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Abstract—In this paper, we study the acceleration of applications that identify all the occurrences of thousands of string-patterns in an
input data-stream using the Automata Processor (AP). For this evaluation, we use two applications from two fields, namely,
cybersecurity and bioinformatics. The first application, called Fast-SNAP, scans network data for 4312 signatures of intrusion derived
from the popular open-source Snort database. Using the resources of a single AP-board, Fast-SNAP can scan for all these signatures
at 1 Gbps. The second application, called PROTOMATA, looks for all the occurrences of 1309 motifs from the PROSITE database in
protein sequences. PROTOMATA is up to 68 times faster than the state-of-the-art CPU implementation. As a comparison, we emulate
the execution of the same NFAs by programming FPGAs using state-of-the-art techniques. We find that the performance derived by
using the resources of a single AP-board, which houses 32 AP-chips, is comparable to that of the resources of five to six large FPGAs.
The design techniques used in this paper are generic and may be applicable to the development of similar applications on the AP.
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1 INTRODUCTION

CCELERATION of applications that find all the occur-
Arences of thousands of patterns in an input data-
stream presents significant challenges. Some of the primary
challenges include (1) broadcasting the data-stream to all
the processing units for concurrent execution of pattern
matching operations, (2) executing nondeterministic finite
automata (NFAs) without state-space explosion, and (3)
scaling the solution to support the search for thousands of
patterns at ever increasing streaming bandwidth.

Among the reported solutions, the ones which are GPU-
based are the most generic and enjoy the highest clock-
speeds over other accelerators. However, they struggle to
handle execution divergence among the executing threads,
i.e. if any of the threads makes a conditional jump which
is different from the others, then all the executing threads
are preempted, and a new set of threads is loaded. This is
a serious impediment when the threads are programmed to
search for different patterns [1]. On the other hand, solu-
tions based on custom-made application-specific integrated
circuits (ASICs) are either too specific or limited by the
available memory bandwidth [2]]. Solutions using ternary
content-addressable memory (TCAM) have also been devel-
oped [3]; however, they lack in scalability.

Some of the best results thus far have been reported
by the solutions exploiting the reconfigurability and paral-
lelism of field-programmable gate array (FPGA). Through
the concurrent execution of multiple NFAs in hardware,
significant speedup is obtained without any state-space ex-
plosion. However, even the largest FPGAs cannot fit beyond
a few hundred NFAs at a time. Therefore, large rulesets have
to be partitioned and handled by multiple devices.

In this paper, we investigate the use of the Automata
Processor (AP) [4], [5] which was specifically designed to
accelerate such applications. The AP is a reconfigurable
accelerator co-processor based on the multiple instruction
single data (MISD) architecture. It can be programmed to

execute numerous NFAs in parallel on a single data-stream.
Owing to its specific programmability, it provides signif-
icant advantage over the FPGA-based solutions in terms
of the number of NFAs that can be executed concurrently
on a single board. The input patterns can be specified as
regular expressions (regexes) using the Perl Compatible
Regular Expression (PCRE) syntax [6], or as NFA using
a proprietary language called Automata Network Markup
Language (ANML, pronounced as “animal”).

We have developed two applications as demonstrators.
The first application is called Fast-SNAP (for Fast-SNort us-
ing AP), and it scans network data-streams for occurrences
of signatures of intrusion derived from the Snort database [7].
The second application is called PROTOMATA (for PROTein
autOMATA), and it inspects protein sequences for exist-
ing occurrences of protein motifs listed in the PROSITE
database [8]. The automata developed for these applications
illustrate simple design techniques to extract maximum
performance benefits from the AP.

PROTOMATA is estimated to run up to 68 times faster
than the best-known CPU-based counterpart [9]. Similarly,
in contrast to the existing methods, Fast-SNAP is able to
handle close to the whole Snort active ruleset. It is esti-
mated that the Fast-SNAP application will support Deep
Packet Inspection (DPI) of 4312 signatures of malicious traffic
at 1 Gbps using the resources available on a single AP-
board. These estimates are based on accurately known run-
time features which are described in detail in this paper.
For thoroughness and a meaningful comparison, we have
developed a tool-chain for executing these NFAs in FPGAs
and have included the corresponding results as well.

The rest of the paper is organized as follows. First,
in Section 2} we describe the programming model and
the run-time environment briefly. This is required to un-
derstand the design of the two applications, Fast-SNAP
and PROTOMATA, as detailed in Section [3] and Section [4]



respectively. We discuss the methodology for comparing
these applications with the state-of-the-art on FPGA and
CPU in Section |5 Finally, the estimated speedup of the
applications on production hardware vis-a-vis the state-of-
the-art implementations are presented in Section @

2 AUTOMATA PROCESSOR
2.1 Overview

The rules to be executed on the AP are defined as regexes,
using the PCRE syntax, or as NFAs, using ANML. These
can be compiled into machine-loadable finite state machines
(AP-FSMs) using an AP-compiler. Once compiled, a large
number of AP-FSMs can be loaded into the processor and
executed in parallel against a single dataflow streamed to the
processor. If one or more rules are matched in any given
clock-cycle, henceforth called a symbol-cycle, then the host
CPU program is notified with a report for every match
identifying the rule and the offset in the dataflow where
the matches occurred.

2.2 Automata Design

The PCRE syntax is well known to the programming com-
munity. However, ANML is proprietary to the AP. There-
fore, we provide a brief description of ANML necessary to
understand the automata designs presented in this paper.

2.2.1 ANML Representation

The programmable elements in an AP-chip consist of pro-
cessing elements called State Transition Elements (STEs),
Counter Elements, and Boolean Elements; and a reconfigurable
routing network to interconnect the processing elements.
These elements and the routing network are configured
to emulate NFAs. Defining an NFA using these native
programmable elements is accomplished using ANML, and
this representation is henceforth referred to as ANML-NFA.
Fig. [1a| shows the state diagram of a classical NFA which
accepts any string from the alphabet {a, b} that contains a
substring of length 103 symbols whose first symbol is a and
the last two symbols are a and b, respectively. The equivalent
ANML-NFA is shown in Fig. [Ib] STE 1 and STE 2 in the
ANML-NFA are start-STEs, depicted by an indicator to the
top-left of the circles. They correspond to the start-state in
the classical NFA. Similarly, reporting-STEs are analogous to
the accept-states in the state diagram. STE 104 represents
a reporting-STE in Fig. distinguished by an indicator to
the bottom-right of the circle with the letter R placed inside
it. A detailed algorithm for converting any classical NFA to
a corresponding ANML-NFA can be found in [10].

The matching of a dataflow by an ANML-NFA on the
AP can be described as follows. In every symbol-cycle, an
8-bit symbol is broadcast from the dataflow. The processing
begins from the start-STEs, all of which are active to process
the first symbol. Each active STE processes the symbol
relayed in that cycle, and activates the STEs connected to
its outgoing routing lines on a match. If an element is
programmed as reporting, then an output-event is generated
on its match which identifies the corresponding element
(and hence the rule it belongs to). The execution continues
from the next symbol-cycle if there are more symbols in the
dataflow and at least one STE is active.
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(a) Classical state diagram of an NFA for accepting all the
strings from the alphabet {a,b} which satisfy the regular ex-
pression [ab] * a[ab]{100}ab.
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(b) Equivalent ANML-NFA using start-of-data STEs.
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(c) Equivalent ANML-NFA using an all-input-start STE.

Fig. 1: Representation of automata in ANML.

2.2.2 Special Features

All-input-start STEs: The start-STEs can be configured
in two different modes, as a start-of-data STE or as an all-
input-start STE. A start-of-data STE is active only during the
first symbol-cycle of the dataflow, whereas an all-input-start
STE is active during every symbol-cycle. The start-of-data
STE is used when the occurrence of the pattern must be
anchored to the beginning of the dataflow, whereas an all-
input-start STE is used when the occurrence of the pattern
can start at any offset in the dataflow. Therefore, the ANML-
NFA in Fig. [1b| can also be represented using an all-input-
start STE as shown in Fig. Note that the start-of-data
STE has the number 1 placed in the indicator to the top-
left while the all-input-start STE has the symbol oc in the
indicator instead.

Latched STEs: The STEs in the AP can be programmed
to emulate a latched-STE which is represented by a " symbol
inside the STE as shown in Fig. 2] A latched-STE activates
the outgoing line on every symbol-cycle subsequent to the
one in which the STE is matched for the first time. A use
case of latched-STEs for generating compact ANML-NFA is
discussed in Section 3.3

Fig. 2: A latched-STE to identify the symbol ‘a’

Counter Elements: The counter elements may be used
to count the number of occurrences of a sub-pattern. They
do not process symbols themselves and do not consume
any symbol-cycles. For example, the ANML-NFA shown in
Fig.[1d can be defined as the automaton shown in Fig. 3| by
using a counter element to count the number of occurrences
of [ab]. The counter element has two input lines shown as
pentagons along the left boundary, and a single output line
on the right boundary. The first input line, called the count-
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Fig. 3: ANML-NFA using a counter element with a pulsed-
output equivalent to the regular expression . * a[ab]{100}ab.



line, is denoted by the letter C, whereas the other input line
is called the reset-line and is denoted by the letter R. The
element also has a programmable 12-bit target-value shown
inside the element.

At the beginning of the first symbol-cycle, the counter-
value is set to 0. It can be incremented by 1 by activating
the count-line, or reset to 0 by activating the reset-line. If the
counter-value reaches the target-value, the element activates
its output-line. If the counter element is programmed to
generate a pulsed-output, denoted by the 'L symbol, then
the outgoing-line is activated only for the next symbol-cycle.
However, if it is programmed to generate a latched-output,
denoted by the I” symbol, then the output line is activated
until either the element is reset or the end of the dataflow is
encountered.

Boolean Elements: The AP-chip contains several 16-
input boolean elements which can perform the boolean
operations OR, AND, NOR, NAND, sum-of-product, and
product-of-sum. Similar to the counter elements, the boolean
elements do not process any symbols or consume any
symbol-cycles. If the input lines are simultaneously acti-
vated within a symbol-cycle in a manner such that the
boolean operation is satisfied, then the output line of the
boolean element is activated. An example of utilizing these
boolean elements to develop compact ANML-NFA is de-
scribed in Section 3.3.1]

2.2.3 Programming Environment

The AP-board is accompanied with an AP-SDK which en-
ables users to define, compile, debug, load, and execute
rules.

Design Environment: The ANML-NFA may be de-
fined programmatically, or graphically using a workbench.
The AP-compiler can then be used to compile these designs
into loadable AP-FSMs. If the compiler is presented with
PCRE patterns, it converts them into equivalent ANML-
NFAs internally before creating the AP-FSMs. The gener-
ation of the AP-FSMs consists of mapping user-defined
automata elements to the physical resources on the AP-
chip. This requires the completion of complex place-and-route
algorithms which may consume a significant amount of
time. Therefore, whenever possible, the automata should be
compiled beforehand. For the applications discussed in this
paper, the rules are known a priori and hence the automata
can be defined and compiled in advance.

Debug Environment: Although the AP-SDK does
not provide a cycle-level simulator, the execution of AP-
FSMs can be simulated using an AP-emulator against test
dataflows. The AP-emulator may also be used to emulate
the execution of native ANML-NFAs. Alternatively, the
workbench can be used for visualizing the execution of
ANML-NFAs against small dataflows.

Run-time Environment: The AP-SDK provides API
calls to load the AP-FSMs, stream dataflows, and handle the
output at run-time. After the compilation is complete, the
host application uses the provided API calls to load the AP-
FSMs into the AP-chip. This process is significantly faster as
compared to compilation; an entire AP-board can be loaded
with new AP-FSMs in about 50 milliseconds. Once the AP
is programmed, the host application uses the API to stream
the input dataflow and receive the processed output. In the
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AP-chip, one 8-bit symbol from the dataflow is broadcast
to all the STEs in every symbol-cycle. A single AP-chip can
process 133 million symbols per second, thus achieving a
processing rate of 1 Gbps. However, if the loaded automata
contains cascaded boolean and/or counter elements, the
processing rate gets reduced by an integer factor called the
clock-divisor, which is same as the maximum number of these
elements connected in succession.

Output Handling: The reporting-STEs in an AP-chip
are organized into 6 output regions. If an output-event
is generated in an output region during a cycle, then an
output-vector for that region is stored into an output-buffer.
The length of this vector is independent of the number of
elements which reported in that cycle. If the buffer has space
for the incoming vectors, then they can be stored within
the same symbol-cycle and the input processing continues
unabated from the next cycle. Asynchronously, the run-time
environment reads the output-vector from the output-buffer
to the main memory, processes the same, and presents the
host application with the ids of the reporting elements and
the corresponding offsets in the dataflow. The elements can
also be programmed to return a custom report code on match.

On the other hand, if the output-buffer is full, then the
entire processing pipeline is stalled until it can be suffi-
ciently emptied. Reading out vectors from the buffer takes
16 + 40p cycles, where 16 is the initial set-up latency for
the transfer, 40 is the number of cycles required to transfer
each output-vector, and p is the number of output-vectors
generated in that cycle. Depending on the value of p, this can
take between 56 and 256 cycles. Notice that, if no output-
vectors are generated in a cycle (p = 0), then there is no
output handling overhead.

2.2.4 ANML Macro

If multiple ANML-NFAs use a common sub-automaton
where the instances differ only in the labels of the STEs,
then such a sub-automaton can be defined as a macro. Not
only do these macros help in creating building blocks for
larger ANML-NFAs (or macros), but also reduce the compile
time of larger automata. Once compiled, the macros obtain
a partial mapping of the programmable elements and the
routing lines to the logical entities in the AP-chip. Therefore,
compiling automata with these constituent macros does not
incur this overhead.

The labels of the STEs which vary across the instances
are declared as the parameters of the macro and can be
defined at run-time, just before loading, with negligible
overhead. The STEs in the macros can be marked as start
and/or reporting-STEs, and the processing elements inside
the macro can be activated by the processing elements
outside the macro through input ports and can also activate
the outer elements using output ports. Additionally, macros
may be nested inside other macros.

2.2.5 Programming Resources

The AP-board interfaces with the CPU using a high-speed
PCle interconnect and houses 32 AP-chips. Each AP-chip
contains 49152 STEs, 768 counter elements, and 2304
boolean elements. Thus, cumulatively, a single AP-board
contains 1 572 864 STEs, 24 576 counter elements, and 76 896
boolean elements. This is sufficient to accommodate NFAs



corresponding to a very large ruleset. For example, all the
rules in the Snort and PROSITE databases can be pro-
grammed into 16 and 1 AP-chips, respectively.

The chips on an AP-board are arranged into four ranks
of eight chips each. They can organized into logical-cores
containing 1, 2, 4, or 8 chips in each rank, where all the
chips within a logical-core operate on a common dataflow.
By using a high-speed intra-rank bus, all the logical-cores in
a rank can be presented with separate dataflows in parallel.
Therefore, the chips on the AP-board can be configured to
provide an overall processing rate between 1 Gbps (if a
single logical-core includes all the chips on the board) to
32 Gbps (eight logical-cores per rank for a total throughput
of 8 Gbps per rank x 4 ranks on the board). The size of the
logical-cores is chosen to derive maximum data paralleliza-
tion and hence performance from the AP-board.

3 FAST-SNAP

Fast-SNAP is a network intrusion detection (NID) tool
which scans for signatures of intrusion detection in network
data using the rules described in the widely used Snort
database [7]]. In this section, we discuss the state-of-the-art in
Snort-based NID systems, followed by a brief introduction
to the Snort rules, and finally a detailed description of the
Fast-SNAP application.

3.1 Background

Snort [11] describes signatures of anomalous activity in
network data as string patterns. The signatures are main-
tained in a database in the form of rules, one for every
known signature. This ruleset is updated as and when new
signatures are discovered. Currently, the ruleset contains
5310 active pattern matching rules, which presents a signif-
icant computational challenge for contemporary bandwidth
requirements and frequency of cyber-attacks. Therefore, ac-
celerated solutions using GPUs and FPGAs have received
considerable attention in literature.

Cascarano et al. [12] proposed the first NFA-based so-
lution using GPUs, which involved maintaining a global
NFA transition table along with vectors for active and future
states. They reported a maximum throughput of about 1.5
Gbps for Snort534 ruleset from [13], which contains 534
regexes. Zu et al. [1] noted that this approach suffered from
the problem of serialization of threads because of execution
divergence. They tried to address the issue by identifying
compatible states, i.e. states that cannot be active simulta-
neously, and then using these compatible states to create
virtual-NFAs from the original NFAs. Using the virtual-
NFAs, they reported a maximum throughput of nearly 13
Gbps on small datasets consisting of 16 to 36 patterns.

The FPGA-based solutions rely on configuring the pro-
cessor to concurrently execute multiple NFAs in hard-
ware [14], [15], [16]. Yang et al. [14] used a modified version
of McNaughton-Yamada algorithm to convert PCRE-based
regexes to modular NFAs with multi-character transition la-
bels. This allowed them to reach a maximum throughput of
10.3 Gbps. Mitra et al. [15] reported an interface throughput
of 12.9 Gbps on the SGI RASC RC 100 blade connected to
SGI ALTIX supercomputing system, by transforming PCRE
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op-codes generated using the Snort rules compiler to VHDL
code. However, the capacity of even the largest FPGAs is not
enough to accommodate large rulesets [14], [16]], requiring
them to be partitioned across multiple FPGA devices.

RegX [17] is a regular expression matching engine which
uses compressed DFAs and a variant of XFAs [18] as under-
lying automata. They reported a throughput of 45 Gbps for
up to 600 synthetic patterns. RegX throughput, however,
is sensitive to the complexity of the patterns and it drops
below 10 Gbps for datasets including more than 5000 com-
plex patterns, i.e. patterns including wildcard repetitions
and counting constraints. Fang et al. [19] proposed a special
purpose automata processing architecture, called Unified
Automata Processor, that can achieve throughputs up to 295
Gbps on datasets consisting of thousands of regexes.

3.2 Snort Rules

The Snort rules are written in a lightweight description
language. Each rule contains a header section and an options
section. The header section of a rule is written first and
specifies the protocol, the source, and the destination of a
network packet for which the rule is active and the type
of action to be taken if the rule is matched. The options
section of a rule is written next, enclosed in parentheses,
and consists of one or more keywords, some of which may
accept a value. A comprehensive description of the rules
format can be found in the Snort user manual[]

alert tcp any any —-> any 80 ( sid:42;
content:"foo"; content:"bar"; distance:10;
pcre:"/foo[0-9]1{10}bar"; content:"kludge";
http_header; content:"cluft"; http_header;
content:"baz"; http_header; content:"qux";
http_header; content:"abc"; http_uri; )

Consider the dummy sample rule defined above. The
first keyword in the options section of the rule specifies
that the sid, a unique integer identifier of the rule, is 42.
The following keywords are of the payload detection type,
which are used for defining most of the patterns to be
matched in the data section of a network packet. These
keywords either specify strings to be matched exactly (using
the keyword content) or PCRE (using the keyword pcre). The
sample rule contains multiple exact strings to be matched
(e.g., foo, bar, etc.) and one PCRE (namely /foo[0-9]
{10}bar). Matching of the patterns can be constrained by
the modifier keywords. A modifier keyword is associated
with the previous pattern in the rule. There are two types of
modifier keywords: distance-modifiers, which place distance
constraints between the occurrence of different patterns, and
location-modifiers, which restrict the search for the pattern to
a specific part of the payload. These are described in further
detail in Section A rule is said to be triggered if all
the patterns defined in the rule are matched, along with the
constraints specified by the modifiers.

3.3 Methodology

3.3.1 Automata Design

81% of the active pattern matching rules in Snort can be
efficiently implemented using the AP. 17% of the rules

1. http:/ /manual-snort-org.s3-website-us-east-1.amazonaws.com/
node27.html
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contain the keywords byte_test, byte_jump, or byte_extract,
which require the use of capture groups. These rules cannot
be represented as regular languages, and therefore by NFA.
The remaining 2% of the rules can not be implemented
using the AP because of multiple known issues with the
AP-compilerH Checking for the rules which can not be
implemented efficiently using the AP is carried out using
the Snort software [7] running on the CPU.

For each rule defined in the Snort ruleset, we create the
corresponding ANML-NFA in six steps. These steps are de-
scribed below, using the sample rule defined in Section

Step 1. Handling Location-Modifiers: Searching for the
occurrences of a pattern can be restricted to a particular
section of the payload through the use of the location-
modifiers. Additionally, the location-modifiers can specify
whether the pattern should be matched in raw data or
normalized data. For example, using the keyword http_uri,
the sample rule restricts the search for the pattern abc to
the normalized request URI section of the data.

In the first step, separate buckets are created correspond-
ing to each location-modifier defined in Snort. Then, for
each rule, the patterns qualified by the different location-
modifiers are placed in the respective buckets, along with
the sid of the rule. This allows us to program patterns from
different buckets into separate logical-cores and stream only
the data relevant to the location-modifier to the correspond-
ing logical-core. For our sample rule, the patterns foo, bar,
and /foo[0-9]1{10}bar are placed in the general bucket;
kludge, cluft, baz, and qux in the http_header bucket;
and abc in the http_uri bucket.

Step 2. Handling Distance-Modifiers: The distance-
modifiers specify constraints on the location of the occur-
rence of a pattern in the dataflow relative to an anchor.
The anchor could either be the beginning of the dataflow
or the end of the occurrence of the previous pattern. For
example, our sample rule contains the modifier distance
with an argument of 10. This modifier mandates that the
occurrences of the two preceding patterns (namely foo and
bar) are separated by at least 10 characters.

In the second step, the patterns within each bucket
are considered separately. The patterns related through
distance-modifiers, belonging to the same rule, are com-
bined into a single PCRE using repetition quantifiers. In our
sample rule, the patterns foo and bar in the general bucket
are combined to get the PCRE: foo.{10, }bar.

Step 3. Handling Long Repetition Quantifiers: PCRE
repetition quantifiers are used to specify the number of
times a sub-pattern should match in the string. The size
of such repetitions can be as high as 13280 in some of
the patterns in the Snort ruleset. The counter elements can
be used for handling these repetitions only if it can be
guaranteed that a second count will not be started while
a count is in progress, a condition that is not satisfied by
most of the repetitions. The repetitions are therefore handled
using the STEs, thereby consuming a lot of resources.

In the third step, repetition quantifiers of size more than
512 in the patterns are substituted by unbounded repeti-
tions. These constitute less than 1% of the supported rules.

2. http:/ /www.micronautomata.com/apsdk_documentation/latest/
h1_known_issues.html#h2_pcre_known_issues
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The language of the resulting pattern, after substitutions, is
a superset of the language of the original pattern. Therefore,
the sid of the corresponding rule and the original pattern is
recorded for eliminating false positive matches during the
execution stage.

Step 4. Handling PCRE Back References: In a PCRE,
back references are used for matching the same string as
the one matched by a previous sub-pattern [6]. 6% of
the supported rules contain patterns with back references.
However, since the match depends on the input dataflow,
the AP cannot handle back references efficiently.

In the fourth step, all the back references in the patterns
are substituted by the corresponding sub-patterns being
referred to. As in the third step, the substituted pattern can
report false positive matches. Therefore, the sids of the rules
and the original patterns are noted for verifying the matches
reported by the AP.

Step 5. Generating Final ANML-NFA: After combining
patterns into PCRE in the second step, multiple PCREs for a
rule may be left in a bucket. All such PCREs should match
in the dataflow, in any order, for a rule to be triggered.

In the fifth step, the PCRE(s) for every rule in all the
buckets are converted into an ANML-NFA, with its report
code set to the sid of the rule. This is trivial if there is
a single PCRE corresponding to the rule in the bucket.
However, if there are multiple PCREs for a rule, then a
boolean AND element and latched-STEs are used. For
example, there are four patterns in the http_header bucket:
kludge, cluft, baz, and qux. The ANML-NFA for
the same is shown in Fig. [l Notice that, all the PCREs
pertaining to a single rule from the same bucket can also
be combined to form a final unified PCRE using lookahead
assertions [6]. For example, the patterns in the http_header
bucket can be expressed as a PCRE with three lookaheads:
(?=.xkludge) (?=.xcluft) (?=.%baz) .* (?:qux).
However, the ANML-NFA corresponding to PCRE with
lookahead assertions is very large. Instead, the ANML-NFA
described above is considerably smaller.

Step 6. Handling Clock-Divisor: The streaming rate for
a bucket is determined by the ANML-NFA with the highest
clock-divisor (discussed in Section in the bucket.

In the sixth and final step, the ANML-NFAs within the
same bucket are separated according to their clock-divisors.
The clock-divisor for the ANML-NFA generated in the fifth
step is determined. If the divisor is found to be greater than
1, then a separate bucket for the location-modifier is created
corresponding to the divisor, if one doesn’t already exist.
The ANML-NFA is then added to the bucket corresponding

0O000006
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Fig. 4: Final ANML-NFA corresponding to the http_header
bucket of the sample rule.
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to the divisor.

At the end of these steps, there is at most one ANML-
NFA per rule in every bucket. The automata from each
bucket is compiled into a single AP-FSM. Compiling
ANML-NFAs for all the patterns in a bucket together re-
sults in more efficient resource utilization and placement.
However, the time required for compiling complete buckets
might be prohibitive in scenarios when a rule corresponding
to a newly detected threat is to be added quickly. In such
cases, the new patterns can be compiled separately and
loaded with the corresponding buckets, while the compi-
lation of the modified buckets runs in the background.

3.3.2 Execution Stage

The compiled AP-FSMs are directly loaded into the AP-
board and the processing of the network packets begins
instantaneously. The host application breaks the incoming
network packets corresponding to the different buckets and
generates the dataflow for each logical-core on the AP-
board. The sid of a rule is reported whenever the corre-
sponding automata detects a match in a network packet.
If the reported sid corresponds to one or more patterns
with long repetition quantifiers or back references then the
packet is matched against the original patterns, recorded
in Step 3 or Step 4 of the configuration stage, using the
Snort software [7]]. In case a rule is programmed as multiple
automata, pertaining to patterns with different location-
modifiers, the host application triggers the necessary actions
specified in the original Snort rule only if all the constituent
automata generate a report within the same network packet.
In this way, a very high throughput DPI engine is realized.

4 PROTOMATA

PROTOMATA scans protein sequences for occurrences of
the protein motifs from the PROSITE database [8]. In this
section, we briefly describe the PROSITE pattern-motifs, the
state-of-the-art in finding these motifs in protein sequences,
and the PROTOMATA application in detail.

4.1 Background

PROSITE is a large annotated database of known protein
motifs. A motif is described as a small conserved region in
a protein sequence which plays a biologically meaningful
role in the behavior of the protein. The motifs are described
as either pattern-motifs or profile-motifs. A pattern-motif is
expressed using PROSITE pattern notation described in Sec-
tion On the other hand, the profile-motifs use a weight-
matrix-based method to calculate similarity. PROTOMATA
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only scans for occurrences of the pattern-motifs, and hence-
forth in this paper, ‘pattern-motifs’ and ‘motifs’ are used
interchangeably. Currently, PROSITE has 1309 motifs of
which 12 are classified as frequently occurring.

Multiple tools to scan protein sequences for occurrences
of the motifs were developed by academic groups [20], [21],
[22], [23] and commercial companies [24] in the early 1990s.
ScanProsite [25], an online tool provided by PROSITE, is
the current de facto standard for the purpose. The tool sup-
ports the following three modes of operations: (1) protein
sequences can be submitted to be scanned against all the
motifs in the PROSITE database, (2) motifs can be submitted
to be scanned against a protein database (UniProtKB [26],
PDB, or user-defined), and (3) motifs and protein sequences
can be submitted to be scanned against each other. A Perl-
based version of the tool, called ps_scan, can be down-
loaded for execution on a local machine. However, in our
experiments, we found that ps_scan is orders of magnitude
slower than the state-of-the-art PCRE engines. Therefore, for
the comparative studies, we used Hyperscan (discussed in
Section [5.2).

4.2 PROSITE Motifs

The PROSITE motifs are expressed in PROSITE pattern
notation. Each motif consists of a sequence of pattern
elements separated by a concatenation symbol ‘—’. The
complete syntax of these pattern elements is available
onlineE] However, we briefly describe the pattern elements
used in the PROSITE motif PS00430 (TonB-dependent receptor
proteins signature 1):

< x(10,115)—[DENF]—[ST]|—[LIVMPF|—-[LIVSTEQ]—
V —{AGPN} — [AGP] — [STANEQPK]

In the motif, ‘<’ denotes the beginning of the sequence,
‘z’ denotes any amino acid, ‘(10, 115)” denotes a repetition
between 10 and 115 times, ‘[...]" denotes a character class
for matching any one of the amino acids in the list, and
{...} denotes a complementary class, i.e. any amino acid
but the ones listed within the curly braces. Fig. |5 shows the
occurrence of the PROSITE motif PS00430 in the UniProtKB
protein sequence D3BUN1 (Lissencephaly-1 homolog). Next,
we use this motif to illustrate our automata designs.

4.3 Methodology
4.3.1 Automata Design

In order to generate the required automata, the database
of motifs is downloaded periodically (or on user request)

3. https:/ /prosite.expasy.org/scanprosite /scanprosite_doc.html

<X(10,115)-[DENFIHSTHLIVMF-LIVSTEQ]-V-{AGPN}-AGP]-[STANEQPK].

Mm

~ MVLTNKQKEELNGAILDYFDSSGYKLTSTEFTKETNIELDPKLKGLLEKKWTSVIRLQKKVMDLEAKVSQLEEELNNGGRGPARRGKEDALPRQPEKHVLTGHRNCINAVRFHPL FSV | VSAS

Fig. 5: Occurrence of the PROSITE motif PS00430 in the Lissencephaly-1 homolog protein sequence.


https://prosite.expasy.org/scanprosite/scanprosite_doc.html

and all the pattern-motifs are extracted from the same. For
each motif in the database, two pre-compilable automata are
required. One for reporting the location of each occurrence
of the motif and the other for checking if the motif occurs
in all of the multiple protein sequences provided by the
user. We use the Selective-enable automaton and the All-
repeat-check automaton for this purpose as described next.
The reader is referred to for details on the design and
working of these automata.

Two pattern macros called the Report-on-match macro
and the Continue-on-match macro are created for every
motif. Further, each motif is assigned a unique 2-byte
PROTOMATA-id. This id is different from the alphanumeric
PROSITE-id, which can contain between 2 and 21 characters,
and a simple one-to-one mapping is maintained on the
host application to provide the necessary interface between
the user input, using the PROSITE-ids, and the working of
PROTOMATA, using the PROTOMATA-ids. The Report-on-
match macro and the PROSITE-id is then used to instan-
tiate the Selective-enable automaton shown in Fig. |6 The
Continue-on-match macro is used in the All-repeat-check
automaton shown in Fig. 7] Both these automata correspond
to the motif PS00430, which is assigned a PROTOMATA-id
of 018a1¢. For simplicity of expression, the STE labels in the
figures are represented as follows:

e An upper-case letter represents an amino acid. An
STE-label with one or more upper-case letters repre-
sents the character class containing the ASCII equiv-
alent of the letters in the upper and lower cases.
For example, the label A represents the character
class [4136,6116] and the label AGV represents the
character class [411¢, 4716, 5616, 6116, 6716, 7616].

e 'Y’ represents the character class containing the
ASCII equivalent of all the letters representing the
amino acids in upper and lower cases.

o ‘o’ represents the entire 8-bit symbol-set.

o All the other labels are 2-digit hexadecimal numbers.

A preamble sequence is streamed at the beginning
of the dataflow which contains both the bytes of the
PROTOMATA-ids of only those motifs whose search is
to be enabled. For example, if the search for frequently
occurring motifs is to be disabled, then the PROTOMATA-
ids of only the rest of the motifs are included in the preamble
sequence. The preamble sequences for standard choices are
pre-computed and stored. The end of the preamble sequence
is earmarked by the character f fi6. In order to avoid any
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confusion between this end-marker and the first byte of a
PROTOMATA-id in the preamble sequence, the range of the
latter is restricted from 006 to fejs, i.e. the PROTOMATA-
ids lie between 000016 and fef fi6.

Enable macro: The Enable macro is part of both the
Selective-enable and the All-repeat-check automata. It pro-
cesses the preamble sequence and activates the subsequent
processing elements only if the PROTOMATA-id of the
associated motif is present in the preamble sequence. This
obviates the need to reprogram the AP-chip every time the
user enables the search for a different set of motifs. If the
occurrence of the motif is not anchored to the beginning
of the protein sequence, then the output port 02 is also
connected to the input port i2 of the pattern macro. The
output port 02 is driven by STE 6 which creates an activation
signal for every symbol in the first protein sequence.

Selective-enable automaton: The Selective-enable au-
tomaton creates an output report as soon as the occurrence
of a motif is detected in the dataflow, thereby marking
the location of the occurrence. If the search for PS00430
is enabled, then STE 9 of the Report-on-match macro is
activated to process the first symbol of the first protein
sequence. The connections between STE9, CTR 1, and CTR 2
ensure that the output of CTR 1 is activated only for the 11*"
to the 116" symbol in the protein sequence. The matching
of the sequence using STEs 11 — 18 is straight-forward. STE
18 creates an output as soon as the occurrence of the motif is
found in the protein sequence. The protein sequences to be
scanned are also separated by the character f fis. STE 10 is
used to restart the processing for the next protein sequence
by reactivating STE 9 and resetting the counter elements on
encountering f fi¢.

All-repeat-check automaton: The All-repeat-check au-
tomaton is used when the motifs present in all the input
protein sequences need to be identified. It minimizes the
rate of output generation and generates a single report
at the end of the dataflow identifying only the common
motifs as follows. The Report-on-match macro in Fig. [f] is
replaced by the Continue-on-match macro in Fig. [7] which
does not have any reporting-STEs. Instead, the last STE,
namely STE 18, is connected to the input ports of the Serial-
repeat macro. If the occurrence of the motif needs to be
anchored to the end of the sequence, the connection to the
port i3 is excluded. Only if the motif occurs in the first
protein sequence, STE 19 and STE 20 are activated. STE 19
keeps STE 20 activated till the end-delimiter of the sequence
is encountered. On encountering f fi5, STE 20 reactivates

STE7 | STES 02

i
STE6

STE1  STE2
Enable macro

STE3 STE4 STE5

STE17

STE1l STE1l2 STE13 STE14 STE15 STE16

STE18

Report-on-match macro
Fig. 6: The Selective-enable automaton for the PROSITE motif PS00430.



STEL  STE2
Enable macro

STE3 STE4 STES

STE13

STE14

STE15 STEl6 STE17

STE1l

STE12

STE18

Serial-repeat macro | STE19  STE20  STE21

3 -
¢ Continue-on-match macro

Fig. 7: The All-repeat-check automaton for the PROSITE motif PS00430.

the first STE of the Continue-on-match macro to enable the
search for this motif in the next sequence. Simultaneously,
STE 6 of the Enable macro is also activated to handle motifs
whose occurrences need not be attached to the beginning
of the protein sequence. If STE 20 is active after the last
sequence has streamed, then it activates STE 21 to generate
a report on encountering 00;¢ at the end of the dataflow.

4.3.2 Execution Stage

The Selective-enable and the All-repeat-check automata for
all the motifs are compiled together into two separate AP-
FSMs and loaded into the board. The dataflow is con-
structed based on the user input, from the preamble se-
quence and the proteins to be scanned. If the location of
each occurrence of every enabled motif is to be reported,
then the assembled dataflow is streamed to the AP-FSM
corresponding to all the Selective-enable automata. On the
other hand, if the motifs that occur in all the sequences need
to be reported, then the All-repeat-check AP-FSM is used
instead. In this case, if the location of the common motif
in the individual protein sequences is also required, then
a second pass is made using the Selective-enable AP-FSM
with only the motifs that reported in the first pass.

5 COMPARATIVE EVALUATION
5.1 Comparison with FPGA

Nourian et al. compared the AP with FPGA for au-
tomata processing in multiple representative applications
and found that processing throughputs are generally higher
for FPGA at the cost of high preprocessing times. In this pa-
per, we compare the performance of the AP with FPGA for
FastSNAP and PROTOMATA. For a fair comparison, we im-
plemented a tool-chain that takes an ANML-NFA as input
and automatically generates Verilog code for implementing
it. Then, we used Xilinx ISE Design Suite 10.1 for performing
synthesis, mapping, and place-and-route of the generated
HDL design onto the FPGA hardware. In our FPGA de-
sign, we used the well-known one-hot encoding scheme
proposed by Sidhu and Prasanna for implementing
the NFA processing. In this encoding, the NFA states are
represented by flip-flops and the state transitions are im-
plemented by AND-ing and OR-ing the outputs of the flip-
flops with the decoded input character. This representation
allows processing one input character per clock-cycle, thus
ensuring worst-case performance guarantees independent
of the number of states that are concurrently active during

the traversal. Further, this representation could be trivially
extended to support the counter and boolean elements.

We optimized our FPGA designs using the single input
and multiple outputs optimizations described by Becchi
and Crowley [29]. Additionally, in order to handle large
ANML-NFA networks with resource requirements exceed-
ing the capacity of a single FPGA device, we implemented
partitioning schemes in our tool-chain. These schemes use
estimates of the FPGA logic utilization to break the input
ANML-NFA network into multiple sub-networks that could
then be deployed on multiple FPGA devices.

5.2 Comparison with Hyperscan

Hyperscan is a software library by Intel specifically de-
signed for the purpose of matching large rulesets on
CPUs [9]. Given a set of regexes, the library compiles
them and creates a database which can be used for
matching against streaming or blocked data with multiple
threads. Since its open-source release in 2015, the library
has emerged as the best pattern matching engine on CPU
for advertisement filtration , database queries , etc.
Therefore, we used Hyperscan for comparing the perfor-
mance of the AP with the state-of-the-art on CPUs. How-
ever, extended PCRE features such as lookahead assertions
are not supported by Hyperscanﬁ Since we use lookaheads
for generating final PCRE from Snort rules, in place of
the boolean AND element for generating ANML-NFA (as
discussed in Section B.3.1), we had to limit the comparison
to PROTOMATA.

For benchmarking the performance of Hyperscan, we
used the hsbench tool which is part of the Hyperscan li-
braryﬁ The tool takes the patterns to be searched for, in the
PCRE format, and the data to be scanned as inputs. It then
reports the time taken by a single-thread implementation
of Hyperscan in scanning the given data for the set of
patterns. Therefore, we converted the PROSITE motifs to
the corresponding PCRE and used hsbench for comparing
the performance of Hyperscan with that of PROTOMATA.

6 RESULTS

For both the applications described in this paper, the
ANML-NFA can be defined and compiled beforehand.

4. https:/ /intel.github.io/hyperscan/dev-reference/compilation.
html#pattern-support

5. http:/ /intel.github.io/hyperscan/dev-reference/tools.html#
benchmarker-hsbench


https://intel.github.io/hyperscan/dev-reference/compilation.html#pattern-support
https://intel.github.io/hyperscan/dev-reference/compilation.html#pattern-support
http://intel.github.io/hyperscan/dev-reference/tools.html#benchmarker-hsbench
http://intel.github.io/hyperscan/dev-reference/tools.html#benchmarker-hsbench

Clock-divisor location- #Boolean #Counter #Blocks #Chips

(d) modifier elements elements

file_data 0 0 1 1

general 735 209 711 4

general_raw 1 1 1 1

http_client_body 104 62 41 1

http_cookie 6 1 2 1

1 http_header 155 5 53 1

http_header_raw 1 0 1 1

http_method 0 0 1 1

http_stat_code 0 0 1 1

http_uri 394 79 128 1

http_uri_raw 3 3 1 1

general 3191 273 1820 11

general_raw 8 2 2 1

5 http_client_body 117 9 40 1

http_header 226 6 33 1

http_uri 425 4 47 1

http_uri_raw 4 2 23 1

3 general 22 0 3 1

http_uri 21 2 2 1

TABLE 1: AP resource requirements of Fast-SNAP buckets.

Therefore, although the compilation times of both these
applications have been reported here, they do not figure
in the run-time calculations. All the CPU-based operations
(compilation and execution of the host application) are
executed on a quad-core Intel(R) Core(TM) i5-3570 CPU,
running at 3.4 GHz with 8 GB of main memory.

The computation on the CPU comprises of fetching the
input data, organizing the same into a dataflow, streaming
the dataflow to the AP-board, and taking actions based on
the occurrence of the patterns as reported by the AP. This
is not expected to be the bottleneck for the applications
discussed in this paper and can be easily hidden by an
asynchronous multi-threaded pipeline.

The FPGA experiments were performed on two
Virtex-5 devices with different capacities: XC5VLX30 and
XC5VFX200T, the former comprising of 4 800 slices and the
latter comprising of 30 720 slices. The Virtex-5 FPGAs have
4 flip-flops and 4 lookup tables (LUTs) per slice, resulting in
19 200 flip-flops and LUTs each on a XC5VLX30 device and
122 880 flip-flops and LUTs each on a XC5VEX200T. In all
the cases, we report the processing throughput of a single
input stream and the FPGA utilization. Supporting multiple
input streams with the considered implementation requires
duplicating the ANML-NFA network which requires multi-
ple FPGA devices in some cases.

6.1 Fast-SNAP
6.1.1 Configuration Overhead

The Snort ruleset can be downloaded from the Snort web-
site. The conversion of the active rules to the equivalent
ANML-NFAs, as described in Section and the com-
pilation of the ANML-NFAs for all the buckets takes 659
minutes. The patterns for the rules are divided into 19
buckets for different combinations of location-modifiers and
clock-divisors. If the AP-FSMs for all the buckets are loaded
together in a single logical-core, they take up 16 AP-chips.

6.1.2 AP Run-time Estimation

The on-board resources required by different buckets in
Fast-SNAP, grouped by their clock-divisors (d), are tabu-
lated in TABLE [I} All the buckets require one chip each,
except for the two general buckets with d = 1 and d = 2
which require 4 and 11 chips, respectively.

There are two possible methods of loading the buckets
on the AP-board, one of which is chosen depending on
the availability of the boards and the expected load corre-
sponding to different location-modifiers. The first method
is used when working with a single board. In this method,
all the buckets with the same clock-divisor are combined
and loaded in one logical-core. The buckets with d = 1
combined require 5 chips, those with d = 2 require 11 chips,
and the d = 3 buckets require just 1 chip. As discussed in
Section the matching throughput for each bucket can
be calculated as 1/d Gbps. Therefore, in order to extract a
total matching throughput of 1 Gbps from the logical-cores
with clock-divisor greater than 1, they are replicated d times.
The total number of chips required in this configuration is
(5x 1)+ (11 x 2) + (1 x 3) = 30, available on one AP-board
to provide a matching throughput of 1 Gbps. Alternatively,
if the matching load is expected to be balanced across all
the location-modifiers, then a higher throughput can be
extracted using two AP-boards. The AP-FSM corresponding
to every bucket is loaded in a separate logical-core and
the buckets with d > 1 replicated. This requires a total of
(14 x 1) + (16 x 2) + (2 x 3) = 52 chips and is estimated to
support a matching throughput of 1 Gbps for every location-
modifier, leading to a total throughput of 11 Gbps.

Notice that, both the methods discussed above can be ex-
tended using more boards for higher throughputs. Further,
since the AP-FSMs for a given ruleset will have to be loaded
only once, the time required for loading is not considered
while calculating the throughput. The output handling time
is also not considered because the application is expected to
generate sparse output.

6.1.3 Evaluation on FPGA

The results of evaluation of the Fast-SNAP network on the
larger XC5VFX200T FPGA are shown in TABLE [2| Since the
clock-divisor does not affect the processing rate on FPGA,
the ANML-NFAs for the buckets with the same location-
modifier but different clock-divisor were combined for the
evaluation on FPGA. However, whenever a bucket could
not fit on one FPGA device, it was partitioned to fit on
multiple FPGA devices. The first ten rows report the results
for the ten smaller buckets that do not require partitioning.
These buckets are compiled together in a single partition
to form an aggregate bucket, the result for which is shown
in the next row. The number of LUTs, flip-flops, and slice
utilization for every partition are reported in the columns
2 — 4 and the throughput reported after running synthesis,
mapping, and place-and-route on the FPGA device is shown
in the column 5. The general bucket is the only one requiring
partitioning. When the maximum expected logic utilization
is set to 100%, five partitions are created, as shown in
the table. Consequently, the whole Fast-SNAP dataset can
be encoded on six XC5VEX200T devices (with a 71-96%
occupancy), leading to per-stream processing throughput
between 1.1 and 1.9 Gbps.



. Slice Single-Stream
Bucket #LUTs #flip-flops i1ization th%oughput
(Gbps)
file_data 66 112 1% 9.383
general_raw 589 422 1% 3.115
http_client_body 11431 13081 27% 1.813
http_cookie 308 347 1% 3.964
http_header 3966 10433 20% 1.751
http_header_raw 23 16 1% 9.195
http_method 62 42 1% 9.090
http_stat_code 6 6 1% 9.389
http_uri 9998 26740 61% 1.841
http_uri_raw 3303 3219 6% 1.956
Aggregate 24735 45750 94% 1.531
general - partition 1 63835 84172 96% 1.306
general - partition 2 61448 77 567 85% 1.168
general - partition 3 83598 98287 89% 1.133
general - partition 4 45883 56580 71% 1.921
general - partition 5 60635 61193 75% 1.339

TABLE 2: Results of synthesis, mapping, and place-and-
route on XC5VFX200T FPGA for the Fast-SNAP network.

6.2 PROTOMATA
6.2.1 Configuration Overhead

A file named prosite.dat can be downloaded from the
PROSITE website which contains all the pattern-motifs in
the database. The conversion of these motifs from the
PROSITE pattern notation to the ANML-NFAs, described
in Section takes 1.6 seconds and the compilation of
these ANML-NFA takes about 20 minutes. All the Selective-
enable automata for the motifs can be programmed using
half the resources on a single AP-chip. Similarly, all the All-
repeat-check automata can fit into one AP-chip.

6.2.2 AP Run-time Estimation

The streaming time for PROTOMATA is the estimated time
required to stream the dataflow, including all the input
proteins and the preamble sequence, in the absence of
any stalling by the output-handling bottleneck, ie. at a
streaming rate of 1 Gbpbs. The output handling time is
the time required to read out all the output-vectors from
the output-buffer. Assuming the worst case, the number
of symbol-cycles required to read out an output-vector
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can be calculated as 40 x min(p,6) + 16, where p is the
number of reporting-STEs matched in the output-event. In
our tests none of the motif occurrences happened on the
same symbol-cycle. Therefore, the time taken to read out the
vector is taken to be 56 symbol-cycles for our calculations.
The overall run-time of PROTOMATA can then be estimated
as a maximum of the streaming time and the output han-
dling time. The time required for loading the AP-FSMs into
the board can be easily amortized over multiple queries and
is therefore not considered in the run-time calculations.

6.2.3 Comparison with Hyperscan

The performance of Hyperscan and PROTOMATA is com-
pared in TABLE [3| using all the motifs from PROSITE
and various proteomes (all proteins from a single organ-
ism) from the UniProtKB database. The Swiss-Prot section
lists the manually annotated sequences from the database,
whereas TrEMBL contains the computationally analyzed
sequences from the database. The number of protein se-
quences from the proteomes and their combined lengths
are expressed in the columns 3 and 4 respectively. The
next column indicates if the search for frequently occurring
motifs is enabled or not. This has a huge impact on the
number of motif occurrences found in the protein sequences
as reported in the column 6.

The run-times of Hyperscan and PROTOMATA are listed
next. The average time taken by Hyperscan in searching the
proteomes for the motifs over 20 repetitions, as reported
by hsbench, is noted in the column 7. These times represent
the scanning time only and do not include the compilation
times. The estimated streaming time, output handling time,
and the overall run-time for PROTOMATA, discussed in the
previous section, are listed in the columns 8 through 10.
The estimated speedup of PROTOMATA over Hyperscan,
reported in the next column, greatly depends on the output
generation rate. If the rate of output generation is very high,
then the overall processing rate on the AP slows down. This
is evident in the case of all the proteomes in the UniPro-
tKB/TrEMBL. In this case, an output is generated every 4 to
5 cycles, the highest among all the cases. Correspondingly,
the speedup is the lowest. The rate of output generation is
also greatly enhanced if the search for frequently occurring
motifs is enabled. Using this setting in all the other cases, an

Hyperscan PROTOMATA

#Protein #Amino Frequently #Motif Average  Streamin: Output Overall

Database Organism(s) . occurring ag . g handling . Speedup
sequences ac1ds mo ti fS occurrences run-time time time run-time

(in ms) (in ms) (in ms) (in ms)
. enabled 66263 696 0 28 28 24.86
E. coli 4305 1360331 — g bled T642 671 0 T 0 67.10
UniProtKB/ enabled 633487 5656 85 267 267 21.18
Swiss-Prot human 20183 11336473 — g1 bled 25228 5403 85 11 85 63.56
enabled 9827918 87627 1307 1138 1138 21.18
all 479406 174899570 —gipled 767995 83061 1307 323 1307 6355
) enabled 66996 705 0 28 28 25.18
E. coli 4333 1372277 —isabled 1653 668 10 T 10 6.80
UniProtKB/ enabled 1239750 11629 166 522 522 22.28
TrEMBL human 67084 22252781 —Fisabled 10141 T1241 166 7 166 67.72
enabled 1694988495 3465616 197190 713679 713679 1.36
all 18394018 6583760868 — g1 b d 1338370343 3287743 197190 563524 563524 5.83

TABLE 3: Comparison of run-times from Hyperscan and PROTOMATA.



output is generated every 18 to 21 cycles and the speedup
varies between 21 and 25 times. If the search for the fre-
quently occurring motifs is disabled (general practice in the
field), then the rate of output generation is much lower and
the expected speedup increases to between 63 and 68 times.
The results for PROTOMATA are calculated considering
a single logical-core executing on the AP-board. Since the
automata for PROTOMATA can fit inside a single AP-chip,
32 logical-cores can be executed in parallel on the AP-
board. One of the features of the execution on the AP is
that every logical-core can operate on a separate dataflow.
Consequently, if the input size is large enough it can be
uniformly broken up into 32 parts and streamed to all the
logical-cores in parallel to extract a further speedup of 32
times. This is not true of Hyperscan. The authors ran exper-
iments by distributing the data uniformly across multiple
cores, and then distributing the patterns uniformly across
multiple cores. In either case, uniform load balancing could
not be achieved automatically. Therefore, multiplication of
the single-core performance of Hyperscan by the number of
cores on the CPU may be achieved only in the best case.

6.2.4 Evaluation on FPGA

TABLE [ shows the results of FPGA evaluation of the
PROTOMATA network. The whole PROTOMATA network
fits inside the larger XC5VEX200T device, requiring nearly
30% of the LUTs and flip-flops and 64% of the slices.
On the smaller XC5VLX30 FPGA, we performed multiple
experiments by limiting the FPGA utilization to a given
percentage, which is the reference occupancy parameter
reported in the second column. Limiting the occupancy to
30%, 50%, and 70% of the FPGA capacity leads to 7, 4,
and 3 partitions, respectively. Each partition, represented
by a row in the table, requires a separate FPGA device.
The reported throughput varies between 1.3 and 2 Gbps
per partition on XC5VLX30 and is equal to 1.4 Gbps on
XC5VEX200T. Since smaller partitions allow easier routing
on the FPGA resources, the reported throughput is usually
larger for them.

The FPGA streaming time can be computed by dividing
the bit length of the input stream by the processing through-

Reference

. . Slice Single-Stream
Device CI))ccupar;cy #LUTs #flip-flops utilization thgoughpu ¢
arameter (Gbps)
XC5VEX200T - 33005 36278  64% 1.400
5697 5889 62% 1.867
5858 5987 64% 1.560
5861 5952 64% 1.874
30% 5643 5918 63% 1.576
5810 5953 67% 1.798
6008 5749 59% 1.949
1324 842 13% 2.052
XC5VLX30 8953 9700 9% 1391
50% 9330 9775 93% 1.910
9062 9758 90% 1.325
7447 7045 69% 1477
12439 13552 97% 1.573
70% 12562 13626 97% 1.746
9296 9102 94% 1.883

TABLE 4: Results of synthesis, mapping, and place-and-
route on Virtex-5 FPGA for PROTOMATA.
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put (1.4 Gbps for PROTOMATA). As in the AP implemen-
tation, we store the motif occurrences in an output-vector.
This output-vector is buffered and outputted in [é] clock-
cycles, where r is the number of reporting states in the
ANML-NFA and op is the number of output ports on the
FPGA device. The FPGA used has 960 output ports and the
PROTOMATA network has 1309 reporting states. For the
considered datasets, this results in the output processing
overhead varying from 0.018 ms, for the case of E. coli
proteomes in the UniProtKB/Swiss-Prot database with the
search for frequently occurring motifs disabled, to 19310.9
ms, when searching for frequently occurring motifs in all
the proteomes from the UniProtKB/TrEMBL database.

7 CONCLUSION

The AP is a soon to be released reconfigurable processor
which is purpose-built to execute thousands of NFAs in
parallel. Therefore, it lends itself well to the acceleration
of software which check for the occurrences of thousands
of patterns in an input data stream. Using this capability,
we have developed two applications, Fast-SNAP and PRO-
TOMATA, which check for patterns of intrusion detection
in network packets and biologically meaningful patterns
in protein sequences, respectively. Both of these provide a
glimpse of how such applications should be programmed
using this new accelerator hardware. In addition, the tech-
niques described in this paper are applicable to the design
and analysis of a wide variety of applications on the AP.
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