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ARTICLE INFO ABSTRACT

Keywords: Rate equations and kinetic parameters for about 100 minerals were programmed into a library of callable Basic
PrRERQC language scripts for the geochemical modeling program Pureeqc (version 3.5.0) to facilitate the application of
Kinetics

kinetics in geochemical modeling. For most minerals, the following general equation is used: 7y
Eqj RTTT gni g
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Rate equations
Geochemical modeling

where rye; stands for the net dissolution rate of a mineral phase (mol kgw 1g 1); j the jth reaction mechanism;
Sa the surface area per unit water mass (m2 kgw 1); Aj the Arrhenius pre-exponential factor (mol m 25 1); Eaj
the apparent reaction activation energy (J mol 1); R the universal gas constant (8.31446 J mol g 1); T the
temperature (K); g; the activity of aqueous species i;  the mineral saturation quotient. p; and g; are empirical
fitting parameters. j stands for the specific mechanisms of reaction. Other forms of rate equations and associated
parameters programmed in the library include parallel mechanisms, Langmuir adsorption isotherm, and
empirical rate equations that apply to a specific reaction mechanism or geochemical system. A separate file of
PHASESs, which define the chemical stoichiometry of the phases, dissolution reactions, and equilibrium constants
of the dissolution reactions, is also provided. PHREEQC requires that the names in PHASES and RATES blocks
match with each other.

The Basic language scripts can also be used as templates for writing other rate equations which users might
wish to use. To illustrate the application of the script library, we simulated the reaction path of albite dissolution
at 25 C and 1 bar, using three rate equations and compared the results. The script and phase library and sup-
porting materials can be downloaded from https://github.com/HydrogeolU/PHREEQC-Kinetic-Library and doi.
0rg/10.5967/41gq-yr13.

1. Introduction 2013; Zhang et al., 2015; Zhang et al., 2016), diagenetic processes

(Jones and Xiao, 2005, 2006; Lu and Cantrell, 2016; Roy et al., 2011;

In the last three decades, a large number of laboratory experiments
have produced mineral dissolution rates in a wide range of tempera-
tures, pH, and solution chemistry (see reviews by Brantley et al., 2008,
pp. 151 210; Marini, 2007, pp. 211 266; Palandri and Kharaka, 2004;
Schott et al., 2009). As a result, applications of reaction kinetics to
water-rock interaction have also grown significantly in such fields as
carbon dioxide sequestration (e.g., Knauss et al., 2005; Liu et al., 2011,
2012; Lu et al., 2011, 2013; 2015; Tutolo et al., 2015; White et al., 2005;
Wilkin and DiGiulio, 2010; Xu et al., 2007; Xu et al., 2010; Zhang et al.,
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Whitaker and Xiao, 2010), geothermal systems (Dobson et al., 2004;
Giambalvo et al., 2002; Spycher et al., 2003; Wanner et al., 2014; Xu and
Pruess, 2001; Xu et al., 2004), and weathering (Maher et al., 2009;
Perez-Fodich and Derry, 2019). Furthermore, advances in geochemical
modeling software development have made application of kinetics to
geochemical models much easier (Parkhurst and Appelo, 2013). Using
thermodynamic data (e.g., equilibrium constants and activity coefficient
models) and kinetic parameters (e.g., rate constants and activation en-
ergy), mineral dissolution and precipitation processes can be quantified
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with geochemical modeling software (e.g., EQ3/6: Wolery, 1992;
PureeqQc: Parkhurst and Appelo, 1999, 2013; ToughReact: Xu et al., 2006,
2011; Crunchflow, Steefel et al., 2015).

Among the many geochemical simulation programs, the software
package PHReeQc ~ a computer program for simulating aqueous speci-
ation, reaction path, and 1-D reactive transport (Charlton and Parkhurst,
2011; Parkhurst and Appelo, 2013)  has gained popularity. This is
partly because the program allows the user to describe the rate equa-
tions via BASIC scripts. These scripts are then run with the program
along with other parts of input files and databases for kinetic model
simulations. For example, Zhu et al. (2010) constructed a reaction path
model for feldspar dissolution and secondary mineral precipitation in
batch systems with their own Purerqc database and kinetics scripts.
Geochemical models of fluid-rock interaction have evolved from equi-
librium only to kinetic approaches, thus addressing geochemical re-
actions on a real time scale (Zhu, 2009).

However, the databases that accompany the Pureeqc package only
contain limited rate equations. Much of the kinetics data needed for
geochemical modeling is scattered in the literature. Proper assembly of
the kinetic data needed for modeling, such as preparing the codes for
kinetic scripts and assembling other necessary parts for kinetic calcu-
lation, is an intimidating task for many users. To facilitate the use of
kinetics in geochemical modeling, we collected the rate equations and
kinetic parameters from the literature and compiled them into a library
of scripts for Pureeqc. These BASIC language data blocks can be readily
copied into input files or databases.

It is beyond the scope of this study to evaluate kinetic experiments
and compile them into an internally consistent kinetic database. In fact,
we took the kinetic parameters from the literature directly as they are
and programmed them in easy-to-use formats. In this sense, users must
be very careful about the conditions of these kinetic parameters are
applicable. These conditions include the temperature, pH, solution
chemistry, and saturation states. As they are in the original sources, the
kinetic parameters for most minerals in this library were derived from
dissolution experiments at far-from-equilibrium conditions. Extrapola-
tion of them to near-equilibrium and precipitation conditions need
careful verification. Users must be aware of this and other assumptions
when applying this kinetic library to systems beyond the experimental
conditions in the original studies.

The resulting library contains kinetic data for approximately 100
minerals. We understand that to derive a comprehensive and self-
consistent kinetic rate database is a daunting task, and this library
represents only the first effort in a long, multiphase project. The script
and phase library and supporting materials can be downloaded from
https://github.com/HydrogeolU/PHREEQC-Kinetic-Library and doi.
org/10.5967/41gq-yr13. The library of scripts are also included in an
online version of PureeQc, which can be accessed at the corresponding
author s Indiana University web site www.hydrogeochem.earth.indian
a.edu.

2. RATES and RATE equations
2.1. General expression of rates and rate equations

The readers are referred to the textbooks by Lasaga (1998), Marini
(2007), Brantley et al. (2008), and Rimstidt (2014) for the background
of geochemical kinetics. Here we only briefly introduce necessary
background for presenting the kinetic library.

Geochemical reaction rates can be defined as the change of con-
centration of reactants and products with time over the course of a
chemical reaction (Rimstidt, 2014, pp. 36 39; Zhu and Anderson, 2002):

dac;

v @

Thet

where re; denotes net or overall mineral dissolution or destruction rate
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Table 1
List of symbols and definitions.
Symbol Definition
A Arrhenius pre-exponential factor (mol m s 1)
a; Activity of species i
¢ Molality of species i (mol kgw 1)
E, Apparent reaction activation energy (J mol 1)
G Gibbs free energy of the dissolution reaction,

J Dissolution flux (mol m 2s 1)

K Equilibrium constant

k Rate constant (mol m 2s ')

k Rate coefficient (s 1)

m Current moles of minerals per water mass (mol kgw 1

mg Initial moles of minerals per water mass (mol kgw B

n; Reaction order for species i

P q Empirical exponents

Q Reaction quotient

R Universal gas constant (8.31446 Jmol 'K 1)

r Reaction rate of mineral (mol kgw s h

T Reaction rate of mineral for mechanism j (mol kgw 's 1)

Sa Surface area per unit water mass (m 2 kgw 1)

Sa Initial surface area per unit water mass (m > kgw ')

SI Mineral saturation index (log )

T Temperature (K)

t Time (s)

b1, P2 Correction parameters

Vi Stoichiometry coefficient of reactant or product i in the reaction
p Density of reactive surface sites on the mineral surface (mol m 2)

Mineral saturation quotient (Q/K)

(mol kgw 1's 1, ¢ is the concentration of a reactant or product (mol
kgw 1), tis the time (s), and v; is the stoichiometry coefficient of reactant
or product i in this reaction (see Table 1 for all symbols and notations).
In this paper, we followed the convention that positive values of r
represent dissolution rates whereas negative values represent the pre-
cipitation rates. Note that PureeQc calculation is based on water mass,
the unit of the reacting mineral phases are mol kgw '. 1 mol kgw !
means 1 mol of this mineral phase is contacted and reacting with 1 kg of
solution.

A rate law is an equation that relates the reaction rate to the con-
centrations of the participating species and other environmental con-
ditions (Zhu and Anderson, 2002). Let us start with a general expression
of the reaction rate (e.g., Lasaga, 1998, pp. 186 191):

o Sa»_Aje " M ]af A,G (2
j i

where j stands for a specific mechanism of reaction, such as proton
catalyzed dissolution; Sa the surface area per unit water mass (m?
kgw 1); Aj the Arrhenius pre-exponential factor for the jth mechanism
(molm ?%s 1); E,j the apparent reaction activation energy (J mol 1 for
the jth mechanism; R the universal gas constant (8.31446 J mol g 1);
T the temperature (K); g; the activity of aqueous species i that catalyze or
inhibits the jth mechanism. f G denotes rate dependence as a func-
tion of the Gibbs free energy of a dissolution reaction. Below, we will
elaborate on each term in Eqn (2).

2.2. Rate dependence on pH

The pH has a significant effect on the reaction rate for most minerals.
Palandri and Kharaka (2004) modeled the pH-dependence of reaction
rates by dividing the dissolution process into three mechanisms: H ,
H20, and OH -promoted mechanisms, which they assume operate in the
ranges of pH 1.3 4.0, 5.6 8.2, and 8.6 10.3, respectively. If we assume
these three are the only mechanisms for the reactions and for the
moment, only wish to deal with forward rates r , not net rates, Eqn (2)
becomes,

r rmy rw T om 3
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where H, w, and OH denote to the acid, neutral, and basic mechanism,
respectively.

Palandri and Kharaka (2004) carried out piecewise linear regression
of the experimental rate data through the equations,

r+__;; ZAH(% e_E“J“ IRT (43)
Fiw =ﬂtwe‘£“"'fIr RT (4b)
ryon :AOHaEHe—Ea,OHfRT (4c)

The logarithm form transforms Eqn (4) into a linear relation,

log(r, y) =log(Ay) — E,y /2.303RT + nypH (5a)
log(r,.,) =log(A,) — E,,,/2.303RT (5b)
log(rs on) =log(Aoy) — Eaon /2.303RT + noppH (5¢)

where ny and ngy are reaction orders of the H" in acid and base
mechanisms, respectively.

These kinetic parameters Ay, Ay, Aon, N, Non, Ea i, Eaw, and E, op,
which describe the pH dependence, are programmed into the library and
are also listed in Appendix A. Note that the pre-exponential factor is
related to the apparent rate constant ky o5 through the equation,

log(k.n 25) = log(An) — ©

aH
2.303RT
where 25 denotes 25°C (the reference state) and T is 298.15 in Eq. (6).
ki m» ki w, and k; on at 25°C are also listed in Appendix A.

2.3. Effect of temperature on rates

The reaction rate dependence on temperature can be described by
the Arrhenius equation (Eq. (7)). This temperature effect is included in
the scripts when apparent activation energy data for the minerals are

available.
k= AjeE/RT @

The apparent activation energy for the dissolution reactions are also
listed in Appendix A.

2.4. The surface area term

The term S, in Eq. (2) stands for the reactive surface area (Helgeson
et al., 1984) or the concentration of the reactive surface sites (Stumm,
1992). However, in practice, these properties are currently inaccessible,
and Sa is approximated by either the BET or geometric surface areas.
Most rate constants compiled from publications are largely normalized
to BET surface areas. When applying the BET surface area-normalized
rates in the library (from laboratory experiments) to field systems for
which only geometric surface areas are available, a roughness factor of
~5-~7 may be warranted. This can be accomplished by including a
scaling factor as PARM(2).

The surface area of the reacting phase may change as reaction pro-
ceeds. If the mineral particles have a spherical or cubic shape and
dissolution proceeds uniformly, the changes of surface area during the

reaction is approximated by the equation,

m £
Sa =Sj1-(—) ®
iy

On the other hand, when simulating precipitation, the surface area of
the precipitating mineral is typically difficult to evaluate. Since all rate
equations require a non-zero surface area to calculate the precipitation
rate, the following assumptions are used in the seripts. If the initial mass

C and Gi

P
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of the precipitating phase is not 0 (mg > 0), the surface area for the
precipitant is calculated using Eq. (8). If the initial mass of the precip-
itant is 0 (mp=0), the surface area of precipitant is assumed to be
constant over time. If no initial surface area is provided (i.e. S} < 0), a
default value of 1 m? kgw ™! for S, is to be used, allowing the calculation
of precipitation rates and to avoid calculation error in the program.

2.5. Effect of saturation state on reaction rate

The term f(A;G) in Eq. (2) is used to account for the relationship
between the net reaction rates and the departure from equilibrium.
Theoretically, rpe=0 when f(A;G) =0. One of the commonly used
expressions for f(A;G) is given by Eq. (9) (Alekseyev et al., 1997;
Brantley et al., 2008, pp. 151-210; Lasaga, 1995, 1998; Lasaga et al.,
1994; Oelkers et al., 1994):

f(8,G)=(1-2)=(1-[Q/K]")"= 1 [MFRT]")" (9)

where Q is the mineral saturation quotient, Q the reaction quotient, and
K the equilibrium constant. The two dimensionless fitting parameters, p
and g, are usually empirical.

When both p and q are equal to 1,

f(a,G)=(1-2) (10)

and Eq. (2) reduces to Eq. (11) for reactions that do not involve a catalyst
or inhibitor,

Tra=S2Y kij(1-2) an
i

Egs. (10) and (11) is often called the “transition state theory (TST)
rate law” in the geochemistry literature. This is the default relationship
used in the Palandri and Kharaka (2004) database when
near-equilibrium experimental data are not available.

There are only a small number of near-equilibrium laboratory ex-
periments available that allow regression of p and g values (Palandri and
Kharaka, 2004; Marty et al., 2015). For most minerals in these databases
or this library, no near-equilibrium experimental data are available for
obtaining the p and ¢ values. The ongoing practice is to assume that p
and g values equal to 1 (Palandri and Kharaka, 2004; Marty et al., 2015).
However, there is little experimental evidence that supports the validity
of Eq. (11) for the geochemical reactions listed in the kinetics library.
First, Eq. (11) is only valid for elementary reactions; geochemical re-
actions listed in the kinetics library are mostly overall reactions. For
operational purposes, however, we must introduce a provisionalf(A,G)
term in rate equations so that the net reaction rates go to zero at equi-
librium. Therefore, Eq. (10) was used as default relationship for all
RATES scripts that do not have p and g values. Users of the library should
also note that most geochemical systems quickly depart from the initial
far-from-equilibrium condition and approach to the near equilibrium
region (Zhu et al., 2010). In other words, most reactions proceed in the
near-equilibrium region where there are no experimental data available.

Another consequence of the ad hoc use of Egs. (10) and (11) is that
the scripts programmed with this relationship will automatically
calculate precipitation when A;G > 0. However, there is a paucity of
experimental precipitation rate data. As a result, Palandri and Kharaka
(2004) had to invoke the principle of microscopic reversibility for most
minerals—that is, to use the equilibrium constants (K) and forward rate
constants (k) to calculate the rate constants of the reverse reactions (k).
This principle, again, is only applicable for elementary reactions. Users
must examine the relevant rate equations and may want to experiment
with different rate equations for precipitation, such as the BCF equation
(Pham et al., 2011).

To accommodate the experimental results that deviate from Eq. (11),
more complicated empirical relationships for f(A;G) have been pro-
posed (Burch et al., 1993; Cappelli et al., 2018; Hellmann and Tisserand,
2006). These equations for f(A,G) are also programmed into BASIC
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FHEEHHEHEERE
#Quartz
R
quartz
-start
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1 rem unit should be mol,kgw-1 and second-1

2 rem parm(1l) is surface area in the unit of m2/kgw

3 rem calculation of surface area can be found in the note

4 rem M is current moles of minerals M@ is the initial moles of minerals
5

1

rem parm(2) is a correction factor

8 rem acid solution parameters
11 a1-8

12 E1-=08

13 nl=8

28 rem neutral solution parameters
21 22=1.98

22 E2=77000

30 rem basic solution parameters
31 a3=1.97E+084

32 E3-80000

33 n2=0.34

36 rem rate=8 if no mineral mass and undersaturated

48 SR_mineral=SR("quartz")
41 if (M<@) then goto 208

42 if (M=6 and SR_mineral«l) then goto 268
43 if (MB<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)"8.67

50 if (SA<=8) then SA=1
60 R=8.31451

75 Ratel=al*EXP(-E1/R/TK)*ACT("H+")"*nl #acid rate expression

80 Rate2=a2*EXP(-E2/R/TK)

85 Rate3=a3*EXP(-E3/R/TK)*ACT("0H-")"n2

#neutral rate expression
#base rate expression

98 Rate=(Ratel+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)

188 moles= rate*Time
288 save moles
-end

Fig. 1. An example kinetic script for quartz. The kinetic parameters and rate equation are from Palandri and Kharaka (2004).

scripts for dissolution range ( ;G 0). However, these empirical rate
equations will lead to mathematical errors when directly applying to
precipitation range where G 0. Therefore, we programmed Eq. (11)
into the scripts for precipitation condition if it is encountered during the
model calculation.

Users of this kinetics library must be aware the operational nature of
the scripts. The addition of Eq. (11) into the scripts intends to force the
rate to be zero at equilibrium. It does not mean an endorsement of this
rate and f ;G relationship. Eq. (11) in the scripts will lead to precip-
itation of phases when G 0. However, there is little experimental
data on precipitation rates or rate equations. It is always the users who
produce geochemical modeling results. Not the program or the kinetics
library.

2.6. Other reaction mechanisms

Besides the acid, neutral, and basic mechanisms, other aqueous
species may also participate in the reactions and affect the rates. For
example, the dissolution rate of carbonate minerals is strongly related
to the partial pressure of CO5, which is in equilibrium with the solution
(Plummer et al., 1978), and quartz dissolution can be facilitated by
hydrofluoric acid (Mitra and Rimstidt, 2009). These effects are regar-
ded as additional reaction mechanisms and the rate can be expressed as
Eq. (2).

2.7. Kinetic modeling in pHREEQC

For a full description of the kinetic modeling functions in PHREEQC,
the readers are referred to the PHREEQC manual (Parkhurst and Appelo,
2013). Here we give a brief introduction relevant to the kinetic library.

In PHREEQC, a kinetic calculation requires two data blocks: KINETICS
and RATES. In the KINETICS data block, the user must define the initial
moles (in mol kgw 1) and the initial surface area (in m> kgw 1, defined
in PARM(1)) of the reacting phase. A scaling factor (PARM(2)) is also
needed for the calculation, allowing the users to define any coefficients
that is needed for the calculation. The rate equation and system-
independent parameters, such as rate constants, activation energies,
and reaction orders, are defined in the RATES data block. The RATES
data block uses BASIC language script to describe the mathematical
expression for a particular mineral. The BASIC script for each phase
involved in the model simulation must be included in the input or
database file prior to use.

We have programmed and assembled a library of these Basic pro-
grams for about 100 minerals. An example script for quartz is shown in
Fig. 1.

3. BASIC scripts library
The rate equations and parameters in this library can be classified

into four categories: (1) Palandri and Kharaka (2004) rate equations; (2)
parallel-mechanisms rate equations (e.g. Burch et al.,, 1993); (3)
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Langmuir-adsorption rate equations (e.g. Amram and Ganor, 2005); and
(4) other specific rate equations.

3.1. Rate equations in the Palandri and Kharaka format

The rate equation format adopted by Palandri and Kharaka (2004)
considered three dissolution mechanisms (acid, neutral, and base) in the
following format,

[Aﬁe—fﬂﬂf"a;;ﬁ 1— ﬂ*")ql]

Foo = S) [A,,e— aw/RT g _ aﬂ)"z] (12)

3
[Ao;; o—Eaon JRT amu 1— _ng)v ]

Only a few minerals in the Palandri and Kharaka (2004) database
have p and q values available because most data available were from
far-from-equilibrium dissolution experiments. For the minerals without
an experimentally determined f{A,G) term, a (1- Q) term was included in
all rate equations in the PHreegc scripts. This additional term ensures
that the net reaction rate at equilibrium is always 0 for all rate equations
in this library.

For some minerals, new experimental data have become available
since Palandri and Kharaka (2004) published their database. The kinetic
parameters for these minerals were updated with new parameter values.
These phases include 14 minerals by Marty et al. (2015), chlorite (Smith
and Carroll, 2016), illite (Smith et al., 2017), kyanite Zhang et al., 2019,
lizardite (Daval et al., 2013), and muscovite (Lammers et al., 2017).
These publications use a slightly different rate equation from Eq. (9),
using apH., instead of ayy in the base mechanism (see Eq. (13) and
Appendix A).

1
[Aﬁe— wa[FT g 1 — 1)’ ]

et = S [Awe‘fﬂ*f T — o) "2] (13)

3
Poﬁe—Ewufﬂagf 1 _mi)q]

3.2. Rate equations involving parallel mechanisms

Burch et al. (1993) measured dissolution rates of albite with pH 8.8
aqueous solution at 80°C using a continuously stirred flow-through
reactor. They found that the dissolution rate at near-equilibrium con-
ditions cannot be described with the relationship in Eqs. (10) and (11).
Instead, they used an empirical rate equation which includes two
superimposed terms to describe the dissolution rate of albite at
near-equilibrium conditions at their experimental pH and T. The rate
equation proposed by Burch et al. (1993) is given by

r=k S, [1 — e—N(IArGURT}""] + kpSy [1 — e—"(lﬁﬁlfﬂn”] (14)

where k; and k5 are rate constants were determined from regression, for
which the values are 30.46 x 107'2 and 2.73 x 107 2molm2 57},
respectively, at pH= 8.8 and T= 80°C. The fitted parameters n, m;, and
m, are given the values 8.40 x 107", 15.00, and 1.45, respectively.

Hellmann and Tisserand (2006) used the same rate equation as Burch
et al. (1993) (Eq. (14)) to fit their albite dissolution data at 150 °C and
pH 9.3. The k; and k;, at this pH and T are 1.02 x 10~ and 1.80 x 10717,
respectively (mol m™2 s™1). The fitted parameters n, m;, and m, are
given the values 7.98 x 107>, 3.81, and 1.17, respectively.

These two rate equations were fitted from experimental data at
specific pH and temperatures. Note that Hellmann and Tisserand (2006)
could not fit their experimental data at 150°C and pH 9.3 using the
parameters of Burch et al. (1993), which were based on experimental
data at 80°C and pH 8.8. These rate equations were programmed into
BASIC language scripts for minerals. Caution must be exercised for the
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Table 2
Initial conditions for albite hydrolysis calculations.

Parameter Value or composition
Amount of initial Albite, 1 mol
mineral
Temperature, T 25°C
Initial pH 6
Surface area, S, 0.2m* kgw ™’

Solution composition, Ca®*: 0.05 mol kgw™?, CI": 0.08 mol kgw*, HCO3:
[ 0.02 mol kgw ™!
Equilibrium phases Gibbsite (0 mol), kaolinite (0 mol), paragonite (0 mol),
pyrophyllite (0 mol)

use of these equations outside of the experimental condition range.

3.3. Rate equations in the Langmuir adsorption isotherm format

The Langmuir adsorption isotherm can be used to describe the effects
of adsorbed ions on the reactive surface and the dissolution rate (Amram
and Ganor, 2005; Lasaga, 1981; Oelkers, 2001). See Marini (2007) for an
excellent review. A general form of this type of rate equation is given by
Eq. (15).

Kia;

For example, the dissolution rate of smectite was studied with a flow-
through reactor in acidie solutions (pH 1 to 4.5) at various temperatures
(25-70°C). The following rate equation was used to fit the experimental
data (Amram and Ganor, 2005):

3% 1076 x £
r=220x &R x X xem Xdw X Sa (16)

1+3x10—°xel*“?ixauq

This rate equation was programmed into BASIC language scripts for
minerals whose data was sourced from these studies.

3.4. Specific rate equations

Rate equations for quartz (with HF added) (Mitra and Rimstidt,
2009), amorphous silica (with HF added) (Mitra and Rimstidt, 2009),
quartz (with Na' added) (Rimstidt, 2015), amorphous silica (with Na*
added) (Rimstidt et al., 2016), forsterite (with oxalate added) (Olsen and
Rimstidt, 2008), galena (Acero et al., 2007), chalcopyrite (Kimball et al.,
2010), montmorillonite (Cappelli et al., 2018), nontronite (Gainey et al.,
2014), jarosite (Madden et al., 2012), scorodite (Harvey et al., 2006),
and apatite (Harouiya et al., 2007) were collected and programmed into
the PHreeqc library. These rate equations were applicable to very specific
experimental conditions, such as concentrated organic acid or high
salinity solutions.

Besides H" and OH ", other aqueous species can also affect the re-
action rate (Bickmore et al., 2008; Rimstidt, 201 5; Rimstidt et al., 2016).
For example, a rate equation was proposed for quartz dissolution by
taking sodium concentration into consideration (Rimstidt, 2015; Rim-
stidt et al., 2016):

J=0.646 107 Fs/2300T) | 6 64 10~ Fs/20RT) (m;,’:?' / af}:‘) a7)

where J is the dissolution flux (mol m~2s™1), E, is the activation energy
of the sodium-absent reaction (J mol™1), E. is the activation energy of
the sodium-catalyzed reaction (J mol™"), my,+ is the molality of Na™*
(mol kgw™), and ny,+and nys are reaction orders with respect to Na™
and HY, respectively. Equation (17) was applicable at 0-50 °C, pH 5.3 to
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10.4, and my, ranging from 0 to 1 mol kgw '.

4. Example application

To illustrate the utility of the script library, we simulated the reaction
path of albite hydrolysis, using BASIC scripts for rate equations of Burch
et al. (1993), Hellmann and Tisserand (2006), and Palandri and Kharaka
(2004) for albite. The initial conditions for the simulations are the same
for the three models and are shown in Table 2. To ensure that only the
effectof thef G function on near-equilibrium rates and reaction path
are compared, the rate constants in the three models were normalized to
the far-from-equilibrium dissolution rates for albite recommended by
Palandri and Kharaka (2004). For simplicity, the secondary phases were
assumed to be at equilibrium with the aqueous solution by including the
keyword of EQUILIBRIUM_PHASES. Paragonite, kaolinite, gibbsite, and
pyrophyllite were allowed to precipitate in the simulation. Equilibrium
constants for reactions of aqueous species and minerals were calculated
with SUPCRTBL (Zimmer et al., 2016).

For using the Palandri and Kharaka (2004) rate equation (Eq. (12)) to
simulate albite hydrolysis, the script block albite in the library was
copied and pasted into the Pureeqc input file under keyword RATES. This
input file can be found at the journal electronic supplemental materials
section with this paper or from the Indiana University web sites noted
elsewhere. Note in the library, the Albite script block has the Marty
et al. (2015) updated parameters for albite although the rate equation is
the same as Palandri and Kharaka (2004). In the same input file, a Ki-
netics 1 keyword block was also prepared. See the Pureeoc manual for
details about this keyword block. The input file can be run with the
database linl.dat, which is distributed together with the PureEQc program

from the USGS web site. See the exampela.pqi file for details.

Alternatively, one can use the database phreeqc-bl-kientics.dat online
(see web address noted elsewhere). This modified database has the ki-
netic library and relevant phases appended to the Phreeqc.dat database.
The user only needs to call the Albite RATE block and does not need to
be concerned with paragonite because all RATES and PHASES are
consistent. See the file examplelb.pqi.

To use the Burch et al. (1993) and Hellmann and Tisserand (2006)
rate equation (Eq. (14)) for simulating albite hydrolysis is less
straightforward. PureeQc needs the consistency between PHASES and
RATES blocks. The program cannot have more than one rate equation
for the same phase. In the library, the script for the Burch rate equation
istermed Albite(Burch) to differentiate it from the Albite script that
uses the Palandri and Kharaka (2004) rate equation. There are two ways
to achieve the consistency between RATES and PHASES in this case. The
simplest way is to copy the Albite(Burch) script into the input file
under RATES and rename it Albite . This will override the Albite
script in the database. See the file burch.pqgi in the download package.
The second way to achieve consistency is to copy the Albite phase
entry into the input file and rename Albite as Albite(Burch) .

To make the three rate equation models comparable, we needed to
have the same k (k S is the far-from-equilibrium rate) for the three
models. The k value of Palandri and Kharaka formulation at 25 C and
PH 6 was first calculated from Eq. (12) from the parameters for albite in
Appendix A (Table 1A, 2A)Table A1 and A2. Then, we forced the sum of
ki and ky in Eq. (14) to be equal to this value with appropriate pro-
portions. The parameters of n, m;, my in Eq. (14) that represent f .G
were retained from those from Burch et al. (1993) and Hellmann and
Tisserand (2006). Although developed complicated way to take account
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of the pH effects on the rates, the solution chemistry only varied from 6
to 7.2, which is within Palandri and Kharaka s neutral pH range. Similar
normalization was performed with the Hellmann and Tisserand (2006)
parameters (Section 3.2).

The three models produced different results (Fig. 2). Although they
started with the same far-from-equilibrium rate by design, albite
dissolution rates differed significantly when the aqueous solutions
entered the near-equilibrium region because of different r f( ;G)
functions in the three rate equations. As a result, albite dissolution using
the rate equation of Palandri and Kharaka (2004) was the fastest,
reaching equilibrium (SI ~ 0.01) within 1800yearsat 25 C. The
Burch et al. (1993) model reached equilibrium over 17,500 years. The
Hellmann and Tisserand (2006) case was the slowest and reached
equilibrium after 83,000 years of reaction (Fig. 2).

On the conventional activity-activity diagram, the reaction paths of
albite hydrolysis from the three rate equations were identical (Fig. 3).
However, the calculated reaction paths in the dissolution process ac-
cording to the three rate equations are different in the temporal
dimension (Fig. 4). After the solution composition quickly crossed the
kaolinite-pyrophyllite boundary, the system reached the pyrophyllite
stability field, and pyrophyllite is the secondary precipitation phase
while albite continues dissolving. As shown the 3-D phase diagram
(Fig. 4), the three rate equations gave different predictions on the time
needed for the system to reach equilibrium (the boundary between py-
rophyllite and albite). As discussed above, the modeling result using
Palandri and Kharaka (2004) (red line) was the fastest (about 1800
years); meanwhile, the Hellmann and Tisserand (2006) rate equation
(orange line) was the slowest, taking about 83 000 years to reach
equilibrium. As the far-from-equilibrium rate in the three cases was

Palandri
== Burch

~ Hellmann

Fig. 4. 3-D activity-activity phase diagram for reaction paths during albite dissolution at 25 C and 1 bar. Red, blue, and orange lines represent reaction paths
according to simulations using rate equations of Palandri and Kharaka (2004), Burch et al. (1993), and Hellmann and Tisserand (2006), respectively. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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fixed at the same level, the different predicted times result from the f
( (G) term, which defines the near-equilibrium rates of albite dissolu-
tion reactions.

This example application demonstrated significant effects of the f
( (G) term on dissolution rates. The models all started from the far-
from-equilibrium region of the albite-water system. However, all three
models proceeded quickly into the near-equilibrium region of the albite-
water system after a short periods of time (Fig. 2c). For the remaining
simulation time of 100,000 years, albite dissolution proceeded in the
near-equilibrium region and the f{ ;G) term impacted the dissolution
rates (Fig. 2a,d). However, different forms of f{ ,G) term led to different
projected dissolution rates near-equilibrium (Fig. 2d). Even though the
Burch et al. (1993) and Hellmann and Tisserand (2006) rate equations
have the same form, the projected rates are different because the pa-
rameters in the f( ,G) term are different. The script library of rate
equations allowed the users to compare modeling results with different
rate equations, and help the users to better evaluate the uncertainties in
kinetic modeling studies, regarding the choice of rate equations.

5. Conclusions and remarks

We compiled a library of mineral dissolution rate parameters and
equations from the literature and programmed BASIC scripts for the
PHreeQc software. About 100 phases are included. Separately, a PHASE
file was also developed to be used together with the RATES scripts.
PureeqQc requires both data blocks to conduct kinetic modeling. These
RATES script blocks and PHASE blocks can be easily copied and pasted
into the input files ort append to the PureeqQc databases.

The majority of the rate equations and kinetics parameters in this
compilation were derived from far-from-equilibrium dissolution exper-
iments. The relationship between rate and free energyf .G 1 Q
was used as the default expression so that rates go to zero at equilibrium.
Scripts without such a provision will lead more user errors because
minerals would dissolve in supersaturated solutions. However, as writ-
ten, the scripts automatically extrapolate dissolution rates at far-from-
equilibrium to near-equilibrium conditions, and implicitly assume that
precipitation rates can be approximated by reverse of dissolution when
the aqueous solution is supersaturated with this phase. Users must be
cautious about the limitations of the rate equations and parameters in
the library.

We hope this script library will facilitate the application of
geochemical kinetics. However, this paper did not evaluate the kinetic
rate data; We took the data from the literature and put them into more
user-friendly formats. Digital versions of the BASIC scripts can be

Appendix A. Supplementary data
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downloaded for free from https://github.com/HydrogeolU/PHREE
QC-Kinetic-Library and doi.org/10.5967/41gq-yr13. The library of
scripts are also included in an online version of Pureeqc, which can be
accessed at the corresponding author s Indiana University web site
https://hydrogeochem.earth.indiana.edu.

6. Computer code availability

Digital versions of the BASIC scripts, as well as future updates, can be
downloaded for free from https://github.com/HydrogeolU/PHREE
QC-Kinetic-Library and doi.org/10.5967/41gq-yr13. The library of
scripts are also included in an online version of Pureeqc, which can be
accessed at the corresponding author s Indiana University web site www
.hydrogeochem.earth.indiana.edu.
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Table A2
Minerals phases using other rate equations

Computers and Geosciences 133 (2019) 104316

Rate equation category Mineral

Reference

Parallel mechanisms rate equations

Langmuir adsorption rate equations
Other specific rate equations

Albite_Burch
Albite_Hellmann
Smectite_Amram_2005
Fluorapatite_Harouiya_2007

Chalcopyrite
Forsterite(ox)

Galena
Jarosite

Montmorillonite_Cappelli 2018

Nontronite
Quartz(Na)
Quartz(HF)
Scorodite
Si02(a)(Na)
Si02(a)(HF)

Burch et al. (1993)
Hellmann and Tisserand (2006)
Amram and Ganor (2005)
Harouiya et al. (2007)
Kimball et al. (2010)
Olsen and Rimstidt (2008)
Acero et al. (2007)
Madden et al. (2012)
Cappelli et al. (2018)
Gainey et al. (2014)

Mitra and Rimstidt (2009)
Rimstidt (2015)

Harvey et al. (2006)

Mitra and Rimstidt (2009)
Rimstidt et al. (2016)
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