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Abstract

One of the goals of natural language under-

standing is to develop models that map sen-

tences into meaning representations. How-

ever, training such models requires expensive

annotation of complex structures, which hin-

ders their adoption. Learning to actively-learn

(LTAL) is a recent paradigm for reducing the

amount of labeled data by learning a policy

that selects which samples should be labeled.

In this work, we examine LTAL for learning

semantic representations, such as QA-SRL.

We show that even an oracle policy that is al-

lowed to pick examples that maximize perfor-

mance on the test set (and constitutes an up-

per bound on the potential of LTAL), does not

substantially improve performance compared

to a random policy. We investigate factors that

could explain this finding and show that a dis-

tinguishing characteristic of successful appli-

cations of LTAL is the interaction between op-

timization and the oracle policy selection pro-

cess. In successful applications of LTAL, the

examples selected by the oracle policy do not

substantially depend on the optimization pro-

cedure, while in our setup the stochastic nature

of optimization strongly affects the examples

selected by the oracle. We conclude that the

current applicability of LTAL for improving

data efficiency in learning semantic meaning

representations is limited.

1 Introduction

The task of mapping a natural language sentence

into a semantic representation, that is, a structure

that represents its meaning, is one of the core goals

of natural language processing. This goal has

led to the creation of many general-purpose for-

malisms for representing the structure of language,

such as semantic role labeling (SRL; Palmer et al.,

2005), semantic dependencies (SDP; Oepen et al.,

2014), abstract meaning representation (AMR;

Banarescu et al., 2013), universal conceptual cog-

nitive annotation (UCCA; Abend and Rappoport,

2013), question-answer driven SRL (QA-SRL; He

et al., 2015), and universal dependencies (Nivre

et al., 2016), as well as domain-specific semantic

representations for particular users in fields such

as biology (Kim et al., 2009; Nédellec et al., 2013;

Berant et al., 2014) and material science (Mysore

et al., 2017; Kim et al., 2019).

Currently, the dominant paradigm for building

models that predict such representations is super-

vised learning, which requires annotating thou-

sands of sentences with their correct structured

representation, usually by experts. This arduous

data collection is the main bottleneck for building

parsers for different users in new domains.

Past work has proposed directions for accelerat-

ing data collection and improving data efficiency

through multi-task learning across different rep-

resentations (Stanovsky and Dagan, 2018; Hersh-

covich et al., 2018), or having non-experts anno-

tate sentences in natural language (He et al., 2015,

2016). One of the classic and natural solutions for

reducing annotation costs is to use active learning,

an iterative procedure for selecting unlabeled ex-

amples which are most likely to improve the per-

formance of a model, and annotating them (Set-

tles, 2009).

Recently, learning to actively-learn (LTAL) has

been proposed (Fang et al., 2017; Bachman et al.,

2017; Liu et al., 2018), where the procedure for se-

lecting unlabeled examples is trained using meth-

ods from reinforcement and imitation learning. In

recent work by Liu et al. (2018), given a labeled

dataset from some domain, active learning is sim-

ulated on this dataset, and a policy is trained to

iteratively select the subset of examples that max-

imizes performance on a development set. Then,

this policy is used on a target domain to select un-

labeled examples for annotation. If the learned
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policy generalizes well, we can reduce the cost

of learning semantic representations. Liu et al.

(2018) and Vu et al. (2019) have shown that such

learned policies significantly reduce annotation

costs on both text classification and named entity

recognition (NER).

In this paper, we examine the potential of LTAL

for learning a semantic representation such as QA-

SRL. We propose an oracle setup that can be con-

sidered as an upper bound to what can be achieved

with a learned policy. Specifically, we use an or-

acle policy that is allowed to always pick a subset

of examples that maximizes its target metric on a

development set, which has the same distribution

as the test set. Surprisingly, we find that even this

powerful oracle policy does not substantially im-

prove performance compared to a policy that ran-

domly selects unlabeled examples on two seman-

tic tasks: QA-SRL span (argument) detection and

QA-SRL question (role) generation.

To elucidate this surprising finding, we perform

a thorough analysis, investigating various factors

that could negatively affect the oracle policy se-

lection process. We examine possible explanatory

factors including: (a) the search strategy in the

unlabeled data space (b) the procedure for train-

ing the QA-SRL model (c) the architecture of the

model and (d) the greedy nature of the selection

procedure. We find that for all factors, it is chal-

lenging to get consistent gains with an oracle pol-

icy over a random policy.

To further our understanding, we replicate the

experiments of Liu et al. (2018) on NER, and com-

pare the properties of a successful oracle policy in

NER to the less successful case of QA-SRL. We

find that optimization stochasticity negatively af-

fects the process of sample selection in QA-SRL;

different random seeds for the optimizer result in

different selected samples. We propose a mea-

sure for quantifying this effect, which can be used

to assess the potential of LTAL in new setups.

To conclude, in this work, we conduct a thor-

ough empirical investigation of LTAL for learn-

ing a semantic representation, and find that it is

difficult to substantially improve data efficiency

compared to standard supervised learning. Thus,

other approaches should be explored for the im-

portant goal of reducing annotation costs in build-

ing such models. Code for reproducing our exper-

iments is available at https://github.com/

koomri/LTAL_SR/.

2 Learning to Actively Learn

Classic pool-based active learning (Settles, 2009)

assumes access to a small labeled dataset Slab and

a large pool of unlabeled examples Sunlab for a tar-

get task. In each iteration, a heuristic is used to

select L unlabeled examples, which are sent to an-

notation and added to Slab. An example heuristic

is uncertainty sampling (Lewis and Gale, 1994),

which at each iteration chooses examples that the

current model is the least confident about.

LTAL proposes to replace the heuristic with a

learned policy πθ, parameterized by θ. At train-

ing time, the policy is trained by simulating active

learning on a labeled dataset and generating train-

ing data from the simulation. At test time, the pol-

icy is applied to select examples in a new domain.

Figure 1 and Algorithm 1 describe this data col-

lection procedure, on which we build our oracle

policy (§3).

In LTAL, we assume a labeled dataset D which

is partitioned into three disjoint sets: a small

labeled set Slab, a large set Sunlab that will be

treated as unlabeled, and an evaluation set Seval

that will be used to estimate the quality of mod-

els. Then, active learning is simulated for B it-

erations. In each iteration i, a model mi
φ, pa-

rameterized by φ, is first trained on the labeled

dataset. Then, K subsets {Cj}
K
j=1 are randomly

sampled from Sunlab, and the model mi
φ is fine-

tuned on each candidate set, producing K mod-

els {mi
φj
}Kj=1. The performance of each model is

evaluated on Seval, yielding the scores {s(Cj)}
K
j=1.

Let the candidate set with highest accuracy be Cit .
We can create training examples for πθ, where

(Slab,Sunlab,m
i
φ,{s(Cj)}

K
j=1) are the inputs and

Cit is the label. Then Cit is moved from Sunlab to

Slab.

Simulating active learning is a computationally

expensive procedure. In each iteration we need to

train K models over Slab ∪ Cj . However, a trained

network can potentially lead to a policy that is bet-

ter than standard active learning heuristics.

3 An Oracle Active Learning Policy

Our goal is to examine the potential of LTAL for

learning a semantic representation such as QA-

SRL. Towards this goal, we investigate an oracle

policy that should be an upper bound for what can

be achieved with a learned policy πθ.

The oracle policy is allowed to use Algorithm 1
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Elizabeth Warren announced her candidacy at a rally in Massachusetts.

Argument QA-SRL role PropBank role

Elizabeth Warren Who announced something? ARG0

her candidacy What did someone announce? ARG1

at a rally in Massachusetts Where did someone announce something? ARGM-LOC

Table 1: Example of QA-SRL versus traditional SRL annotation for a given input sentence (top). Each line

shows a single argument, and its role in QA-SRL (in question form) followed by its traditional SRL role, using

PropBank notation. Roles in QA-SRL have a structured open representation, while SRL assigns discrete roles

from a predefined set.

will assign the more subtle question “who might

run?”, indicating the uncertainty of this future

event. Questions are generated by assigning val-

ues to 7 pre-defined slots (where some of the slots

are potentially empty). See Table 1 for an example

QA-SRL annotation of a full sentence.

Recently, FitzGerald et al. (2018) demonstrated

the scalability of QA-SRL by crowdsourcing the

annotation of a large QA-SRL dataset, dubbed

QA-SRL bank 2.0. It consists of 250K QA pairs

over 64K sentences on three different domains

(Wikipedia, news, and science). Following, this

large dataset has enabled the development a neu-

ral model which breaks QA-SRL into a pipeline of

two tasks, given a target predicate in an input sen-

tence. First, a span detection algorithm identifies

arguments of the predicate as continuous spans in

the sentence (e.g., “Elizabeth Warren” in the pre-

vious example), then a question generation model

predicts an appropriate role question (e.g., “who

might run?”).

We find that QA-SRL is a good test-bed for

active learning of semantic representations, for

several key reasons: (1) it requires semantic un-

derstanding of the sentence, beyond syntactic or

surface-level features (e.g., identifying the factu-

ality of a given predicate), (2) adopting the formu-

lation of FitzGerald et al. (2018), it consists of two

semantic tasks, allowing us to test active learning

on both of them, (3) we can leverage the large QA-

SRL dataset to simulate active learning scenar-

ios, and lastly (4) QA-SRL’s scalability is attrac-

tive for the application of active learning policies,

as they may further reduce costs for researchers

working on developing specialized semantic rep-

resentations in low-resource domains (e.g., medi-

cal, biological, or educational domains).

5 Experimental Evaluation

We now perform a series of experiments compar-

ing the performance of an oracle policy to a ran-

dom policy. We describe the experimental settings

(§5.1), tasks and models (§5.2), present the main

results (§5.3), and conclude by investigating fac-

tors that might affect our empirical findings (§5.4).

5.1 Experimental Settings

We evaluate the potential of the oracle policy on

QA-SRL Bank 2.0 (FitzGerald et al., 2018). We

use the training set of the science domain as D,

randomly split it into Slab, Sunlab, and Seval. We

evaluate the success of a model mi
φ trained with

the oracle policy by periodically measuring per-

formance on the development set of the science

domain. Unless mentioned, all results are an aver-

age of 3 experiments, where a different split of D
was performed. Each experiment used K threads

of a 40-core 2.2GHz Xeon Silver 4114 machine.

We compare the results of a base oracle pol-

icy (BASEORACLE) corresponding to the best pol-

icy we were able to obtain using the architec-

ture from FitzGerald et al. (2018) to the following

baselines:

• RANDOM: One of the candidate sets Cij is chosen

at random and added to Slab.

• LONGEST: The set Cij with the maximal average

number of tokens per sentence is added to Slab.

• UNCERTAINTY: For each candidate set, we use

mi
φ to perform predictions over all of the sen-

tences in the set, and choose the set Cij that has

the maximal average entropy over the set of pre-

dictions.

5.2 Tasks and Models

We now describe the three tasks and correspond-

ing models in our analysis:

Span Detection: Here we detect spans that are

arguments of a predicate in a sentence (see Table

1). We start with a labeled set of size ∣Slab∣ = 50,

and select examples with the oracle policy for

B = 460 iterations. We set the number of candi-

date sets to K = 5, and the size of each set to L = 1,
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thus the size of the final labeled set is 510 exam-

ples. We train the publicly available span detection

model released by FitzGerald et al. (2018), which

consumes as input a sentence x1, . . . , xn, where

xi is the concatenation of the embedding of the ith

word in the sentence and a learned embedding of

a binary indicator for whether this word is the tar-

get predicate. This input is fed into a multi-layer

encoder, producing a representation hi for every

token. Each span xi∶j is represented by concate-

nating the respective hidden states: sij = [hi;hj].
A fully connected network consumes the span rep-

resentation sij , and predicts a probability whether

the span is an argument or not.

To accelerate training, we reduce the number of

parameters to 488K by freezing the token embed-

dings, reducing the number of layers in the en-

coder, and by shrinking the dimension of both the

hidden representations and the binary predicate in-

dicator embedding. Following FitzGerald et al.

(2018), we use GLoVe embeddings (Pennington

et al., 2014).

Question Generation: We generate the ques-

tion (role) for a given predicate and correspond-

ing argument. We start with a labeled set of size

∣Slab∣ = 500 and perform B = 250 iterations,

where in each iteration we sample K = 5 candi-

date sets each of size L = 10 (lower values were

intractable). Thus, the final size of Slab is 3,000

samples. We train the publicly available local

question generation model from FitzGerald et al.

(2018), where the learned argument representation

sij is used to independently predict each of the 7

question slots. We reduce the number of parame-

ters to 360K with the same modifications as in the

span detector model. As a metric for the quality

of question generation models, we use its official

metric exact match (EM), which reflects the per-

centage of predicted questions that are identical to

the ground truth questions.

Named Entity Recognition: To reproduce the

experiments of Liu et al. (2018) we run the oracle

policy on the CoNLL-2003 NER English dataset

(Sang and De Meulder, 2003), replicating the ex-

perimental settings described in Liu et al. (2018)

(as their code is not publicly available). We run

the oracle policy for B = 200 iterations, start-

ing from an empty Slab, and adding one exam-

ple (L = 1) from K = 5 candidate sets in each

iteration. We use a CRF sequence tagger from

AllenNLP (Gardner et al., 2018), and experiment

with two variants: (1) NER-MULTILANG: A Bi-

LSTM CRF model (20K parameters) with 40 di-

mensional multi-lingual word embeddings (Am-

mar et al., 2016), and (2) NER-LINEAR: A linear

CRF model which was originally used by Liu et al.

(2018).

5.3 Results

Span Detection: Table 2 shows F1 score (the of-

ficial metric) of the QA-SRL span detector mod-

els for different sizes of Slab for BASEORACLE

and the other baselines. Figure 2 (left) shows the

relative improvement of the baselines over RAN-

DOM. We observe that the maximal improvement

of BASEORACLE over RANDOM is 9% given 200

examples, but with larger Slab the improvement

drops to less than 5%. This is substantially less

than the improvements obtained by Liu et al.

(2018) on text classification and NER. Moreover,

LONGEST outperforms BASEORACLE in most of

the observed results. This shows that there exists

a selection strategy that is better than BASEOR-

ACLE, but it is not the one chosen by the oracle

policy.

Question Generation: To check whether the

previous result is specific to span detection, we

conduct the same experiment for question genera-

tion. However, training question generation mod-

els is slower compared to span detection and thus

we explore a smaller space of hyper-parameters.

Table 3 reports the EM scores achieved by BASE-

ORACLE and LONGEST, and Figure 2 (center)

shows the relative improvement. Here, the perfor-

mance of BASEORACLE is even worse compared

to span detection, as its maximal relative improve-

ment over RANDOM is at most 5%.

Named Entity Recognition: Figure 2 (right)

shows the relative improvement of NER-LINEAR

and NER-MULTILANG compared to RANDOM.

We observe that in NER-LINEAR, which is a

replication of Liu et al. (2018), the oracle policy

indeed obtains a large improvement over RAN-

DOM for various sizes of Slab, with at least 9.5%

relative improvement in performance. However, in

NER-MULTILANG the relative gains are smaller,

especially when the size of Slab is small.

5.4 Extended Experiments

Surprisingly, we observed in §5.3 that even an or-

acle policy, which is allowed to pick the examples
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# samples 100 150 200 250 300 350 400 450 500

BASEORACLE 42.7 49.2 52.9 54.2 56.6 57.4 58.4 59.5 59.9
RANDOM 42.8 47.2 48.3 52.4 53.3 56.1 57.0 57.5 58.5
LONGEST 44.1 49.1 53.0 55.5 56.4 57.4 58.7 58.6 60.0
UNCERTAINTY 42.8 47.0 50.1 51.3 52.2 54.4 55.1 55.6 56.9

Table 2: Span detection F1 on the development set for all models across different numbers of labeled examples.

100 200 300 400 500

0

5

10

15

20

Size of Slab

QA-SRL span detection

BASEORACLE

L=5

ORACLESMALLMODEL

500 1,500 2,500

0
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10

15

20

Size of Slab

QA-SRL question generation

BASEORACLE

LONGEST

50 100 150 200

0
10
20

40

60

Size of Slab

NER

MULTILANG

LINEAR

Figure 2: Relative improvement (in %) of different models compared to RANDOM on the development set. Note

that the range of the y-axis in NER is different from QA-SRL.

that maximize performance on samples from the

same distribution as the test set, does not substan-

tially improve performance over a random policy.

One possibility is that no active learning policy is

better than random. However, LONGEST outper-

formed BASEORACLE showing that the problem

is at least partially related to BASEORACLE itself.

We now examine the possible factors described

in §3 and investigate their interaction with the per-

formance of models trained with BASEORACLE.

All modifications were tested on span detection,

using the experimental settings described in §5.1.

Search space coverage We begin by examining

the effect of the parameters K and L on the oracle

policy. As K increases, we cover more of the un-

labeled data, but training time increases linearly.

As L increases, the subsets {Cj}Kj=1 become more

similar to one another due to the fact that we are

randomly mixing more examples from the unla-

beled data. On the other hand, when L is small,

the fine-tuning process is less affected by the can-

didate sets and more by Slab. In such case, it is

likely that the difference in scores is also affected

by stochasticity.

BASEORACLE uses K = 5, L = 1. We exam-

ine the performance of the oracle policy as these

values are increased in Table 4. We observe that

performance does not improve, and perhaps even

decreases for larger values of K. We hypothesize

that a large K increases the greediness of the pro-

cedure, and may result in selecting an example that

seems promising in the current iteration but is sub-

optimal in the long run, similar to large beam sizes

reducing performance in neural machine transla-

tion (Yang et al., 2018). A moderate K results in

a more random and possibly beneficial selection.

Increasing the size of each candidate set to L =
5 or 20 results in roughly similar performance to

L = 1. We hypothesize that there is a trade-off

where as L increases the similarity between the

different sets increases but training becomes more

stable and vice versa, and thus performance for

different L values does not vary substantially.

Training In Lines 2 and 5 of Alg. 1 we train on

Slab and then fine-tune on the union Slab ∪ Cij un-

til sij does not significantly improve for 5 epochs.

It is possible that fine-tuning from a fixed model

reduces the efficacy of training, and training on

Slab ∪ Cij from random weights will improve per-

formance. Of course, training from scratch will

substantially increase training time. We run an ex-

periment, termed INDEP., where Line 2 is skipped,

and in Line 5 we independently train each of the

candidate models from random weights. We find

that this modification does not achieve better re-

sults than BASEORACLE, possibly because train-

ing a model from scratch for each of the candidates

increases the stochasticity in the optimization.
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# samples 550 750 1000 1250 1500 1800 2100 2500 3000

BASEORACLE 18.9 21.7 24.4 26.4 27.1 28.4 29.1 30.6 31.1
RANDOM 18.1 21.4 23.7 25.2 27.3 27.9 28.6 29.9 31.3
LONGEST 17.8 20.9 22.8 25.7 27.1 28.0 29.1 30.4 31.3

Table 3: Question generation scores (exact match) on the development set across different numbers of labeled

examples.

# samples 110 150 210 290 370 510

RANDOM 45.2 47.2 50.5 53.1 55.8 58.5

BASEORACLE 43.3 49.2 52.9 56.8 57.8 60.3

K = 10 46.6 48.8 51.4 55.8 57.6 58.6

K = 20 44.8 47.4 52.1 55.9 — —

L = 5 44.2 48.3 52.5 55.5 58.0 59.8

L = 20 45.2 47.5 51.9 55.1 56.7 58.7

LOSS-SCORE 30.0 38.2 41.0 51.5 53.7 57.2

INDEP.* 40.9 44.6 50.1 54.1 — —

EPSILON-GREEDY-0.3 45.1 48.6 52.4 55.6 57.1 59.8

ORACLE-100 44.9 48.8 51.4 53.9 57.0 59.2

RANDOMSMALLMODEL 51.9 54.8 57.3 59.5 61.4 62.6

ORACLESMALLMODEL 53.8 56.6 58.9 60.3 61.5 63.3

Table 4: Span detection F1 scores on the development

set for different size of Slab. We highlight the best per-

forming policy for the standard span detector architec-

ture. (*) indicates that the results are for a single run.

In addition, we also experiment with fine-tuning

on Cj only, rather than Slab ∪Cj . As we expect, re-

sults are quite poor since the model uses only a few

examples for fine-tuning and forgets the examples

in the labeled set.

Lastly, we hypothesize that selecting a candi-

date set based on the target metric (F1 for span de-

tection) might not be sensitive enough and thus we

run an experiment, termed LOSS-SCORE, where

we select the set Cj that minimizes the loss on the

development set. We find that this modification

achieves lower results than RANDOM, especially

when Slab is small, reflecting the fact that the loss

is not perfectly correlated with our target metric.

Model Architecture In §5.3 we observed that

results on NER vary with the model architecture.

To see whether this phenomenon occurs also for

span detection we perform a modification to the

model – we reduce the number of parameters from

488K to 26K by reducing the hidden state size and

replacing GLoVe embeddings with multi-lingual

embeddings (Ammar et al., 2016). We then com-

pare an oracle policy (ORACLESMALLMODEL)

with a random policy (RANDOMSMALLMODEL).

Table 4 shows that while absolute F1 actually im-

proves in this setup, the oracle policy improves

performance compared to a random policy by no

more than 4%. Thus, contrary to NER, here archi-

tecture modifications do not expose an advantage

of the oracle policy compared to the random one.

We did not examine a simpler linear model for

span detection, in light of recent findings (Lowell

et al., 2019) that it is important to test LTAL with

state-of-the-art models, as performance is tied to

the specific model being trained.

Myopicity We hypothesized that greedily se-

lecting an example that maximizes performance in

a specific iteration might be suboptimal in the long

run. Because non-greedy selection strategies are

computationaly intractable, we perform the fol-

lowing two experiments.

First, we examine EPSILON-GREEDY-P, where

in each iteration the oracle policy selects the set Cj
that maximizes target performance with probabil-

ity 1 − p and randomly chooses a set with prob-

ability p. This is meant to check whether adding

random exploration to the oracle policy might pre-

vent it from getting stuck in local optima. We find

that when p = 0.3 its performance is comparable to

BASEORACLE while reducing the computational

costs.

Second, we observe that most of the gain of

BASEORACLE compared to RANDOM is in the be-

ginning of the procedure. Thus, we propose to use

BASEORACLE in the first b iterations, and then

transition to a random policy (termed ORACLE-

B). We run this variation with b = 100 and find

that it leads to similar performance.

To summarize, we have found that an ora-

cle policy only slightly improves performance for

QA-SRL span detection and question generation

compared to a random policy, and that improve-

ments in NER are also conditioned on the un-

derlying model. Our results echo recent findings

by Lowell et al. (2019), who have shown that gains

achieved by active learning are small and inconsis-

tent when modifying the model architecture.

We have examined multiple factors that might

affect the performance of models trained with

an oracle policy including the training procedure,

model architecture, and search procedure, and

have shown that in all of them the oracle policy
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struggles to improve over the random one. Thus, a

learned policy is even less likely to obtain mean-

ingful gains using LTAL.

In the next section we analyze the differences

between NER-LINEAR, where LTAL works

well, and BASEORACLE, in order to better under-

stand the underlying causes for this phenomenon.

6 When does LTAL Work?

A basic underlying assumption of active learning

(with or without a learned policy), is that some

samples in Sunlab are more informative for the

learning process than others. In LTAL, the infor-

mativeness of a candidate example set is defined

by the accuracy of a trained model, as evaluated on

Seval (Line 6 in Alg. 1). Thus, for active learning to

work, the candidate set that is selected should not

be affected by the stochasticity of the training pro-

cess. Put differently, the ranking of the candidate

sets by the oracle policy should be consistent and

not be dramatically affected by the optimization.

To operationalize this intuition, we use Alg. 1,

but run the for-loop in Line 4 twice, using two dif-

ferent random seeds. Let Cit be the chosen or refer-

ence candidate set according to the first run of the

for-loop in iteration i. We can measure the con-

sistency of the optimization process by looking at

the ranking of the candidate sets Ci
1
, . . .CiK accord-

ing to the second fine-tuning, and computing the

mean reciprocal rank (MRR) with respect to the

reference candidate set Cit across all iterations:

MRR =
1

B

B

∑
i=1

1

rank(Cit)
, (1)

where rank(Cit) is the rank of Cit in the second

fine tuning step. The only difference between the

two fine-tuning procedures is the random seed.

Therefore, an MRR value that is close to 1 means

that the ranking of the candidates is mostly af-

fected by the quality of the samples, while a small

MRR hints that optimization plays a large role.

We prefer MRR to other correlation-based mea-

sures (such as Spearman’s rank-order correlation),

because the oracle is only affected by the candi-

date set that is ranked first. We can now examine

whether the MRR score correlates with whether

LTAL works or not.

We measure the MRR in 3 settings: (1)

NER-LINEAR, a linear CRF model for NER

which replicates the experimental settings in (Liu

et al., 2018), where LTAL works, (2) NER-

MULTILANG, a BiLSTM-CRF sequence tagger

from AllenNLP (Gardner et al., 2018) with 40 di-

mensional multi-lingual word embeddings of Am-

mar et al. (2016), and (3) BASEORACLE, the base-

line model for span detection task. In all experi-

ments the initial Slab was empty and B = 200, fol-

lowing the experimental settings in which LTAL

has shown good performance (Liu et al., 2018;

Fang et al., 2017; Vu et al., 2019). Since the MRR

might change as the size of Slab is increasing, we

compute and report MRR every 10 iterations.

Figure 3 (left) presents the MRR in the three

experiments. We observe that in NER-LINEAR

the MRR has a stable value of 1, while in NER-

MULTILANG and BASEORACLE the MRR value

is substantially lower, and closer to an MRR value

of a random selection (∼.46). The right side of Fig-

ure 3 shows that NER-LINEAR oracle policy out-

performs a random policy by a much larger mar-

gin, compared to the other 2 experiments.

These results show that the ranking in NER-

LINEAR is not affected by the stochasticity of op-

timization, which is expected given its underlying

convex loss function. On the other hand, the opti-

mization process in the other experiments is over

a non-convex loss function and a small Slab, and

thus optimization is more brittle. Interestingly,

we observe in Figure 3 that the gains of the ora-

cle policy in NER-LINEAR are higher than NER-

MULTILANG, although the task and the dataset

are exactly same in the two experiments. This

shows that the potential of LTAL is affected by

the model, where a more complex model leads to

smaller gains by LTAL.

We view our findings as a guideline for future

work: by tracking the MRR one can assess the po-

tential of LTAL at development time – when the

MRR is small, the potential is limited.

7 Related Work

Active learning has shown promising results on

various tasks. The commonly used uncertainty

criteria (Lewis and Catlett, 1994; Culotta and Mc-

Callum, 2005) is focused on selecting the sam-

ples on which the confidence of the model is

low. Among other notable approaches, in query

by committee (Seung et al., 1992) a disagreement

between a set of trained models on the prediction

of an example is used to select what samples to

label.
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Figure 3: MRR (on the left) and relative improvement (in %) of different models compared to RANDOM on the

development set.

In a large empirical study, Lowell et al. (2019)

have recently shown other limitations in active

learning. They investigate the performance of ac-

tive learning across NLP tasks and model archi-

tectures, and demonstrate that it does not achieve

consistent gains over supervised learning, mostly

because the collected samples are beneficial to a

specific model architecture, and does not yield bet-

ter results than random selection when switching

to a new architecture.

There has been little research regarding active

learning of semantic representations. Among the

relevant work, Siddhant and Lipton (2018) have

shown that uncertainty estimation using dropout

and Bayes-By-Backprop (Blundell et al., 2015)

achieves good results on the SRL formulation.

The improvements in performance due to LTAL

approaches on various tasks (Konyushkova et al.,

2017; Bachman et al., 2017; Fang et al., 2017;

Liu et al., 2018) has raised the question whether

learned policies can be applied also to the field of

learning semantic representations.

8 Conclusions

We presented the first experimentation with LTAL

techniques in learning parsers for semantic rep-

resentations. Surprisingly, we find that LTAL, a

learned method which was shown to be effective

for NER and document classification, does not do

significantly better than a random selection on two

semantic representation tasks within the QA-SRL

framework, even when given extremely favourable

conditions. We thoroughly analyze the factors

leading to this poor performance, and find that the

stochasticity in the model optimization negatively

affects the performance of LTAL. Finally, we pro-

pose a metric which can serve as an indicator for

whether LTAL will fare well for a given dataset

and model. Our results suggest that different ap-

proaches should be explored for the important task

of building semantic representation models.
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