it needs to capture all
the combinatorial ways in which the substrings kludge,
cluft, baz and qux may be ordered in the dataflow.

At the end of these steps, in every bucket, there is at
most one ANML-NFA per rule. Automata from each bucket
is compiled into a single AP-FSM which is then loaded into
a dedicated logical core at run-time. However, some buckets
may contain very few automata or correspond to segments
in the network packet which are very short. Automata from
such buckets are combined and a single composite AP-FSM
is generated to be loaded into one logical core.

2) Execution Stage: Since the automata are already com-
piled, the AP-FSMs are directly loaded into the AP board
and the processing of the network packets begins instanta-
neously. The host application breaks a network packet corre-
sponding to the different buckets and generates the dataflow
for each logical core on the AP board. The sid of a rule
is reported whenever the corresponding automata detects a
match in a network packet. If the reported sid corresponds to
one (or more) patterns with back references then the packet
is matched against the original pattern(s), recorded in Step
3 of the design stage, using existing methods. In case a rule
is programmed as multiple automata in different buckets,
pertaining to keywords with different location-modifiers, the
host application triggers the necessary action(s) specified in
the original Snort rule only if all the constituent automata
generate a report within the same network packet.

Even after loading all the automata for the Snort rules,



significant portions of the AP board remain unused. There-
fore, the logical cores for some buckets are replicated so
that data from different network packets can be handled in
parallel. In this way, a very high throughput DPI engine is
realized.

V. PROTOMATA
A. Background

PROSITE [7] is a large annotated ruleset of known protein
motifs. A motif is defined as a small conserved region in
a protein sequence which plays a biologically meaningful
role. A motif can be described as a string-based pattern-
motif, or as a profile-motif which uses a weight-matrix-based
method to calculate similarity. PROTOMATA only scans
for occurrences of pattern-motifs. Currently, PROSITE has
1308 pattern-motifs. The database can be searched in the
following three modes.

o Use case I: Select protein sequences(s) against all

motifs in the PROSITE database.

e Use case 2: Select motif(s) against a protein database

(UniProtKB, PDB, or user-defined).

e Use case 3: Select motif(s) against selected protein

sequence(s).

A Perl-based version of the tool called ps_scan [19] can
be downloaded for execution on a local machine. This serves
as the baseline for our comparative studies. Almost all other
solutions were developed in the early '90s and remained
untraceable in spite of our best efforts.

B. Methodology

For each motif, two pre-compilable automata are gener-
ated. Both these automata allow the search for the motif to
be selectively enabled at run-time. The first one is called
Locate-occurrence automaton which reports the location of
each occurrence of a motif in the protein sequences. The
second one is called the Global-match automaton which
generates a single report at the end of streaming of all the
protein sequences if the motif occurs in all of them. This
reduces the frequency of output-generation and increases
overall performance. If the location of occurrences of these
common motif(s) in the sequences is also desired, then a
second pass is made using the Locate-occurrence automaton
and turning on the search for the common motifs only.

For the purpose of demonstration, we chose the PROSITE
motif PS00430:
< x(10,115) — [DENF] — [ST] — [LIVMF] —
[LIVSTEQ]-V —{AGPN}—[AGP]-[STANEQPK]
The motif is expressed in PROSITE pattern notation, de-
scription of which can be found online. In this notation,
‘<’ denotes the beginning of the sequence, ‘x’ denotes
any amino acid, ‘(10,115)’ denotes a repetition between 10
and 115 times, ‘=’ denotes concatenation, ‘[...]" denotes a
character class and ‘{...}’ denotes a complementary class,
i.e. any amino acid but the ones listed within the curly
braces. Figure [5]shows the occurrence of the PROSITE motif
PS00430 in the Lissencephaly-1 homolog (D3BUNI ) protein
sequence.

Every motif is assigned a unique 2-byte PROTOMATA-
id between 016 and fef fi. This id is different from the
PROSITE-id, e.g. the PROTOMATA-id of the above motif is
018a16. A simple one-to-one mapping is maintained on the
host application to provide the necessary interface between
the user input (using PROSITE-ids) and the working of
PROTOMATA (using PROTOMATA-ids).

The dataflow consists of a preamble-sequence and the
protein sequences concatenated to each other. The preamble-
sequence contains the concatenated list of PROTOMATA-ids
of the motifs to be enabled. This list can be created based on
user input or pre-generated based on standard choices such
as disabling the search for “frequently occurring motifs”.
The end of the preamble and protein sequences is delimited
with the hexadecimal f f15 symbol. Notice that the range of
PROTOMATA-ids is chosen to ensure that this end-delimiter
is not confused with the first symbol of any PROTOMATA-
ids in the preamble-sequence. The end of the dataflow is
earmarked by the hexadecimal 016 symbol.

1) Automata Design: The notations used for the labels
of STEs in this section are as follows. An upper case letter
denotes an amino acid and the corresponding label consists
of the ASCII equivalent of the letter in both upper and lower
cases. The square brackets for the character class have been
omitted. > represents the character class containing the
ASCII equivalent of all letters representing amino acids in
both upper and lower cases. °.” represents the entire 8-bit
symbol set. All other labels denote hexadecimal numbers
used as delimiter or symbols in PROTOMATA-ids.

<X(10,115)-[DENFHSTH-LIVMFHLIVSTEQ]-V-{AGPN}-AGPSTANEQPK].

nﬂm

~ MVLTNKQKEELNGAILDYFDSSGYKLTSTEFTKETNIELDPKLKGLLEKKWTSVIRLQKKVMDLEAKVSQLEEELNNGGRGPARRGKEDALPRQPEKHVLTGHRNCINAVRFHPL FSV | VSAS

Figure 5: Occurrence of the PROSITE motif PS00430: TonB-dependent receptor proteins signature 1 (< x(10,115) —
[DENF| — [ST] — [LIVMF] — [LIVSTEQ] — V — {AGPN} — [AGP] — [STANEQPK].) in the Lissencephaly-1

homolog (D3BUNI) protein sequence.
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Figure 6: The Locate-occurrence automaton.

Locate-occurrence Automaton: The Locate-occurrence
automaton for PS00430 is shown in Figure [6] It has two
constituent macros: Enable macro and Report-on-match
macro. The Enable macro is used to allow the search for
this motif if its PROTOMATA-id, namely 018a;¢ is found
in the preamble-sequence.

STE 1 and STE 3 of the Enable macro are start-of-data
STEs, i.e. they are active for the first symbol in the dataflow.
They process the first symbol of the first PROTOMATA-id in
the preamble-sequence. Thereafter, STE 1 and STE 2 ensure
that STE 3 is active to process the first symbol of every
subsequent PROTOMATA-id in the preamble-sequence. If
STE 3 and STE 4 match the first and the second symbol
of the id respectively, then STE 5 is activated signifying
that the search for the motif is enabled. If there are more
PROTOMATA-ids in the preamble-sequence, STE 7 and STE
8 are used to keep STE 5 activated to match the delimiter
at the end of the preamble-sequence. On encountering the
same, it activates the processing elements connected to the
outgoing port ol. Notice that all instances of this macro for
different motifs differ only in the labels of STE 3 and STE
4. Hence these labels are parameterized.

The occurrence of the PS00430 is anchored to the begin-
ning of the protein sequence and hence only port ol of the
Enable macro is used. For other motifs, where this is not the
case, the output port 02 is also connected to the input port ¢2
of the Report-on-match macro. Output port 02 is driven by
STE 6 which creates an activation signal for every symbol
in the first protein sequence.

If the search for the PS00430 is enabled, then STE 9
of the Report-on-match macro is activated to process the
first symbol of the first protein sequence. The connections
between STE 9, CTR 1 and CTR 2 ensure that the output of
CTR 1 is activated only for the 11*" to the 116" symbol in
the protein sequence. The matching of the sequence using
STEs 11 — 18 is straight-forward. STE 18 creates an output
as soon as the occurrence of the motif is found in the protein
sequence. STE 10 is used to restart the processing for the
next protein sequence by reactivating STE 9 and resetting
the counter elements on encountering f fig end-delimiter.

Global-match Automaton: In some use-cases, only the
motifs present in all the input protein sequences need to be
identified. The Locate-occurrence automaton may be utilized
to handle these use-cases by first finding occurrences of all
motifs in all protein sequences and then employing a CPU-
based algorithm to identify only those motif(s) which are
common. However, the rate of output generation of this
method may be too high. To overcome this shortcoming,
the Global-match automaton was designed to generate a
single output event at the end of the dataflow identifying
the common motifs only.

The functionality of the Enable Macro in the Global-
match automaton is nearly identical to that in the Locate-
occurence automaton. The Report-on-match macro is re-
placed by the Continue-on-match macro which does not have
any reporting STEs, or STE 10 to automatically restart the
search for the motif in every protein sequence. Instead, the
last STE, namely STE 18, is connected to the input ports of
a Repeat macro through output ports 03 and o04. Notice that,
if the occurrence of the motif needs to be anchored to the
end of the sequence, the connection to port 03 is excluded.

Only if the motif occurs in the first protein sequence, STE
19 and STE 20 are activated. STE 19 keeps STE 20 activated
till the end-delimiter of the sequence is encountered. Only
on matching the end-delimiter of the sequence, STE 20
reactivates the first STE of the Continue-on-match macro
to enable the search for this motif in the next sequence.
Simultaneously, STE 6 of the Enable macro is also activated
to handle motifs whose occurrences need not be attached to
the beginning of the protein sequence.

If STE 20 is active to check for the end-delimiter of the
last sequence, then it must have been serially matched in all
the sequences. On matching this delimiter, STE 20 activates
STE 21 to generate an output on encountering the 001¢
symbol at the end of the dataflow.
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Figure 7: The Global-match automaton.



VI. RESULTS #Chips  Matching

Clock Replication

Bucket #Blocks #Chips divisor count required throughput

For both of these applications, the ANML-NFA can be on board  (in Gbps)
defined and compiled before-hand. Therefore, although the general 2,831 16 3 1 16 0.3
compilation times of both these applications have been http_uri 146 1 3 3 6 1
dh they d ¢ fi in th ti leulati http_client_body 83 1 2 2 4 1
reported here, they do no igure in the run-time calculations. hitp_header 75 1 5 2 4 1
All the CPU-based operations (compilation and execution http_uri_raw 24 1 2 2 4 1
of host-application) are executed on a quad-core Intel(R) z‘l%l‘t’:‘eral—rk?{w ; } % % ; i

. . . p_cookie

Co;."e( TM) i5-3570 CPU, running at 3.4 GHz with 8 GB of file_data 1 1 1 1 5 1
main memory. http_header_raw 1 1 1 1 2 1
The computation on the host application comprises fetch- http_method 1 1 1 1 2 1
http_stat_code 1 1 1 1 2 1

ing the input data, organizing the same into a dataflow,
streaming the dataflow to the AP board and taking actions
based on the occurrence of patterns as reported by the AP.
This is not expected to be the bottleneck for the applications
discussed in this paper and can be easily hidden by an
asynchronous multi-threaded pipeline.

A. Fast-SNAP

1) Configuration Overhead: Snort ruleset can be down-
loaded from the Snort website. Conversion of the active
rules to the equivalent ANML-NFAs, as described in Sec-
tion takes 218 seconds. Patterns for the rules are
divided into 11 buckets. Compiling ANML-NFAs for all
the buckets takes 716 minutes. If the AP-FSMs for all the
buckets are loaded together in a single logical core, they
take up 18 AP chips.

2) AP Run-time Estimation: The number of blocks and
chips required by different buckets in Fast-SNAP are tabu-
lated in Table |l} The AP-FSM for every bucket is loaded in a
separate logical core. Since the AP-FSMs for a given ruleset
will have to be loaded only once, the time required for
loading is not considered while calculating the throughput.
The output handling time is also not considered because the
application is expected to generate sparse output.

The clock divisor (d), discussed in Section for each
bucket is listed next in the table. Logical cores corresponding
to the buckets with clock divisor greater than 1 are replicated
d times for getting the total matching throughput for the
bucket to be 1 Gbps. However, even though d = 3 for the
general bucket, it isn’t replicated because replicating it 3
times would require all the resources on the AP board. The
number of times each bucket is replicated listed next in the
table, followed by the total number of chips required by
the bucket on the board and the corresponding matching
throughput. If the matching load is balanced across all the
buckets, then the total matching throughput is estimated to
be 0.3 + (10 x 1) = 10.3 Gbps. However, if the load is
unbalanced, then the throughput would be constrained by
the slowest bucket and can be as low as 0.3 Gbps.

The arrangement of logical cores requires all the 48 chips
on the AP board. However, because of the restriction that the
minimum width of a logical core should be 2 chips, 16 of
those chips are idle. The throughput would therefore improve

Table I: Matching throughput supported by different buckets
in Fast-SNAP.

if the restriction is removed, because of better utilization of
the resources on board.

B. PROTOMATA

1) Configuration Overhead: A file named prosite.dat can
be downloaded from the PROSITE website which contains
all the pattern-motifs in the database. The conversion of
these motifs from the PROSITE pattern notation to the
ANML-NFAs, described in Section takes about 1.6
seconds and compilation of these ANML-NFA takes about
20 minutes. All the Locate-occurrence automata for the
motifs can be programmed using half the resources on a
single AP chip. Similarly, all the Global-match automata
can be fit into a single AP chip.

2) AP Run-time Estimation: The run-times of the ps_scan
application and PROTOMATA are compared in Table
using all the motifs from PROSITE and various proteomes
(all proteins from a single organism) from the UniProtKB
database [20]. The Swiss-Prot section lists the manually
annotated sequences from the database, whereas TrTEMBL
contains the computationally analyzed sequences from the
database. The number of protein sequences from the pro-
teomes and their combined lengths are expressed in columns
3 and 4 respectively. The two search settings are whether
‘Greediness’ (reporting the longest possible match starting at
a location) is enabled or not; and if the search for ‘frequently
occurring motifs’ is enabled or not.

The run-times of ps_scan and PROTOMATA are listed
next. Assuming the worst case, the number of symbol-cycles
required to read out an output-vector can be calculated as
40 x min(p,6) 4+ 16, where p is the number of reporting
STEs matched in the output event. In our tests, none of
the motif occurrences happened on the same symbol-cycle.
Therefore, the time taken to read out the vector should be
56 symbol-cycles. However, we have used 100 cycles for
our calculations to account for unforeseen overheads in the
pipeline handling. The ‘Overall run-time’ has been arrived at
by taking a maximum of the input and output-handling times
and adding 50 milliseconds to account for the load-time.



Settings ps_scan PROTOMATA

Frequentl Output

Datab o ism( #Protein #Amino Greedi q rrin y #Motif Streaming handling  Overall Speed up
atabase rganism(s) sequences acids recdiness - occurring occurrences run-time time time run-time
motifs . . . .

(in ms)  (in ms) (in ms) (in ms) (approx.)
enabled enabled 65,826 213,064 11 52 102 2,088
. disabled 1,644 209,168 11 2 61 3,428
E.coli B0 I0B —  enabled 65826 216,152 I 5 02 2119
disabled 1,644 211,922 11 2 61 3,474
enabled enabled 630,396 1,238,029 89 493 543 2,279
UniProtKB/ human 20.183 11.336.473 disabled 24,332 1,217,581 89 20 139 8,759
Swiss-Prot ’ e disabled enabled 630,476 1,220,367 89 493 543 2,279
) disabled 24,385 1,196,148 89 20 139 8,605
enabled enabled 9,761,277 23,413,614 1,367 7,626 7,676 3,050
disabled 755,365 23,632,751 1,367 591 1,417 16,678
all 479406 174,899,570 disabled enabled 9,767,490 24,039,496 1,367 7,631 7,681 3,129
) disabled 761,442 23,623,676 1,367 595 1,417 16,671
enabled enabled 66,552 216,273 11 52 102 2,120
. disabled 1,655 211,773 11 2 61 3,471
E.coli 4,333 1,372,277 disabled __cnabIed 66,552 219,984 T 52 102 2,156
disabled 1,655 213,158 11 2 61 3,494
nabled enabled 1,226,823 3,290,032 174 959 1009 3,260
UniProtKB/ | 67084 22952781 enabied  —fisabled 38812 3,225,670 74 31 24 14,400
TrEMBL ’ A disabled enabled 1,226,906 3,265,080 174 959 1009 3,235
) disabled 38,865 3,205,392 174 31 224 14,309
enabled enabled 1,681,423,194 980,991,184 51,436 1,313,612 1,313,662 746
disabled 1,327,068,910 962,727,380 51,436 1,036,773 1,036,823 928
all 18,394,018 6,583,760,868 disabled enabled  1,690,088,977 962,368,859 51,436 1,320,383 1,320,433 728
disabled 1,322,376,307 942,714,285 51,436 1,033,107 1,033,157 912

Table II: Comparison of run-times from ps_scan and PROTOMATA.

The results discussed above are for a single logical core.
If the input size is large enough, it can be broken into parts
and streamed to a maximum of 24 logical cores executing
in parallel on the AP board. For example, consider the
case of all proteomes in the UniProtKB/Swiss-Prot database
being scanned in a greedy fashion with the search for
occurrences of frequently-occurring motifs disabled. With 24
logical cores, the overall run-time for this case is expected
to be 108 milliseconds, resulting in an almost 13 times
further speedup. For larger input sizes, like all proteomes
in the UniProtKB/TrEMBL database, a more linear speed-up
(almost 23 times) can be achieved, which is approximately
a 0.4 million times speedup over ps_scan.

C. Evaluation on FPGA

We compared the AP and FPGA for automata processing.
In order to provide a fair comparison of the two, we
implemented a tool-chain that takes an ANML-NFA as input
and automatically generates Verilog code for implementing
the given network. We then used Xilinx ISE Design suite
v10.1 for performing synthesis, mapping and place-and-
route of the generated HDL design onto FPGA hardware. In
our FPGA design, we used the well-known one-hot encoding
scheme proposed by Sidhu et al. [21] for implementing NFA
processing. Further, we applied the single input and multiple
outputs optimizations, described by Becchi et al. [22], to
our FPGA design. Finally, in order to handle large ANML-
NFA exceeding single FPGA capacity, we implemented
partitioning schemes that use estimates of the FPGA logic
utilization to break the input ANML-NFA into multiple sub-
networks that could then be deployed on different FPGA
devices.

We performed our experiments on XC5VFX200T Virtex5
device, comprising 30, 720 slices (resulting in 122, 880 flip-
flops and LUTs) and have tabulated the results in Table
In all the cases, we report the processing throughput of a
single input stream and the FPGA utilization. Supporting
multiple input streams with the considered implementation
requires duplicating the ANML-NFA (in some cases requir-
ing multiple FPGA devices).

Fast-SNAP network corresponding to the general bucket
requires partitioning the patterns across 5 FPGA devices.
The results for the partitions are tabulated in the first five
rows of the table. The networks for the other 10 buckets are
compiled together as a single network and the results are tab-
ulated in the sixth row of the table. Consequently, the whole
Fast-SNAP dataset can be encoded on six XC5VFX200T
devices (with a 71-96% occupancy), leading to per-stream
processing throughputs of 1.1-1.9 Gbps. Also, as shown in
the last row of the table, the whole PROTOMATA network
fits the XC5VFX200T device, requiring nearly 30% of the
LUT and flip-flop resources and 64% of slices.

s Slice Single-Stream
Dataset ALUT #8lip-fip i aion Throughput

(Gbps)

general_partl 63,835 84,172 96% 1.306
general_part2 61,448 77,567 85% 1.168
general_part3 83,598 98,287 89% 1.133
general_part4 45,883 56,580 71% 1.921
general_part5 60,635 61,193 75% 1.339
aggregated_buckets 24,735 45,750 94% 1.531
PROTOMATA 33,005 36,278 64% 1.400

Table III: Results of synthesis, mapping and place-and-route
on XC5VFX200T for Fast-SNAP and PROTOMATA.



The FPGA streaming time can be computed by divid-
ing the bit length of the input stream by the process-
ing throughput (1.4 Gbps for PROTOMATA). The stream-
ing time for the datasets in Table varies from 7.7
ms (UniPortKB/Swiss-Port, E. Coli) to 37,621 ms (Uni-
PortKB/TrEMBL, all). As in the AP implementation, we
store the motif occurrences in an output vector. This output
vector is buffered and outputted in [J] clock cycles,
where 7 is the number of reporting states in the ANML-
NFA and op is the number of output ports on the FPGA
device. The FPGA used has 960 output ports and the
PROTOMATA network has 1,308 reporting states. For the
considered datasets, this results in an output processing
overhead varying from 0.018 ms (UniPortKB/Swiss-Port,
E. Coli, frequently occurring motifs disabled) to 19, 310.9
ms (UniPortKB/TrEMBL, all, frequently occurring motif
enabled).

VII. CONCLUSION

The AP is a soon to be released reconfigurable processor
which is purpose-built to execute thousands of NFAs in
parallel. Therefore, it lends itself well to the acceleration
of applications which check for occurrences of thousands
of patterns in an input data-stream. Using this capability,
we have developed two applications, Fast-SNAP and PRO-
TOMATA, which check for patterns of intrusion detection
in network packets and biologically meaningful patterns in
protein sequences respectively. Both these applications show
improvements over existing methods and provide a glimpse
of how such applications should be programmed using
this new accelerator hardware. In addition, the techniques
described in this paper should be applicable in the design
and analysis of a wide variety of applications on the AP.
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