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First published April 24, 2019; doi:10.1152/jn.00514.2018.—Humans
have an astonishing ability to extract hidden information from the
movements of others. For example, even with limited kinematic
information, humans can distinguish between biological and nonbio-
logical motion, identify the age and gender of a human demonstrator,
and recognize what action a human demonstrator is performing. It is
unknown, however, whether they can also estimate hidden me-
chanical properties of another’s limbs simply by observing their
motions. Strictly speaking, identifying an object’s mechanical
properties, such as stiffness, requires contact. With only motion
information, unambiguous measurements of stiffness are funda-
mentally impossible, since the same limb motion can be generated
with an infinite number of stiffness values. However, we show that
humans can readily estimate the stiffness of a simulated limb from
its motion. In three experiments, we found that participants linearly
increased their rating of arm stiffness as joint stiffness parameters
in the arm controller increased. This was remarkable since there
was no physical contact with the simulated limb. Moreover, par-
ticipants had no explicit knowledge of how the simulated arm was
controlled. To successfully map nontrivial changes in multijoint
motion to changes in arm stiffness, participants likely drew on
prior knowledge of human neuromotor control. Having an internal
representation consistent with the behavior of the controller used to
drive the simulated arm implies that this control policy compe-
tently captures key features of veridical biological control. Finding
that humans can extract latent features of neuromotor control from
kinematics also provides new insight into how humans interpret the
motor actions of others.

NEW & NOTEWORTHY Humans can visually perceive another’s
overt motion, but it is unknown whether they can also perceive the
hidden dynamic properties of another’s limbs from their motions.
Here, we show that humans can correctly infer changes in limb
stiffness from nontrivial changes in multijoint limb motion without
force information or explicit knowledge of the underlying limb
controller. Our findings suggest that humans presume others control
motor behavior in such a way that limb stiffness influences motion.

action understanding; dynamic primitives; joint stiffness; motor con-
trol; motor perception

INTRODUCTION

We often take for granted how readily we can physically
interact with objects in our environment, including simple

objects and highly complex systems like other human beings.
Humans can seamlessly shake hands and collaboratively ma-
nipulate objects with one another, making it easy to underrate
the complicated control problem that physical interaction poses
to the central nervous system. The challenge of controlling
physical interaction arises from the fact that, when you apply
forces on an external object, the object simultaneously applies
forces back onto you. The object’s dynamics are coupled to
your dynamics, and this can destabilize the physically coupled
hand-object system. Extensive prior work suggests that hu-
mans are able to ensure robust stability during physical inter-
action by modulating the mechanical impedance of their limbs
(i.e., the generalized relation between force and motion) (e.g.,
Burdet et al. 2001; Damm and McIntyre 2008; Hogan 1984;
Lacquaniti and Maioli 1989; Rancourt and Hogan 2009; Senot
et al. 2016; Won and Hogan 1995). However, it is still
unknown how humans determine the appropriate limb mechan-
ical impedance (e.g., inertia, stiffness, and damping properties)
for a particular interaction task since it depends not only on the
task but also on the mechanical properties of the object or
system with which the interaction is planned.

Strictly speaking, identification of an object’s mechanical
properties, such as stiffness, requires contact and physical
interaction. However, it has been shown that humans can use
a multitude of visual cues to deduce these properties of
objects before contact. For example, humans can use motion
cues to determine the elasticity of a ball from visually
observing it bounce on a surface (Nusseck et al. 2007;
Warren et al. 1987). They can also infer the stiffness of a
static object based on how it deforms in response to external
forces (Bouman et al. 2013; Paulun et al. 2017). Even in the
extreme case when an object is static and not subjected to
external forces, humans can still estimate its stiffness from
its optical material properties (e.g., shininess, transparency)
drawing from prior experience (Schmidt et al. 2017).

Cooperative physical interaction with another human, how-
ever, is much more challenging. Unlike the objects used in
these prior studies, humans have actuators (in the form of
muscles) and skeletal “redundancy” (more degrees of freedom
than the minimum required to position the hand or foot) that
allow them to actively control their limb impedance. However,
humans have a remarkable ability to extract information from
visually observing the motion of others (for review, see Blake
and Shiffrar 2007). For instance, humans can distinguish
between biological and nonbiological motion (e.g., Johans-
son 1973), identify the gender of a human demonstrator

Address for reprint requests and other correspondence: M. E. Huber, 77
Massachusetts Ave., 3-143, Cambridge, MA 02139 (e-mail: mehuber@mit.edu).

J Neurophysiol 122: 51–59, 2019.
First published April 24, 2019; doi:10.1152/jn.00514.2018.

510022-3077/19 Copyright © 2019 the American Physiological Societywww.jn.org

Downloaded from www.physiology.org/journal/jn at Massachusetts Inst of Tech Lib (018.009.061.112) on October 1, 2019.

https://orcid.org/0000-0002-0415-4002
http://doi.org/10.1152/jn.00514.2018
mailto:mehuber@mit.edu


(e.g., Kozlowski and Cutting 1977), and recognize what
action a human demonstrator is performing (e.g., de la Rosa
et al. 2014; Dittrich 1993). The open question is, can
humans also infer the impedance of a human limb without
physically interacting with it?

The purpose of this study was to determine if humans can
estimate the stiffness of a moving arm without physical con-
tact, i.e., by observing only its kinematic behavior. At first, it
might seem implausible that humans could estimate the stiff-
ness of a moving limb without physical interaction. When
observing another person, one can visually perceive their overt
motion, but it is impossible to unambiguously quantify limb
stiffness from motion alone. Additional force information from
physical interaction is required to make an accurate measure-
ment. Moreover, the features that generate a particular limb
stiffness, such as muscle coactivation or neuromotor com-
mands, are not visible (Brass and Heyes 2005).

However, it is feasible that humans could estimate limb
stiffness from motion without physical contact if the following
two criteria are met. First, the observed limb must be controlled
in such a way that limb stiffness and motion are linked. Note
that this limits the possible control architectures. For instance,
a typical industrial robot arm can generate practically any
nominal motion using high-precision motion control, but its
stiffness will be unwaveringly high across all motions and
largely independent of them. Second, humans must have suf-
ficient knowledge of the controller to map changes in limb
motion to changes in stiffness.

With a series of three experiments, we tested whether
humans could perceive changes in limb stiffness of a simulated
two-link planar arm. We first simulated human-like arm mo-
tions devoid of physical interaction using a controller in which
varying joint stiffness influenced motion. We then instructed
participants to watch simulated motions of the two-link planar
arm and rate “arm stiffness” on a numerical scale. In each
experiment, different joint stiffness parameters were varied,
which led to distinct changes in arm motion. This allowed us to
test how robustly subjects could estimate joint stiffness across
different sets of motion patterns.

In all three experiments, we found that participants linearly
increased their arm stiffness rating with the simulated joint
stiffness, regardless of the affected joint(s) and seemingly
nonintuitive changes in motion. This indicates that participants
1) assumed that overt motion is influenced by joint stiffness
and 2) had prior knowledge of the controller used to simulate
the arm motion. These results are the first demonstration that
humans can extract limb impedance information from visually
observing its motion, providing new insight into how humans
interpret, assess, and learn from the motion of others for
physical interaction.

METHODS

Participants. Ten participants took part in each of the three exper-
iments (30 participants in total: 14 males and 16 females with a mean
age of 22 � 4 yr). Participants had a variety of educational back-
grounds, including engineering, computer science, material science,
and biology. None had any prior experience with the experimental
task, and each only participated in one experiment. All participants
gave informed written consent before the experiment. The experimen-
tal protocol was reviewed and approved by the Institutional Review
Board of the Massachusetts Institute of Technology.

Experimental task. In all three experiments, participants viewed a
series of simulated arm motions displayed on a computer screen (Fig.
1). In each trial, participants saw a two-link planar arm move its
“hand” (endpoint) along an orbital path for 20 s. The hand path was
not explicitly displayed. At the end of the simulated motion, partici-
pants were instructed to rate “arm stiffness” on a numeric scale from
1 to 7. A rating of 1 indicated that the arm was “least stiff,” and a
rating of 7 indicated that the arm was “stiffest.” After submitting a
rating, participants self-initiated the next trial, allowing them to take
a break at any time if needed.

Each participant performed 30 trials. Participants were shown six
unique arm motions that were repeated five times in a blocked
manner. The order was randomized within each block. The whole
experiment lasted ~20 min.

A custom graphical user interface developed in MATLAB (The
MathWorks, Natick, MA) was used to conduct the experiment, in-
cluding simulating and displaying the arm motions and recording the
arm stiffness ratings.

Simulated arm motions. The simulated arm motions were intended
to represent actual human motor behavior. The arm was modeled as a
two-link planar manipulator moving in the vertical plane. The dynam-
ics of this model were described as

M�q�q̈ � C�q, q̇�q̇ � g�q� � �

where q,q̇,q̈��2�1 are the joint angular positions, velocities, and
accelerations, respectively, M�q���2�2 is the inertia matrix,
C�q,q̇���2�2 are the Coriolis and centrifugal terms, g�q���2�1 are
the gravitational terms, and ���2�1 are the commanded joint torques.
The length, mass, center of mass, and moment of inertia parameters
for the two links were chosen to match the forearm and upper arm of
an average male human as described previously (Zatsiorsky 2002).

The controller driving the simulated arm was consistent with a
proposal that human motor behavior is composed of dynamic primi-
tives (Hogan 2017; Hogan and Sternad 2012). In the simulation the
controller comprised two components. One, a combination of an
oscillatory primitive with mechanical impedance in hand coordinates,
acted to pull its endpoint along a circular path. At the same time, the
other, a combination of a fixed-point primitive with mechanical
impedance in joint coordinates, acted to pull it to a nominal joint

Fig. 1. Experimental setup. In each trial, participants viewed a two-link planar
arm moving periodically for 20 s on a computer screen. After watching the
simulated arm motion, participants rated arm stiffness on a numeric scale.
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configuration or pose. The commanded joint torques were determined
by

� � J�q�TKx�xr � x� � J�q�TBxẋ � Kq�qr � q�

xr ��0.1cos�20t

3 �
0.1sin�20t

3 � �, qr ��
�

4

�

4
�

Kx � �500 0

0 500 	, Bx � �10 0

0 10 	, Kq � �S 0

0 E 	
where x,ẋ��2�1 were the endpoint (i.e., hand) positions and veloci-
ties, respectively; J�q���2�2 was the Jacobian matrix; xr was the
reference endpoint position, which followed a circular path; qr was the
reference joint configuration; Kx and Bx were the endpoint stiffness
and damping matrices, respectively; Kq was the joint stiffness matrix;
and S,E���0 were the values in the joint stiffness matrix correspond-
ing to the shoulder and elbow joints, respectively.

In experiment 1, the six unique arm motions were generated by
setting S�E�{0,10,20,30,40,50} Nm/rad (Fig. 2A). The range of
elbow and shoulder stiffness values used is similar to those
reported in human studies (Bennett et al. 1992; Lacquaniti et al.
1982; Mussa-Ivaldi et al. 1985). In experiment 2, the motions were
generated by setting E�{0,10,20,30,40,50} Nm/rad and S�0 Nm/
rad (Fig. 2B). In experiment 3, the motions were generated by
setting S�{0,10,20,30,40,50} Nm/rad and E�0 Nm/rad (Fig. 2C).
Prior human studies have shown that humans are capable of

independently modulating shoulder and elbow stiffness (Franklin
et al. 2007; Gribble and Ostry 1998; Perreault et al. 2002).

Task instructions. In this study, we took several precautions to
ensure that participants did not know how the simulated arm was
controlled. Most importantly, we did not want participants to know
that we were manipulating joint stiffness, let alone which joint was
being manipulated. Thus, we purposefully used the vague term arm
stiffness when instructing participants to rate the simulated arm
motions. In the event that a participant was unsure of what the term
stiffness meant, they received the following definition: “Stiffness is
the extent to which an object resists deformation or deflection in
response to an applied force. A stiffer object has higher resistance to
deflections than a less stiff object.” This instruction was only provided
to two participants. Participants were not presented with examples of
“more” and “less” stiff arm motions before the experiment. We also
purposefully did not provide subjects with any details regarding the
controller. They were not told the reference endpoint trajectory was
circular, and they saw neither it nor the reference joint pose at any
point in the experiment. Last, we did not tell subjects the plane in
which the arm was moving. Unbeknownst to the participants, the arm
was moving in the vertical plane and subject to gravitational forces.

After completing the experiment, subjects were asked to verbally
describe their strategy for estimating arm stiffness.

Statistical analysis. In all experiments, we hypothesized that sub-
jects would linearly increase their arm stiffness rating with the
simulated joint stiffness. To test this hypothesis, we conducted a 6
(joint stiffness) � 4 (block) ANOVA on the arm stiffness rating for
each experiment. Joint stiffness and block were within-subject factors.
The Greenhouse-Geisser correction was applied to these factors.

g
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Fig. 2. Six endpoint motions of the simulated arm in each experiment. A: in experiment 1, both elbow and shoulder stiffness were varied simultaneously. B: in
experiment 2, elbow stiffness (E) was varied, and shoulder stiffness (S) was set to zero. C: in experiment 3, shoulder stiffness was varied, and elbow stiffness
was set to zero. During the experiments, participants only saw the moving limb and were not shown the endpoint traces portrayed here.
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Because it was difficult for subjects to gauge relative stiffness ratings
in the beginning of the experiment, the arm stiffness ratings from the
first block of trials were excluded from all statistical analyses. A
subsequent analysis showed that omitting this first block had minimal
effect on the results and did not change the significance of any effects
or interactions. A planned polynomial trend analysis was also con-
ducted to further test whether the effect of joint stiffness on arm
stiffness rating was linear.

To further investigate the potential strategies subjects used to rate
stiffness, we tested for differences in stiffness rating variability across
joint stiffness conditions. Specifically, a 6 (joint stiffness) � 3
(experiment) ANOVA was conducted on the SD of arm stiffness
rating, where joint stiffness condition was a within-subjects factor and
experiment was a between-subjects factor.

In all statistical tests, the significance level was set to P � 0.05.
Statistical analyses were performed using SPSS Statistics for Win-
dows, version 24.0 (IBM, Armonk, NY).

RESULTS

Figure 3 shows the raw data from individual participants in
all experiments with linear fits for visualization. The majority
of individual participants across all experiments increased arm
stiffness rating as simulated joint stiffness was increased.

Experiment 1: changing elbow and shoulder stiffness. The
ANOVA revealed a significant main effect of simulated joint
stiffness on arm stiffness rating [F(1.29,11.59) � 6.20; P �
0.023, partial 	2 � 0.41] (Fig. 3A). Moreover, the effect of
simulated joint stiffness on arm stiffness rating was linear
[F(1,9) � 7.39; P � 0.024, partial 	2 � 0.45]. As hypothe-
sized, subjects linearly increased their arm stiffness rating as
simulated elbow and shoulder joint stiffness were increased
(Fig. 4).

There was no significant effect of block [F(2.02,18.15) � 1.11,
P � 0.35, partial 	2 � 0.11] nor an interaction [F(4.40,39.63) �
1.02, P � 0.41, partial 	2 � 0.10]. Participants did not “learn” or
alter their rating strategy as the experiment progressed.

Experiment 2: changing elbow stiffness. Consistent with the
results of experiment 1, participants linearly increased their
arm stiffness ratings with increased elbow stiffness as hypoth-
esized. The ANOVA revealed a significant main effect of
elbow stiffness on arm stiffness rating [F(2.33,21.00) � 33.10;
P � 1.43 � 10�7, partial 	2 � 0.79] (Fig. 3B), and again, the
effect was linear [F(1,9) � 70.10, P � 1.50 � 10�5, partial
	2 � 0.89] (Fig. 4). There was no significant effect of block
[F(2.43,21.89) � 0.022, P � 0.99, partial 	2 � 0.02] nor an
interaction [F(5.21,46.85) � 1.01, P � 0.42, partial 	2 � 0.10].

One subject, who happened to be a trained physical
therapist, performed exceptionally well (highlighted in Fig.
3B). To test whether this subject’s performance skewed our
results, the statistical analysis was repeated without this
subject’s data. We observed that excluding this subject had
only a minimal effect on the statistical results [elbow
stiffness: F(2.20,17.58) � 26.47, P � 3 � 10�6, partial
	2 � 0.77; linear effect of elbow stiffness: F(1,8) � 56.37,
P � 6.9 � 10�5, partial 	2 � 0.88; block: F(2.43,19.48) �
0.004, P � 0.99, partial 	2 � 4.50 � 10�4; elbow stiffness �
block: F(5.06,40.49) � 0.96, P � 0.46, partial 	2 � 0.11].
Importantly, the significance of the effects and interactions was
unchanged.

Experiment 3: changing shoulder stiffness. Participants also
increased their arm stiffness ratings with increased shoulder
stiffness as hypothesized. The ANOVA revealed a signifi-

cant main effect of shoulder stiffness on arm stiffness rating
[F(1.64, 14.80) � 9.62, P � 0.0031, partial 	2 � 0.52] (Fig.
3C), which was linear [F(1,9) � 14.42, P � 0.0042, partial
	2 � 0.62] (Fig. 4). There was no significant effect of block
[F(1.72,15.43) � 0.10; P � 0.88, partial 	2 � 0.01], nor an
interaction [F(3.61,32.49) � 0.61, P � 0.64; partial 	2 � 0.
064].

Effect of simulated joint stiffness condition on stiffness
rating variability. To assess whether participants could distin-
guish any of the motion patterns better than the others, we
examined the variability in stiffness rating across the different
joint stiffness conditions. It was plausible, for instance, that
participants might identify the motion pattern in the zero joint
stiffness condition more readily than in the others, since it most
closely resembled a circular motion (Fig. 2, A–C). Participants
could have used deviation from the motion pattern in the zero
joint stiffness condition as a strategy for estimating joint
stiffness across the other conditions. However, an ANOVA
revealed no significant main effects of joint stiffness or exper-
iment, nor an interaction, on stiffness rating variability [joint
stiffness: F(4.48,120.81) � 1.57, P � 0.18, partial 	2 � 0.06;
experiment: F(2,27) � 1.16, P � 0.33, partial 	2 � 0.07; joint
stiffness � experiment: F(8.95,120.81) � 0.99, P � 0.44,
partial 	2 � 0.08] (Fig. 5). Thus, identifying and subsequently
measuring deviation from the endpoint motion pattern in the
zero joint stiffness condition does not appear to be the domi-
nant strategy used by subjects.

DISCUSSION

This study tested whether humans could perceive changes in
joint stiffness from strictly overt motion. We found that par-
ticipants linearly increased their arm stiffness rating with
simulated joint stiffness in all experiments. Unambiguously
measuring impedance properties, such as stiffness, fundamen-
tally requires an object to undergo physical interaction. Be-
cause the simulated arm did not experience mechanical contact
in the experimental task, it was remarkable that participants
could still successfully judge changes in joint stiffness from
motion. To our knowledge, these results are the first demon-
stration that humans can perceive stiffness of an actuated
system with a human-like controller from visually observing its
motion.

While participants overall were successful at this task, indi-
viduals did vary in their ability to rate arm stiffness accurately
(Fig. 4). Such variability is typical in human motor and
perception experiments and can have a variety of origins. One
common source of interparticipant variability in motor exper-
iments is prior experience or training. Investigating whether
training in motion perception, or even skilled motion genera-
tion, influenced rating performance was beyond the scope
of this study. Nevertheless, our experimental results suggest
that this may be a fruitful area for further research and support
the speculation that prior experience could have been a factor.
For instance, the participant who performed the best (i.e., had
the best linear fit between joint stiffness and arm stiffness
rating) was a practicing physical therapist (highlighted in Fig.
3B) whose training included observing human motion and
diagnosing abnormalities in “muscle tone.” It also worth noting
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EXPERIMENT 3 RESULTS: CHANGING SHOULDER STIFFNESSC
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Fig. 3. Raw data of each participant’s arm stiffness ratings across simulated joint stiffness values in experiment 1 (A), experiment 2 (B), and experiment 3 (C).
Note that data from the first block are omitted since it was not included in subsequent statistical analyses. Larger dots indicate a greater response frequency. The
black lines represent the linear fit of each participant’s data. Participant datum highlighted in black was a trained physical therapist.
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that the participants with formal training in the meaning of
stiffness and its importance in dynamics and controls (e.g.,
engineers) did not outperform those without it. Although it
remains to be tested, this suggests that experiential, not math-
ematical, knowledge of the concept of stiffness may influence
one’s ability to estimate it from motion.

It is also possible that some of the interparticipant variability
resulted from the experimental protocol. For instance, the task
instructions were purposefully vague so as not to give partic-
ipants any information about how the arm was controlled.
Participants might have interpreted the meaning of arm stiff-
ness differently, which would influence their rating strategies.
Even if participants asked for additional clarification of the
term arm stiffness, we only provided a definition of “stiffness”
and instructed participants to try their best at the task. While
this vague instruction avoided introducing bias into the partic-
ipants’ ratings, it also opened the possibility for participants to
rate or estimate some variable other than the stiffness param-
eter altered in our controller. Still, it was our utmost priority
not to unknowingly signal to participants how the arm was
being controlled.

The use of a numerical scale to quantify participants’ ratings
of arm stiffness could have also introduced measurement error.
Such error is analogous to quantization error, which arises
when representing a continuous analog signal with discrete
stepped digital data (Bennett 1948). Quantization error can be
modeled as uniformly distributed noise with a mean of zero
and a variance that depends on the resolution of the digital
representation. In this task, the variance of the error depends on
the resolution of the numeric scale (i.e., the number of rating
options); the greater the number of rating options, the lower the
noise. One well-known limitation of Likert-type scales is that
they are vulnerable to response bias, which occurs whenever a
person responds systematically on some basis other than what
the items were specifically designed to measure. As seen in

Figs. 3 and 4, not all participants used the full range of the
numeric scale. This form of response bias results in greater
noise and seemingly worse performance than if the full range
had been used.

Even though several aspects of the experimental protocol
may have induced a portion of the observed interparticipant
variability, the effect of these factors would have made per-
forming the task harder, not easier, for participants. Despite the
possibility that these factors could have increased the task
difficulty, the majority of individual participants were never-
theless successful.

In these experiments, there were a multitude of motion-
related cues that participants could have used to estimate
stiffness. Figure 6, A–F, shows how a subset of such features
varied with joint stiffness in each of the three experiments.
There were cues, both temporal and spatial, that changed
consistently with increased joint stiffness in all three experi-
ments. These include the oblongness (Fig. 6A) and area (Fig.
6B) of endpoint path, the relative phase between the shoulder
and elbow motion (Fig. 6C), and shoulder range of motion
(Fig. 6E). However, not all features changed consistently
across the three experiments, such as the relative phase be-
tween endpoint motion in the x and y directions (Fig. 6D) and
elbow range of motion (Fig. 6F). The fact that participants
performed equally well in all experiments suggests that they
might be using features that varied consistently across exper-
iments to estimate stiffness although it is equally possible that
participants integrated several different motion cues to estimate
stiffness.

After performing the experiment, we asked participants to
describe what motion-related cues they used to determine their
rating. However, their verbal responses were often inscrutable.
In general, participants reported using at least some aspect of
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joint motion, such as joint range of motion or relative velocity
between the joints, but often their description of the cues was
inexact and vague. Interestingly, none mentioned the term
“endpoint” or “hand position” when describing their rating
strategy, but it is possible they used this knowledge unknow-
ingly. Although this debrief did not shed light on what motion-
related cues were used as criteria for rating stiffness, it does
suggest that participants did not use explicit conscious strate-
gies. This is consistent with the notion that observational motor
learning may be an implicit process (Mattar and Gribble 2005).

Because subjects could not articulately communicate their
rating strategy, we also examined variability to further probe
how subjects determined their stiffness rating. However, we
found no effect of joint stiffness on stiffness rating variability
in the three experiments (Fig. 5), indicating that participants
were not able to identify the motion pattern from one condition
more readily than the others.

Even though we were unable to identify how participants
were able to estimate stiffness from motion, our results
strongly indicate that participants did not perform the task by
simply reporting changes of some observable motion vari-
able(s) and randomly “guessing” how it related to the latent
variable of joint stiffness. If such a strategy was used, we
would expect some participants to have exhibited a negative
relationship between arm stiffness rating and simulated joint
stiffness. Even though they varied in their ability to perform
the task, none had a significant negative relationship between
arm stiffness rating and simulated joint stiffness in any of the
experiments (Fig. 3). Moreover, participants were not given
feedback as to whether their ratings were correct nor did they
change their rating performance over the course of the exper-
iment. Thus, participants did not have opportunity to learn the
relation between motion and stiffness in a supervised manner,
although it is possible that they could have learned this relation
in an unsupervised manner. However, we did not observe a

significant effect of block in any of the experiments. This
suggests that either no learning occurred or that the effect of
learning in this experiment was very small, perhaps because
the timescale for learning in this task might be much longer
than the duration studied in this experiment.

To successfully perform the perception task, participants
likely drew on prior knowledge that was consistent with the
behavior of the controller used to drive the simulated arm. How
did participants have a competent internal representation of the
control policy used to drive the simulated arm? The most likely
explanation is that participants drew from their implicit knowl-
edge of human neuromotor control to perform the perception
task. In fact, the controller used in the simulation was specif-
ically chosen to mimic important features of human neuromo-
tor control, in particular the influence of mechanical imped-
ance.

On its surface, motion control can be an enticing account for
how the human nervous system produces motor behavior. With
this form of control, motion errors between the executed and
planned behavior are as small as the limitations of sensing,
actuation, and computation accuracy will allow. For instance, it
is well documented that humans tend to perform smooth
straight line reaching movements (Flash and Hogan 1985).
Even when the hand path is subject to visual distortion (Flana-
gan and Rao 1995) or mechanical perturbations (Lackner and
Dizio 1994; Shadmehr and Mussa-Ivaldi 1994), humans adapt
their behavior to restore the original straight smooth path.
These results suggest that neuromechanical dynamics are sub-
servient to kinematics, which is the behavior one would expect
to arise from a motion controller. As previously mentioned,
however, this type of motion control uncouples the executed
motion trajectory from joint stiffness.

In addition, prior research has shown that even those seem-
ingly straight reaching movements are influenced by limb
impedance. Although close to optimal, human reaching move-
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ments are not ideally straight. As observed by Flash (1987),
these movements are slightly curved, and the curvature varies
depending on the direction of hand movement and the hand
position within the workspace. She also demonstrated that
these systematic patterns could be reproduced using a control
strategy where limb impedance influenced motion. Specifi-
cally, the controller used in Flash (1987) had the hand track an
optimally straight hand trajectory with stiffness values derived
from human measurements (Mussa-Ivaldi et al. 1985). The
extent of the curved deviations can be varied by altering the
limb impedance.

In line with the experimental results of Flash (1987), Hogan
and Sternad (2012) offer a theory of human sensorimotor
control wherein limb motion and impedance are coupled. They
propose that human motor behavior is encoded solely in terms
of attractors (also referred to as dynamic primitives). Motion
attractors are combined with mechanical impedance attractors
to generate both the desired motion and interactive behavior of
the body. Any such controller that implements a motion and a
joint impedance primitive will yield a particular kinematic
synergy (Hogan and Sternad 2012). By this theory, motions are
generated in such a way that they contain limb impedance
information that an observer could extract. In the experimental
task, it was also crucial to simulate the arm motion such that
limb stiffness and motion were linked. It would have been
fundamentally impossible for participants to perform the task
otherwise. The controller used in this study was built from
dynamic primitives using the compositionality of mechanical
impedance (Hogan 2017). Specifically, the simulated arm be-
havior was akin to the superposition of a limit cycle (in hand
space) and a point attractor (in joint space), each with its own
impedance. This controller is representative of how the ner-
vous system might coordinate the integration of multiple motor
behaviors to perform a complex action. Examples of such
complex actions are holding books in your arm while simul-
taneously using that same arm to open a door or using a tool
while maintaining standing balance. In the former example,
maintaining a particular limb posture with particular levels of
tonic muscle activation will impose a joint stiffness and ulti-
mately affect the overt movement pattern (Hogan and Sternad
2012). It should also not be overlooked that, in biological
systems, the passive stiffness of muscles and tendons also
influences the effective stiffness of the joints.

The evidence suggesting that human upper limb motions are
influenced by limb impedance supports the notion that partic-
ipants used their implicit knowledge of human neuromotor
control to perform the perception task. We emphasize, how-
ever, that this is not to say that the control policy used to
simulate arm motion in this study is the veridical motor
controller embedded in the human nervous system. Instead, we
only assert that control strategies of this form are representative
of how humans generate motion, or at least how they perceive
other humans to generate motion. Hence, they may serve as
competent descriptive models of human neuromotor control.

Although still an open question, it is also worth considering
how such models for perceiving motion could arise. For
instance, such models could be built empirically based on prior
observations of others (Battaglia et al. 2013). It is also plausi-
ble that participants used knowledge of how they control their
own motions to interpret the perceived motor actions of others.
While controversial, there is evidence to support such a notion

of embodied cognition (Hickok 2009). Neuroimaging evidence
suggests humans use their own motor system to recognize and
understand the action of others (Dayan et al. 2007; Grafton et
al. 1997; Iacoboni et al. 1999). It has been proposed that, by
mapping observed actions in the motor system, the observer
gains knowledge of how those actions may be controlled
internally (Casile and Giese 2006; Giese and Poggio 2003;
Rizzolatti et al. 2001). Thus, subjects may have used an
internal model or understanding of their own limb dynamics to
successfully perform the experimental task. For instance, prior
human studies found that visually observing a motor action
performed by another individual increased the excitability of
the neuromotor system, specifically of the activation of mus-
cles that were involved in the observed action (Aglioti et al.
2008; Fadiga et al. 1995; Romani et al. 2005).

This ability to estimate limb stiffness likely plays an impor-
tant role in several processes, such as planning physical inter-
action with another individual or performing cooperative in-
teraction tasks. Our results also suggest that it plays an impor-
tant role in assessing “movement quality,” such as during
physical rehabilitation or athletic performance. However, ad-
ditional research is needed to assess whether individuals can
estimate limb stiffness with different movement types (e.g.,
discrete movements) and across the different limbs, especially
in real world scenarios. In prior work, Mattar and Gribble
(2005) have shown that learning to reach in a novel force field
is enhanced when subjects first watch another subject learn to
perform the task. In their experimental task, learning from
observation calls for the observer to estimate limb stiffness.
This suggests that visually estimating limb stiffness may be an
important aspect of learning from observing the actions and
interactions of others.

In conclusion, remarkably, our results indicate that humans
can extract limb impedance information from overt motion.
Without mechanical contact, to correctly infer joint stiffness
from motion, participants likely used prior knowledge consis-
tent with the behavior of the control policy used in this study.
Although it remains to be tested, it is likely that humans relied
on their prior knowledge of human neuromotor control (either
from prior observations or from their own sensorimotor sys-
tem) to successfully perform the experimental task. Our finding
that humans can infer latent features of an underlying control-
ler provides new insight into how humans interpret the motor
actions of, and subsequently interact with, others.
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