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ABSTRACT

The intensification of the hydrologic cycle due to climate change is likely to influence the extreme precipitation
characteristics (i.e., intensity, duration and frequency). These precipitation characteristics are integrated to
construct Intensity-Duration-Frequency (IDF) curves that are widely used to design civil infrastructure systems.
These IDF curves are typically derived based on the stationary assumption, however, the frequency and intensity
of extreme precipitation events likely to become nonstationary as a consequence of climate change. During the
past decades, unusual extreme precipitation events with more than thousand-year return periods were recorded
in the United States. This study investigates the nonstationary nature of the most recent extreme precipitation
events occurred over different durations (1-, 3- and 5-days) by incorporating time-varying covariates, such as
time, maximum temperature, mean temperature, and the El Nifio Southern Oscillation cycle (ENSO). The
nonstationary frequency analysis for these extreme events was conducted using nonstationary Generalized
Extreme Value distribution by incorporating the time-varying covariates. It was observed that most of the
temporal evolution of extreme precipitation events follow the nonstationary pattern, which may be due to the
increase in the magnitude of recent extreme precipitation events, especially during hurricane events. Different
combination of covariates can potentially influence the nonstationary frequency analysis, and the type of cov-
ariate may differ when the accumulated period of extreme precipitation event increased. Based on the
Nonstationary Extreme Value Analysis, the return periods associated with extreme precipitation events sig-
nificantly reduced compared to the stationary approach.

1. Introduction

The design of major infrastructures, such as urban and highway
drainage, flood barriers, hydraulic structures, sewerage systems, and
dam spillways relies on magnitude and frequency of heavy precipitation
events (Mishra and Singh, 2010). As a consequence, it is important to
understand the spatial and seasonal distribution of extreme precipita-
tion events. However, the spatiotemporal distribution of extreme
(precipitations) vary between regions in terms of their magnitude, in-
tensity and temporal distribution within a given time frame (Konapala
et al., 2017; Mishra et al., 2009; Donat et al., 2016). Over the past six
decades, there is a robust increase in the extreme daily precipitation
averaged over both dry and wet regimes based on both observations
and climate models (Donat et al., 2016). The existing infrastructures are
often designed using Intensity-Duration-Frequency (IDF) curves based
on the stationary assumption, which suggests that the behavior (e.g.,
statistical characteristics) of the natural hydrologic system does not
change over a period of time. However, many studies suggested an
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increase in non-stationary nature of climate patterns (Milly et al., 2008;
Katz, 2009, 2013; Villarini et al., 2009; Son et al., 2017; Sarhadi and
Soulis, 2017; Risser and Wehner, 2017). Due to the change in climate
patterns, the stationary assumption of IDF curves might underestimate
the extreme events. Recently several studies indicated that the design
storm estimated based on stationary models are lower compared to the
nonstationary models (Cheng and AghaKhouchak, 2014; Mondal and
Mujumdar, 2015; Wi et al., 2016; Sarhadi and Soulis, 2017; Emanuel,
2017; Agilan and Umamahesh, 2017; Pfahl et al., 2017). Over time, the
divergence between stationary and nonstationary flood frequency
magnitudes increases under climate change scenarios (Condon et al.,
2015).

Global warming heats up the atmosphere, leading to the increase in
evaporation and expansion of atmospheric water vapor content that
further results in the intensification in the spatiotemporal distribution
of extreme precipitation events (Neelin et al., 2017; O’Gorman and
Schneider, 2009; Mishra and Singh, 2010). For each one degree Celcius
increment in temperature, the extreme precipitation is observed to

Received 19 March 2019; Received in revised form 28 May 2019; Accepted 30 May 2019

Available online 31 May 2019
0022-1694/ © 2019 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2019.05.090
https://doi.org/10.1016/j.jhydrol.2019.05.090
mailto:ashokm@g.clemson.edu
https://doi.org/10.1016/j.jhydrol.2019.05.090
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2019.05.090&domain=pdf

T.M. Vu and A.K. Mishra

increase by about 7% as formulated by Clausius-Clapeyron equation
(Westra et al., 2014, Ivancic and Shaw, 2016). In general, climate
models suggest an intensification of extreme precipitation events during
the 21st century (Pfahl et al., 2017), although they vary in space and
time. Extreme precipitation events can cause severe flooding, property
damage, potential loss of life, especially for urban areas with high po-
pulation density (Mishra and Singh, 2010). Recently, there has been an
increase in a number of studies on extreme precipitation events in the
United States (Huang et al., 2018; Luong et al, 2017, Leng et al., 2016;
Bracken et al., 2015). The trends in extreme precipitation (+2% per
decade, in the top 1% of observed events) are higher than mean pre-
cipitation (+0.6% per decade) (Kunkel et al., 2013, 2008) reveals a
significant shift in the tails of the distribution. Previous studies pro-
vided strong evidence that there is an upward trend in the frequency
and intensity of extreme precipitation over the US (Kunkel et al., 2013).

The nonstationary frequency analysis depends on appropriate cov-
ariates, for example, based on only time-varying component (Sarhadi
and Soulis, 2017; Son et al., 2017); human-induced changes based on
the CO, concentration (Risser and Wehner, 2017); global warming in
the form of global gridded temperature (Mondal and Mujumdar, 2015);
urbanization based on the changes in the land use with respect to time
(Agilan and Umamahesh, 2017), and large-scale climate covariates such
as El Nifio Southern Oscillation (ENSO), North Atlantic Oscillation
(NAO) (Vasiliades et al., 2015). For example, the human-induced
changes (e.g., CO5 concentration and global warming) plays a sig-
nificant role by increasing the chances of maximum 7-day accumulated
precipitation during Hurricane Harvey by a factor of at least 3.5 (Risser
and Wehner, 2017). These covariates have a potential influence on
nonstationary behavior of climate variables (e.g., extreme precipita-
tion), therefore identification of important covariates for the nonsta-
tionary frequency analysis is an important step.

1.1. Recent extreme precipitation events in the US

During the past three decades (1980-2018), overall 241 weather
and climate related disasters impacted the USA, where each disaster
resulted in economic losses exceeding $1 billion (NOAA, 2019) (Fig. 1).
While drought and wildfire (dry events) are a very typical phenomenon
for western contiguous United States (US) with one event per year, the
number of wet events (categorized as a severe storm, tropical cyclone,
flood) has dramatically increased since 2005. These numbers highlight
the recent increasing trends of the occurrences of wet catastrophic
events, especially for severe storm events. Statistically, the annual
economic losses due to the billion-dollar weather disasters for the US
have increased significantly about 5% per year (Smith and Katz, 2013),
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in which, the wet events have a significant contribution.

The extreme precipitations events are often associated with hurri-
canes and tropical storms in the US. For example, Huang et al. (2018)
indicated that the main reason for the abrupt increase in extreme pre-
cipitation over the northeastern United States is due to the occurrence
of the hurricane and tropical storms, and these are typically fueled by
the warmer Atlantic Ocean temperature that heats up the atmospheric
water vapor. Hurricanes often lead to extreme precipitation events that
can cause significant damage to the US economy. For example, two
major hurricanes occurred in the same year (2017) are: (a) the Hurri-
cane Harvey which devastated Houston, Texas (August 26th-28th),
followed by (b) Hurricane Irma (September 9th-11th) that caused sig-
nificant damage to Florida. These two hurricanes resulted in a total
economic loss for the United States in an excess of $125 billion (Aon,
2018). The natural disasters such as the Hurricanes Harvey and Irma
highlighted the need for quantitative estimation of the risk of such
disasters (Emanuel, 2017).

In our study, we identified six extreme precipitation events occurred
in the USA during the period of 2011-2017, and these extreme events
are displayed in Fig. 2 by PRISM precipitation data (Daly et al., 1994).
The accumulated 3-day precipitation due to hurricane Harvey over
Houston (Texas) was about 800 mm (Fig. 2a), and the 500 mm of pre-
cipitation is equivalent to a return period of 2000 years for the same
location (Emanuel, 2017). Hurricane Harvey, the eighth named storm
of the 2017 Atlantic hurricane season was recognized as the wettest
tropical cyclone ever recorded to hit the USA (Ellenrieder, 2018)
leading to the unprecedented amount of precipitation and massive in-
land flooding in the greater Houston area (Risser and Wehner, 2017).
Hurricane Irma, a Category 5 storm (Editorial, 2017) considered to be
the most powerful storm ever recorded in the Atlantic hurricane,
brought massive precipitation accompanied by strong wind gusts and
storm surge. The maximum precipitation occurred during hurricane
Irma at Fort Pierce, FL was about 400 mm with the maximum wind gust
of 230 km/h. Prior to Irma, the magnitude of extreme precipitation
from a no-name storm in Louisiana (Aug 2016) was recognized as the
1000 year event which resulted in three times as much precipitation as
hurricane Katrina (Samenow, 2016; NWS, 2016). This extreme pre-
cipitation in Lousiana resulted in flash flooding, river flooding and
backwater flooding over a period of time. The Lousiana official reported
that over 30,000 people rescued, and at least 60,600 homes had been
impacted, and this event reported to have killed at least 13 people (van
der Wiel et al., 2017). Another thousand-year precipitation event oc-
curred near the coast of South Carolina in Oct 2015 (Mizzell et al.,
2016; Marciano and Lackmann, 2017), that resulted in 430 mm of
precipitation over four consecutive days. This extreme precipitation
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Fig. 1. Different type of extreme events that impacted USA during 1980-2018 period. [Note: The economic loss caused by individual extreme event exceeds $1
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Fig. 2. Six most recent extreme (accumulated) rainfall events in the United States used in the study: (a) Houston (Texas): hurricane Harvey Aug 26th-28th 2017; (b)
Florida: hurricane Irma Sep 9th-11th 2017; (c) Louisiana: Aug 11th-13th 2016; (d) Charleston (South Carolina): hurricane Joaquin Oct 1st-5th 2015; (e) Boulder
(Colorado): Aug 10th-15th 2013; (f) North Carolina: Aug 27th-28th 2011. The 6 locations are highlighted in green squares in each of the plot, and they were obtained
based on PRISM data sets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

event caused higher flood damage due to unusually high tides (due to
the recent perigean spring tide) and saturated soil moisture due to the
heavy precipitation in late September (CRN, 2016). The maximum daily
precipitation (Sep 2013) of magnitude 230 mm recorded at Boulder,
Colorado led to Front Range Flood (Yochum and Moore, 2013), which
is considered to be one of the most extreme major flood disasters. The
annual exceedance probability for this extreme precipitation event was
as low as 1/1000 (Gochis et al., 2015; NWS, 2013). Several states in the
northeastern United States witnessed severe flooding due to hurricane
Irene and the remnants of Tropical Storm Lee in late August/early
September 2011 that resulted in total damage of $7 billion and ap-
proximately 45 deaths (Suro et al., 2011). Among the six recent extreme
event locations, Boulder is located in the Continental Subarctic climate
region, and the remaining five locations are located in the Mediterra-
nean climate region (Degu et al., 2011). These most recent catastrophic
events occurred in a different part of the US at different times resulted
in the major socio-economic loss.

The overall goal of this study is to: (i) identify the best covariates
between time, daily maximum temperature, annual average tempera-
ture and ENSO that has potential influence on the most recent extreme
precipitation events in the United States, (ii) to derive the updated re-
turn levels and return periods of these extreme precipitation events in
the context of nonstationary frequency analysis, and (iii) to evaluate the
perspective of nonstationary information on the return periods in order
to highlight the necessity of the revised IDF curves for infrastructure
designs.

2. Data and choices of covariates
2.1. Extreme values of precipitation data

The daily precipitation and maximum (minimum) temperature for
the six selected locations were obtained from the Global Historical
Climatology Network (GHCN) (ftp://ftp.ncdc.noaa.gov/pub/data/

ghen/daily/) (Table 1). These locations recently witnessed extreme

Table 1

precipitation events (discussed in Section 1.1), and the data sets are
available for longer time periods with less than 1% missing value.
Additional information on these selected stations are provided in
Table 1, and their locations are shown in Fig. 2. Mean daily temperature
value is averaged based on the maximum and minimum temperature
recorded for the same day.

In general, three different methods are commonly used to identify
extreme precipitation events (Mishra and Singh, 2010), and they are
classified based on their amount, specific thresholds, and annual
maxima values. In this study, extreme precipitation events are calcu-
lated based on the annual maximum 24 h precipitation time series. The
1-, 3-, 5-consecutive days of Annual Maximum Precipitation (AMR)
time series are derived, and they are denoted by 1 day, 3 day and 5 day
AMR. The 3day AMR time series for all six selected stations and the
date of occurrence of the most recent extreme events are presented in
Fig. 3. Overall it was observed that the magnitude of recent extreme
events is comparatively much higher than previous events.

2.2. Choices of covariates for non-stationary analysis

In this section, we provide an overview of the selected covariates
and their potential influence on extreme events. The temperature can
be considered as an important covariate because the warmer atmo-
sphere is likely to hold more moisture, thereby generating a favorable
condition for an increase in precipitation (Romero et al., 2011). In
addition to that, based on the Clausius-Claperon relationship, a stronger
relationship between daily maximum temperature and extreme pre-
cipitation events was observed compared to average temperature
(Herath et al., 2018). Clausius-Clapeyron relationship also reveals the
increase in saturated specific humidity in the warmer air by 6-7% per
degree Kelvin of local warming in the absence of any dynamical change
(Risser and Wehner, 2017). Therefore, the maximum daily temperature
can be considered as an important covariate in the nonstationary ana-
lysis of extreme precipitation. In addition to that, changes in local
temperature can have a significant correlation with extreme

List of selected stations corresponding to six extreme rainfall events in the United States.

Event ID Stations (State) Lon Lat Hurricane/Storm Event date Data length
1 Fort Pierce (FL) —80.35 27.44 Irma 9/17/2017 1940-2017
2 Houston Airport (TX) —95.28 29.64 Harvey 8/17/2017 1940-2017
3 Barton Rouge Airport (LA) —-91.14 30.53 Storm 8/16/2016 1930-2017
4 Charleston Airport (SC) —79.92 32.77 Joaquin 10/15/2015 1938-2017
5 Boulder (CO) —105.27 39.99 Storm 9/13/2013 1918-2017
6 Bayboro (NC) —76.81 35.13 Irene 8/27/2011 1969-2017

1001



T.M. Vu and A.K. Mishra

Journal of Hydrology 575 (2019) 999-1010

HOUSTON FORT PIERCE BARTON ROUGE
900 600 450
800 825mm ¥ -~ 400 436 mm -~
A 26""2’017 500 570 mm »~ S
700 ug Sep 1012017 350 Aug 12'™ 2016
= 600 -
E E 300
é 500 é
© @ 250
4 4
& 400 £
< 300 <
200 150
100 100
0 0 50
1940 1960 1980 2000 2020 1920 1940 1960 1980 2000 2020 1940 1960 1980 2000 2020
(a) (b) ()
CHARLESTON BOULDER BAY BORO
400 350 400
> 4
350 300 341 -7 350 400 mme=
404 mm -~ sep 152013 Aug 272011
300 Oct 312015 250
E E E
E 250 E 200 E
9 9 9
4 & 2
& 200 & 150 £
< < <
150 100
100 50
50 50
1920 1940 1960 1980 2000 2020 1920 1940 1960 1980 2000 2020 1970 1980 1990 2000 2010 2020

(d)

(e)

(f)

Fig. 3. Time series of 3 day AMR for six stations used in the study: (a) Houston Will Hobby airport, TX; (b) Fort Pierce, FL; (c) Barton Rouge Ryan airport, LA; (d)
Charleston International Airport, SC; (e) Boulder, CO; (f) BayBoro, NC. The magnitude and date of recent extreme event for each station are shown in the figure.

precipitation intensity and frequency compared to the global process
(Mondal and Mujumdar, 2015). Agilan and Umamahesh (2017) high-
lighted the strong correlation between change in local temperature and
sub-hourly duration extreme precipitation events for a station in India.
In our study, we considered the local annual average temperature as an
additional covariate to study their influence on extreme precipitation
events. Several studies (Sarhadi and Soulis, 2017; Son et al., 2017)
included time covariate in the non-stationary analysis, and therefore it
is included as an additional covariate to study the nonstationary process
for the recent extreme precipitation events in the United States.
Large-scale climate indices (e.g., ENSO) likely to influence local
weather conditions. ENSO (El Nifio/Southern Oscillation) is a coupled
ocean-atmosphere phenomenon associated with the fluctuations in the
sea surface temperature located in the tropical Pacific. The extreme
phases of ENSO has a potential influence on precipitation anomalies in
many geographic locations around the world (Mason and Goddard,
2001), and especially it has significant influence on extreme pre-
cipitation events over the contiguous United States (Yu et al., 2017;
DeFlorio et al., 2013; Schubert et al., 2008; Gershunov and Barnett,
1998; Mishra and Singh, 2010). There are several indices used to re-
present the phase and strength of ENSO events (Hanley et al., 2003).
Typically, the commonly used indices are the regional Sea Surface
Temperature (STT) in the equatorial Pacific (Nifio-1 + 2, Nifio-3, Nifio-
4, Nifio-3.4). Nifio 3.4 is a widely used index of ENSO activity, and it is
calculated by averaging the Kaplan Extended SST anomalies (Kaplan
et al., 1998) in the region comprising 55-5N and 170 W-120 W. Pre-
viously, Nifo 3.4 was used as a covariate for modeling nonstationary
precipitation (Agilan and Umamahesh, 2017; Son et al., 2017; Mondal
and Mujumdar, 2015; Risser and Wehner, 2017). In this study, we se-
lected Nifio 3.4 based on Extended Reconstructed SST (ERSST) data set
averaged over the November to March as an additional covariate to
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represent the large-scale climate phenomenon for nonstationary ana-
lysis of extreme precipitation events.

3. Methodology
3.1. Nonstationary extreme value analysis

It is often useful to study the extreme precipitation events based on
longer durations (e.g., few days) due to the lag time associated between
excessive precipitation and hydrologic flooding (Mishra and Singh,
2010). Therefore, the extreme precipitation values in the present study
were derived based on maximum annual precipitation amounts at dif-
ferent time scales (1, 3, and 5 days).

The distributions of extreme values (Fisher and Tippett, 1928) in-
clude three families: Gumbel, Fréchet, and Weibull. All three families
are combined into the generalized extreme values distribution (GEV)
(Jenkinson, 1955). The GEV was used to derive both stationary and
nonstationary models. The cumulative distribution function (CDF) of
the GEV family has the functional form (Jenkinson, 1955):

G@) = exp{_[l N g(%)]ug}

where y, o, £ are the location, scale and shape parameter respectively.
According to Fisher and Tippett (1928), for £ = 0 the distribution is
called Gumbel; £ > 0 refers to Fréchet and the £ < 0 is corresponding to
Weibull distribution (Coles, 2001). Several methods are developed to
estimate the GEV model parameters, such as, Maximum Likelihood
Estimation (MLE) (Smith, 1985), Probability Weighted Moment
(Hosking et al., 1985), L-moments (Hosking, 1990), Method of Mo-
ments (Madsen et al., 1997) and Generalized Maximum Likelihood
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Stationary and Non-Stationary GEV models used in the study. [List of covariates: Year (Y); Daily maximum Temperature at time the event occurs (Tx); Annual mean

Temperature (Tm); ENSO (E)].

Model Formulation Model Formulation

S0 GEV (u, 0, §)

NS1 GEV ((ug + Yuy), 0, &) NS11 GEV ((ug + Yu; + Tmu, + Euy), o, &)

NS2 GEV ((ug + Ty, 0, §) NS12 GEV (g + Yuy), €001 &)

NS3 GEV (g + Ewy), 0, €) NS13 GEV (g + Txuy), eC0+Tw1) &)

NS4 GEV ((ug + Tmuy), o, &) NS14 GEV (g + Euy), e@0+EoD &)

NS5 GEV ((ug + Yuy + Txuy), 0, §) NS15 GEV ((uy + Tmyy), e©0+Tmon) | £)

NS6 GEV ((ug + Yu; + Epy), 0, &) NS16 GEV (g + Yy + Txuy), e(00+Yo14Tx2) | £)

NS7 GEV (1o + Yy + Tmu,), 0, §) NS17 GEV (kg + Yu; + Tmyy), e@0tYo1+Tmoz) £y

NS8 GEV (o + Epy + Txuy), 0, §) NS18 GEV ((ug + Yp, + Ep,), e©0+To1+E02) &)

NS9 GEV ((ug + Epy + Tmu,), o, &) NS19 GEV (g + Yu; + Euy + Txpy), e(00+Yo1+E02+Taw3) | £)
NS10 GEV ((ug + Yuy + Txuy + Epg), 0, €) NS20 GEV ((ug + Y, + By + Tmyy), e(00+Yo1+E02+Tmos) | &)

Estimators (Adlouni et al., 2007). In our study, we utilized the MLE
method to estimate the GEV parameters for nonstationary analysis, and
the similar method was applied in previous studies (Agilan and
Umamahesh, 2017; Risser and Wehner, 2017, Mondal and Mujumdar,
2015). The conventional spatial bootstrap technique was applied for the
significance test to determine the uncertainty bounds and also to esti-
mate the return levels and the return periods.

3.2. Models and covariates

In the nonstationary analysis, the parameters are expressed as a
function of covariates. As discussed earlier (Section 2.2), four covariates
were selected for nonstationary analysis of extreme precipitation,
which includes: (i) annual average daily temperature “Tm” (°C), (ii) the
max daily temperature “Tx” (°C) recorded at the time the extreme
events occurred, (iii) the seasonal average ERSST over Nifio 3.4 region
for the DJFM months to represent the influence of natural phenomenon
“E”, and (iv) time in year “Y”. Different combinations of covariates are
provided in Table 2. The Time-varying GEV distribution was applied by
varying the location and scale parameters as a function of selected
covariates. However, the shape parameter is kept constant as it may be
unrealistic to assume shape parameter as a smooth function of time
(Coles, 2001), and it is advisable to use the constant shape for a small
number of stations (Cooley et al., 2007). Similar assumption has been
made in recent studies (Sarhadi and Soulis, 2017; Risser and Wehner,
2017; Agilan and Umamahesh, 2017). For each of the couple station/
duration, there are 21 models are derived, which includes, 1 stationary
and 20 nonstationary models based on four covariates and two-time
varying parameters. Overall, 18 best models were identified based on
378 models that were constructed based on a combination of 6 stations,
three types of extreme events durations, and four types of covariates. A
brief description of the model formulation is discussed here, and de-
tailed information is provided in Table 2. Three model types are briefly
discussed below:

Model type 1: Stationary model SO. Three GEV parameters are kept
constant over time:

u=po=0;§=¢ )

Model type 2: a Nonstationary model with varying location para-
meter with covariates NS1 to NS11 (Table 2), whereas, scale and shape
parameters are kept constant over time.

M =po + uTm + u, TX + (3 E + Y
oG =0

§=¢

Model type 3: a Nonstationary model with varying location and
scale parameters based on covariates NS12 to NS20 (Table 2), whereas,

3)

1003

shape parameter is kept constant over time.
M =My + u;Tm + u, TX + (E + Y
logo, =0y + nTm + o, Tx + GE + Y
§=¢ (€]

The slope of u,, u,, us, 4, represents the linear trend in location
parameters, whereas the slope of oy, 03, 03, 0; demonstrating the linear
trend in scale parameters respectively based on their associated cov-
ariates Tm (daily average temperature), Tx (daily max temperature), E
(ENSO) and Y (Time domain).

3.3. Identification of the best models

The Akaike Information Criterion (AIC) was applied to identify the
best model among 21 models (Table 2) for each station as well as dif-
ferent duration of extreme events. The model that has minimum AIC is
selected as the best fit model (Makridakis et al., 2003). The mathe-
matical equation for AIC is formulated as (Akaike, 1974):

AIC = —2log L + 2m 5)

where m is the number of terms estimated in the model; L is the like-
lihood function of the models with a monotonically decreasing function
of the sum of squared residuals. The AIC penalizes the minimized ne-
gative log likelihood for the number of parameters estimated (Katz,
2013; Mishra and Desai, 2005). AIC is commonly used to select the best
model, and it has been used for nonstationary analysis (Risser and
Wehner, 2017; Agilan and Umamahesh, 2017; Mondal and Mujumdar,
2015).

The AIC values were computed for all the selected 21 models based
on the 1-, 3-, 5-day annual maximum precipitation at six stations. The
selected best model is then compared with stationary model SO using
the Likelihood Ratio test (LR) with 95% confidence intervals (Coles,
2001). If the test is insignificant, then the stationary model (SO) is
considered as the best model. The best models based on the different
types of extreme precipitation events at six locations are provided in
Table 3.

Table 3
Selected models for the six stations based on three types of extreme rainfall
events.

Station 1 day AMR 3day AMR 5day AMR
Fort Pierce NS12 NS17 NS2
Houston AP NS5 NS16 NS1
Barton Rouge AP NS6 NS12 NS12
Charleston AP SO NS1 NS1
Boulder NS11 NS6 NS2
Bayboro NS12 NS3 SO
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3.4. Estimation of the nonstationary return period

The nonstationary frequency analysis models were developed based
on past observations by excluding the recent extreme event. For ex-
ample, the historical AMR data was considered up to 2016 for model
development for Fort Pierce station (hurricane Irma in 2017). Once the
nonstationary models are identified, the return period for extreme
events (e.g., hurricane Irma in 2017) are computed based on the model
parameters based on the sets of the corresponding covariates (Tx, Tm,
E, Y) of the current year. Once the best nonstationary model was
identified, the corresponding return period for the recent extreme
events was computed and compared with the corresponding return
period from stationary GEV fitting. The formulation for the return
period based on the stationary (nonstationary) model is given by the
equation:

1- exp{—[l _ g(%)]lxg}

where z is the corresponding AMR value of the extreme event, and
H,, o, & are the location, scale and shape parameters for corresponding
nonstationary (stationary) models specified in equations (2), (3) and
(4). The estimated model parameters and standard errors associated
with the best models (Table 3) are provided in Table 4. The revised
return periods for the most recent extreme precipitation events are
provided in Table 5.

Finally, the change (%) in the return periods for the selected ex-
treme events between nonstationary and stationary can be computed as

p =

(6)
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in equation (7):

nrp — srp
nrp

reduction = * 100(%)

)

where nrp and srp represent the return periods based on the nonsta-
tionary and stationary approach.

4. Results
4.1. Nonstationary analysis and best covariates for selected models

The best models for the six selected stations are provided in Table 3,
and their corresponding GEV parameters are tabulated in Table 4.
Overall, 18 best models from 378 models are identified for three tem-
poral precipitation durations at six locations. Out of these 18 best
models, only 2 models follow stationary GEV (S0) and 16 models follow
nonstationary processes. The nonstationary models vary based on their
location and scale parameters due to the different potential influence of
covariates.

The nonstationary models performed well based on all the AMR
time series for the selected station located in Houston, Texas. It was
observed that Clausius-Claperon relationship holds true for this loca-
tion, where a strong relationship was observed between maximum daily
temperature and extreme precipitation. Both the covariates (max daily
temperature and Time) have a potential influence on the nonstationary
nature (NS5 and NS16) of the 1- and 3-day AMR time series. It also
implies that the change in temperature during the post-climatic period
(1965-) (Mishra and Singh, 2010) has a potential influence on AMR. In

Table 4
GEV Parameter (11,0,&) estimated from different best models. (Type ‘Est’: Estimated GEV parameters; ‘Err’: Standard Error from the estimated parameters).
Station AMR Type Ho W1 Ho U3 (o) (o1 [ o3 4
Fort Pierce 1-d AMR Est 81.52 -1.70 28.19 -5.73 0.14
Err 3.81 3.51 3.05 2.89 0.10
3-d AMR Est 124.17 -0.81 -5.05 42.96 12.03 5.77 —-0.01
Err 5.84 5.20 4.51 4.68 5.34 3.23 0.10
5-d AMR Est 140.08 —10.83 45.51 0.04
Err 5.94 4.22 4.42 0.09
Houston 1-d AMR Est 88.95 5.15 6.53 29.74 0.24
Err 4.13 3.43 2.78 3.39 0.13
3-d AMR Est 128.85 15.60 5.17 48.23 -1.91 9.52 0.09
Err 6.43 5.80 4.44 4.86 5.68 2.57 0.10
5-d AMR Est 141.93 16.57 52.71 0.13
Err 6.60 6.02 4.95 0.07
Barton Rouge 1-d AMR Est 92.05 11.92 8.04 24.50 0.16
Err 3.03 2.59 2.65 2.30 0.08
3-d AMR Est 120.02 18.89 33.43 5.50 0.22
Err 4.42 3.95 3.70 3.51 0.12
5-d AMR Est 134.21 16.61 38.72 5.74 0.13
Err 5.13 4.53 4.08 3.93 0.12
Charleston 1-d AMR Est 84.58 27.18 0.08
Err 3.49 2.60 0.08
3-d AMR Est 117.24 3.74 31.94 0.06
Err 4.04 3.78 2.96 0.08
5-d AMR Est 132.67 2.43 35.37 0.10
Err 4.44 3.96 3.28 0.07
Boulder 1-d AMR Est 37.22 3.12 —-1.90 2.30 12.71 0.25
Err 1.57 1.29 1.05 1.27 1.21 0.12
3-d AMR Est 50.23 3.59 2.70 16.43 0.25
Err 2.02 1.58 1.54 1.57 0.12
5-d AMR Est 55.19 3.61 17.98 0.26
Err 2.22 1.49 1.74 0.12
Bay Boro 1-d AMR Est 83.94 10.54 24.58 2.33 0.10
Err 4.85 5.07 3.29 3.80 0.15
3-d AMR Est 112.47 —-9.12 36.79 0.04
Err 6.41 5.82 4.73 0.12
5-d AMR Est 127.24 41.54 0.10
Err 7.16 5.37 0.11
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Revised return period (year) based on nonstationary models for selected extreme rainfall.

Station 1 day AMR 3 day AMR

5 day AMR

Stationary model (Yr)  Nonstationary model (Yr)

Stationary model (Yr)

Nonstationary model (Yr)  Stationary model (Yr)  Nonstationary model (Yr)

Fort Pierce 228 156 6300
Houston 88 57 6726
Barton Rouge 125 80 177

Charleston 400 - 1844
Boulder 737 520 1132
Bayboro 110 40 1570

800 5370 3510
4833 4947 3942
60 530 167
1062 718 594
850 1545 950
1250 170 -

a recent study, Risser and Wehner (2017) highlighted that global
warming is likely to increase the chances of the largest 7-day pre-
cipitation total by a factor of at least 3.5 for most of the affected areas in
Houston. Based on the similar analysis over Fort Pierce station (FL), the
average local temperature (Tm) and daily maximum temperature (Tx)
are the most influencing covariates for nonstationary extreme pre-
cipitation analysis for the longer duration (3- and 5-days) AMR time
series.

The nonstationary analysis for the Charleston station reveals that
the 1-day AMR follows stationary processes (SO), however at longer
duration, both 3- and 5-day AMR performed well by nonstationary
models (NS1) based on time-varying location parameters. It implies that
the stationary IDF curve best describes the 1-day AMR in Charleston,
while for the 3-day and 5-day accumulated events, the nonstationary
processes with time-varying location parameters are the best models to
demonstrate the extreme precipitation behavior. In fact, the 5days
(October 1-5, 2015) accumulated precipitation led to a historic
flooding event and flash flooding was prevalent that led to significant
damage to civil infrastructure systems, and many people having to be
rescued by emergency personnel.

Table 3 clearly demonstrates the potential influence of covariates on
the nonstationary nature of extreme precipitation events in Baton
Rouge, Lousiana. The best model identified for 1-day AMR is different
from 3- and 5-day AMR. In this case, 3- and 5-day AMR follows similar
nonstationary models based on varying location and scale parameters,
whereas, time and ENSO found to be important covariates for 1-day
AMR. In a recent study, Van der Wiel et al. (2017) highlighted that the
return period of 3-day AMR event in Louisiana 2016 is about 550 years
(with 95% confidence interval) and the intensity of extreme pre-
cipitation events of this return time have increased since 1900. Further,
the authors suggested that the regional probability of 3-day extreme
precipitation increases by more than a factor of 1.4 due to anthro-
pogenic climate change. Our results point towards the potential influ-
ence of ENSO on extreme precipitation and Van der Wiel et al. (2017)
highlighted that the evidence for a relation to El Nifio half a year earlier
can be possible with some analyses showing a positive connection and
others none. Similarly, nonstationary models performed well for the
other two stations located in Bay Boro station (North Carolina) and
Boulder (Colorado). In the case of Boulder station, all the covariates
contribute to the 1-day AMR, however, 5-day AMR at Bay Boro station
followed a stationary model. In addition to that, the best models for 1-
and 3-day AMR at Bay Boro station includes ENSO as potential cov-
ariates.

Overall most (16 out of 18) of the stations, as well as the duration of
extreme precipitation, followed a nonstationary pattern. There are six
best models follow the time-based covariates for location and scale
parameters that represent 30% of the total number of models. Baton
Rouge and Charleston are most likely Time based nonstationary models
for higher durations (3- and 5-day extreme precipitation). About six
models (30%) exhibit the significant relationship between combined
covariates with extreme precipitation for shorter (1- and 3-day) dura-
tion. In general, for most of the locations, the frequency analysis of 5-
day AMR show a significant relationship with only one covariate, and
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the choice of covariate varies for a different location. The GEV para-
meters estimated from different best models and their corresponding
standard errors are provided in Table 4.

4.2. Revised return levels based on the nonstationary approach

The nonstationary frequency analysis was performed based on the
available data prior to the occurrence of the recent extreme events. The
corresponding return levels (periods) were computed based on the GEV
parameters (Table 4) obtained from the nonstationary analysis of the
best models. The nonstationary return levels based on 50-, 100- and
500-year return period using 3-day AMR data sets for the best models
are provided in Fig. 4. It can be observed that the nonstationary return
levels vary with time in contrast to the stationary return level.

The time-varying covariate in location parameter (model NSI,
Charleston - Fig. 4d) indicates return levels with a linear pattern having
a mild slope along the time domain. In the case of time-varying location
and scale varying parameters (NS12 model; Fig. 4c), the corresponding
return level witness a moderate slope based on the linear return levels.
The steep slopes associated with return levels (Fig. 4c) indicates the
reduction in return period with respect to recent time periods. In other
word, the large magnitude of storms is becoming more common in
recent times (Risser and Wehner, 2017).

The return level patterns likely to be influenced by the type of
covariates. The oscillating pattern of non-stationary return levels de-
pends on the choice of covariates. For example, the return levels with
ENSO as a covariate (NS3; Fig. 4f) fluctuates with the variation of SST
unlike the linear increasing trend observed based on the Time cov-
ariate. A similar observation was made based on the Time and ENSO
covariates (model NS6) for Boulder station (Fig. 4e). It was observed
that the return levels associated with ENSO covariate may not follow a
significant increasing or decreasing trend. The best model for Fort
Pierce station (NS17; Fig. 4b) incorporates Time and mean temperature
as covariates that result in significant increasing trends for all the return
periods. It is slightly different from Fig. 4c, where only Time covariate
was considered. The oscillation of the return level is due to the effect of
mean temperature covariates. It is worth to highlight that the 3-day
maximum AMR extreme event precipitation (570 mm) recorded during
hurricane Irma at Fort Pierce (Fig. 4b) represents 500 year return period
based on the nonstationary analysis, however, this return period is
comparatively higher based on the stationary analysis. The recorded 3-
day AMR event from hurricane Harvey (Fig. 4a) is higher than 500 year
return period based on the nonstationary process (NS16 model) that
includes Time and maximum temperature as covariates along with lo-
cation and scale parameters.

Overall, it was observed that the temporal pattern of return levels
varies with the covariates. Some of the covariates may lead to a linearly
increasing trend (e.g., time and land use change due to urbanization) in
nonstationary return level. Whereas, some of the covariates (e.g.,
maximum daily temperature and ENSO) likely to oscillate with no clear
pattern of increasing (decreasing) trend may induce similar behavior
with return levels as well. However, the combination of time and other
covariates, for example, ENSO (NS6) and mean temperature (NS17)
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Fig. 4. Nonstationary Return Levels based on 3-day AMR corresponding to 50-, 100-, 500-year return period based on best models for: (a) Houston-NS16; (b) Fort
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the recent extreme events are highlighted in red circles]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

may result in an increase in the return level trend (Fig. 4c and 3f) re-
spectively.

The return level and return period are estimated for each studied
station for 1-day, 3-day, and 5-day AMR. Fig. 5 demonstrates the
nonstationary return level for 3-day AMR time series based on 500 year
return period along with its uncertainty. The continuous red line re-
presents the return level based on a 500-year return period, and the
green and blue bands exhibit the 60% and 95% confidence intervals
respectively, and they are computed using the bootstrapping technique.
The 95% confidence interval (compared to 60%) indicates a steady

increasing trend for Fort Pierce, Baton Rouge and Charleston (Fig. 5b, c,
d).

4.3. Intensity duration frequency curve from nonstationary analysis

Fig. 6 compares the stationary and nonstationary intensity duration
frequency (IDF) curves derived based on the best model parameters
(Table 4). The recent extreme precipitation events were compared
against IDF curves as shown in Fig. 6. The nonstationary IDF curves
were derived based on the best models that include Time covariate
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Fig. 5. Nonstationary Return level (3-day AMR) for 500-year return period with 60% (green band) and 95% (blue band) confidence intervals by excluding the recent
extreme events (circled) (a) Houston-NS16; (b) Fort Pierce-NS17; (c) Baton Rouge-NS12; (d) Charleston-NS1; (e) Boulder-NS6; (f) BayBoro-NS3 [Note: Solid black
line represents the 3-day AMR over different years and the recent extreme event highlighted by the red circle]. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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(Fig. 6¢, d), maximum daily temperature and ENSO (Fig. 6a), Time and
ENSO (Fig. 6e), Time and mean temperature (Fig. 6b) and ENSO only
(Fig. 6f). It was observed that the nonstationary curves (red lines) are
always higher than a stationary one (black lines), which suggests that
the nonstationary models represent a reduced return period compared
to the stationary ones.

Revised return periods for different temporal resolutions based on
the stationary and nonstationary frequency analysis are provided in
Table 5. It was observed that the magnitude of return periods of ex-
treme event reduced significantly from stationary to the nonstationary
case. For example, the amount of aggregated precipitation based on 3
and 5-days precipitation due to hurricane Harvey (Houston station)
represents a return period of approximate 6700 and 5000 years re-
spectively based on the stationary assumption. These extremely high
return periods are also highlighted in the literature by Risser and
Wehner (2017) and Emanuel (2017). However, based on the nonsta-
tionary analysis, the return period for these extreme events reduced to
4800 and 3900 years (reduced by 30% and 25%) respectively. In the
case of Hurricane Irma (Fort Pierce, FL), the return periods based on the
stationary assumption for 3-day AMR and 5-day AMR are close to 6300
and 5370years respectively, these numbers reduce to 800 and
3500 years (87% and 35%) based on the nonstationary analysis. It is
important to highlight that the 5000 year return period of extreme
precipitation does not correspond to the 5000 year return period of the
flood event (Gochis et al., 2015). Similarly, the return periods for other
stations (Charleston, Boulder, and Bayboro) are also greater than
thousand years based on the 3-day AMR (Table 5). The extreme pre-
cipitation events at different time scales witness a reduction in the re-
turn period based on the nonstationary GEV analysis.

The percentage reduction in the return periods for all selected ex-
treme events computed from nonstationary and stationary models as
formulated in equation (7) shown in Fig. 7. All the nonstationary
models exhibit a reduction in the return period compared to the sta-
tionary model that ranges from the lowest rate of 17% to the highest
rate of 87%. The study clearly highlights that the occurrence of similar
extreme precipitation events likely to be more frequent when the return
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periods are reduced based on the nonstationary analysis. For example,
the return period of 3-day extreme events at Barton Rogue reduced
from 177 to 60 years based on the nonstationary analysis. This does not
mean that the two extreme events will not occur in a short period of
time. For example, two severe most hurricanes (Harvey and Irma) oc-
curred in a month in 2017. It is important to highlight that the per-
centage change between stationary and nonstationary return periods is
not consistent among temporal resolutions (i.e., 1, 3, 5 days), and they
vary at different locations. However, some of the prominent changes
were observed for coastal locations with respect to recent extreme
events, for example, Baton Rouge (66 and 68%) based on the 3 and
5 days events; Fort Pierce (87%) based on the 3 day extreme events, and
Bay Boro (64%) based on the 1 day extreme events.

5. Discussion and conclusion

One of the key information required to design major civil infra-
structure systems includes intensity, duration, and frequency of heavy
precipitation events. These precipitation characteristics are combined
to construct Intensity-Duration-Frequency (IDF) curves, which are ty-
pically derived based on the stationary assumption. The IDF curves are
widely used for designing civil infrastructure systems, for example,
designing of hydraulic structures against the impact of extreme events
(e.g., extreme precipitation, floods). The models used to derive return
periods (i.e., frequency analysis) are generally developed based on the
assumption that hydrological events (e.g., annual maximum rainfall
and flood discharges) arise from a stationary hydrological regime.
However, it has been reported in the literature that the hydrological
cycle has been changing leading to significant changes in the spatio-
temporal distribution of occurrences of extreme events. Thus, there is a
need to revisit IDF curves as well as to develop new methods where
there is sufficient evidence of nonstationarity. In addition, the selection
of return periods depend on additional variables such as cost of da-
mages, vulnerability and climate risk, that needs to be incorporated to
develop economic risk-based decision approach. This is specifically
important for countries frequently affected by the severe storm events,
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for example, in Singapore the IDF curves are typically updated once per
decade (Singapore PUB, 2012) to cope up with the changing climate
condition in order to improve the resilience of infrastructure systems.
The nonstationary IDF curves can be explored during the design phase
of the infrastructure in order to evaluate the cost and benefit with re-
spect to stationary IDF curves (especially when these curves are not
updated recently).

In this study, we performed the nonstationary frequency analysis of
the most recent historical precipitation events occurred between 2011
and 2017 over the United States. Overall, six extreme precipitation
events are selected and their corresponding AMR time series are con-
structed based on annual maximum 1, 3 and 5 days aggregated values.
The return period of extreme precipitation events are likely to be in-
fluenced by the occurrence of the extreme events within a short period
of time, for example, two “thousand year return period” precipitation
extreme events occurred (hurricane Harvey and Irma) in 2017. The
following conclusions can be drawn from this study.

(a) While the stationary frequency analysis is commonly used for civil
infrastructure design, recently multiple studies highlighted the in-
crease in the nonstationary pattern of extreme events. In this study,
we performed stationary (nonstationary) frequency based on six
extreme precipitation events during the period 2011-2017. Overall,
378 stationary (nonstationary) models were evaluated for three
types (1-, 3-, 5- day AMR) of extreme precipitation events at six
locations and 18 best models were identified. It was observed that
most (approx 90%) of the extreme precipitation events follow the
nonstationary pattern over the selected time period. This may be
due to the increase in the magnitude of recent extreme precipitation
events, especially during hurricane events.

(b) The selection of physical covariates is an important step for non-

stationary frequency analysis. Overall, four distinct covariates are

identified for nonstationary frequency analysis, which includes
large-scale climate index (ENSO), time covariate, local annual
average temperature and maximum daily temperature during the
occurrence of the events. Different combination of covariates can
potentially influence the nonstationary frequency analysis, there-
fore sensitivity test is an important step to identify best covariates.
Different combination of covariates is evaluated for a different type
of extreme precipitation patterns at six locations witnessing dif-
ferent climate patterns. It was observed that there is not a single
covariate that is most sensitive to the nonstationary frequency
analysis in all of the cases. In fact, the combination of several
covariates can perform better than using a single covariate. For
example, 1-day AMR time series followed a stationary pattern and
time-varying covariate for 3-day and 5-day AMR time series. All
other stations/durations have a different combination of covariates.

The temporal pattern of nonstationary return level depends on the

extreme value distribution parameters (e.g., location and scale

parameters) and the choice of covariates. For example, based on the
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time covariate (e.g., NS1 and NS12 model), a linearly increasing
trend may be expected for nonstationary return level, whereas, the
return levels based on ENSO and temperature likely to oscillate over
time compared to Time covariate. This is due to the temporal var-
iation of the Sea Surface Temperature and change in local tem-
perature over a period of time. Therefore more studies are neces-
sary to quantify the potential physical mechanism between extreme
events and corresponding influencing variables.
(d) Using the best nonstationary models, the Intensity Duration
Frequency curves were constructed based on the combination of 6
stations and 3 durations for comparison with stationary IDF curves.
Based on the Nonstationary Extreme Value Analysis, the return
periods associated with extreme precipitation events significantly
reduced compared to the stationary approach. Although six re-
presentative extreme events at 3 different temporal resolutions (1-,
3- and 5-day consecutive) are selected in this analysis, an additional
number of events can be investigated in the future research by in-
corporating more number of precipitation stations to quantify the
heterogeneous nature of events within a spatial domain. In the
process of choosing more number of stations for a particular event
may lead to a different set of model parameters and covariates, and
such analysis is required to investigate the extreme events at a re-
gional scale.
The extreme precipitations events are often associated with hurri-
canes and tropical storms in the US. Therefore, in addition to an-
nual maxima approach discussed in this study, additional extreme
value distribution (such as Generalized Pareto) can be applied to
Peak Over Threshold (POT) data set to capture various extreme
precipitation events that occurred within the year. Further, the
return periods based on the nonstationary model can be influenced
by data length, parameter estimation techniques as well as the type
of the covariates. Therefore, in-depth analysis is further required to
minimize the uncertainty associated with such influencing vari-
ables.
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