
Programming Techniques for the Automata Processor

Indranil Roy, Ankit Srivastava, and Srinivas Aluru
Email:iroy@gatech.edu, asrivast@gatech.edu, and aluru@cc.gatech.edu

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract—The Micron Automata Processor (AP) is a novel
co-processor accelerator that supports the parallel execution
of multiple Nondeterministic Finite Automata (NFA) pro-
grammed directly into hardware over a single data-stream. In
this paper, we present a number of programming techniques
to develop automata that execute efficiently on this processor.
First, we present general techniques to transform NFAs defined
in their classical representation to the representation used by
the AP, and optimize the same. Then, we present automata
development techniques using simple but powerful generic
building blocks. All the above techniques are generic in nature
and can be useful to application developers working on this
new upcoming co-processor architecture.

1. Introduction
The study of finite automata (or state machines) has

received considerable attention in literature. However, easy
implementation of automata, especially Nondeterministic
Finite Automata (NFA), which is both compact in repre-
sentation and expeditious in execution remains a challenge
to this day [1]. On general-purpose processors like CPUs
and GPUs, the execution of NFAs can only be simulated,
which takes considerable time. On the other hand, although
hardware implementation of NFA using reconfigurable Field
Programmable Gate Arrays (FPGAs) is both possible and
fast, two primary challenges persist. First, programming
FPGAs is often non-trivial. A programmer needs in-depth
knowledge of the underlying architecture and experience in
logic-design to use these processors correctly and efficiently.
Second, for some problems, such as network intrusion detec-
tion, the capacity of even the largest FPGAs is not enough
to accommodate all the required automata at any given
time [2], [3], [4]. This leads to higher complexity and run-
time.

The Micron Automata Processor (AP) [1] is a new
co-processor accelerator which supports the execution of
multiple NFA over a single data-stream. As this processor
is specifically designed for implementing NFA in hard-
ware, it overcomes the challenges outlined above for im-
plementing the same on general-purpose FPGAs. Firstly,
its programmable elements closely resemble the states and
transitions in the classical representation of an NFA. This
makes it easier to program for NFA designers. Secondly, its
capacity and speed of execution is superior to the largest of
FPGAs [1]. Therefore, the use of this processor to accelerate
various pattern-matching applications follows naturally.

In this paper, we present several programming tech-
niques that we designed and discovered to be useful in
solving problems using the AP. These techniques promote
modular automata designs which require minimal on-board
resources and maximize performance by taking into consid-
eration the various auxiliary capabilities of the processing
elements, routing limitations of the architecture, and config-
uration and run-time overheads.

2. Automata Processor Basics

The AP is based on the Multiple Instruction Single Data
(MISD) paradigm, where all the programmable elements
process a single data-stream, called a data-flow. In each
cycle, an 8-bit symbol from the data-flow is broadcast to
all the programmable elements, and the processing of this
symbol by all the elements is carried out in parallel.

2.1. Programmable elements

The primary programmable element in the AP is a State
Transition Element (STE). The label of an STE can be set
to any character-set from the 8-bit symbol-set. If active in a
cycle, the STE checks if the symbol broadcast in that cycle
matches its label and, if so, the elements connected to its
outgoing routing lines are activated for the next symbol-
cycle. These routing lines are part of a programmable inter-
connection network.

Apart from the STEs, the AP contains Counter and
Boolean elements which allow additional expressive capa-
bility of the automata programmable into the AP, beyond
traditional NFAs. A Counter element is used to count the
number of occurrences of a particular pattern or sub-pattern,
and activate elements connected to its outgoing lines on
reaching a programmatically set target count. The Boolean
elements are used to emulate AND, OR, NOT, NAND, NOR,
sum-of-product, and product-of-sum operations. The output
of the element is activated if the incoming lines are triggered
such that the combinational logic of the element is satisfied.

2.2. Programmable resources

The STEs on the AP-chip are hierarchically organized
into half-cores, blocks, and rows. Each chip contains two
half-cores, each half-core contains 96 blocks, each block
contains 16 rows, and each row contains 16 STEs. In a

block, 4 of the rows contain a Counter element each, and
the remaining 12 contain a Boolean element each. Cumula-
tively, a single AP-chip contains 49, 152 STEs, 768 Counter
elements, and 2, 304 Boolean elements.

The physical routing capability decreases as one goes
higher up the hierarchy. Each element in a row can be
connected to every other element in that row simultaneously
using row-routing (RR) lines. However, only 24 block-
routing (BR) lines are present to connect elements from
different rows in a block. The connectivity between elements
from different blocks is rarer still. There are no physical
connections between elements from the two half-cores of a
chip. However, this underlying routing structure is abstracted
by the compiler, presenting a flat structure to the user.

A single AP-board consists of 32 AP-chips which con-
nect to the host processor using the PCIExpress intercon-
nect. The AP-chips are arranged in 4 ranks of 8 chips each.
The chips on a rank can be grouped into logical cores of
2, 4, or 8 chips. Chips within a single logical core process
the same data-flow, and all the logical cores can process
independent data-flows in parallel.

2.3. Processing throughput

Once the automata have been programmed into the AP-
chip(s), the processing rate is defined only by the input and
output handling rate. There are no hidden bottlenecks or
non-determinism in the run-time. Each AP-chip operates at
128 MHz, processing one input symbol per cycle (hence-
forth called symbol-cycle) giving rise to an input processing
rate of 1 Gbps per chip/logical-core.

From the perspective of output handling, the chip is
divided into 6 output-regions. During a cycle, if the process-
ing elements within a region produce an output, an output-
vector is generated. This fixed-length vector identifies the
element(s) which produced the output and the current offset
in the data-flow. The output-handler tries to store this vector
in an output-buffer. If the necessary space is available, the
operation is completed within the current cycle, and the
input processing continues unabated from the next cycle.
Asynchronously, the output-vector is transmitted to the host
application so that it can be processed. However, if the
required buffer-space for the transfer is unavailable, the
entire processing pipeline is stalled till the buffer can be
sufficiently emptied. This takes 40 symbol cycles per output-
vector. Therefore, handling a single output-event may re-
quire up to 240 cycles, if all six output-regions are involved.
Additionally, a 16 cycle initial transfer latency may be
incurred per output event.

3. Automata Conversion and Optimization

NFAs to be executed on the AP are defined using
a proprietary language, called Automata Network Markup
Language (ANML, pronounced as “animal”). Henceforth,
in this paper, these NFAs are referred to as ANML-NFAs.
Since automata designers are used to defining NFAs as
state-diagrams, we propose techniques to convert the same

into equivalent ANML-NFAs. We further extend these tech-
niques to handle ϵ-transitions. Finally, we propose methods
to optimize ANML-NFAs.

3.1. Converting classical NFA to ANML-NFA

Classically, an NFA is defined using a quintuple
(Σ, S, s0, δ, F), where:

Σ is the input alphabet,
S is a finite, non-empty set of states,
s0 is the start state, s0 ∈ S,
δ is the state-transition function, δ : S × (Σ ∪ {ϵ}) →

P(S), where P(S) is the power set of S,
F is the set of accept states, F ⊆ S.
Figure 1a shows the classical state-diagram of an

NFA which accepts the strings belonging to the language:
{aab, bab, bb}.

a

ba
b

a

b

1

3

2

4

5

(a) State-diagram (b) ANML-NFA

Figure 1: Automaton to accept strings from the language
{aab, bab, bb} over the alphabet {a, b}.

For converting a state-diagram into its equivalent
ANML-NFA, we start by defining an STE for each transition
in the state-diagram and assigning it the same label. An STE
is represented using a circle with the label placed inside it.
Every STE representing an outgoing transition of the start-
state is marked as a start-STE, shown with an indicator
on the top-left corner. Similarly, STEs representing incom-
ing transitions to accept states are marked as reporting-
STEs, shown with an indicator at the bottom-right with
the symbol R placed inside it. All the states are captured
using connections between the STEs. Each STE representing
an incoming transition into a state is connected to all the
STEs representing outgoing transitions from that state. The
equivalent ANML-NFA so obtained, for the state-diagram
in Figure 1a, is shown in Figure 1b.

The technique described above does not take ϵ-
transitions into account. Handling ϵ-transitions out of a start-
state was introduced in Dlugosch et al. [1]. We now propose
a general technique to handle NFAs with ϵ-transitions, using
ϵ-closure. The ϵ-closure E(s) of state s ∈ S is defined as
the set of states which can be reached from s using only

a

᷑b

b

a

᷑ 2

3

1 4

5

(a) State-diagram (b) ANML-NFA

Figure 2: Handling ϵ-transitions using ϵ-closures.

Algorithm 1 Converting state-diagrams to ANML-NFA

1: Compute E(si), ∀si ∈ S
2: Create STE(i, j, l) where l ̸= [ϵ] and ∀sj = δ(si, l)
3: Connect all STE(i, j, l) to STE(p, q, l′) ∀sp ∈ E(sj)
4: Mark all STE(i, j, l) as start-STEs, ∀si ∈ E(s0)
5: If ∃sk ∈ E(sj), where sk ∈ F , then mark all

STE(i, j, l) as reporting-STEs

ϵ-transitions. For example, in Figure 2a, E(1) = {1, 2},
E(2) = {2}, E(4) = {4, 5}, etc. Note that s ∈ E(s).

Our algorithm for converting a state-diagram with ϵ-
transitions to an equivalent ANML-NFA is shown in Algo-
rithm 1. Its working can be described as follows. An STE
corresponding to a transition, sj = δ(si, l) where l is the
label of the transition, is represented as STE(i, j, l). In steps
1−2, the ϵ-closure of each state is computed and STEs cor-
responding to each non-ϵ-transition in the state-diagram are
drawn in the ANML-NFA. In step 3, for any two states sj
and sp, each STE corresponding to an incoming edge of sj
is connected to all the STEs representing outgoing edges of
sp, where sp ∈ E(s). In step 4, all the STEs corresponding
to any state si in the state-diagram, which is in the ϵ-cover
of the start-state, is marked as a start-STE. Finally, in step
5, any STE corresponding to an incoming transition of sj
whose ϵ-cover contains at least one final state, is marked as
a reporting-STE. The equivalent ANML-NFA for the state-
diagram in Figure 2a is shown in Figure 2b.

3.2. Optimizing ANML-NFA

3.2.1. Using all-input-start-STEs. A start-STE is qualified
as a start-of-data STE unless it is configured as an all-
input-start STE, which is active in every cycle. The number
1 placed in the indicator at the top-left denotes a start-
of-data STE. An all-input-start STE has the symbol ∞ in
the indicator instead. By identifying STEs which are active
on every symbol-cycle, representing them as all-input-start
STEs and removing all incoming lines to the same, an
ANML-NFA can be optimized. Next, all start-of-data STEs
connected to the outgoing lines of these all-input-start-STEs
can be also be converted to start-of-data. This process is
continued iteratively till no new all-input-start STEs can be
formed. Finally, all incoming edges into all-input-start STEs
are removed. Figure 3b shows the optimized ANML-NFA
shown in Figure 3a by following this method.

3.2.2. Removing redundant STEs. Any given ANML-
NFA may contain redundant STEs. For example, even
though the classical NFA shown in Figure 1a is optimal,

Σ

(a)

Σ

(b)

Figure 3: Modifying ANML-NFA using all-input-start STE.

Algorithm 2 Removing redundant STEs in ANML-NFA

1: leaves← list of all the STEs with no outgoing lines
2: Create an empty list reportingLeaves
3: for ste in leaves do
4: if reporting(ste) then
5: Add ste to reportingLeaves
6: else
7: Remove ste from leaves
8: Remove ste from ANML-NFA with all its

incoming lines
9: newLeaves← list of STEs which had only one

outgoing line connected to r
10: Extend leaves with newLeaves
11: end if
12: end for
13: for r1 in reportingLeaves do
14: for r2 in reportingLeaves do
15: if r1 ̸= r2 and label(r1) = label(r2) then
16: Merge r2 with r1
17: Remove r2 from reportingLeaves
18: end if
19: end for
20: end for
21: for r in reportingLeaves do
22: thisLevel← [r]
23: while size(thisLevel) > 0 do
24: Create an empty list nextLevel
25: for ste in thisLevel do
26: incoming ← list of STEs with outgoing

line coming into ste
27: Extend nextLevel with incoming
28: end for
29: thisLevel← nextLevel
30: for ste1 in thisLevel do
31: for ste2 in thisLevel do
32: if (ste1 ̸= ste2 and

label(ste1) = label(ste2) and
count(outgoing lines of ste1) = 1 and
count(outgoing lines of ste2) = 1) then

33: Merge ste2 with ste1
34: Remove ste2 from thisLevel
35: end if
36: end for
37: end for
38: end while
39: end for

its equivalent ANML-NFA shown in Figure 1b is not. In-
terestingly, even though the original optimized NFA has 6
edge-transitions, the corresponding optimized ANML-NFA
has only 4 STEs! This is because one STE may be used to
represent multiple state-transitions.

Algorithm 2 identifies redundant STEs which may be re-
moved or merged to produce a more optimized ANML-NFA.
It works as follows. First, an intermediate transformation is
created by removing all the dead-STEs, i.e. non-reporting-
STEs with no outgoing edges. In the lines 1 − 12, all the
dead-STEs in the unoptimized ANML-NFA are removed

(a) Intermediate transformation (b) Optimized NFA

Figure 5: Steps in obtaining an optimized ANML-NFA.

along with their incoming lines. If chains of STEs lead
to a dead-STE, new dead-STEs are formed. These STEs
are removed iteratively, if possible, in the lines 13 − 20.
Figure 5a shows the intermediate transform of the ANML-
NFA shown in Figure 1b.

Finally, in the lines 21−39, identical chains terminating
in the same reporting-STE in the intermediate transform are
merged. Starting with a reporting-STE, all the STEs con-
nected to incoming lines with identical labels are merged.
Then, the process continues iteratively with all the STEs
connected to these merged STEs, until no more STEs can
be merged in an iteration. For example, the two STEs with
label a connected to the reporting-STE in Figure 5a are
merged into a single STE in the final transformation shown
in Figure 5b.

3.2.3. Using Counter elements. A Counter element does
not consume any symbol from the data-flow and functions
as follows. It is configured to activate its outgoing line on
reaching a 12-bit target-value programmed by the user. The
counter-value is set to 0 at the beginning of the data-flow,
and incremented or reset by activating its count and reset-
lines respectively. The outgoing-line can be configured to
generate a pulsed or latched output, i.e., be active for a
single symbol-cycle or stay activated for the rest of the data-
flow or until the next reset signal, whichever occurs earlier.

The ANML-NFA shown in Figure 6 checks for sub-
strings in the data-flow wherein the sequence ab repeats
50 times followed by the sequence aa. The equivalent
ANML-NFA using a Counter element is shown in Figure 4a.
The target-value is shown inside the counter element. The
count-line and the reset-line are shown as pentagons on the
boundary, and inscribed with the characters C and R respec-
tively. The outgoing-line on the right is accompanied with
a $ or symbol, denoting a pulsed-output or a latched-
output respectively. Similarly, Figure 4b and Figure 4c show
ANML-NFAs which count for repetitions above a certain
threshold and within a range, respectively. A detailed and
generic analysis of when Counter elements may be used to

...

Figure 6: ANML-NFA to identify substrings accepted by
the regular expression (ab){50}aa.

compress NFA implemented in hardware can be found in
the works of Becchi et al. [5], [6].

4. Selective Enabling of ANML-NFA at Run-
time

Some applications require scanning the data-flow over
a user-defined selection of patterns from a fixed but large
set. Generation of instantly loadable images for all possible
combinations of patterns is intractable. On the other hand,
compilation of individual ANML-NFA for each pattern, and
then combining the images of only the selected patterns at
run-time is inefficient, both in space and time utilization.
This is because the images of the individual ANML-NFAs
are aligned to row-boundaries, leaving many rows in the
combined final image underutilized.

Our proposed technique programs the entire set at all
times, thereby requiring a single common image for all user
choices. The ANML-NFA for each pattern is designed to
enable the search for that pattern only if its id is present
in a preamble sequence streamed at the beginning of the
data-flow.

Figure 7 shows Selective-enable automaton for a single
pattern. Each constituent macro is shown as a rectangular
box with pentagonal input and output ports. The pattern
itself is encoded as a Pattern macro. For a generic succinct
representation of any pattern, a shorthand notation for the
Pattern macro showing only two STEs is adopted. The first
STE, connected to the input port i2, symbolizes all the
STEs in the Pattern macro from which the matching of
the pattern starts. We call them pseudo-start-STEs. In the
Selective-enable automaton, they are activated by an Enable
macro. The other STE represents all the reporting-STEs
in the Pattern macro. The dashed lines connecting these
two STEs denote the network of intermediate elements and
routing lines connecting the two.

The notation used for the labels of STEs is as follows.
The ‘•’ symbol represents the entire 8-bit symbol-set. Σ
represents the input alphabet for all the patterns. d represents
a 1-byte end-delimiter of the preamble sequence, where
d /∈ Σ. The id of a pattern is denoted by a 2-byte integer,
whose most significant byte cannot take the value of d. In
our implementations, we take d = 255 which allows us to

(a) Match exactly 50 repetitions.
(b) Match repetitions above the threshold of
50.

(c) Match repetitions within a range of 50
to 100.

Figure 4: Using Counter elements to generate compact ANML-NFA with repeating sub-patterns.

Pattern macro

Enable macro

Figure 7: Selective-enable automaton

assign pattern ids from a continuous range 0−65, 025. Note
that this range is greater than the number of STEs in a chip
and hence sufficient for the number of patterns that can be
fit inside a chip. p1 and p2 represent the first and the second
byte of different pattern ids.

The Enable macro works as follows. STEs 1 and 3
process the first symbol of the first id in the preamble
sequence. Thereafter, STEs 1 and 2 ensure that STE 3 is
active to process the first symbol of every subsequent id
in the preamble sequence. If STEs 3 and 4 match the id,
then STE 5 is activated signifying that the search for the
pattern is enabled. STEs 7 and 8 are used to keep STE 5
activated to match the delimiter at the end of the preamble
sequence. On encountering this delimiter, STE 5 activates
the processing elements connected through the outgoing port
o1 as well as STE 6. STE 6 then drives an activation signal
to the processing elements connected to the output port o2
for every subsequent symbol in the data-flow.

For patterns anchored to the beginning of the data-flow,
only the output port o1 of the Enable macro is connected
to the input port i2 of the Pattern macro. For patterns that
can match anywhere in the data-flow, the output port o2 is
also connected to i2. This optional connection is shown by
a dashed line in Figure 7.

5. Repetition Handling Techniques

We now discuss the handling of applications where the
data-flow is logically segmented into multiple partitions. For
a pattern to be reported as matched, it must occur in a fixed
combination of these logical partitions. A simple approach
to finding such patterns can first find all the occurrences of
the enabled pattern in the entire data-flow. Then, for each
pattern, the host-application can identify all the partitions
in which the pattern occurred, and whether these partitions
satisfy the overall criteria for matching.

However, such an approach is sub-optimal. The cumu-
lative number of occurrences for all the patterns is typically
very high, and mostly belongs to patterns which do not fulfill
the overall criteria. This leads to high output generation
frequency on the AP, potentially lowering performance. In

Pattern macro

Enable macro
Serial-repeat macro

Figure 8: All-repeat-check automaton

this section, we describe automata design techniques to
overcome this problem and generate reports for only those
patterns which satisfy the overall criteria.

5.1. Patterns Occurring in All partitions

A pattern that occurs in all the partitions of a data-flow
can be identified by its serial occurrence in every partition.
The All-repeat-check automaton shown in Figure 8 extends
the Selective-enable automaton by using the Serial-repeat
macro to implement this check. The labels of all the STEs in
this macro are parameterized. Its working can be described
as follows. The end of the preamble sequence and each
partition in the data-flow is earmarked by the delimiter d1.
The end of the data-flow is delimited using the symbol
d2, where d1, d2 /∈ Σ. The reporting capability of all the
reporting-STEs in the Pattern macro is removed and they
are instead connected to the output port o3.

On finding the id of the pattern in the preamble se-
quence, the Enable macro activates the pseudo-start-STEs
in the Pattern macro for the first partition, as described in
Section 4. On matching the pattern in the first partition,
STE 10 in the Serial-repeat macro is activated. If the oc-
currence of the pattern needs to be anchored to the end
of the partition, then STE 10 tries to match the end-of-
partition delimiter, which must follow immediately. If this is
successful, the pseudo-start-STEs in the Pattern macro are
reactivated to search for the occurrence of the pattern in the
next partition. If the pattern need not be anchored to the
beginning of the segment, port o4 is connected to port i1,
otherwise not. Similarly, if a pattern need not be anchored
to the end of every segment, then STE 9 is also activated on
matching the pattern in a partition, through the connection
between o3 and i3. STE 9 ensures that STE 10 is active
to process the end-of-partition delimiter. If a pattern is not
matched in a partition, then STE 10 is never activated in
that partition, and all the STEs in the automaton become
inactive at the end of that partition.

Due to the serial nature of the checks, if STE 10 matches
the end-delimiter of the last partition, then the pattern must
be present in all the previous partitions. In this case, STE
11 is activated to match the end-of-data-flow delimiter d2,
which follows immediately afterwards, and report an output.
Notice that the output for all the reported patterns are
generated on this last symbol of the data-flow.

5.2. Patterns Occurring in At least q partitions

In some applications, a pattern should be reported if
it occurs in a significant number of partitions defined by a
user-specified threshold. We developed the Minimum-repeat-
check automaton shown in Figure 9 to find such patterns.
It works similarly to the All-repeat-check automaton, but
replaces STE 11 in the Serial-repeat macro with a Counter
element programmed to generate an output on reaching the
threshold value of q. Also, it employs a Bypass macro to
overlook a partition wherein a pattern does not occur and

Enable macro

Quorom-count macro

Pattern macro

Bypass macro

o5

q

Figure 9: Minimum-repeat-check automaton

continue the search in the next partition. This automaton
creates a single output event for every reported pattern.

5.3. Patterns Occurring in Hierarchical Partitions

We now showcase an example where the partitions in
the data-flow are hierarchically arranged into three levels
l1, l2, and l3 (arranged in ascending order). The data-flow
consists of the sequence of l3-partitions, each containing
l2-partitions, and l2-partitions, each containing their l1-
partitions. The l1, l2, and l3-partitions are end-delimited by
the symbols d1, d2, and d3 respectively. The end of the
preamble sequence and the data-flow are earmarked by the
symbol d4, where d1, d2, d3, d4 /∈ Σ. The order and number
of l3-partitions in the data-flow, of l2-partitions within an
l3-partition, and of l1-partitions within an l2-partition, is
irrelevant. However, every l3-partition must have at least
one l2-partition, and every l2-partition must have at least
one l1-partition.

For a pattern to be matched in an l2-partition, it must
occur in all its l1-partitions. Moving higher, a pattern is said
to match an l3-partition, if it matches at least one l2-partition
contained in it. Finally, a pattern is reported if it is matched
by every l3-partition in the data-flow. This example is de-
rived from the solution presented in our previous work [7]. A
simple automaton to achieve this complex pattern-matching
is shown in Figure 10. It uses the same basic building blocks
described in the previous sections.

Enable macro and Pattern macro work identically as
described in previous sections. The only difference be-

Enable macro

Bypass macro

o5

d2d1,Σ

Serial-repeat macro

o6

o5Non-reporting
Serial-repeat macro

Pattern macro

d4 d3 d1,d2,Σ

d2 d1

Figure 10: Hierarchical-repeat-check automaton

tween the Serial-repeat macro defined earlier and the
Non-reporting Serial-repeat macro is that STE 11 is non-
reporting. Instead, it is connected to the outgoing port o5 in
the latter. Collectively, they check if the pattern is matched
in all the l1-partitions of an l2-partition. If so, STE 11 acti-
vates STE 14 to remember that at least one l2-partition has
been matched in an l3-partition. The Bypass macro ensures
that the pattern matching starts afresh at the beginning of
each l2-partition within the current l3-partition. Finally, the
Serial-repeat macro checks if all the l3-partitions have been
matched in the data-flow, and if so, generates a single output
event through STE 16 at the end of the data-flow.

6. Conclusion

The AP is a reconfigurable co-processor which is specif-
ically built for doing large-scale pattern-matching opera-
tions in hardware. This gives it unparalleled simplicity of
programming, large capacity, and very high throughput. In
this paper, we have presented a number of automata design
techniques to make effective utilization of this emerging
co-processor. These include techniques for the conversion
of NFAs from their classical state-diagram representation to
ANML-NFA, their subsequent optimization, and addition of
capability to optionally enable or disable their search at run-
time. We have also outlined techniques to define complex
pattern matching operations, wherein the patterns can occur
in combinatorial ways in logical partitions of the input data.
We expect that developers can derive performance benefits
from this upcoming processor through these automata design
and programming techniques.

Acknowledgments

This research is supported in part by the National Sci-
ence Foundation Exploratory Grant CCF-1448333.

References

[1] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,
“An efficient and scalable semiconductor architecture for parallel au-
tomata processing,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 25, no. 12, Dec 2014.

[2] M. Becchi, “Data structures, algorithms and architectures for efficient
regular expression evaluation,” Ph.D. dissertation, Washington Univer-
sity. Department of Computer Science and Engineering., 2009.

[3] H. Nakahara, T. Sasao, and M. Matsuura, “A regular expression
matching circuit based on a decomposed automaton,” in Reconfigurable
Computing: Architectures, Tools and Applications. Springer, 2011.

[4] Y.-H. Yang and V. K. Prasanna, “High-performance and compact
architecture for regular expression matching on FPGA,” Computers,
IEEE Transactions on, vol. 61, no. 7, 2012.

[5] M. Becchi and P. Crowley, “A Hybrid Finite Automaton for Practical
Deep Packet Inspection,” in Proc. of the International Conference
on emerging Networking EXperiments and Technologies (CoNEXT).
ACM, 2007.

[6] M. Becchi and P. Crowley, “Extending Finite Automata to Efficiently

Match Perl-compatible Regular Expressions,” in Proc. of the Inter-
national Conference on emerging Networking EXperiments and Tech-
nologies (CoNEXT). ACM, 2008.

[7] I. Roy and S. Aluru, “Finding Motifs in Biological Sequences Us-
ing the Micron Automata Processor,” in IEEE 28th International on
Parallel and Distributed Processing Symposium, May 2014.

	Introduction
	Automata Processor Basics
	Programmable elements
	Programmable resources
	Processing throughput

	Automata Conversion and Optimization
	Converting classical NFA to ANML-NFA
	Optimizing ANML-NFA
	Using all-input-start-STEs
	Removing redundant STEs
	Using Counter elements

	Selective Enabling of ANML-NFA at Run-time
	Repetition Handling Techniques
	Patterns Occurring in All partitions
	Patterns Occurring in At least q partitions
	Patterns Occurring in Hierarchical Partitions

	Conclusion
	References

