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Abstract—The Automata Processor was designed for string-
pattern matching. In this paper, we showcase its use to execute
integer and floating-point comparisons and apply the same to
accelerate interval stabbing queries. An interval stabbing query
determines which of the intervals in a set overlap a query
point. Such queries are often used in computational geometry,
pattern matching, database management systems, and geographic
information systems. The check for each interval is programmed
as a single automaton and multiple automata are executed in
parallel to provide significant performance gains. While handling
32-bit integers or single-precision floating-point numbers, up to
2.75 trillion comparisons can be executed per second, whereas
0.79 trillion comparisons per second can be completed for 64-bit
integers or double-precision floating-point numbers. Additionally,
our solution leaves the intervals in the set unordered; allowing
addition or deletion of an interval in constant time. This is not
possible for contemporary solutions wherein the intervals are
ordered, making the query times faster, but making the updating
of intervals complex. Our automata designs exemplify techniques
that maximize resource utilization and minimize performance
bottlenecks, which may be useful to future application developers
on this processor. Their modular design allows them to become
constituent parts of larger automata, where the numerical com-
parisons are part of the overall pattern matching operation. We
have validated the designs on hardware, and the routines to
generate the necessary automata and execute them on the AP
will be made available as software libraries shortly.

I. INTRODUCTION

An interval stabbing query identifies the intervals from a list
that overlap (or are stabbed by) a query point. These queries
find usage in a variety of applications such as computational
geometry, pattern matching, database management systems,
geographic information systems, algorithmic trading, etc. If
the intervals are overlapping, state-of-the-art algorithms order
the intervals into search-trees and use these trees to generate
the solution. However, the runtime of any algorithm is output
sensitive, i.e. its run-time complexity is at least dependent on
the number of the intervals in the output. Therefore, in the
worst case, the runtime may degrade to the order of the number
of intervals in the list. Additionally, any modification to the
list may entail significant changes to the search-tree and hence
may incur severe overheads.
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The interval stabbing problem falls under a broader category
of applications which depend on the execution of one-to-
many comparisons quickly. The more such comparisons can
be executed in parallel, the less ordered the list needs to
be, thereby allowing more expeditious modifications to the
list. Towards this end, we present an accelerated solution to
the interval stabbing problem, using the Automata Processor
(AP) [[1], [[7]. The AP is a reconfigurable coprocessor which
can be programmed to compute a large set of user-defined
Nondeterministic Finite Automata (NFAs) in parallel against
a single query data-stream. We define one automaton for each
interval in the list and execute tens of thousands of such
automata in parallel against the query points streamed to the
processor.

Our streaming solution has a variety of advantages. First,
the fine grained parallelism allows significant acceleration
over existing solutions. Second, the addition or deletion of
an interval to the unordered list is a constant time operation.
And third, the streaming solution is amenable to applications
where the query point is embedded in a stream of data. In
contemporary solutions, this query point has to be lexically
parsed out of the stream before the interval stabbing query
can be issued. However, our modular designs can be part of
other larger NFA structures which allow the parsing of the
data and the answering of the query simultaneously.

Another novelty of our solution is that this is the first
known use of the AP for multi-byte integer and floating-point
operations in their native formats. Hitherto, the processor has
been typically used for string pattern analysis [[15], [18], [21]],
[23]] or for graph analysis [16], by conversion to strings. The
solution outlined in this paper extends the scope of use of the
processor beyond its design intent. Additionally, the automata
designs employed by this paper exemplify design techniques
which maximize on-board resource utilization and minimize
various compile-time and runtime overheads. These design
techniques will be useful to anyone developing solutions on
this processor.

In this paper, we have outlined the automata designs for
4-byte and 8-byte integers, and single and double precision
IEEE floating-point numbers. However, the applicability of
this method extends to a variety of other datatypes, e.g. fixed



or variable length strings, multi-dimensional coordinate points,
and datestamps or timestamps. Notice that, in the last case,
the query point and endpoints may not be expressed in the
same format. Therefore, by expressing the endpoints as regular
expressions, the scope of acceleration on the AP is amplified.
We have also presented insights into our current research
regarding potential ways of handling these datatypes.

The rest of the paper is organized as follows. First, we
explore the state-of-the-art solutions for the interval stabbing
problem in Section Next, we provide a basic description
of the AP architecture in Section which is required to
understand our AP based solution described in Section [IIl
We present results from execution in hardware in Section
and describe the scope of future work to handle other data
formats including higher-dimensional points, variable-length
string representation of numbers, or even multiple-format
timestamps in Section |V} Finally, we conclude in Section

II. BACKGROUND
A. Interval Stabbing

Identifying intervals from a set I = {iy,4s,...,4,} which
overlap with a query point ¢ is a well studied problem in
computational science. If the intervals are non-overlapping,
then they can be sorted based on their starting points in
O(nlogn) time, the sorted list can be stored in O(n) space,
and the queries answered in O(logn) time. However, if the
intervals are arbitrarily overlapping, then the solutions are
more involved. We briefly discuss these below.

A brute-force linear search through all the intervals takes
O(n) time, which is asymptotically optimal as all the intervals
may be stabbed by q. Nonetheless, output-sensitive algorithms
have been developed which employ various data-structures to
organize the intervals and answer queries in O(log n+k) time,
where £ is the number of intervals reported by the query.

One commonly used data-structure is called interval
trees [8]-[10]], [13]]. Each node in an interval tree corresponds
to a center point. All the intervals whose ending point is
smaller than the center point are captured in the subtree rooted
at the left child of the node, whereas all the intervals whose
starting point is greater than the center point are captured in
the subtree rooted at its right child. All the intervals stabbed
by the center point are captured within the node, and sorted
separately using their starting and ending points. Creation of
this tree requires O(nlogn) time, a storage complexity of
O(n), and an expected run-time of O(logn + k) per query.

Segment trees [3]] are similar to interval trees, and identical
in performance except in the storage complexity of O(n logn).
Howeyver, the intervals within a node need not be sorted in
any order. Schmidt [19]] describes a faster data-structure to
complete preprocessing in O(n) time and a query in O(1+k)
time when the end points of the intervals are within a small
integer range, e.g. {1,2,...,0(n)}.

All the data-structures described above are generally used
in a static setting because addition and deletion of an interval
is complex with difficult to estimate run-time. Cormen et
al. [5] describe a modification to the interval trees called

augmented trees wherein the insertion or deletion of an interval
can be completed with O(h) complexity, where h is the
height of the tree. Another search-tree called priority tree [14]]
requires O(n) space and supports insertion and deletion of
intervals. However, the priority search-tree is very complex to
implement, especially in its balanced form.

Hanson uses interval skip list [|12] which is simpler to
implement than interval trees and takes an expected time of
O(log® n) to insert or delete an interval. Alstrup [2] describes
another method to represent each interval as a coordinate in an
n X n matrix, and then iteratively compute the nearest common
ancestors in a cartesian tree (as shown by Gabow [11]) in
O(1 + k) time. However, this procedure has a significant
implementation overhead.

B. Automata Processor Basics

The AP is a Multiple Instruction Single Data (MISD) device
which can propagate one symbol from the query data stream
to every processing element in the chip on every clock-cycle.
Each symbol is a 1-byte word. The multiple instructions are
user-defined state machines, realized through connecting the
processing elements using a reconfigurable routing network.
Since all the processing elements receive every data symbol
and all the routing lines can be activated in parallel, the
state machines emulate NFAs in hardware which execute in
parallel. The intrinsic parallelism in the hardware absolves the
programmer from dealing with communication delays, race
conditions, etc. and concentrate merely on the design of the
NFAs. Given the novelty of the processor, we now briefly de-
scribe the processing elements, routing matrix, programming
environment, and programmable resources of the architecture.

1) Processing Elements: The representation of automata
to be executed on the AP is slightly different from the
classical state-diagram representation. We will henceforth refer
to the former as ANML-NFA because they are defined using
Automata Network Markup Language (ANML, pronounced
as animal). The basic processing element is called a State
Transition Element (STE) which emulates an edge transition
in a traditional state-diagram. The label of the STE is the same
as the label of the edge transition and can be any character-
class from the 1-byte symbol space. Routing lines between
these STEs represent states in a classical state-diagram. All the
STEs representing incoming edges into a state are connected
to the STEs representing all the outgoing edges of that state.
All the STEs representing the outgoing edges of the start state
are represented as start-STEs and all the incoming edges of
the accept states are marked as reporting-STEs. More details
on converting classical state-diagram to ANML-NFA can be
found in [17].

The state-diagram and the ANML-NFA representation of an
NFA that accepts words act and at is shown in Fig. [Ta] and
Fig. [Ib] The start-STE is shown with an indicator on the top-
left corner with the number 1 in the indicator. The reporting-
STE has an indicator to the bottom-right with the symbol R
placed inside it.



(a) state-diagram

(b) ANML-NFA

Fig. 1: Automaton to accept words at or act

Before the processing of the data-stream can begin, the user-
defined automata have to be compiled and loaded onto the
processor. Although the compilation time is dependent on the
automata and may take anywhere between seconds to hours,
all the compiled automata can be loaded in 50 milliseconds.
Once the board has been configured, it is ready to process the
data-stream. During the first clock-cycle, only the start-STEs
are active and the first byte of the data-stream is broadcasted.
If the broadcasted symbol belongs to the character-class stored
in the label of an active STE, then all the STEs connected to its
outgoing routing lines are activated for the next clock-cycle.
In the next clock-cycle, the subsequent byte in the data-stream
is broadcasted and the process continues. If a reporting-STE is
matched in a cycle, an output is generated identifying the STE
and the offset in the data-stream where the match occurred.

2) Programming Resources: The programming elements in
the AP are arranged hierarchically as follows. 16 STEs are
arranged in a row, 16 rows in a block, 96 blocks in a half-core,
and 2 half-cores in a chip. Cumulatively, each chip has a total
of 49,152 STEs. All the STEs in a row can be simultaneously
connected to each other, while only 24 routing lines are present
to connect the STEs in different rows within a block. STEs
within a block can only be connected to the STEs belonging
to 8 adjacent blocks. There are no connections between the
STEs of the two half-cores.

The AP-compiler completely abstracts the underlying layout
while placing the processing elements in user designs to the
physical elements on the chip. Therefore, an automata designer
may design automata in a completely layout-agnostic manner.
However, experienced designers may consider the hierarchical
layout while coming up with designs which can be placed by
the compiler with higher resource utilization efficiency.

3) Processing Rate: An AP-chip functions at 128 MHz,
processing a 1-byte symbol per cycle, thus supporting an
input data streaming rate of 1 Gbps. There are 32 chips on
a single AP-board which can be organized into logical-cores
of 2, 4, or 8 chips. All the chips within a logical-core are
presented the same data-stream. Separate logical-cores can
process different data-streams concurrently. This provides the
flexibility of executing a large number of NFAs against a single
data-stream using bigger logical-cores, or smaller number
of NFAs using smaller logical-cores for a higher combined

throughput of up to 16 Gbps.

Output Handling Bottleneck: On the current generation
of the chip, the output handling may significantly slow down
the overall processing rate. Whenever reporting-STEs generate
output in a cycle, an output-vector is created and stored in
an output buffer. If the output buffer is sufficiently empty,
the vector is stored in the same clock-cycle and the input
processing continues unabated from the next cycle. Simulta-
neously, the output-vector is read out from the output buffer
to the main memory of the host processor. This may take
between 135 to 494 clock-cycles for each vector. Therefore,
if the vectors are generated too frequently, then the output
buffer fills up and the input processing has to be stalled till the
buffer has been sufficiently emptied for the new output-vector.
However, one aspect of the output handling often exploited
by many applications [15], [20], [22], [23] is that the output
processing rate is not determined by the number of outputs
generated, but the number of clock-cycles on which they
were generated. Therefore, these applications overcome this
bottleneck by batching as many outputs into a single clock-
cycle as possible.

III. METHODOLOGY

A. Automata Design

In this section, we present our automata designs for check-
ing if the interval [z,y] is overlapped by a query point z.
The points z, y, and z are numbers represented as 4-byte or
8-byte integers and floating-point numbers. The numbers can
be signed or unsigned. For the sake of brevity, our examples
only illustrate the case of closed intervals. Semi-open or open
intervals can be handled using the same automata structures
by modifying the labeling schemes slightly.

Comparison of numbers represented in binary, using the
AP, poses two major challenges. First, as discussed in Sec-
tion [[-B3] the AP processes the input one byte at a time.
Therefore, multi-byte numbers have to be compared byte-by-
byte. Second, prevalent methods of representing signed binary
numbers, such as the two’s complement form, place negative
numbers in a higher lexicographical order than their positive
counterparts.

We designed the automata as macros with parameterized
labels for the STEs. These macros can be pre-compiled and
replicated with different labels for different intervals quickly.
The macros for 4-byte and 8-byte numbers are shown in
Fig. 24 and Fig. @bl A b-byte comparator macro contains
4(b — 1) 4+ 2 parameterized STEs, which are tagged S1 to
S <4b—-1)+3 > with S < 4(b— 1)+ 1 > missing.
This tagging scheme simplifies the labeling algorithm. In our
figures, the tags are shown inside the STEs.

Although we limit our discussion to 4-byte and 8-byte
numbers here, the methodology described is generic and
extendable to any b-byte number. Our designs also assume the
little-endian representation, i.e. the bytes in the number are
streamed from the most significant byte (MSB) to the least
significant byte (LSB).
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(b) 8-byte comparator macro

Fig. 2: Macros for comparing binary representation of numbers

The automata designs work as follows. Automata for the
intervals is programmed on the AP and all the query points
are concatenated together to form a single query data-stream,

which is then streamed to the processor. Each automaton
processes one query point at a time and multiple query points
in succession. The host application uses the generated reports,
and the corresponding offset in the data-stream, to determine
which interval(s) are stabbed by each query point.

The algorithms for assigning labels to STEs for intervals
and queries of unsigned integers, signed integers, and floating-
point numbers are described below.

1) Unsigned Integers: We describe the 4-byte macro first.
The Enable Construct in the 4-byte macro simply activates
S1, 52, and S4 on every fourth byte, after the first byte in
the data-stream. This allows these STEs to process the first
byte of every query number in the stream. The rest of the
macro can be visualized as follows. Each row of STEs in
the macro processes one byte of the query number. Since all
the unsigned integers are lexicographically ordered, z can be
determined to be in the interval [z, y] by comparing the bytes
of z to the corresponding bytes of z and y from MSB to LSB.
The STEs in the leftmost column are activated successively if
the consecutive bytes of z match the corresponding bytes of
x. Similarly, the STEs in the rightmost column are activated
if the consecutive bytes of z match the bytes of y. If z is
determined to be stabbing the interval based on the current
byte being processed, then the STE in either the second from
the left or the second from the right column, or both, activate
S53. 53 is programmed to generate an output on any input byte,
signaling that z overlaps the interval. The same concepts are
used to extend the macro to handle 8-byte integers using more
rows, and making the Enable Construct activate S1, S2, and
S4 after every eight bytes.

Algorithm [T] is used to label the STEs for unsigned integer
intervals. In the following discussion, we refer to the jth most
significant byte of x, y, and z as x;, y;, and z;, respectively.
S2 is labeled for matching all the bytes in the open interval
(z1,y1) and, therefore, checks if z; is greater than x; and
less than y;. If yes, z overlaps the interval and is reported via
S3. If z1 ¢ (x1,y1), then z; must be equal to 7 or y; for
z to overlap the interval. These cases are handled by S1 and
5S4 respectively. If matched, S1 or S4 activates the connected
STEs in the second row for comparing zo.

S6 and S7 handle the case where z can be determined to
overlap (z,y) based on zy. If 1 = 21 = y3, then S6 and S7
are labeled to accept any z5 in the range (x2,ys). Otherwise,
if 1 = 21 < yi, then 25 can assume any value larger than
x2 and hence S6 is labeled as (z2, 255]. By similar logic, S7
is labeled to match the range [0, y2). If z3 is matched by S6
or S7, then z € (z,y), and S3 is activated to generate an
output in the next cycle. Otherwise, S5 and S8 handle the
case wherein zo = 9 and zo = ys respectively and activate
the STEs in the next row to process z3 in an identical fashion.
Finally, S14 and S15 are labeled based on x4, and y4 using
logic similar to the labeling of S6 and S7. However, since
they process the last byte of z, the check for equality with x4
and g4 is also rolled into these STEs.

Notice that, our macro designs may report a match in the
cycle after the last number finishes streaming, because a 4-



Algorithm 1 Labeling STEs for unsigned integer intervals

Algorithm 2 Labeling STEs for signed integer intervals

Input:
e Binary representation of unsigned integers x and y.
z; and y; denote the j'* MSB of x and y.
e Number of bytes in the representation of x and y, b.
e Labels of all the STEs in the b-byte comparator, L.
L; denotes the label of the STE tagged S <t >.
Ensure:
e <y

1: procedure LABELUNSIGNED(z, y, b, L)

2 Ly« {(z1,51)}

3 L3+ {*}

4 equal Prefiz < TRUE

5: for j=1tob—2do

6: Lag-1y41 < {z;}

7 Lagj-1)4a < {y;}

8 if z; # y; then

9: equal Prefix < FALSE

10 end if

11: if equal Pre fix == TRUE then
// xjt1 <Yjy1, since <y and
// xp ==y for all k<j.

12: Lajyo < {(%j41,95+1)}
13: Lajys < {(wj41,95+1)}
14: else

15: Lyjio + {(xj41,255]}
16: Lajis +{[0,yj+1)}

17: end if

18: end for

190 Lyp—oy+1 < {xp-1}

20: Latp—2)+4 < {yp-1}
21: if equal Prefixz == TRUE then

22: Lyw-1)+2 < {[6, y]}
23: Lyw-1)+3 < {[zv, o]}
24: else

25: L4(b—1)+2 — {[l’b, 255]}
26: Lap-1)+3 < {[0, m]}
27: end if

28: end procedure

byte number can be reported in the corresponding 5" cycle.
Therefore, the input stream should be padded at the end, with
a dummy byte, to ensure that all the intervals report overlaps
for the last query point. Since a report can not be generated
after processing just one byte of the number, this padding will
not generate any spurious output.

2) Signed Integers: We have used the two’s complement
method of signed integer representation in our labeling al-
gorithm as it is the most prevalent method. Alternate, but
similar, schemes may be adopted for other methods of repre-
sentation. In the two’s complement representation, the lower
lexicographical half of the range is reserved for all the non-
negative integers, whereas the upper half is used to store
negative integers. However, the relative ordering between any

Input:
e Two’s complement binary representation of signed
integers x and y.
z; and y; denote the 4" MSB of z and .
e Number of bytes in the representation of x and y, b.
e Labels of all the STEs in the b-byte comparator, L.
L; denotes the label of the STE tagged S < t >.
Ensure:
exr <y

1: procedure LABELSIGNED(x, ¥, b, L)
2: if (x1 <127 and y; < 127) or
(x1 > 127 and y; > 127) then

// x and y are either both

// non-negative or both negative.
3: LABELUNSIGNED(z, y, b, L)
4 else

// x is negative and ¥y is

// non-negative, since z <y.

5 Ly + {(x17255]a[07y1)}
7: for j=1tob—2do

8 Lag-1y+1 < {z5}

9: LyG—1)+4 < {y;}
10: L4j+2 — {($j+17 255]}
1: Lajis < {[0,y41)}
12: end for

13: Lyp—2y41 < {71}

14: Lyw—2)1a < {1}

15: L4(b—1)+2 — {[l’b, 255]}
16: Lyw-1)+3 < {[0,w]}
17: end if

18: end procedure

two negative integers or any two non-negative integers is
maintained. We use this property in our labeling algorithm
for signed integers described in Algorithm [2}

If the interval [z,y] is either fully negative or fully non-
negative, the comparator for the interval is labeled as unsigned
integers, using the procedure described in Algorithm [I] In the
only other case, i.e. when the interval [z,y] is part negative
and part non-negative, x must be negative and y must be
non-negative. Hence x; # yi. Recall that, if z; # y; in the
algorithm for labeling unsigned integers, the labels of the STEs
in the two columns on the left do not depend on the value of y
and the labels of the STEs in the two columns on the right do
not depend on the value of x. Therefore, we can again label all
the STEs as unsigned integers, except for S2. S2 activates S3
only if processing z; ensures that z is in the interval (x,y).
In the case of part negative and part non-negative interval,
z1 should either be in the interval (x1,255] or in the interval
[0,y1) for z to be reported.

3) Floating-Point Numbers: IEEE Standard for Floating-
Point Arithmetic (IEEE 754-2008) [4] describes the represen-



Algorithm 3 Labeling STEs for floating-point intervals

Input:
o IEEE standard binary representation of floating-point
numbers z and y.
z; and y; denote the jth MSB of x and y.
e Number of bytes in the representation of x and y, b.
e Labels of all the STEs in the b-byte comparator, L.
L; denotes the label of the STE tagged S < t >.
Ensure:
er <y

1: procedure LABELFLOATS(x, y, b, L)
2 L3+ {*}
3: if (z; <127 and y; < 127) then
4 LABELUNSIGNED(z, ¥, b, L)
5 else if (z1 > 127 and y; > 127) then
// If x and y are both negative,
// interchange z and y.
6: LABELUNSIGNED(y, x, b, L)
else
// If x and y have different
// signs, use two intervals.
L’ + duplicate(L)
: LABELFLOATS(x, —0, b, L)
10: LABELFLOATS(+0, y, b, L)
11: end if
12: end procedure

>

tation of fractional numbers in binary. In this representation,
the first bit is the sign bit, followed by a standard-defined
number of exponent and trailing significand bits. This repre-
sentation of floating-point numbers can be interpreted as sign-
magnitude representation of signed integers for the purpose of
comparison [6]. In the sign-magnitude representation, the first
bit (sign bit) is 1 for negative numbers and O for positive num-
bers. The other bits of the number determine the magnitude
of the number. As in the two’s complement representation,
the positive numbers are represented lexicographically in the
lower half of the range, and the negative numbers are shifted
to the upper half. Unlike the two’s complement representation,
the ordering of the negative numbers is reversed.

Algorithm [3] labels the STEs for floating-point intervals as
follows. If both = and y are non-negative, i.e. their sign bit
is 0, then the labeling is identical to unsigned integers. On
the other hand, if the sign bit is 1 for both, i.e. the interval
is fully negative, then = and y are interchanged since the
lexicographic ordering of negative numbers is reversed. The
STEs of the comparator are again labeled using the procedure
for labeling unsigned integers. However, if the upper bound
and the lower bound have different sign bits, then the interval
[x,y] is broken into two intervals: [z, —0] and [+0, y]|, where
—0 and +0 denote the two representations of zero with sign
bit set to 1 and 0, respectively. The two intervals can then be
programmed as discussed earlier and z is reported to overlap
the complete interval if it stabs any of the two partial intervals.

4) Reducing Output Frequency: Notice that, the macro
designs shown in Fig. [2] can generate a report in any cycle
after the first byte of a query number has streamed. Therefore,
when a query data-stream is checked against multiple intervals
programmed on the processor, a report can potentially be
generated in every cycle after the first. As discussed in
Section [[I-B3| this can lead to stalls, thus lowering the overall
processing rate. We modified our automata designs so that a
query point is reported to overlap an interval exactly after all
the bytes of the query number have streamed. This reduced
the output generation frequency to a maximum of once every
b cycles when comparing b-byte numbers.

The updated design for the 4-byte macro in Fig. [2a is
shown in Fig.[3] As described in Section [[lI-AT] in the original
automaton design, S3 is activated to generate an output in the
subsequent cycle after a query point is determined to overlap
an interval. However, for ensuring that the match is reported
exactly after processing the fourth byte, we added two STEs
in the central column and labeled them to match all the 1-
byte symbols. These STEs process the remaining bytes of the
query number, after it is determined to overlap the interval,
and activate S3 for generating a report after processing the last
byte. Further, in the original design, any matches determined
by the STEs labeled S14 or S15 are reported by S3 while
processing the first byte of the next query in the stream. For
handling this case, we made S14 and S15 reporting-STEs, and
removed the connections between these two STEs and S3.

Enable Construct

Fig. 3: Modified 4-byte macro for reducing output generation
frequency

B. Analysis

Creating and loading the automata for all the intervals re-
quires a preprocessing time of O(n) and a storage complexity
of O(n). Addition or deletion of an interval can be done
incrementally with constant overhead, a significant advantage



over contemporary methods. For each query, the presence of
overlapping intervals can be ascertained in O(1) time, but
identifying them requires O(k) time. Additionally, in many
streaming applications, the query point is embedded within
the data-stream.

Within the limits of the AP-board, the intervals, in the form
of their corresponding automata, can be stored in any arbitrary
order. If the number of intervals are larger than what can be fit
inside an AP-board, then they can be partitioned into buckets
and handled iteratively. The choice of which bucket an interval
is placed in can be made using one of the end points. The
ordering of intervals within a bucket is arbitrary, and irrelevant
to the determination of query time and storage complexity.

In spite of the theoretical advantages mentioned above,
programming a board incurs substantial latency which cannot
be amortized through the performance gained using a single
query. Therefore, the methodology described here best serves
applications where a large number of stabbing queries are
serviced with high throughput.

IV. RESULTS

The AP is in advanced stages of qualification and produc-
tion. The authors have access to pre-production prototypes
which were used to evaluate the performance reported in
this paper. To the best of our knowledge, these are the first
hardware results to be published for the processor.

We used the Python API provided with the AP-SDK for cre-
ating the macros, combining them into ANML-NFA networks,
compilation of ANML-NFA, and substitution of the labels.
The designs were validated using the simulator provided with
the AP-SDK.

Comparing the AP implementation of the interval stabbing
problem to the state-of-the-art CPU-based implementations is
unfair because of the following reasons. We are using AP-
board hardware and software which are in bring-up phase.
There are known overheads which slow down the processing
by a factor of 20 times or more than that of the production
hardware and software. The current generation of the chip
itself is fabricated using memory process technology which is
a couple of generations behind the state-of-the-art. The next
generation of the chip, currently in design, is supposed to be
orders of magnitude faster than the current chip. Finally, using
the interval stabbing problem as a generic representation of a
class of problems requiring comparison of a query element
against an unordered list of other elements is not accurate.
As discussed in Section the list in the interval stabbing
problem can be partially ordered using interval trees, segment
trees, etc. The run-time of algorithms using these structures
are output-sensitive in O(logn + k) time, where n is the
total number of intervals, and k is the number of intervals
stabbed by the query. When k is small, CPU-based algorithms
run faster, but as k grows, AP-based solutions become more
attractive. This is not the case with all the problems.

Instead, we developed a simple metric similar to the widely
adopted FLoating-point Operations Per Second (FLOPS) met-
ric. We simply calculate the number of FLOating-point Com-

parisons per Second (FLOCS). This can be calculated using
the following formula:

#automata per board X f
FLOCS =c¢ X

#cycles per query

Here, c is the number of comparisons per automaton and f
is the operating frequency. In our case, c equals 2, because
each automaton compares the query point against the limits of
the interval, and f is 128 MHz. Using this formula, TableE]
describes the FLOCS for the 4-byte and the 8-byte comparator
macros. In the best case, where output handling does not
become a bottleneck, the number of cycles per query are 4
and 8, respectively. However, this may degrade to 494 cycles
for both the automata due to the output handling bottleneck
in the worst case. The observed FLOCS on the prototype
hardware has also been reported. This is in line with the
expected behavior as the software and hardware are currently
under testing and validation phase. Multiple stages are yet to
be pipelined, and some are supposed to be parallelized. Some
of the resources are yet to be programmable, and the system
software is to be improved with respect to output handling.

#Automata #Cycles

per board  per query giga-FLOCS
Maximum theoretical throughput
4-byte macro 43008 4 2752.5
8-byte macro 24576 8 786.4

Minimum theoretical throughput (output regulated)

4-byte macro 43008 494 22.3
8-byte macro 24576 494 12.7
Observed throughput: on prototype hardware

4-byte macro 43008 -N/A- 0.95
8-byte macro 24576 -N/A- 0.55

TABLE I: Theoretical and observed FLOCS for the 4-byte and
8-byte macros

V. FUTURE RESEARCH

Handling Fixed-Length Strings: The automata designs
described in Section [[II-A] compare points denoted by numbers
represented as four or eight byte strings. The alphabet of these
strings contains all the symbols in the 1-byte symbol set.
However, the same designs can be used for comparing strings
of any fixed-length defined over any alphabet, as long as
the symbols in the alphabet can be lexicographically ordered.
The labeling algorithm can be modified accordingly for this
purpose. Such string based intervals are used to index into
entries of large databases such as those used in the fields of
bioinformatics and biometrics.

Handling Variable-Length Formats: Until now, we have
only discussed fixed-width formats, where the number of bytes
used to represent x, y, and z are identical. This enables
the design of pre-compilable automata structures which have
a fixed shape for any choice of =z and y. However, many
applications need the support for variable-width formats, e.g.
numbers represented as ASCII strings. A common automaton
structure for all values of x and y is not feasible for such



representations. As a continuation of our current work, we will
explore the design of automata for such representations using
a few constituent sub-automata structures of fixed shapes. For
example, we have identified that using only four such sub-
automata structures, the required automaton for any interval
[z,y] can be generated when dealing with decimal numbers
in the ASCII string representation. These numbers may be
signed or unsigned, whole or fractional. The compilation of
such automata is not significantly slower than the automata
described in this paper. However, the performance evaluation
of such automata is currently under research.

Handling Points in Higher Dimensions: In this paper,
we have demonstrated handling stabbing queries in one-
dimensional space. However this methodology can be ex-
tended to handling higher dimensions points. For example,
in the case of two-dimensional space, the region covered by
an axis-parallel rectangle can be represented by two endpoints
r1,To and y1, Y2, where x1 < yp and z2 < ys. A query point
21, 29 lies within this rectangle if and only if 1 < z; < y; and
x9 < 29 < yo; 1.€. by executing two interval queries in series,
and declaring a positive result only if both the queries are
satisfied. In fact, generating a unified automaton to do so by
concatenating two instances of the automaton described above,
one each for each dimension, is trivial. However, handling
more generalized cases, e.g. rectangles without axis-parallel
edges, any 2-dimensional polygon, any n-dimensional hyper-
rectangles, and finally any n-dimensional polygon is a subject
of ongoing research.

Handling Multiple Formats: In some applications, the
data may be represented using multiple formats. For example,
a datestamp could be represented as mm/dd/yy, mm/dd/yyyy,
mm-dd-yyyy, etc. We are currently investigating automata
structures which allow the representation of points in one of
the many permissible formats. In fact, the performance benefits
of using this architecture is amplified in such cases as the
conversion of the points to a specific format can be avoided.

VI. CONCLUSION

In this paper, we have provided a streaming solution to the
interval stabbing problem using the Automata Processor. To
the best of our knowledge, this is the first use of the processor
to execute numerical comparisons on multi-byte integers and
single and double precision IEEE floating-point numbers. Our
implementation is based on defining one automaton for every
interval in the list, and executing tens of thousands of such
automata in parallel using the resources of a single AP-board.
Not only does this provide significant performance benefits
in answering the stabbing queries, but also leaves the interval
list unordered. This allows expeditious modifications to the
list, which is required by many applications. Additionally, the
principles of these solutions can be extended to other datatypes
like fixed and variable length strings, multidimensional coor-
dinates, datestamps, timestamps, etc. The automata designs
presented in this paper are modular and extendable to larger
composite automata. These designs exemplify techniques to
overcome significant resource and performance bottlenecks

which may be useful to prospective application designers
working on this processor.
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