Comparative principles for next-generation neuroscience

Cory T Miller1*+, Melina E. Hale2*, Hideyuki Okanos 4, Shigeo Okabes and Partha Mitras

1 Cortical Systems and Behavior Laboratory
Neurosciences Graduate Program
University of California San Diego

La Jolla, CA, USA

2 Department of Organismal Biology and Anatomy
University of Chicago
Chicago, IL, USA

3 Department of Physiology
Keio University School of Medicine
Tokyo, Japan

4 Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi,
Saitama, 351-0198, Japan

5 Department of Cellular Neurobiology

Graduate School of Medicine and Faculty of Medicine
University of Tokyo

Tokyo, Japan

6 Cold Spring Harbor Laboratory
Cold Spring Harbor, NY, USA

* equal contributions

+ corresponding author — corymiller@ucsd.edu


mailto:corymiller@ucsd.edu

Abstract.

Neuroscience is enjoying a renaissance of discovery due in large part to the implementation of
next-generation molecular technologies. The advent of genetically encoded tools has
complemented existing methods and provided researchers the opportunity to examine the
nervous system with unprecedented precision and to reveal facets of neural function at multiple
scales. The weight of these discoveries, however, has been technique-driven from a small
number of species amenable to the most advanced gene-editing technologies. To deepen
interpretation and build on these breakthroughs, an understanding of nervous system evolution
and diversity are critical. Evolutionary change integrates advantageous variants of features into
lineages, but is also constrained by pre-existing organization and function. Ultimately, each
species’ neural architecture comprises both properties that are species—specific and those that
are retained and shared. Understanding the evolutionary history of a nervous system provides
interpretive power when examining relationships between brain structure and function. The
exceptional diversity of nervous systems and their unique or unusual features can also be
leveraged to advance research by providing opportunities to ask new questions and interpret
findings that are not accessible in individual species. As new genetic and molecular technologies
are added to the experimental toolkits utilized in diverse taxa, the field is at a key juncture to revisit
the significance of evolutionary and comparative approaches for next-generation neuroscience
as a foundational framework for understanding fundamental principles of neural function.



Introduction.

There are over 1.5 million described, living species of animals; all but a few thousand have
nervous systems and nervous system-generated behaviors. Like all characteristics of organisms,
nervous systems and behaviors evolve by descent with modification in which selective forces can
preserve ancestral traits and amplify freshly generated variation (Figure 1). Selection on nervous
system anatomy occurs indirectly, as an intermediate to the genome, where variation originates.
Itis function - including behavior - rather than structure that is under direct evolutionary selection.
Conversely, behaviors are constrained by nervous system architecture, which in turn is
determined by a developmental program encoded in genomes (Alexander, 1974;Emlen and
Oring, 1977;Agrawal, 2001;Lamichhaney et al., 2015;Session et al., 2016) and phylogenetic
history (Ryan et al., 1990;Shaw, 1995;Rosenthal and Evans, 1998;Ng et al., 2014;0dom et al.,
2014). Yet despite such constraints imposed on how these systems evolve, plasticity afforded by
various processes throughout the nervous system affect how behaviors actually manifest in
individuals in response to its unique experiences in the environment (Meyrand et al., 1994;Gross
et al., 2010). Ultimately these dynamic relationships have undoubtedly fueled many facets of
biological diversity. While the modern experimental toolkit has provided unprecedented glimpses
into the intricacies of neural systems, phylogenetic approaches that leverage species differences
are pivotal keystones for elucidating the structure and function of neural architecture.

The advent of genetically encoded tools to investigate neuronal circuitry has accelerated
our rate of discovery in the past decades, but it has come at a cost to the study of species diversity.
Ironically, comparative neuroscience that explores a range of species, nervous system
organizations, and behaviors has convincingly shown that detailing the nuances of neuronal
microcircuitry are critical to understanding behavior (Kepecs and Fishell, 2014;Haim and Rowitch,
2017;Real et al., 2017;Wamsley and Fishell, 2017). However, with an increased reliance on a
small number of animal models, we are often left making assumptions about whether a discovered
neuronal process reflects a common principle of brain organization and function or is specific to
a particular taxon and its biology. Without well-framed, phylogenetically informed species
comparisons, the significance of differences between any two species is difficult to understand.
Both rodents and primates, for example, have afferent dopaminergic projections from the
substantia nigra pars compacta (SNc) to the striatum (nigrostriatal pathways). But whereas in
primates the SNc also project to areas of the dorsolateral frontal cortex (nigrocortical pathways),
the analogous pathways are essentially absent in rodents (Wiliams and Goldman-Rakic, 1998).
Interestingly, the emergence of nigrocortical pathways in primates is correlated with a marked
increase of dopamine receptors in frontal cortex (Murray et al., 1994;Duzel et al., 2009).
Determining the functional significance of this circuit difference on behavior cannot be ascertained
without a more thorough understanding of differences across mammalian taxa more closely
related to primates - tree shrews (Scandentia) and flying fox (Dermoptera) - and closer relatives
of rodents, such as rabbits (Lagomorpha). Ultimately, these species’ nervous systems comprise
some characteristics that are homologous due to common ancestry, some characteristics evolved
due to shared selection pressures - reflecting convergence across taxa - and other characteristics
that are unique (Figure 1)(Kaas, 2013;Karten, 2013;Roth, 2015). Both shared and uniquely
adapted characteristics have illuminated our understanding of nervous systems, often in different
and complementary ways, but distinguishing between these possibilities can only be
accomplished through comparative research. Leveraging the extraordinary resolution afforded
by modern molecular technologies within a comparative framework offers a formidable approach
to explicating the functional motifs of nervous systems.

The single most powerful method for identifying common principles of neural circuit
organization is phylogenetic mapping. Within this framework, characteristics are mapped onto a
well-supported phylogenetic tree that is of appropriate resolution and species richness to the
question being addressed (Felsenstein, 1985;Harvey and Krebs, 1991;Harvey and Pagel,



1991;Clark et al., 2001;Krubitzer and Kaas, 2005;Hale, 2014;Striedter et al., 2014;Liebeskind et
al., 2016). This approach makes it possible to distinguish the evolutionary origin of a particular
property of the brain or nervous system and generate testable hypotheses about its functional
significance based on phylogenetic history (Barton et al., 2003;Harrison and Montgomery,
2017;Laubach et al., 2018). In some cases, homologous traits have a long history - such as the
hindbrain or spinal column of vertebrates (Hirasawa and Kuratani, 2015) - whereas others only
occur in small groups of closely related organisms or single species (Gould, 1976;Catania and
Kaas, 1996;Douglas et al.,, 1998;Shepherd, 2010;Albertin et al., 2015). Characteristics that
appear in multiple groups independently are examples of convergent evolution, or homoplasy.
Notably, both homologous and homoplasious features have illuminated our understanding of
nervous systems. Discoveries of common principles reveal the core building blocks of nervous
systems or architectural features that may have biomimetic utility in engineering. Likewise
specialist adaptations in highly niche-adapted species yield critical data on how specific neural
circuits evolved to solve key challenges and can serve as powerful heuristics for investigating
other species, including humans. Each scenario for nervous system evolution offers the
opportunity to better understand neural function and elucidate their dynamical processes. A
phylogenetic framework offers a valuable tool to next-generation neuroscience that, when wielded
correctly, can drive new frontiers of discovery not only in classic biological disciplines but in fields
involving human-engineered systems, such as artificial intelligence and robotics.

Recent studies demonstrate the power of phylogenetic tools in addressing critical
questions in neuroscience (Montgomery et al., 2011;Laubach et al., 2018). Gomez-Robles and
colleagues, for example, used evolutionary simulations and a multiple-variance Brownian motion
framework to reconstruct hypotheses of ancestral states to examine the classic hypothesis of a
relationship of dental reduction to brain size increase in hominins (Gémez-Robles et al., 2017).
Their data rejected this idea and indicated different patterns of evolution for tooth reduction and
for brain size with greater variation in brain evolution. Likewise, DeCasien and colleagues tested
the social brain hypothesis that the large size and complexity of the human brain was driven by
increasing social complexity and advantage of a larger, more complex brains in primate ancestors
(DeCasien et al., 2017). The researchers used phylogenetic generalized least squares regression
of traits with a rigorously derived phylogeny based on the 10KTrees primate resource and other
controls. This rigorous analysis showed that sociality is better predicted by diet, specifically
frugivory, than it can be explained by other social factors. They suggest that various aspects of
foraging, such as retaining complex spatial information, may have benefitted from a larger and
more complex brain. These examples illustrate how a phylogenetic framework offers a valuable
tool to modern neuroscience, but new approaches make it possible to ask even more precise
questions.

Advances in modern molecular neuroscience make it possible to further refine
comparative questions about nervous systems by more explicating the relationship between
genes and phenotypic expression. This can be accomplished by measuring the strength of
evolutionary selection on a gene by calculating a dN/dS ratio (e.g. selection+neutral/neutral). In
this approach, a ratio below 1 would indicate negative selection acting on the gene, whereas
positive selection would be indicated by a ratio greater than 1. By comparing dN/dS ratios across
a large number of species, one can more precisely map positive and negative evolutionary
changes within the nervous system (Enard, 2014). For example, primates have notably high
encephalization quotients (i.e. brain to body size ratio) than other mammals but questions remain
about the evolutionary forces that drove this facet of selection in primates (Preuss, 2007;Dunbar
and Shultz, 2017), including the genes that regulated the change. Notably not all primates have
large brains, as the overall size of species’ brains within this Order varies considerably ranging
from large bodied apes on one end of the spectrum, such as humans and gorillas, and Callitrichid
monkeys — tamarins and marmosets — on the other end. This latter family of New World monkeys
has notably undergone miniaturization during primate evolution (Harris et al., 2014;Miller et al.,



2016). To more precisely explore questions of brain size evolution within primates, Mongtomery
and colleagues calculated dN/dS ratios for several genes associated with microcephaly across
20 anthropoid monkey species (Montgomery et al., 2011;Montgomery and Mundy, 2012b). While
at least three genes revealed positive selection across these primate species, the most
compelling case for a genetic correlate of brain size in primates was for ASPM. This gene not
only covaried with increased brain size across most primates, but a decrease in brain size in the
small bodied Callitrichid monkeys (Montgomery and Mundy, 2012a). While brain size is one broad
phenotype in which to perform such comparative analyses, the same phylogenetic approach
could be utilized across numerous properties of a nervous systems’ functional architecture and
behavior (Krubitzer and Kaas, 2005). When wielded correctly, this powerful comparative method
can be implemented to resolve existing debates and drive new frontiers of discovery.

Comparative Neurobiology in the 21st Century

The utilization of phylogenetics in neuroscience has a long and rich history. Detailed
neuroanatomical investigations complementing quantitative studies of behavior across a diversity
of species have fueled hypotheses about the functional organization of nervous systems and the
mechanisms underlying a diversity of neural processes (Wells, 1978;Kaas, 1986;Young;Karten,
1991;Strausfeld, 1995;Kotrschal et al., 1998;Strausfeld et al., 1998;Krubitzer, 2000;Rodriguez et
al., 2002;Jarvis et al., 2005;Krubitzer and Kaas, 2005;Strausfeld, 2009;Krubitzer and Seelke,
2012;Strausfeld, 2012;Kaas, 2013;Striedter et al., 2014). In many respects, the limiting factor to
explicating these hypotheses has been the available functional tools to examine the brain in vivo
with the same level of detail available to neuroanatomists. Despite its precise temporal and spatial
resolution, neurophysiological recordings are largely blind to the finer details of neural architecture
- such as cell types and layers - while the poor spatial and temporal resolution of functional
neuroimaging limits its utility to examine key cellular and population-level processes fundamental
to nervous system function. Likewise, traditional techniques to functionally manipulate the neural
structure, such as electrical microstimulation and pharmacological manipulations, generally
impact relatively large populations of neurons. Due to such technological limitations, experimental
questions have historically been constrained to broader-scale issues about brain function, such
as the role of particular areas or nuclei for a given behavior or task. The development of next-
generation molecular technologies opened the door to examine nervous systems with a level of
resolution that was not previously possible (Stosiek et al., 2003;Boyden et al., 2005;Mank et al.,
2008;Deisseroth, 2015). Perhaps not surprisingly, many of the functional data emerging from the
implementation of these molecular methods have supported established anatomical observations
and conceptual models suggesting that the fine details of neural circuitry — cell types, patterns of
projections, connectivity, etc - are pivotal to describing the functional architecture of neural
systems that support behavior. Leveraging the power of precision afforded by genetic tool kits in
order to explore functional circuitry is a defining feature of modern neuroscience, yet a continued
appreciation of species diversity within a phylogenetic framework may be essential to unlock the
deepest mysteries of nervous systems (Carlson, 2012;Yartsev, 2017).

A key advantage of a comparative framework in neuroscience is that it provides a powerful
tool for testing hypotheses of structure and function in nervous systems. The significance of
establishing homology and examining convergent systems is highlighted by work in the motor
system of sea slugs where phylogenetically framed studies have shown that what might be
classified as a single behavior in this group of organisms has arisen multiple times and with
different neural circuit underpinnings (Katz, 2011;Katz, 2016). Multiple evolutionary events
leading to an association of traits can also support arguments for the relationship between
structure and function that might be predicted but not testable by studying one or several individual
species without consideration of phylogeny. For example, Aiello et al. argued an example of the
evolutionary tuning of mechanosensation to biomechanical properties of fish fins. They showed



that while the basal condition was a very flexible fin consistently across multiple lineages, when
stiff fins evolved there was corresponding increase in the sensitivity of mechanosensory afferent
(Aiello et al., 2017). In both sea slug and fish examples, access to a group of closely related
organisms with a known phylogeny was essential. Such comparative phylogenetic framing would
be of limited value among the few traditional genetic model organisms. Ultimately, most species’
neural systems comprise each of these characteristics, reflecting common principles that were
inherited and maintained and the evolution of derived mechanisms to support idiosyncratic
behaviors of the species. A comparative framework not only allows one to make these distinctions
but to determine whether a characteristic is itself an adaptation or the byproduct of other
evolutionary forces - a spandrel (Gould and Lewontin, 1979) - with little functional significance.

Consider, for example, the mammalian neocortex. This six-layered brain structure is
unique to the taxonomic group and its occurrence in all extant mammals suggesting that it evolved
early in mammalian evolution when these synapsids first emerged ~300 mya (Krubitzer and Kaas,
2005). Comparative anatomy and physiology suggest that many characteristics of the avian and
reptilian brain — comprised of nuclei and a three-layered cortex - are shared with the mammalian
brain (Jarvis et al., 2005;Karten, 2013;Calabrese and Woolley, 2015). Neurons and circuits do
not arise de novo as new or altered functions evolve, but rather are adapted from preexisting
morphology and developmental programs. The evolutionary history of neurons and circuits and
how they differ among taxa provide critical information for interpreting circuit organization in
related taxa. Dugas-Ford and colleagues used fluorescence in situ hybridization to examine
expression of genes to show that cell types within the mammalian neocortical layer IV input and
layer V output circuit are homologous with the parallel substrates in the avian brain (Dugas-Ford
et al., 2012). Consistent with various evolutionary examples, this suggests that many of the
computational foundations of the sauropsid brain were conserved during the evolution of
neocortex, presumably because they remained optimal for facets of neural function (Shepherd
and Rowe, 2017). We must, however, also ask what computational advantage the derivation of
the 6-layered neocortex may have afforded mammals that were constrained by the functional
architecture of the avian/reptilian brain (Shepherd, 2011), particularly given the metabolic costs
associated with the increased encephalization quotient in neocortex (Isler and van Schaik, 2006).
A strategy involving detailed behavioral and neuroanatomical comparisons across species
implemented in tandem with modern molecular technologies is ultimately needed to resolve these
issues.

The Next Frontier

The statistician George E.P. Box famously stated that ‘All models are wrong, but some are useful’
(Box, 1979). Reuvisiting this sentiment is particularly meaningful at this point in time because of
our increased reliance on ‘model’ organisms in neuroscience today (Brenowitz and Zakon,
2015;Goldstein and King, 2016;Yartsev, 2017). Whereas anatomical data have historically come
from an impressive diversity of species, the weight of work implementing modern molecular
approaches in nervous systems has been performed on increasingly fewer animal species. In
most cases, these species have been selected for study due to their amenability to transgenic
manipulation of their genome, but without clear understanding of the evolutionary origins of the
traits being investigated. In some model organisms, for example, the ease of culture and embryo
manipulation, limited neuron population size, and accessibility into the nervous system have
provided opportunities to investigate neurons and circuits at levels not possible in humans (e.g.
C. elegans (White et al., 1986;Venkatachalam et al., 2015;Markert et al., 2016;Jang et al.,
2017;Yan etal., 2017), fruit fly (Malsak et al., 2013;Nern et al., 2015;Fushiki et al., 2017), zebrafish
(Liu and Fetcho, 1999;Ahrens et al., 2012;Ahrens et al., 2013;Nauman et al., 2016;Hildebrand et
al., 2017), and mice (Glickfeld et al., 2013;lssa et al., 2014;Glickfeld and Olsen, 2017;Guo et al.,
2017). By focusing inquiry to these genetic models, we have made considerable discoveries



about particular facets of these neural systems. At the same time, the limits of this strategy are
increasingly evident. To assume that any single species represents an archetypal brain with
unquestioned parallels to humans belies a misunderstanding of evolutionary forces that drive the
phylogenetic diversity of nervous systems, particularly given the many known neuroanatomical,
physiological and genetic differences across taxa (Bolker, 2012). Superficial similarities may
mislead, as brains ultimately should be examined and data interpreted in the context of a species
taxonomic lineage. While broad species comparisons can identify gross level similarities, the
tactic of leveraging molecular technologies to more precisely explicate shared and derived
characteristics of nervous systems across diverse taxa has the potential to be the spine in the
next chapters of Neuroscience.

The challenges of utilizing a single model organism - mice - as a model of human disease
from a phylogenetic perspective is clearly evident in the context of neuropharmacology.
Neuropharmaceuticals identified in mouse-model screens have notoriously failed human clinical
trials (Hyman, 2013). Despite the importance of this issue, few failed clinical trials have been
investigated retrospectively and the underlying problems remain. This situation necessitates new
technologies and phylogenetic approaches to address this fundamental gap. In particular, a
revolutionary new technology named DART (Drugs Acutely Restricted by Tethering) offers an
unprecedented capacity to selectively deliver clinical drugs to genetically defined cell-types,
offering a means to revolutionize our understanding of the circuit mechanisms of
neuropharmacological treatments (Shields et al., 2017). Comparative biology will be critical in
realizing the full potential of such novel methodologies (Goldstein and King, 2016). For example,
while the findings offered by DART in a mouse model of Parkinson’s disease were remarkable, it
remains to be tested whether similar effects would occur in primates, including humans, given
substantive differences in the basal ganglia between rodents and primates (Petryszyn et al.,
2014). These cross-taxa differences include the division of the dorsal striatum into two distinct
structures — caudate nucleus and putamen - in primates (Weiner, 2000). The known circuit
differences likely reflect important properties of how the areas of basal ganglia interact with
neocortex to support aspects of primate motor behavior that are distinct from those in rodents. It
is differences in both functional brain architecture and broader physiology that limit the predictive
value of mice as a model of human disease (O'Collins et al., 2006;Sena et al., 2006;Manger et
al., 2008;Lin et al., 2014;Grow et al., 2016;Perlman, 2016). By implementing molecular tools
within a phylogenetic framework, the functional differences between species could be more
precisely examined — at multiple scales of molecular and cellular specificity — to more explicitly
test their relationship, identify the key sources of variance and, therefore, increase translational
success.

Beyond biomedical implications, a comparison of neural network architecture across taxa
in the context of selective behaviors may help design artificial neural networks tailored to artificial
intelligence tasks that were previously intractable. Even the simple ideas - such as reinforcement
learning - when implemented suitably in the modern context, has yielded automated programs
that can defeat humans at the game of Go (Silver et al., 2017). Such a task was previously
deemed too difficult for computational approaches. However, the theoretical basis of the improved
performance of these artificial neural networks is only beginning to be understood (Marcus, 2018).
The comparative approach - and its potential for leading to theoretical understanding - promises
to be important for engineering and social applications outside of biomedicine.

Describing the full, synapse by synapse, connectivity of a neural network, dubbed its
‘connectome”, provides unmatched structural information to inform organizational principles and
function and to interpret associated network physiology and behavior. Here use of biodiversity
and phylogenetically-informed taxon selection and comparisons would provide exceptional value.
Complete reconstructions of processes in the neuropil and synaptic connectivity matrices are
being obtained in nervous systems of invertebrates including the foundational full network model
of C. elegans (White et al., 1986), as well as Drosophila (Takemura et al., 2017a;Takemura et al.,



2017b), Platynereis (Randel et al., 2014), and Hydra (Bosch et al.). These species have
significantly smaller nervous systems and fewer neurons and thus are more tractable than
vertebrates for comprehensive circuit analysis. One drawback of the EM [electron microscopy]
based reconstructions is the lack of information about neurotransmitters and neuromodulators.
However, correlative physiological information is now possible to obtain by measuring activity
using Ca++ indicators (Bock et al., 2011). This indicates the need to combine data sets across
modalities. As yet, the distribution of such EM reconstructions across the phylogeny is sparse.
As these data sets grow and the number of species studied broadens, there will be increased
opportunities to compare across taxa. For such comparisons of networks a phylogenetic
framework will be critical for interpreting variation across taxa (Katz, 2011;Katz and Hale, 2017).

A diverse set of species have laid the foundation for our field (Figure 1). Although we have
increasingly relied on a handful of genetic models to push new frontiers of discovery, the stage is
set to expand that empirical horizon considerably. As the process of developing new genetically
modified organisms becomes easier and cheaper (Sparrow et al., 2000;Sasaki et al., 2009; Takagi
et al., 2013;Abe et al., 2015;0kano et al., 2016;Park et al., 2016;Sato et al., 2016;0kano and
Kishi, 2017), the potential for the CRISPR/Cas9 system to be applied across many taxa (Niu et
al., 2014;Tu et al., 2015) and the increased selectivity afforded by viral approaches (Dimidschtein
et al., 2016), the feasibility of applying powerful next-generation molecular tools to a broader
diversity of species is increasingly possible (Leclerc et al., 2000;lzpisua Belmonte et al.,
2015;Sadakane et al., 2015;Ferenczi et al., 2016;Liberti lii et al., 2016;MacDougall et al., 2016
;Picardo et al., 2016;Roy et al., 2016;Santisakultarm et al., 2016;Kornfeld et al., 2017;Shields et
al., 2017). Furthermore, other non-genetic technological advances, such as those involved in
systematic mapping of neural architecture at EM and LM [light microscopy] scales (Bohland et
al., 2009;0sten and Margrie, 2013;0h et al., 2014;Kornfeld et al., 2017), as well as associated
advanced analytical methods (Helmstaedter and Mitra, 2012), will likely generalize more easily
across taxa and offer powerful complementary approaches. With a rapidly expanding toolkit
comprised of more traditional and modern techniques available to probe different nervous
systems, incredible biological diversity available that has yet to be explored, and phylogenetic
tools to interpret neural characteristics within a comparative framework, the coming years are set
to be a particularly exciting time to forge new frontiers in our field.
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Figure 1. Circular evolutionary tree of representative animal taxa that emerged following the
evolution of the nervous and vestibular systems. While junctions of branches represent the degree
of phylogenetic relatedness over evolution, distance along the tree does no scale with actual time
in natural history. Colored circles indicate last common ancestor for phylogenetic groups that
exhibited a particular characteristic of the nervous system which can be used to reconstruct
shared, unique and convergent features of nervous systems. The vertebrate cerebellum and
invertebrate mushroom bodies are examples homologous characteristic shared across multiple
taxa, while granular prefrontal cortex is a unique property of primate brains. Likewise, the
independent evolution of centralized brains in vertebrates and multiple invertebrate taxa — insects
and cephalopods — represents an example of convergent evolution. The more commonly used

‘model’ organisms in neuroscience are listed in brackets below their taxonomic groups, though
this list is not exhaustive.
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