
Interval Stabbing on the Automata Processor

Indranil Roya, Ankit Srivastavaa,∗, Matt Grimmb, Srinivas Alurua

aSchool of Computational Science and Engineering, Georgia Institute of Technology,
Atlanta, Georgia 30332

bMicron Technology, Inc., 8000 S Federal Way, Boise, ID 83716

Abstract

The Automata Processor (AP) was designed for string-pattern matching. In
this paper, we showcase its use to execute integer and floating-point comparisons
and apply the same to accelerate interval stabbing queries. An interval stabbing
query determines which of the intervals in a set overlap a query point. Such
queries are often used in computational geometry, pattern matching, database
management systems, and geographic information systems. The check for each
interval is programmed as a single automaton and multiple automata are exe-
cuted in parallel to provide significant performance gains. While handling 32-bit
integers or single-precision floating-point numbers, up to 2.75 trillion compar-
isons can be executed per second, whereas 0.79 trillion comparisons per second
can be completed for 64-bit integers or double-precision floating-point numbers.
Additionally, our solution leaves the intervals in the set unordered allowing
addition or deletion of an interval in constant time. This is not possible for
contemporary solutions wherein the intervals are ordered, making update of in-
tervals complex. Our automata designs are modular allowing them to become
constituent parts of larger automata, where the numerical comparisons are part
of the overall pattern matching operation. We have validated the designs on
the hardware, and the routines to generate the necessary automata and execute
them on the AP will be made available as software libraries shortly.

Keywords: finite automata, interval stabbing, Automata Processor

1. Introduction

An interval stabbing query identifies the intervals from a list that overlap
(or are stabbed by) a query point. These queries find usage in a variety of
applications such as computational geometry, pattern matching, database man-
agement systems, geographic information systems, algorithmic trading, etc. If
the intervals are overlapping, state-of-the-art algorithms order the intervals into

∗Corresponding author.
Email addresses: iroy@gatech.edu (Indranil Roy), asrivast@gatech.edu (Ankit

Srivastava), mgrimm@micron.com (Matt Grimm), aluru@cc.gatech.edu (Srinivas Aluru)

Preprint submitted to Journal of Parallel and Distributed Computing November 14, 2019



search-trees and use these trees to generate the solution. However, the runtime
of any algorithm is output-sensitive, i.e. its run-time complexity is at least de-
pendent on the number of the intervals in the output. Therefore, in the worst
case, the runtime may degrade to the order of the number of intervals in the
list. Additionally, any modifications to the list may entail significant changes to
the search-tree and may incur severe overheads.

The interval stabbing problem falls under a broader category of applications
which depend on the execution of one-to-many comparisons quickly. The more
such comparisons can be executed in parallel, the less ordered the list needs to
be, thereby allowing more expeditious modifications to the list. Towards this
end, we present an accelerated solution to the interval stabbing problem, using
the Automata Processor (AP) [1, 2]. The AP is a reconfigurable coprocessor
which can be programmed to compute a large set of user-defined Nondetermin-
istic Finite Automata (NFAs) in parallel against a single query data-stream. We
define one automaton for each interval in the list and execute tens of thousands
of such automata in parallel against the query points streamed to the processor.

Our streaming solution has a variety of advantages. First, the fine grained
parallelism allows significant acceleration over existing solutions. Second, the
addition or deletion of an interval to the unordered list is a constant time op-
eration. And third, the streaming solution is amenable to applications where
the query point is embedded in a stream of data. In contemporary solutions,
this query point has to be lexically parsed out of the stream before the interval
stabbing query can be issued. Our modular designs, on the other hand, can be
part of other larger NFA structures which allow the parsing of the data and the
answering of the query simultaneously.

Another novelty of our solution is that this is the first known use of the
AP for multi-byte integer and floating-point operations in their native formats.
Hitherto, the processor has been typically used for string-pattern analysis [3, 4,
5, 6] or for graph analysis [7], by conversion to strings. The solution outlined
in this paper extends the scope of use of the processor beyond its design intent.
Additionally, the automata designs employed by this paper exemplify design
techniques which maximize on-board resource utilization and minimize various
compile-time and runtime overheads. These design techniques will be useful to
anyone developing solutions on this processor.

In this paper, we begin by outlining the automata designs for fixed-width
integers and IEEE floating-point numbers followed by the designs for variable-
length numeric-strings. However, the applicability of the method extends to a
variety of other datatypes, e.g. multi-dimensional coordinate points, and dat-
estamps or timestamps. Notice that, in the last case, the query point and
endpoints may be expressed in different formats. Therefore, by expressing the
endpoints as regular expressions, the scope of acceleration on the AP is ampli-
fied.

The rest of the paper is organized as follows. First, we explore the state-
of-the-art solutions for the interval stabbing problem in Section 2.1. Next,
we provide a basic description of the AP architecture in Section 2.2, which
is required to understand our AP based solution described in Section 3. We

2



present results from execution in hardware in Section 4 and describe the scope
of future work to handle other data formats including higher-dimensional points,
and multiple-format timestamps in Section 5. Finally, we conclude in Section 6.

2. Background

2.1. Interval Stabbing

Identifying the intervals from a set of intervals I = {i1, i2, . . . , in} which
overlap with a query point q is a well studied problem in computational sci-
ence. If the intervals are non-overlapping, then they can be sorted based on
their starting points in O(n log n) time, the sorted list can be stored in O(n)
space, and the queries answered in O(log n) time. However, if the intervals are
arbitrarily overlapping, then the solutions are more involved. We briefly discuss
these below.

A brute-force linear search through all the intervals takes O(n) time, which
is asymptotically optimal as all the intervals may be stabbed by q. Nonethe-
less, algorithms have been developed which employ various data-structures to
organize the intervals and answer queries in O(log n + k) or O(1 + k) time,
where k is the number of intervals reported by the query. These query times are
output-sensitive when the number of outputs are Ω(log n) or Ω(1), respectively.

One commonly used data-structure is called interval trees [8, 9, 10, 11]. Each
node in an interval tree corresponds to a center point. All the intervals whose
ending point is smaller than the center point are captured in the subtree rooted
at the left child of the node, whereas all the intervals whose starting point is
greater than the center point are captured in the subtree rooted at its right
child. All the intervals stabbed by the center point are captured within the
node, and sorted separately using their starting and ending points. Creation of
this tree requires O(n log n) time, a storage complexity of O(n), and an expected
run-time of O(log n+ k) per query.

Segment trees [12] are similar to the interval trees and identical in per-
formance, except in the storage complexity which is O(n log n) for segment
trees. However, the intervals within a node need not be sorted in any order.
Schmidt [13] describes a faster data-structure to complete preprocessing in O(n)
time and a query in O(1+k) time when the endpoints of the intervals are within
a small integer range, e.g. {1, 2, . . . , O(n)}.

All the data-structures described above are generally used in a static setting
because addition and deletion of intervals is complex with difficult to estimate
run-time. Cormen et al. [14] describe a modification to the interval trees called
augmented trees wherein the insertion or deletion of an interval can be completed
with O(h) complexity, where h is the height of the tree. Another search-tree
called priority tree [15] requires O(n) space and supports insertion and deletion
of intervals. However, the priority search-tree is very complex to implement,
especially in its balanced form.

Hanson uses interval skip list [16] which is simpler to implement than the
interval trees and takes an expected time of O(log2 n) to insert or delete an

3



interval. Alstrup [17] describes another method to represent each interval as
a coordinate in an n × n matrix, and then iteratively compute the nearest
common ancestors in a cartesian tree (as shown by Gabow [18]) in O(1 + k)
time. However, this procedure has a significant implementation overhead.

Parallel solutions for variations of the interval stabbing problem have been
explored using multiple threads on CPUs and GPUs. Chovanec & Krátkỳ [19]
used Streaming SIMD Extensions (SSE) for performing multiple comparisons
with the same query point in parallel. The authors then ported their solution
for execution on GPUs [20] but didn’t observe significant gains over the CPU
solution because of the cost of CPU-GPU data transfer and thread-divergence
on GPUs due to irregular tree traversals. Kim et al. [21] and Maramreddy &
Kothapalli [22] tried to minimize the thread-divergence by proposing methods
for transforming irregular tree traversals into sequential access with varying
degree of success and is still an area of active research. Further, the solutions
described above use parallel implementations of the data-structures discussed
earlier which, similar to their sequential counterparts, have a significant cost
attached to any modifications in the set of intervals.

2.2. Automata Processor Basics

The AP is a Multiple Instruction Single Data (MISD) device which can
propagate one symbol from the query data stream to every processing element
in the chip in every clock-cycle. Each symbol is a 1-byte word. The multi-
ple instructions are user-defined state machines, realized through connecting
the processing elements using a reconfigurable routing network. Since all the
processing elements receive every data symbol and all the routing lines can
be activated in parallel, the state machines emulate NFAs in hardware which
execute in parallel. The intrinsic parallelism in the hardware absolves the pro-
grammer from dealing with communication delays, race conditions, etc. and
concentrate merely on the design of NFAs. Given the novelty of the processor,
we now briefly describe the processing elements, routing matrix, programming
environment, and programmable resources of the architecture.

2.2.1. Processing Elements

The representation of the automata to be executed on the AP is slightly dif-
ferent from the classical state-diagram representation. We will henceforth refer
to the former as ANML-NFA because they are defined using Automata Net-
work Markup Language (ANML, pronounced as animal). The basic processing
element is called a State Transition Element (STE) which emulates an edge
transition in a traditional state-diagram. The label of the STE is the same as
the label of the edge transition and can be any character-class from the 1-byte
symbol space. Routing lines between these STEs represent states in a classi-
cal state-diagram. All the STEs representing the incoming edges into a state
are connected to the STEs representing all the outgoing edges of that state.
All the STEs representing the outgoing edges of the start state are represented
as start-STE s and all the incoming edges of the accept states are marked as

4



reporting-STE s. More details on converting classical NFA to ANML-NFA can
be found in [23].

c ta

a

(a) state-diagram (b) ANML-NFA

Figure 1: Automaton to accept words at or act

The state-diagram and the ANML-NFA representation of an NFA that ac-
cepts words act and at is shown in Fig. 1a and Fig. 1b. The start-STE is
shown with an indicator to the top-left with the number 1 in the indicator. The
reporting-STE has an indicator to the bottom-right with the symbol R placed
inside it.

At the beginning of processing a data-stream, only the start-STEs are active
and the first byte of the data-stream is broadcasted. If the broadcasted symbol
belongs to the character-class stored in the label of an active STE, then all
the STEs connected to its outgoing routing lines are activated for the next
clock-cycle. In the next clock-cycle, the subsequent byte in the data-stream is
broadcasted and the process continues. If a reporting-STE is matched in a cycle,
an output is generated identifying the STE and the offset in the data-stream
where the match occurred.

2.2.2. Programming Resources

The programming elements in the AP are arranged hierarchically as follows.
16 STEs are arranged in a row, 16 rows in a block, 96 blocks in a half-core,
and 2 half-cores in a chip. Cumulatively, each chip has a total of 49, 152 STEs.
All the STEs in a row can be simultaneously connected to each other, while
only 24 routing lines are present to connect the STEs in different rows within a
block. The STEs within a block can only be connected to the STEs belonging
to 8 adjacent blocks. There are no connections between the STEs of the two
half-cores.

The AP-compiler completely abstracts the underlying layout while placing
the processing elements in the user designs to the physical elements on the chip.
Therefore, an automata designer may design automata in a completely layout-
agnostic manner. However, experienced designers may consider the hierarchical
layout while coming up with designs which can be placed by the compiler with
higher resource utilization efficiency.

2.2.3. Processing Rate

An AP-chip functions at 128 MHz, processing a 1-byte symbol per clock-
cycle, thus supporting an input data streaming rate of 1 Gbps. There are 32
chips on a single AP-board which can be organized into logical-cores of 2, 4,

5



or 8 chips. All the chips within a logical-core are presented the same data-
stream. Separate logical-cores can process different data-streams concurrently.
This provides the flexibility of executing a large number of NFAs against a single
data-stream using bigger logical-cores, or smaller number of NFAs using smaller
logical-cores for a higher combined throughput of up to 16 Gbps.

Output Handling Bottleneck. On the current generation of the chip, the output
handling may significantly slow down the overall processing rate. Whenever
reporting-STEs generate output in a cycle, an output-vector is created and
stored in an output buffer. If the output buffer is sufficiently empty, the vector
is stored in the same clock-cycle and the input processing continues unabated
from the next cycle. Simultaneously, the output-vector is read out from the
output buffer to the main memory of the host processor. This may take between
135 to 494 clock-cycles for each vector. Therefore, if the vectors are generated
too frequently, then the output buffer fills up and the input processing has
to be stalled till the buffer has been sufficiently emptied for the new output-
vector. However, one aspect of the output handling often exploited by many
applications [5, 4, 24, 25] is that the output processing rate is not determined
by the number of outputs generated, but the number of clock-cycles on which
they were generated. Therefore, these applications overcome this bottleneck by
batching as many outputs into a single clock-cycle as possible.

2.2.4. Programming Environment

Executing a program on the AP consists of two stages: 1) configuring the
processor, and 2) streaming the data to the processor and handling the generated
output. The tools to design, evaluate, and compile the user-defined ANML-NFA
are part of an AP Software Development Kit (AP-SDK).

In compiling ANML-NFAs, the AP-compiler uses a proprietary algorithm
which is hidden from the user. Nevertheless, the place-and-route problem solved
by the AP-compiler includes efficiently placing the programmable elements and
connections in the user-defined automaton to hardware elements and connec-
tions on the board. This is similar to the segmented channel routing on FP-
GAs [26], known to be NP-hard. The widely variable compilation times for
different input ANML-NFAs, between seconds to hours, reflects the same. How-
ever, the existence of compiler flags for different levels of optimizations indicates
the presence of approximate algorithms. Further, the compiler allows for user-
level optimizations when different ANML-NFAs are identical in their structure
and differ only in the labels of the STEs. Such an automaton structure can be
compiled as a macro with the STE labels parameterized. Once the macro has
been compiled, replicating it with different labels takes in the order of a few
milliseconds.

After the ANML-NFAs have been compiled, loading them into the AP-chips
requires about 50 milliseconds for the entire board. A run-time environment can
then be used to stream the queries to the AP-board and process the output.
The run-time environment is implemented as a set of C API calls which have

6



bindings for other high level programming languages like Python and Java. The
loader and the run-time environment is also part of the AP-SDK.

3. Methodology

For different applications, the query point and the endpoints of the intervals
can be represented in various formats. In this paper, we look at the follow-
ing formats: 4-byte and 8-byte integer formats, single and double precision
IEEE floating-point numbers, and numeric-strings wherein the digits, sign, and
decimal point in the number are represented using their ASCII-equivalent char-
acters. Notice that, while the numbers represented in the integer and floating-
point formats have a fixed length, the numbers represented as numeric-strings
do not. For example, the numeric-string representation of −45 and 3.89 re-
quires three and four bytes, respectively. Therefore, the automata designs for
handling numbers in the integer and floating-point representations are similar
to each other while differing from those designed to handle numeric-strings.

In this section, we present our automata designs for checking if the interval
[x, y] is overlapped by a query point z. The points x, y, and z are numbers which
can be signed or unsigned, whole or real. For the sake of brevity, our examples
only illustrate the case of closed intervals. Semi-open or open intervals can be
handled using the same automata structures by modifying the labeling schemes
slightly.

The automata designs presented in this section work as follows. Automata
for the intervals are loaded into the AP and all the query points are concatenated
together to form a single query data-stream. As the data-stream is processed by
the AP, all the loaded automata concurrently process one query point at a time
and multiple query points in succession. If a query point stabs any intervals,
the corresponding automata ids and the offset in the data-stream where the
matches occurred are reported to the host processor. Based on these automata
ids and the reported offset, the intervals and the corresponding query point are
looked-up on the host processor.

3.1. Handling Fixed-Width Format

Comparing multi-byte binary number representations using the AP poses
two major challenges. First, the endianness of the representation must be taken
into account while designing the automata and the state-information stored
till all the bytes in the representation have been processed. Second, prevalent
methods of representing signed binary numbers, such as the two’s complement
representation, place negative numbers in a higher lexicographical order than
their positive counterparts.

We designed the automata as macros, where the labels of the STEs are
parameterized. These macros can be pre-compiled and replicated with different
labels for multiple intervals quickly. The macros for 4-byte and 8-byte numbers
are shown in Fig. 2a and Fig. 2b. A b-byte comparator macro contains 4(b−1)+2
parameterized STEs, which are tagged from S1 to S < 4(b − 1) + 3 >, with

7



Enable Construct

(a) 4-byte comparator macro

Enable Construct

(b) 8-byte comparator macro

Figure 2: Macros for comparing binary representation of numbers

S < 4(b−1)+1 >missing. This tagging scheme simplifies the labeling algorithm.
In our figures, the tags are shown inside the STEs.

Although we limit our discussion to 4-byte and 8-byte numbers, the method-
ology described here is generic and applicable to handling any b-byte number.
Our designs are tailored to handle the little-endian representation, i.e. a num-
ber is streamed from its Most Significant Byte (MSB) to its Least Significant
Byte (LSB). Simple alterations to this automata design enables reversing the
order of checking the bytes and hence handling the big-endian representation.
However, for the sake of brevity, we have excluded a detailed explanation of the
same from this paper.

The algorithms for assigning labels to the STEs for intervals and queries
of unsigned integers, signed integers, and floating-point numbers are described
below.

8



3.1.1. Unsigned Integers

We provide an overview of the 4-byte macro, shown in Fig. 2a, first. The
processing starts with the STEs S1, S2, and S4 being active to process the first
byte in the data-stream. Thereafter, the Enable Construct activates them again
on every fourth byte in the data-stream. This ensures that these STEs process
the first byte of every query number in the data-stream. The rest of the macro
can be visualized as follows. Each row of STEs in the macro processes the same
byte of a query number. Since all the unsigned integers are lexicographically
ordered, z can be determined to be in the interval [x, y] by comparing the bytes
of z to the corresponding bytes of x and y from MSB to LSB. The STEs in the
leftmost column are activated successively if the consecutive bytes of z match
the corresponding bytes of x. Similarly, the STEs in the rightmost column are
activated if the consecutive bytes of z match the bytes of y. If z is determined
to be stabbing the interval based on the current byte being processed, then the
STE in either the second from the left or the second from the right column, or
both, activate S3. S3 is programmed to generate an output on any input byte,
signaling that z overlaps the interval. The same concepts are used to extend
the macro to handle 8-byte integers using more rows, and making the Enable
Construct activate S1, S2, and S4 after every eight bytes.

Algorithm 1 is used to label the STEs for unsigned integer intervals. In the
following discussion, we refer to the jth most significant byte of x, y, and z as
xj , yj , and zj . S2 is labeled for matching all the bytes in the open interval
(x1, y1) and, therefore, checks if z1 is greater than x1 and less than y1. If the
condition is satisfied, then z overlaps the interval and is reported via S3. On the
other hand, if z1 /∈ (x1, y1), then z1 must be equal to x1 or y1 for z to overlap
the interval. These cases are handled by S1 and S4, respectively. If matched,
S1 or S4 activate the connected STEs in the second row for comparing z2.

S6 and S7 handle the case where z can be determined to overlap (x, y) based
on z2. If x1 = z1 = y1, then S6 and S7 are labeled to accept any z2 in the
range (x2, y2). Otherwise, if x1 = z1 < y1, then z2 can assume any value larger
than x2 and hence S6 is labeled as (x2, 255]. By a similar logic, S7 is labeled to
match the range [0, y2). If z2 is matched by S6 or S7, then z ∈ (x, y), and S3 is
activated to generate an output in the next cycle. Otherwise, S5 and S8 handle
the case wherein z2 = x2 and z2 = y2, respectively, and activate the STEs in the
next row to process z3 in an identical fashion. Finally, S14 and S15 are labeled
based on x4 and y4 using a logic similar to the one used for the labeling of S6
and S7. However, since they process the last byte of z, the check for equality
with x4 and y4 is also rolled into these STEs1.

Notice that, this automata design requires one extra byte after the streaming
of the last byte (LSB) of z to generate the report when S3 is activated by S14
or S15. For every query point in the stream, except for the last, the first byte of
the subsequent query point allows S3 to report an overlap. However, the input

1If semi-open or open intervals are to be handled, the equality with x4 or y4, or both,
could be left out accordingly.

9



Algorithm 1 Labeling STEs for unsigned integer intervals

Input:
• Binary representation of unsigned integers x and y.
xj and yj denote the jth MSB of x and y.
• Number of bytes in the representation of x and y, b.
• Labels of all the STEs in the b-byte comparator, L.
Lt denotes the label of the STE tagged S < t >.

Ensure:
• x ≤ y

1: procedure LabelUnsigned(x, y, b, L)
2: L2 ← {(x1, y1)}
3: L3 ← {∗}
4: equalPrefix← TRUE
5: for j = 1 to b− 2 do
6: L4(j−1)+1 ← {xj}
7: L4(j−1)+4 ← {yj}
8: if xj ̸= yj then
9: equalPrefix← FALSE

10: end if
11: if equalPrefix == TRUE then

// x and y are either both

// non-negative or both negative.

12: L4j+2 ← {(xj+1, yj+1)}
13: L4j+3 ← {(xj+1, yj+1)}
14: else
15: L4j+2 ← {(xj+1, 255]}
16: L4j+3 ← {[0, yj+1)}
17: end if
18: end for
19: L4(b−2)+1 ← {xb−1}
20: L4(b−2)+4 ← {yb−1}
21: if equalPrefix == TRUE then
22: L4(b−1)+2 ← {[xb, yb]}
23: L4(b−1)+3 ← {[xb, yb]}
24: else
25: L4(b−1)+2 ← {[xb, 255]}
26: L4(b−1)+3 ← {[0, yb]}
27: end if
28: end procedure

stream needs to be padded at the end with a dummy byte to ensure that all the
intervals stabbed by the last query point have a chance to report the overlap
to the host processor. It must also be noted that the addition of this extra

10



byte does not generate any spurious output. This is because although all the
automata interpret this extra byte as the first byte of the next query element,
none of them have a chance to generate a report after processing only one byte.

3.1.2. Signed Integers

In this section, we describe a technique to handle signed integers represented
in the two’s complement representation. In this representation, the lower lexico-
graphical half of the range is reserved for all the non-negative integers, whereas
the upper half is for negative integers. However, the relative ordering between
any two negative integers or any two non-negative integers is maintained. We
use this property in our labeling algorithm for signed integers described in Al-
gorithm 2.

Algorithm 2 Labeling STEs for signed integer intervals

Input:
• Two’s complement binary representation of signed integers x and y.
xj and yj denote the jth MSB of x and y.
• Number of bytes in the representation of x and y, b.
• Labels of all the STEs in the b-byte comparator, L.
Lt denotes the label of the STE tagged S < t >.

Ensure:
• x ≤ y

1: procedure LabelSigned(x, y, b, L)
2: if (x1 ≤ 127 and y1 ≤ 127) or

(x1 > 127 and y1 > 127) then
// x ≥ 0 and y ≥ 0 or x < 0 and y < 0.

3: LabelUnsigned(x, y, b, L)
4: else

// x < 0 and y ≥ 0, since x ≤ y.
5: L2 ← {(x1, 255], [0, y1)}
6: L3 ← {∗}
7: for j = 1 to b− 2 do
8: L4(j−1)+1 ← {xj}
9: L4(j−1)+4 ← {yj}

10: L4j+2 ← {(xj+1, 255]}
11: L4j+3 ← {[0, yj+1)}
12: end for
13: L4(b−2)+1 ← {xb−1}
14: L4(b−2)+4 ← {yb−1}
15: L4(b−1)+2 ← {[xb, 255]}
16: L4(b−1)+3 ← {[0, yb]}
17: end if
18: end procedure

11



If the interval [x, y] is either fully negative or fully non-negative, the com-
parator for the interval is labeled as unsigned integers, using the procedure
described in Algorithm 1. In the only other case, i.e. when the interval [x, y]
is part negative and part non-negative, x must be negative and y must be non-
negative. Hence x1 ̸= y1. Recall that, if x1 ̸= y1 in the algorithm for labeling
unsigned integers, the labels of the STEs in the two columns on the left do not
depend on the value of y and the labels of the STEs in the two columns on the
right do not depend on the value of x. Therefore, we can again label all the
STEs as unsigned integers, except for S2. S2 activates S3 only if processing z1
ensures that z is in the interval (x, y). In the case of part negative and part non-
negative interval, z1 should either be in the interval (x1, 255] or in the interval
[0, y1) for z to be reported.

We chose the two’s complement representation because of its prevalence over
other representations. However, the observations made above, i.e. the segre-
gation of the non-positive and non-negative numbers into two halves and the
maintenance of the relative ordering between two non-positive (or non-negative)
numbers, also hold true for the one’s complement representation. Hence, our
labeling technique can be adopted with trivial modifications to handle this rep-
resentation as well. Again, for the sake of brevity, we exclude the details out of
this paper.

The relative ordering between non-positive (and non-negative) numbers is
not maintained in another frequently used representation, namely sign mag-
nitude. However, the technique outlined in the next section to handle IEEE
floating-point numbers may be used without any modifications to handle the
numbers expressed in the sign magnitude representation.

3.1.3. Floating-Point Numbers

IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008) [27] describes
the binary representation of fractional numbers. In this representation, the first
bit is the sign bit, followed by a standard-defined number of exponent and
trailing significand bits. This representation of floating-point numbers can be
interpreted as sign magnitude representation of signed integers for the purpose
of comparison [28]. In the sign magnitude representation, the first bit (sign bit)
is 1 for negative numbers and 0 for positive numbers. The other bits of the
number determine the magnitude of the number. As in the two’s complement
representation, the positive numbers are represented lexicographically in the
lower half of the range, and the negative numbers are shifted to the upper
half. Unlike the two’s complement representation, the ordering of the negative
numbers is reversed.

Algorithm 3 labels the STEs for floating-point intervals as follows. If both
x and y are non-negative, i.e. their sign bits are 0, then the labeling is identical
to unsigned integers. On the other hand, if the sign bit is 1 for both, i.e. the
interval is fully negative, then x and y are interchanged since the lexicographic
ordering of negative numbers is reversed. The STEs of the comparator are
again labeled using the procedure for labeling unsigned integers. However, if
the upper bound and the lower bound have different sign bits, then the interval

12



Algorithm 3 Labeling STEs for floating-point intervals

Input:
• IEEE standard binary representation of floating-point numbers x and y.
xj and yj denote the jth MSB of x and y.
• Number of bytes in the representation of x and y, b.
• Labels of all the STEs in the b-byte comparator, L.
Lt denotes the label of the STE tagged S < t >.

Ensure:
• x ≤ y

1: procedure LabelFloats(x, y, b, L)
2: L3 ← {∗}
3: if (x1 ≤ 127 and y1 ≤ 127) then
4: LabelUnsigned(x, y, b, L)
5: else if (x1 > 127 and y1 > 127) then

// If x and y are both negative, interchange x and y.
6: LabelUnsigned(y, x, b, L)
7: else

// If x and y have different signs, use two intervals.

8: L′ ← duplicate(L)
9: LabelFloats(x, −0, b, L)

10: LabelFloats(+0, y, b, L′)
11: end if
12: end procedure

[x, y] is broken into two intervals: [x,−0] and [+0, y], where −0 and +0 denote
the two representations of zero with sign bit set to 1 and 0, respectively. The
two intervals can then be programmed as already discussed and z is reported
to overlap the complete interval if it stabs any of the two partial intervals.

3.1.4. Reducing Output Frequency

For a query point, the automata derived from the macro designs shown
in Fig. 2 can generate output on different clock-cycles for different intervals.
Therefore, when a query data-stream is checked against multiple intervals pro-
grammed on the processor, a report can potentially be generated in every cycle
after the first. As discussed in Section 2.2.3, this can lead to stalls, thus lower-
ing the overall processing rate. We now present an optimized automata design
which ensures that the output from all the automata for a query point is gener-
ated in the same clock-cycle. This reduces the output generation frequency to
a maximum of once every b cycles when comparing b-byte numbers.

The optimized version of the 4-byte macro in Fig. 2a is shown in Fig. 3. As
described in Section 3.1.1, in the original automaton design, S3 is activated to
generate an output in the subsequent cycle after a query point is determined to
overlap an interval. However, for ensuring that the match is reported exactly

13



Figure 3: Modified 4-byte macro for re-
ducing output generation frequency

after processing the fourth byte, we added
two STEs in the central column and la-
beled them to match all the 1-byte sym-
bols. These STEs process the remaining
bytes of the query number, after it is deter-
mined to overlap the interval, and activate
S3 for generating a report after processing
the last byte. Further, in the original de-
sign, any matches determined by the STEs
labeled S14 or S15 are reported by S3 while
processing the first byte of the next query
in the stream. For handling this case, we
made S14 and S15 reporting-STEs, and re-
moved the connections from these two STEs
to S3. The 8-byte macro can be optimized
in a similar fashion by adding six STEs in
the central column.

3.1.5. Non-numeric Fixed-Length Formats

The automata designs described earlier
in this section compare points denoted by
numbers represented as 4-byte or 8-byte bi-
nary strings. The alphabet of these strings contains all the symbols in the 1-byte
symbol set. These designs can also be used for comparing strings of any fixed-
length defined over any alphabet, as long as the symbols in the alphabet can be
lexicographically ordered. The labeling algorithm can be modified accordingly
for this purpose. Such string based intervals are used to index into entries of
large databases, such as those used in the fields of bioinformatics and biometrics.

3.2. Handling Variable-length Formats

Until now, we have only discussed fixed-width formats. In these formats,
the representation of the endpoints and the query points uses identical number
of bytes. This enables the design of pre-compilable automata structures of fixed
shape for all the intervals, irrespective of the values of x and y. However, this
is not possible in the case of the numeric-string format, where the represen-
tation of different numbers is of variable length. Instead, we have developed a
method of defining these automata using instances of four constituent automata
substructures of fixed shapes. These are detailed below.

3.2.1. Overview

The numeric-string for a number consists of the ASCII-equivalent character
of its digits concatenated to form a string, ordered from left to right. If the
number is positive, the digits are preceded by an optional ‘+’ sign. Otherwise,
they are preceded by a ‘−’ sign. In case of a real number, the integer and the
fractional part are separated by a ‘.’ (decimal point). However, even when the

14



decimal point is present, the integer part or the fractional part may be missing,
but not both.

Similar to the automata designs described in Section 3.1, the STEs are ar-
ranged in rows, ordered from top to bottom. The topmost row is used to match
the optional sign character in the beginning of the numeric-string of z. The next
row checks the first integer digit of z against that of x and y. The second digit is
checked by the next row, and so on. An additional row to parse a decimal-point
or the end of the numeric-string of z is inserted after the rows for checking the
integer digits. Next, rows are inserted to handle the fractional digits in the
endpoints, one row per fractional digit. Therefore, the overall number of rows
is dependent on the number of integer and fractional digits in x and y. For
brevity, we have adopted the following notations in the rest of this paper. For
any number a, ain denotes the integer part and afr denotes the fractional part.
The number of digits in the integer part and the fractional part of a are denoted
as d(ain) and d(afr), respectively.

The checks for the integer and the fractional part of the numbers are dif-
ferent from each other and are therefore handled separately. Since the rows for
handling the integer digits are identical to one another, they can be defined as
the instances of a macro. However, owing to the architecture and compiler char-
acteristics of the AP, it is sometimes more optimal to combine two such rows
into one macro. The topmost two rows are implemented as an instance of the
Leading Integer Digit macro, whereas every two subsequent rows for checking
integer digits are implemented as an instance of the Subsequent Integer Digits
macro. Similarly, the rows pertaining to the handling of the decimal point and
the first fractional digit are implemented as one instance of the Leading Frac-
tional Digit macro, whereas each subsequent fractional digit is handled using
one instance of the Subsequent Fractional Digit macro.

Notice that, the number of integer and fractional digits in the numeric-strings
of one of the endpoints may be greater than the other. For example, without
loss of generality, if d(xin) < d(yin), then d(yin) rows are required to complete
the checks against all the integer digits of y. While STEs from the top d(xin)
rows are used to complete the checks with respect to x, and the remaining rows
are left unlabeled and unused. We now describe the four constituent macros in
detail and illustrate their use in a complete automaton through an example.

3.2.2. Handling the Integer Part

As described above, the number of rows required to parse the integer part
equals max(d(xin), d(yin))+1. The top two rows are implemented as an instance
of the Leading Integer Digit macro shown in Fig. 4. If x or y have more than one
integer digit, then the subsequent rows are implemented using instances of the
Subsequent Integer Digits macro shown in Fig. 5. Since each instance covers two
rows, ⌈(max(d(xin), d(yin))− 1) /2⌉ such instances need to be created. Notice
that, if the total number of rows required to parse the integer digits is odd, then
only one of the rows in the last instance of the Subsequent Integer Digits macro
is utilized.

15



The input ports of the Leading Integer Digit macro are connected to a start-
of-processing logic (not shown in the figure). This logic identifies the beginning
of the numeric-string of z in the data-stream. It typically entails the identi-
fication of a special delimiter which appears before the numeric-strings in the
data-stream. Since the number of integer digits in the query point z is not
known a priori, three independent possibilities have to be explored in parallel.
1) d(zin) = d(xin), 2) d(zin) = d(yin), and 3) d(xin) ̸= d(zin) ̸= d(yin).

The first possibility that d(zin) = d(xin), along with the condition that
z ≥ x, is explored by the two leftmost columns in the macro. If x is positive,
then the input port marked as in x p is used. Note that this port allows the
numeric-string of z to have an optional leading ‘+’ sign. The output port
out x eq is activated only if the first digit of z equals x. Otherwise, the output
port out x gt is activated only if the first integer digit of z is greater than the
first integer digit of x. If x is negative, then only the input port marked as
in x n is used. This port mandates a ‘−’ sign be present at the front of the
numeric-string of z. The output ports out x eq and out x gt are activated only
if the first digit of z is equal to the first digit of x or less than that, respectively.

Similarly, the second possibility that d(zin) = d(yin) along with the condition
z ≤ y is explored by the two rightmost columns in the macro. The connections
and the labeling logic are very similar to those explained above. The output
port out y eq is activated only if the first digit of z equals y. The output port
out y lt is activated if the first integer digit of z is less than the first integer
digit of y, when y is positive, or if the first integer digit of z is greater than the
first integer digit of y, when y is negative.

Finally, the last possibility of d(xin) ̸= d(zin) ̸= d(yin) is handled by the
STEs in the middle which are part of the bypass logic. This logic accepts z
based on the number of digits in its integer part. If both x and y are positive,
then only the input port in pt p is utilized, and z is accepted if and only if
z > 0 and d(xin) < d(zin) < d(yin). If both x and y are negative, then
only input port in pt n is utilized, and z is accepted if and only if z < 0 and
d(xin) > d(zin) > d(yin). Finally, if x is negative and y is positive, then both
the input ports in pt p and in pt n are utilized, and z is accepted if and only if

Figure 4: Leading Integer Digit macro

16



z < 0 and d(xin) > d(zin) or z > 0 and d(yin) > d(zin). Since these conditions
cannot occur when d(xin) ≤ 1 and d(yin) ≤ 1, i.e. the automaton has only two
rows for handling the integer digits, we defer the discussion of its working to
the description of the Subsequent Integer Digits macro.

Instances of the Subsequent Integer Digits macro are chained to one another,
with the output ports of one instance connected to the input ports of the next.
The input ports of the first instance are driven by the output ports of the
instance of the Leading Integer Digit macro; and the output ports of the last
instance drive the input ports of the Leading Fractional Digit macro.

The layout of the Subsequent Integer Digits macro is similar to that of
the other macro structures described until now. The leftmost three columns
correspond to the checks against the digits of the endpoint x, and the rightmost
three correspond to the checks against the digits of the endpoint y. Based on
the number of remaining integer digits in an endpoint (say x), one or both
of the rows in the macro instance may be skipped. This is accomplished by
connecting the output port out x eq of the macro instance placed above the
input port in x1 (in the case of a one row requirement), and in x2 (in the case
of a two row requirement) of the instance placed below. If none of the rows
of this instance are to be utilized for x, then neither the input port in x1 nor
the port in x2 is used. Instead, the output port out x eq of the macro instance
placed above is directly connected to the instance of the Leading Fractional
Digit macro.

We now turn our focus to the central column which is part of the bypass
logic. For z to lie between x and y, the number of digits in z must lie within a
specific range. In the previous section, we have already explained how the lower
and upper bounds of this range can be determined based on d(xin), d(yin), and
the signs of x and y. The bypass logic checks that the d(zin) lies within the lower
and upper bounds by ensuring that a minimum (lower bound) and maximum
(upper bound) number of rows are traversed while processing the integer part
of z.

For an instance of the Subsequent Integer Digits macro, if one more row has
to be traversed to reach the lower bound, then only the input port in pt1 is
used, otherwise only in pt2 is used. Once the minimum number of rows has

Figure 5: Subsequent Integer Digits macro

17



been traversed, the output port out pt of the bypass logic of the macro instance
is connected directly to the input ports of the Leading Fractional Digit macro.
It is also connected to both the input ports in pt1 and in pt2 of the next macro
instance. This allows the skipping of one or both rows of the next instance.
This pattern of connections is continued till the upper bound of rows is reached
ensuring that any number of rows between the lower and upper bound can be
skipped. Once the upper bound is reached, the output port out pt of the macro
instance where this occurs is connected only to the input ports of the Leading
Fractional Digit macro. This disallows any more integer digits in z.

3.2.3. Handling the Fractional Part

There are three distinctions when comparing fractional digits versus the
comparison of integer digits: 1) The number of fractional digits does not play
a role in determining the magnitude of the fractional part. Therefore, as soon
as a place value of z evaluates to greater-than x or less-than y, the following
fractional digits of z can not change the result of the evaluation. 2) When x is
negative and all of its digits match those of z, down to the last fractional digit
of x, then all the following fractional digits of z must be zeros to satisfy the
condition z ≥ x. Similarly, when y is positive and all of its digits match those
of z, all the successive digits in z must be zeros for z ≤ y. 3) Even when x and
y are integers, we allow for z to have fractional digits. These paths are available
when the integer part of z is greater-than or equal to the integer part of x, or
is strictly less-than that of y.

Similar to the methodology for handling the integer part described in the
previous section, an instance of the Leading Fractional Digit macro (shown in
Fig. 6) is used to handle the first two rows of the fractional part. The first
row parses the decimal point and the second row is used to check the first

Figure 6: Leading Fractional Digit macro

18



Figure 7: Subsequent Fractional Digit macro

fractional digit. Every subsequent row is implemented as an instance of the
Subsequent Fractional Digit macro shown in Fig. 7. In total, the automaton
contains max(d(xfr), d(yfr)) + 1 rows to handle the fractional part.

If a determination can be made based on the integer parts of x, y, and z,
then the fractional part of z need not be checked. The control is shifted to the
bypass logic by means of the in any input port which ignores all the fractional
digits, and generates an output after encountering the first non-digit character
at the end of the numeric-string of z. The fractional part of z has to be checked
if the integer part of z equals x, y, or both. We discuss the case when zin = xin

first. If, in any row, the fractional digit of z is determined to be greater than the
corresponding fractional digit of x, then the evaluation is shifted to the bypass
logic. Otherwise, the next digit of z is compared against the next digit of x
in the next row. The same concept is used for comparison with the fractional
digits of y, except that the direction of inequality is reversed. When x and y
have the same number of digits and also have the same sign, the outputs must
be AND-ed together since they will only be active on one symbol cycle and must
both be active to satisfy the expression.

3.2.4. Illustrative Example

In this section, we will illustrate the working of our automata designs for
handling numeric-strings using an example interval [x, y] = [−47.82, 361.5].
Here, d(xin) = 2, d(xfr) = 2, d(yin) = 3, and d(yfr) = 1. As discussed in
Sec. 3.2.2, one Leading Integer Digit macro is required for handling the sign and
the first digit of the integer part while the number of Subsequent Integer Digits
macros required for this interval is calculated as ⌈(max(d(xin), d(yin))− 1) /2⌉ =
⌈(max(2, 3)− 1) /2⌉ = 1. Similarly, as discussed in Sec. 3.2.3, one Leading
Fractional Digit macro is required for handling the decimal sign and the first
fractional digit. The number of Subsequent Fractional Digit macro instances
required is max(d(xfr), d(yfr))− 1 = max(2, 1)− 1 = 1. The resulting automa-

19



Figure 8: Automaton for reporting all the numeric-strings in the interval [−47.82, 361.5]

20



ton to report a query point z that lies in the interval [−47.82, 361.5] is shown in
Fig. 8. The figure shows all the macro instances (depicted as dotted boxes), their
labeled STEs, and the communication lines. The unused ports have been faded
out and all their incoming and outgoing lines are shown as dotted, indicating
that they are present in the instance but are not being used.

The top two boxes show one instance each of the Leading Integer Digit and
the Subsequent Integer Digits macros, in that order from top to bottom, for
handling the integer part. We discuss the Leading Integer Digit macro first.
Since x is negative and y is positive, the input ports in x n and in y p are
connected to the start-of-processing logic for matching negative numbers using
the leftmost two columns and positive numbers using the rightmost two columns.
For any negative z with two integer digits to lie in the interval, the first integer
digit of z should either be equal to the first integer digit of x, i.e. 4, or be less
than that. The STEs in the two leftmost columns of the bottom row of the
macro are labeled to match these two cases. Similarly, the STEs in the two
rightmost columns are labeled to match the corresponding cases for matching
the first integer digit of positive z and the first integer digit of y. The input ports
in pt1 n and in pt1 p of the macro are also connected to the start-of-processing
logic for matching z using the bypass logic.

Since d(xin) is 2, only the bottom row of the Subsequent Integer Digits
macro is used and the output from the port out x eq of the Leading Integer
Digit macro is connected to the input port in x1. The two leftmost STEs in the
bottom row are labeled to determine if z lies in the interval based on the second
digit of x. On the other hand, since d(yin) is 3, the output of the port out y eq
is connected to the input port in y2 and the rightmost two STEs in the top
row and the bottom row of the macro are labeled to handle the cases where z
is determined to lie in the interval based on the second and the third digit of y,
respectively. Further, the output from the port out pt n of the Leading Integer
Digit macro are connected to the port in pt1 for matching negative z with a
single integer digit while the output from the port out pt p is connected to the
ports in pt1 and in pt2 for matching positive z with one and two integer digits,
respectively.

The fractional part is handled by the Leading Fractional Digit and the Sub-
sequent Fractional Digit macros shown in the bottom two boxes. If z has been
determined to lie in the interval based on the comparison of the integer dig-
its, then the comparison of the fractional digits is not required. Therefore, the
output from the ports out x gt1, out y lt2, out y lt1, and out pt from the Subse-
quent Integer Digits macro is connected to the input port in any of the Leading
Fractional Digit macro for reporting on encountering any fractional digits. How-
ever, if the integer part of z has been found to exactly match the integer part of
x, then the fractional part of the numbers is compared by connecting the port
out x eq of the Subsequent Integer Digit macro to the ports in x and in x last
of the Leading Fractional Digit macro. If the first fractional digit of z also
matches the first fractional digit of x, then the check for the trailing digit of z is
done by the Subsequent Fractional Digit macro. This is enabled by connecting
the port out x eq of the Leading Fractional Digit macro to the port in x of the

21



Subsequent Fractional Digit macro. Since the fractional part of y has only a
single digit, the output of the port out y eq of the Subsequent Integer Digits
macro is connected to the in y last of the Leading Fractional Digit macro.

3.3. Analysis

When the numbers are expressed in the integer or the IEEE floating-point
format, creating and loading the automata for n intervals requires a preprocess-
ing time of O(n) and a space complexity of O(n). The addition or deletion of an
interval to the set can be accomplished with a constant overhead, a significant
advantage over contemporary methods. For each query, the presence of over-
lapping intervals can be ascertained in O(1) time, but identifying all of them
requires O(k) time, where k is the number of intervals stabbed by the query.

In the case of the numeric-string representation, the complexity of adding an
interval is not constant, but depends on the number of digits in the endpoints.
If the average number of digits in all the endpoints in the set is w, then the time
as well as space complexity of creating and loading all the required automata is
O(wn). The output handling complexity remains O(k), the same as discussed
above.

Within the limits of the AP-board, the intervals, in the form of their cor-
responding automata, can be stored in any arbitrary order. If the number of
intervals is larger than what can be fit inside an AP-board, then they can be
partitioned into buckets and handled iteratively. The choice of which bucket an
interval is placed in can be made using one of the endpoints. The ordering of
the intervals within a bucket is arbitrary, and irrelevant to the determination of
the query time or the space complexity.

In spite of the theoretical advantages mentioned above, programming a board
incurs substantial latency which cannot be amortized through the performance
gained using a single query. Therefore, the methodology described here best
serves applications where a large number of stabbing queries are serviced with
high throughput.

4. Results

The AP is in advanced stages of qualification and production. The authors
have access to pre-production prototypes which were used to evaluate the per-
formance reported in this paper. To the best of our knowledge, these are the
first hardware results to be published for the processor.

We used the Python API provided with the AP-SDK for creating the macros,
combining them into ANML-NFA networks, compilation of ANML-NFA, and
substitution of the labels. The designs were validated using the simulator pro-
vided with the AP-SDK.

Comparing the AP implementation of the interval stabbing problem to the
state-of-the-art CPU-based implementations is unfair because of the following
reasons. We are using AP-board hardware and software which are in bring-
up phase. There are known overheads which slow down the processing by a

22



factor of 20 times or more than that of the production hardware and software.
The current generation of the chip itself is fabricated using memory process
technology which is a couple of generations behind the state-of-the-art. The next
generation of the chip, currently in design, is supposed to be orders of magnitude
faster than the current chip. Finally, using the interval stabbing problem as a
generic representation of a class of problems requiring comparison of a query
element against an unordered list of other elements is not accurate. As discussed
in Section 2.1, the list in the interval stabbing problem can be partially ordered
using interval trees, segment trees, etc. The run-time of algorithms using these
structures are output-sensitive in O(log n + k) time. When k is small, CPU-
based algorithms run faster, but as k grows, AP-based solutions become more
attractive. This is not the case with all the problems.

Instead, we developed a simple metric similar to the widely adopted FLoating-
point Operations Per Second (FLOPS) metric. We simply calculate the number
of FLOating-point Comparisons per Second (FLOCS). This can be calculated
using the following formula:

FLOCS = c× #automata per board× f

#cycles per query

Here, c is the number of comparisons per automaton and f is the operating
frequency. In our case, c equals 2, because each automaton compares the query
point against the limits of the interval, and f is 128 MHz. Using this formula,
Table 1 describes the FLOCS for the 4-byte and the 8-byte comparator macros.
In the best case, where the output handling does not become a bottleneck, the
number of cycles per query are 4 and 8, respectively. However, this may degrade
to 494 cycles for both the automata due to the output handling bottleneck
in the worst case. The observed FLOCS on the prototype hardware has also
been reported. This is in line with the expected behavior as the software and

#Automata
per board

#Cycles
per query

giga-FLOCS

Maximum theoretical throughput

4-byte macro 43008 4 2752.5
8-byte macro 24576 8 786.4

Minimum theoretical throughput (output regulated)

4-byte macro 43008 494 22.3
8-byte macro 24576 494 12.7

Observed throughput: on prototype hardware

4-byte macro 43008 -N/A- 0.95
8-byte macro 24576 -N/A- 0.55

Table 1: Theoretical and observed FLOCS for the 4-byte and 8-byte macros

23



hardware are currently under testing and validation phase. Multiple stages
are yet to be pipelined, and some are supposed to be parallelized. Some of the
resources are yet to be programmable, and the system software is to be improved
with respect to output handling.

5. Future Research

Handling Points in Higher Dimensions. In this paper, we have only demon-
strated handling stabbing queries in one-dimensional space. However, the method-
ology can be extended for handling points in higher dimensions. For example,
in the case of two-dimensional space, the region covered by an axis-parallel rect-
angle can be represented by two endpoints x1, x2 and y1, y2, where x1 ≤ y1 and
x2 ≤ y2. A query point z1, z2 lies within this rectangle if and only if x1 ≤ z1 ≤ y1
and x2 ≤ z2 ≤ y2; i.e. by executing two interval queries in series, and declaring a
positive result only if both the queries are satisfied. In fact, generating a unified
automaton to do so by concatenating two instances of the automaton described
above, one for each dimension, is trivial. However, handling more generalized
cases, e.g. rectangles without axis-parallel edges, any 2-dimensional polygon,
any n-dimensional hyper-rectangles, and finally any n-dimensional polygon is a
subject of ongoing research.

Handling Multiple Formats. In some applications, the data may be represented
using multiple formats. For example, a datestamp could be represented as
mm/dd/yy, mm/dd/yyyy, mm-dd-yyyy, etc. We are currently investigating au-
tomata structures which allow the representation of points in one of the many
permissible formats. In fact, the performance benefits of using this architecture
is amplified in such cases as the conversion of the points to a specific format can
be avoided.

6. Conclusion

In this paper, we have provided a streaming solution to the interval stabbing
problem using the Automata Processor. To the best of our knowledge, this is
the first use of the processor to execute numerical comparisons on multi-byte
integers and single and double precision IEEE floating-point numbers. Our
implementation is based on defining one automaton for every interval in the
list, and executing tens of thousands of such automata in parallel using the
resources of a single AP-board. Not only does this provide significant perfor-
mance benefits in answering the stabbing queries, but also leaves the interval list
unordered. This allows expeditious modifications to the list, which is required
by many applications. The same ideas are extended to handle variable-length
numeric-string representation in this paper; and can be further extended for
handing other datatypes such as generic strings, multidimensional coordinates,
datestamps, timestamps, etc. The presented automata designs are modular and
extendable to larger composite automata. These designs exemplify techniques

24



to overcome significant resource and performance bottlenecks which may be
useful to prospective application designers working on this processor.

Acknowledgments

We acknowledge funding from NSF Exploratory Grant CCF-1448333 and
Micron Technology, Inc.

References

[1] The Micron Automata Processor Developer Portal, http://www.

micronautomata.com/, accessed: Sept, 2016.

[2] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, H. Noyes, An Effi-
cient and Scalable Semiconductor Architecture for Parallel Automata Pro-
cessing, IEEE Transactions on Parallel and Distributed Systems 99 (2014)
1, ISSN 1045-9219.

[3] I. Roy, A. Srivastava, M. Nourian, M. Becchi, A. Srinivas, High Perfor-
mance Pattern Matching Using the Automata Processor, in: IEEE 30th
International Parallel and Distributed Processing Symposium, 1123–1132,
2016.

[4] K. Zhou, J. J. Fox, K. Wang, D. E. Brown, K. Skadron, Brill Tagging on
the Micron Automata Processor, in: IEEE 9th International Conference on
Semantic Computing (ICSC), 236–239, 2015.

[5] I. Roy, S. Aluru, Finding Motifs in Biological Sequences Using the Mi-
cron Automata Processor, in: IEEE 28th International on Parallel and
Distributed Processing Symposium, 415–424, 2014.

[6] K. Wang, E. Sadredini, K. Skadron, Sequential Pattern Mining with the
Micron Automata Processor, in: Proceedings of the ACM International
Conference on Computing Frontiers, CF ’16, ISBN 978-1-4503-4128-8, 135–
144, 2016.

[7] I. Roy, N. Jammula, S. Aluru, Algorithmic Techniques for Solving Graph
Problems on the Automata Processor, in: IEEE 30th International Parallel
and Distributed Processing Symposium, ISSN 1530-2075, 283–292, 2016.

[8] H. Edelsbrunner, Dynamic data structures for orthogonal intersection
queries, Technische Universität Graz/Forschungszentrum Graz. Institut für
Informationsverarbeitung, 1980.

[9] H. Edelsbrunner, A new approach to rectangle intersections, Part I, Inter-
national Journal of Computer Mathematics 13 (3-4) (1983) 209–219.

[10] H. Edelsbrunner, A new approach to rectangle intersections, Part II, Inter-
national Journal of Computer Mathematics 13 (3-4) (1983) 221–229.

25

http://www.micronautomata.com/
http://www.micronautomata.com/


[11] E. M. McCreight, Efficient algorithms for enumerating intersecting intervals
and rectangles, Tech. Rep., 1980.

[12] J. L. Bentley, Solutions to Klee’s rectangle problems, Unpublished
manuscript (1977) 282–300.

[13] J. M. Schmidt, Interval stabbing problems in small integer ranges, in: Al-
gorithms and Computation, Springer, 163–172, 2009.

[14] T. H. Cormen, Introduction to algorithms, MIT press, 2009.

[15] E. M. McCreight, Priority search trees, SIAM Journal on Computing 14 (2)
(1985) 257–276.

[16] E. N. Hanson, The interval skip list: A data structure for finding all inter-
vals that overlap a point, in: Algorithms and Data Structures, Springer,
153–164, 1991.

[17] S. Alstrup, G. S. Brodal, T. Rauhe, New data structures for orthogonal
range searching, in: Foundations of Computer Science, 2000. Proceedings.
41st Annual Symposium on, IEEE, 198–207, 2000.

[18] H. N. Gabow, J. L. Bentley, R. E. Tarjan, Scaling and related techniques
for geometry problems, in: Proceedings of the sixteenth annual ACM sym-
posium on Theory of computing, ACM, 135–143, 1984.

[19] P. Chovanec, M. Krátkỳ, Processing of Multidimensional Range Query Us-
ing SIMD Instructions, Informatics Engineering and Information Science
(2011) 223–237.

[20] P. Bednář, P. Gajdoš, M. Krátkỳ, P. Chovanec, Processing of Range Query
Using SIMD and GPU, New Trends in Databases and Information Systems
(2013) 13–25.

[21] J. Kim, S.-G. Kim, B. Nam, Parallel multi-dimensional range query pro-
cessing with R-trees on GPU, Journal of Parallel and Distributed Comput-
ing 73 (8) (2013) 1195–1207.

[22] M. K. Maramreddy, K. Kothapalli, GPU Accelerated Range Trees with
Applications, in: European Conference on Parallel Processing, Springer,
740–751, 2014.

[23] I. Roy, A. Srivastava, S. Aluru, Programming Techniques for the Automata
Processor, in: 45th International Conference on Parallel Processing, 205–
210, 2016.

[24] K. Wang, Y. Qi, J. J. Fox, M. R. Stan, K. Skadron, Association rule mining
with the micron automata processor, in: Parallel and Distributed Process-
ing Symposium (IPDPS), 2015 IEEE International, IEEE, 689–699, 2015.

26



[25] T. Tracy, Y. Fu, I. Roy, E. Jonas, P. Glendenning, Towards Machine Learn-
ing on the Automata Processor, in: Proceedings of the 31st International
Conference on High Performance Computing (ISC), Springer International
Publishing, 200–218, 2016.

[26] J. Greene, V. Roychowdhury, S. Kaptanoglu, A. E. Gamal, Segmented
channel routing, in: Proceedings of the 27th ACM/IEEE Design Automa-
tion Conference, ACM, 567–572, 1991.

[27] I. S. Committee, et al., 754-2008 IEEE standard for floating-point arith-
metic, IEEE Computer Society Std 2008.

[28] B. Dawson, Comparing floating point numbers, http://www.

cygnus-software.com/papers/comparingfloats/Comparing%

20floating%20point%20numbers.htm, accessed: Sept, 2017.

27

http://www.cygnus-software.com/papers/comparingfloats/Comparing%20floating%20point%20numbers.htm
http://www.cygnus-software.com/papers/comparingfloats/Comparing%20floating%20point%20numbers.htm
http://www.cygnus-software.com/papers/comparingfloats/Comparing%20floating%20point%20numbers.htm

	Introduction
	Background
	Interval Stabbing
	Automata Processor Basics
	Processing Elements
	Programming Resources
	Processing Rate
	Programming Environment


	Methodology
	Handling Fixed-Width Format
	Unsigned Integers
	Signed Integers
	Floating-Point Numbers
	Reducing Output Frequency
	Non-numeric Fixed-Length Formats

	Handling Variable-length Formats
	Overview
	Handling the Integer Part
	Handling the Fractional Part
	Illustrative Example

	Analysis

	Results
	Future Research
	Conclusion

