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1Abstract—Ultrasound is a continually developing technology 
that is broadly used for fast, non-destructive mechanical property 
detection of hard and soft materials in applications ranging from 
manufacturing to biomedical. In this study, a novel monostatic 
longitudinal ultrasonic pulsing elastography imaging method is 
introduced. Existing elastography methods require an acoustic 
radiational or dynamic compressive externally applied force to 
determine the effective bulk modulus or density.  This new, passive 
M-mode imaging technique does not require an external stress, 
and can be effectively utilized for both soft and hard materials. 
Strain map imaging and shear wave elastography are two current 
categories of M-mode imaging that show both relative and 
absolute elasticity information.  The new technique is applied to 
hard materials and soft material tissue phantoms for 
demonstrating effective bulk modulus and effective density 
mapping. As compared to standard techniques, the effective 
parameters fall within 10% of standard characterization methods 
for both hard and soft materials. As neither the standard A-mode 
imaging technique nor the presented technique require an external 
applied force, the techniques are applied to composite 
heterostructures and the findings presented for comparison. The 
presented passive M-mode technique is found to have enhanced 
resolution over standard A-mode modalities. 

Index Terms—Ultrasonic imaging, bulk modulus elastography, 
density mapping, longitudinal pulse, tissue phantoms contrast.  

 

I. INTRODUCTION 

ltrasound technologies are continuously developing and 
enjoy broad usage in biomedical and manufacturing 

engineering applications for sensors [1], cleaning [2], welding 
[3], material characterization [4], and imaging [5]. In 
manufacturing engineering, ultrasonic characterization is an 
alternative test method for mechanical properties that is faster 
than tensile and compression tests on stiff, isotropic materials 
such as metals and alloys [6]. By utilizing both the measured 
longitudinal and transverse speed of sound, the sample 
thickness, and material density, mechanical properties such as 
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the Young’s modulus, shear modulus, and Poisson’s ratio can 
be extrapolated [4]. However, many methods are commonly 
insufficient for simultaneous application to soft materials like 
biological tissues due to the effects of dispersion and 
attenuation [7].  

Ultrasonic imaging, which is widely used across many 
disciplines in both academic and industrial settings, 
incorporates ultrasonic characterization techniques for 
visualization.  Basic ultrasonic imaging (B mode imaging) is 
based on time-of-flight measurement of the ultrasound pulse, 
and is often displayed as a greyscale map where intensities are 
connected to an elastic property [8]. Conversely, A-mode 
imaging measures the energy level (amplitude) of reflected 
waves at a fixed distance [9]. Resolution of the imaging modes 
are closely related to wave frequency for the axial direction, and 
beam waist size for the lateral direction. Frequencies between 1 
to 20 MHz are most often used [5]. Higher frequency devices 
are used to improve imaging resolution, with frequencies 
reaching as high as 100 MHz [10] or even hypersound [11]. For 
ultrasonic attenuation, measures of the ratio of the attenuation 
coefficient between a sample phantom and reference phantom 
are collected and mapped in color grades to provide in depth 
detail of the features of a sample [12].  

Ultrasound elastography is more commonly used in 
biomedical applications, with elastographic imaging (M-mode 
imaging) a particular focus of recent research. Strain map 
elastography, one of the earliest developed methods in M-mode 
imaging, is dependent on compressive changes in a composite 
sample’s thickness. Compressive stress on materials with 
differing elastic properties causes varying degrees of 
deformation in the linear elastic range. Strain mapping utilizes 
the change in time of flight information between a sample with 
and without stress to reconstruct the change in thickness of 
composites within the sample. Subsequently, the Young’s 
modulus and Poisson ratio are derived [13].  

The earliest designs of strain elastography applied 
compressive force on a sample manually using an ultrasonic 
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transducer [14], but further developed to be an automated 
applied and held force [15]. In practicality, ultrasound 
elastography is ineffective when a target material is hard, deep, 
and/or has fluid in interstitial spacings [16]. Additionally, 
though this method doesn’t offer quantitative values for the 
bulk and Young’s modulus, it can distinguish materials which 
have distinct Poisson’s ratios in real time [17].  

Techniques that use acoustic radiational force instead of 
mechanical forces to determine elastic properties fall under 
impulse strain imaging [18]. From multiple measurements of 
displacement information with acoustic radiational force, small 
deformation differences can be found and used for calculating 
the Young’s modulus. Elasticity information is usually 
represented on a color scale with hard, or stiff, features 
represented by warm tones and soft, more malleable features by 
cold tones [19].  

Impulse strain mapping and strain map elastography are 
commonly used methods in both laboratory and commercial 
settings. Poisson’s ratio mapping, however, is a technique 
looking for vertical strain information similar to strain and 
impulse strain imaging, but is restricted to laboratory use. For 
the method, the sample is in water ambient, and a vertical 
compressional force on the sample raises the water level in the 
tank. The measured horizontal elongation provides effective 
Poisson’s ratio map calculated on a scale from 0 to 0.5 [20]. In 
commercial devices, strain elastography or impulse strain 
mapping are usually used, with either the absolute or relative 
elastic values represented in a color scale overlapped on grey 
scale B-mode images [21].  

Another popular M-mode imaging modality is shear wave 
elasticity imaging (SWEI) and is comprised of three methods: 
Point Shear Wave (PSW) imaging, Surface Shear Wave (SSW) 
imaging, and Transient Shear Wave (TSW) imaging. Whereas 
strain elastography or impulse strain mapping primarily are 
determined with longitudinal waves, SWEI techniques require 
shear waves. SSW imaging, a relatively recent SWEI method, 
measures shear wave dispersion and velocity in the temporal 
domain. The method uses a bistatic setup to provide one focal 
surface by two overlapped focal zones and combines the 
overlapped focal zones with an external radiation force to 
obtain the non-quantitative shear elasticity distribution [22]. 
PSW and TSW differ from SSW in that they require a 
monostatic setup. 

Point shear wave imaging utilizes shear waves and is used to 
find either the Young’s or shear modulus (elasticity) by 
measuring the change of the shear wave propagation speed in a 
focal zone with an applied radiational compressive force [23], 
lateral force [24], or shear force [25]. SWEI is dependent on 
adequate sample deformation to modify the measured shear 
wave speed of sound [26]. For point shear applications, SWEI 
provides accurate results when used in samples greater than 
20mm thick [27] or harder tissue materials such as muscle [28].      

In the lower frequency range, Supersonic Shear imaging 
(SSI), also called Transient Shear imaging, is setup using a 
monostatic ultrasound probe connected to an external acoustic 
radiational force generator. The probe continuously records B 
mode images to find deformation in a specified temporal range 

after the shear force propagates in the sample [29]. The 
deformation information forms the basis of a quantitative 
Young’s modulus map.  

Shear wave velocity and temporal dispersion, represented 
quantitatively by echo phase shift due to an external dynamic 
force, is also used for transient shear imaging in 
inhomogeneous tissues using a monostatic arrangement [30]. 
Drawbacks of SWEI in biomedical applications are primarily 
functions of the impact of body fluids on elastographic results 
due to the inability of fluid to transmit shear waves [31].  

Techniques to image the elastic properties of materials have 
been primarily geared towards soft, biological samples for 
biomedical applications, whereas for hard materials the 
techniques have been used primarily in non-imaging 
modalities. Effective stiffness (bulk modulus) of monoatomic 
metal and alloys undergoes significant cavitation erosion due to 
environmental impact [32]. However, the limitations of current 
techniques include the need for an external pressure, difficulty 
in detecting deformation in stiff materials, and the need for a 
bistatic setup for some methods.  

In this study, Effective Bulk Modulus Elastography (EBME) 
imaging is presented as a new imaging technique. From 
measuring the acoustic impedance of the scanned sample, 
effective bulk modulus and effective density mapping can be 
constructed using classical speed of sound theories 𝐾 = 𝜌𝑐2 =
𝑍𝑐 and 𝜌 = 𝑍𝑐−1. The method can provide effective stiffness 
information with bulk modulus scale elastography using a 
monostatic setup with longitudinal pulses absent any external 
radiational or cyclidic stress application on the sample. 
Derivation of the method is given below. 

Three experiments were performed to evaluate the efficiency 
of this new method and are discussed below. In Experiment 1, 
a hard and soft material combined as a single sample were 
examined. The hard, low dispersion material was an aluminum 
slab with a well-defined, large, rectangular area filled with the 
soft, dispersive material, silicone rubber. For Experiment 2, a 
series of hard materials in parallel were evaluated using the 
EBME technique to examine the effectiveness of EBME for 
distinguishing hard materials monostatically without an 
external applied stress or direct physical contact. The series of 
hard materials consisted of copper, PVC plastic, and aluminum. 
Experiment 3 pertained to application of EBME to soft, tissue-
like materials and the capability of EBME to distinguish 
between soft materials that mimic healthy tissues and calcified 
or hardened tissues that may indicate ailments. The experiment 
contrasts three tissue phantoms synthesized using standard 
formulations for healthy and tumor-like tissue where elastic 
stiffness values are similar [33, 34, 35].   

II. ANALYTICAL MODEL 

In ideal (inviscid) fluid the field of velocities is potential, i.e. 
𝑉⃗ = ∇𝜑 . In a homogeneous fluid, the scalar potential 𝜑 
satisfies a standard wave equation 𝑐−2𝜑̈ + ∇2𝜑 = 0, where 𝑐 is 
speed of sound. The oscillating pressure produced by sound 
wave is also given by the potential, 𝑝 = −𝜌𝜑̇, where 𝜌 is the 
density of fluid. The proposed mechanism of scanning is based 
on analysis of short acoustic pulses reflected from elastic 
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samples imbedded into a fluid with known mechanical 
parameters. Since we operate with short pulses, the amplitude 
of the reflected signal is not the same as the one obtained for a 
continuous wave.     

Let us consider a reflection of a short pulse 𝜑𝑒(𝑇) emitted by 
a transducer from a slab shown in Fig. 1. Two output pulses are 
registered. The first one is the pulse reflected from the left 
boundary of the slab, 𝜑0(𝑇). The second one coming with a 
time delay is reflected from the right boundary, 𝜑𝑜𝑢𝑡(𝑇).  The 
duration of the original pulse 𝜑𝑒(𝑇)  is so short that it is over 
by the moment the second pulse hits the left boundary. Due to 
this condition the left boundary is stationary when the second 
pulse reaches it. On the other hand, the duration of the input 
pulse is long as compared to the period of oscillations 2𝜋/𝜔 
generated by the transducer. The duration of the pulse is also 

long enough to neglect frequency dispersion of the impedances  
𝑍0 and 𝑍1. The latter condition means that the linear relation 
between the input and output signals can be obtained by 
replacing the pulses by monochromatic plane waves with 
angular frequency 𝜔  and corresponding wave vectors 𝑘0 =
𝜔/𝑐0 and 𝑘1 = 𝜔/𝑐1.   

The relation between the input signal 𝜑𝑒, the first reflected 
𝜑0 and the transmitted signal 𝜑𝑡 is obtained from the boundary 
conditions at the interface between media 0 and 1, where the 
acoustic pressures and velocities are continuous, 

𝑝𝑒 + 𝑝0 = 𝑝𝑡 ,                             (1) 

𝑉𝑒 + 𝑉0 = 𝑉𝑡 .                             (2) 

Representing the potentials in the form of plane waves  

 𝜑𝑒(𝑥, 𝑇) = 𝑒𝑖𝑘1𝑥−𝑖𝜔𝑡 , 

𝜑0(𝑥, 𝑇) = 𝑟0,1𝑒
−𝑖𝑘0𝑥−𝑖𝜔𝑡 ,                      (3) 

                          𝜑𝑡(𝑥, 𝑇) = 𝑡0,1𝑒
𝑖𝑘1𝑥−𝑖𝜔𝑡                       

the following known results are obtained from Eqs. (1) and 
(2) for the reflection and transmission coefficients:  

𝑡0,1 = 2𝑍1 (𝑍0 + 𝑍1)⁄ ,                       (4) 

𝑟0,1 =
𝑍1 − 𝑍0

𝑍1 + 𝑍0

.                                    (5) 

Here indices 0 and 1 are related to the ambient material 
(water) and to the sample, respectively. 

Now the linear relation (2) for velocities can be rewritten 
through pressures,  

     𝑝𝑡 =
𝑍1

𝑍0

(𝑝𝑒 − |𝑝0|) , 𝑍1 > 𝑍0,                           (6) 

                          𝑝𝑡 =
𝑍1

𝑍0

(𝑝𝑒 + |𝑝0|) ,   𝑍1 < 𝑍0 .                        (7) 

As it follows from Eq. (5) the signal 𝑝0  is reflected with 
inverted phase, if 𝑍1 < 𝑍0 . In the experiment only the 
amplitude |𝑝0|  of the reflected signal is measured, therefore 
Eqs. (6) and (7) explicitly take into account the phase of the 
reflected signal. 

  The unknown impedance 𝑍1 can be calculated if the second 
reflected signal 𝑝1 is measured. This signal originates from   𝑝𝑡  
which reaches the right boundary of the sample in Fig. 2, and 
reflects from it. The reflected signal is  𝑟1,0 𝑝𝑡  = −𝑟0,1  𝑝𝑡 . The 
negative sign appears because Eq. (5) is antisymmetric with 
respect to transformation 𝑍1 ↔ 𝑍0 . Transmission of the 
reflected signal through the left boundary of the sample (which 
remains stationary) reduces its amplitude to 

𝑝1 = 𝑡1,0 𝑟1,0 𝑝𝑡 =
2𝑍0|𝑍1 − 𝑍0|

(𝑍1 + 𝑍0)
2

[𝑝𝑒 − sign(𝑍1 − 𝑍0)|𝑝0|]. (8) 

This is the second echo signal received by the transducer. 
Note that 𝑝1 > 0. All three experimentally measured signals, 
𝑝𝑒 , |𝑝0| , and 𝑝1  enter to Eq. (8) in a combination  𝛼 =

𝑝1

𝑝𝑒−sign(𝑍1−𝑍0)|𝑝0|
. If the value of 𝛼  is known from the 

experiment, the impedance 𝑍1 can be calculated from quadratic 
equation (8). Depending on the value of the ratio 𝑍1/𝑍0 the 
solution of this equation can be written as follows: 

   
𝑍1

𝑍0

 =
−1 − 𝛼 − √4𝛼 + 1

𝛼 − 2
,               

𝑍1

𝑍0

> 1,     (9) 

𝑍1

  𝑍0

 =
(1 − 𝛼) + √1 − 4𝛼

𝛼 + 2
,    

1

3
<

𝑍1

𝑍0

< 1,    (10) 

    
𝑍1

𝑍0

 =
(1 − 𝛼) − √1 − 4𝛼

𝛼 + 2
,   0 <

𝑍1

𝑍0

≤
1

3
.     (11) 

Fig. 1. Acoustic pressure distribution from transducer emitted pulse 
to the second echo which passed into sample then reflected. 𝑡  is 
transmission coefficient and 𝑟 reflection coefficient. Illustration not 
to scale. 

Fig. 2. A layered sample scanned by a series of pulses emitted by a 
transducer. The first and last layers are of the same ambient material 
which has a known acoustic impedance 𝑍0. The internal scanned layers 
are characterized by  acoustic impedances 𝑍1, 𝑍2, 𝑍3, … 𝑍𝑛. 
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The dependence 𝑍1(𝛼)/𝑍0 is plot in Fig. 3 for 0≤ 𝛼 ≤ 1/4. 
The values of the elastic bulk modulus and mass density are 
calculated from the known impedance. 

  If the sample consists of 𝑛  layers of different elastic 
materials, as shown in Fig. 2, the incoming signal 𝑝𝑒scans all 
the layers and the transmitter registers 𝑛 + 1 echo signals, |𝑝0|, 
𝑝1, 𝑝2, … 𝑝𝑛. Generalizing Eq. (8) to a multilayer stack, one 
obtains,   

𝑝𝑘 =
𝑍1

𝑍0

(𝑝𝑒 − sign(𝑍1 − 𝑍0)|𝑝0|)

∙ (∏𝑡𝑖−1,𝑖

𝑘

𝑖=2

)𝑟𝑘−1,𝑘 (∏𝑡𝑖,𝑖−1

𝑘

𝑖=1

) , 𝑘

= 1,2,⋯ , 𝑛.                                                (12)   

Here 𝑡𝑖−1,𝑖 = (2𝑍𝑖) (𝑍𝑖−1 + 𝑍𝑖)⁄ and 𝑟𝑘−1,𝑘 = (𝑍𝑘 − 𝑍𝑘−1)/

(𝑍𝑘 + 𝑍𝑘−1) are the transmission and reflection coefficients, 
respectfully, for the boundary between the (𝑛 − 1)th and 𝑛th 
layers. Since there is the same ambient medium (water) on the 
both sides of the sample 𝑟𝑛−1,0 = (𝑍0 − 𝑍𝑛−1)/(𝑍𝑛−1 + 𝑍0).                                                                                                           

   The recorded echo-pulses are time-dependent functions. 
From the equipment datasheet, calibrated probe sensitivity was 
a single coefficient in term of 𝑝/𝑉, where the 𝑉 was the signal 
amplitude in volts. For the numerical values of |𝑝0|, 𝑝1 , 𝑝2, … 
𝑝𝑛  are taken the corresponding absolute peak values of the 
measured echo-pulses. Before executing the raster scan the 
pulse 𝑝𝑒 was emitted in the ambient medium without a sample 
using bistatic calibration. The distance between two transducers 
is selected to be twice the distance between the emitting 
transducer’s surface and the interface between the ambient 
material 0 and the first layer in following experiments. 

      In the case of an 𝑛-layered sample the measured quantities 
are  

                𝛼1 =
𝑝1 

𝑝𝑒 − sign(𝑍1 − 𝑍0)|𝑝0| 
 ,          

  𝛼2 =
𝑝2  

𝑝𝑒 − sign(𝑍1 − 𝑍0)|𝑝0| 
, 

⋮ 

  𝛼𝑛  =
𝑝𝑛

𝑝𝑒 − sign(𝑍1 − 𝑍0)|𝑝0|
.                      (13)  

If all 𝛼’s are recorded, the set of 𝑛 nonlinear equations (12) 
for the unknown impedances 𝑍1, 𝑍2, … 𝑍𝑛  can be solved 
numerically. We applied the iterative method which requires 
the initial values for each unknown impedance. These initial 
values should be selected from reasonable physical 
considerations based on cursory knowledge of the initial 
material in which the initial pressure wave is emitted (𝑍0) and 
the subsequent material in comparison to the initial material 
(𝑍1). If the general ratio of the impedance of the primary to 
secondary material is known, the solutions for Eq. 12 converge. 

   The exact position of each reflected pulse within the 
recorded temporal window, are defined by two instants, 𝑇𝑖,𝑘 and 
𝑇𝑓,𝑘, corresponding to the beginning and the end of the kth pulse, 
i.e. the pulse reflected from the layer with impedance 𝑍𝑘. In the 
time domain, 𝑇𝑖,𝑘 and 𝑇𝑓,𝑘 were found algorithmically.  

For this work, the beginning of a pulse is particularly 
important as it is necessary for determining time of flight delay 
and subsequently speed of sound. A noise reference level is set 
by taking the absolute value of the maximum signal amplitude 
in the first 2% of sampled data points from the calibration of 𝑝𝑒. 
During calibration of 𝑝𝑒, the pulse window was set such that the 
center of 𝑝𝑒 was near the center of the time window of collected 
data points. This procedure greatly reduced the chance of 
overlap between the calibration pulse and the beginning of the 
time window used for setting the noise level.  

 
The beginning of a pulse envelope, 𝑇𝑖,𝑛 , is set as the first 

point in which a continuous 0.05 𝜇𝑠 of signal, 5% of the pulse 
width in water, exceeds 105% of the noise reference level. The 
ensuing end of that pulse envelope, 𝑇𝑓,𝑛,  was calculated by 
examining the transient data from 𝑇𝑖,𝑛 and set as the point when 
a continuous 0.05 𝜇𝑠 of signal reduced to less than 90% of the 
noise reference level.  

The speed of longitudinal sound 𝑐  in each layer can be 
calculated if the time delay between two echo signals obtained 
as reflections from its boundaries is measured. From impedance 
and speed of sound the bulk modulus and mass density of each 
elastic layer are easily calculated as  

              𝐾 = 𝜌𝑐2 = 𝑍𝑐,                                         (14)  

                  𝜌 =
𝑍

𝑐
.                                                  (15) 

 

III. EXPERIMENTAL SETUP 

   Raster scanned imaging was completed using a MATLAB®   
controlled, automated experimental system shown in Fig. 4. 
Two Newport UE41PP stepper motor translation stages were 
connected and moved along the lateral (y-) and vertical (z-) axes 
with an attached sample using a Universal Motion 
Controller/Driver Model ESP300. A JSR Ultrasonics DPR 300 

Fig. 3. Multivalue function 𝑍1(𝛼)/𝑍0  given by Eqs. (9)-(11).  
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Pulser/Receiver was connected to a single Olympus 
Panametrics V301 1” 0.5 MHz unfocused immersion 
transducer, and data acquired with on a Tektronix MDO 3024b 
oscilloscope. 

The waveform and frequency spectrum was recorded for 20s 
at each raster scan location at 2mm (1mm in experiment 3) 
intervals on the y-axis and 1mm intervals on the vertical, z-axis. 
The ambient medium consisted of DI water for more efficient 
signal generation and detection from the immersion transducer. 
All samples and materials that comprised the samples were at 
least the transducer width to ensure they would be detectable by 
the unfocused transducer. The collected data was then post-
processed to create elasticity maps.   

 

IV. RESULTS AND DISCUSSION 

A. Experiment 1- Hard and soft material composite sample 

Experiment 1 concerns the application of the EBME 
technique to a sample comprised of both a hard material and a 
soft material. The scanned sample was a 38mm wide aluminum 
slab with an 8mm wide rectangular defect filled with silicone 
rubber as shown in Fig. 5A. Data was collected from a 2D, 70 
x 10 mm (lateral x vertical) raster scan in deionized (DI) water 
ambient. Fig. 5B and Fig 5C represent the intensity data in the 

logarithmic (5B) and linear (5C) scales. As Fig. 5 (B) shows, 
logarithmic intensity mapping (A-Mode imaging) clearly 
shows the silicone rubber filled rectangular defect between two 
sides of aluminum. The average width of the silicone rubber is 
around 9mm and average aluminum width of each sides are 
both around 13mm in the imaging.  

Due to the size of transducer and the lateral beam width of 
the unfocused transducer, large diffraction patterns appear close 
to both sides of the aluminum. Water ambient exhibits similar 
contrast to the silicon as is to be expected due to the high 
impedance mismatch with aluminum, but relatively low 
impedance mismatch with silicon (Fig. 6B).   

Linear scale A-Mode imaging is rarely utilized in practice. 
However, in the linear scale, resolution of the object decreases 
whereas the contrast increases greatly (Fig. 5C). The intensity 
gradients in the linear scale, resultant, again, from the 
transducer size and lateral beam width, make determination of 
the material boundaries tenuous at best. In comparison with Fig. 
5B, the contrast between water, aluminum, and silicone 
increases greatly which has the potential to aid in the 
identification of heterostructures. The average width of the 
scanned sample is around 39mm in linear scale, within 3% of 
the actual width.  

As part of EBME, the bulk modulus and density can be 
extrapolated from acquired data using Eq. 9 and Eq. 10. Since 

Fig. 5. A-Mode scanned imaging. (A) is whole raster scanned area for visible 
comparison with (B) and (C). The sample width is 38mm with the silicone 
rubber filled defect 8mm wide in the center. The rest of the scanned area was DI 
water ambient. (B) is the traditional A-Mode imaging logarithmically scaled. 
(C) is traditional A-Mode imaging in linear  scale.   

Fig. 6. Effective bulk modulus elastography and effective density mapping 
of aluminum with silicone on a linear scale. (A) is the raster scanned area 
for visible comparison with (B) and (C). (B) is the EBME mapping of the 
bulk modulus (K) from Eq. 14. The color bar range is 0 GPa to 72.5 GPa. 
(C) is the effective density mapping from Eq. 15. 

Fig. 7. A-Mode scanned imaging and bulk modulus elastography both 
logarithmically scaled. (A) Scanned sample area for visible comparison with 
(B) and (C). (B) Logarithmic scale intensity as shown in Fig. 7B. (C) EBME 
bulk modulus logarithmically scaled ( 𝑙𝑜𝑔10 𝐾) . Compared with linear 
mapping, the logirithmic scale mapping exhibits visually higher spatial 
resolution.   

Fig. 4. Experiment setup. Scanned sample was connected to two dimensional 
translation stage that underwent automated raster scanning in the vertical and 
lateral directions. 
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the method is functionally dependent on the impedance of the 
ambient medium, and the accurate characterization of the 
pressure-voltage sensitivity of the detector, the bulk modulus 
and density are more correctly termed as effective bulk modulus 
and effective density. Quantitatively correct bulk modulus and 
density from EBME can be derived when the ambient medium 
and equipment characterization are accounted for accurately.  

For Experiment 1, the effective bulk modulus and density are 
given in Figs. 6B and 6C. As both the bulk modulus and density 
are on a linear scale, the impact of the low lateral resolution of 
the setup becomes apparent. The material boundaries are not 
well defined due to the gradient values at the transitions 
between materials. However, as with the intensity, the contrast 
in the elastic properties between the materials is very clearly 
seen in the contrasting values, especially at the center of a 
particular material.  

In this setup, the bulk modulus and density values of 
aluminum are found to be 63.4 GPa and 2720 𝑘𝑔 ∙ 𝑚−3, a 6.76% 
and 1.47% error respectively as compared with standard 
techniques [36, 37]. Silicon, a soft material, was found by 
EBME to have a bulk modulus of 1.9 GPa and density of 1380 
𝑘𝑔 ∙ 𝑚−3. Errors as compared to standard methods are -9.7% 
for the bulk modulus and -9.6% for the density. The relatively 
close density and bulk modulus values of silicone to water 
caused a decrease in the signal to noise ratio (SNR) during the 
data acquisition phase. The silicon rubber had less width than 
the half size of the transducer surface. The peak values were 
considered as suitable bulk modulus and density values. As the 
transition zone showed, the regions besides the location of peak 
values were scanned partially on the aluminum and the other 
materials (water or silicone rubber). For this work, to maintain 
uniformity and focus on the application of the EBME technique, 
no additional advanced signal processing techniques were 
performed to increase the SNR for silicon or other soft materials.  

The logarithmically scaled EBME is given in Fig. 7, where 
the bulk modulus (K) is scaled as log10 𝐾. The visual impact of 
the gradients in effective bulk modulus are reduced by 
logarithmic binning. As compared to the normal A-Mode 
methods that map intensity, the EBME bulk modulus spatial 
resolution does not replicate the distinct aluminum-silicone 
boundaries. However, logarithmic EBME bulk modulus much 
more clearly delineates between different materials as the 
silicone in the center of the aluminum is clearly distinguishable 
from the ambient water. For diagnostics of hard and soft 
systems, this can be invaluable in determining potential defects 
that are undesirable versus those that are inconsequential. 

B. Experiment 2 - Hard material composite sample 

In the second experiment, a hard material composite 
consisting of independent blocks of copper, PVC plastic, and 
aluminum was scanned using the same setup as Experiment 1. 
The sample was used to evaluate the capability of EBME to 
distinguish between hard materials. The total scanned area was 
10 mm along the vertical, y-axis at 2 mm intervals, and 60 mm 
along the lateral, z-axis at 1 mm intervals. The widths of each 

material in the sample area were non-uniform, with copper 
occupying 15mm of the total width, and PVC and aluminum at 
35 mm and 10 mm, respectively.  

Fig. 8 gives both the linear and logarithmic A-Mode resultant 
image from the hard sample composite. The setup is not 
optimized for high resolution of material boundaries. However, 
whereas the logarithmic scale does give a relatively accurate 
representation of the hard material boundaries, the intensity 
scale alone does not adequately distinguish between copper and 
aluminum on the far left and far right of Fig. 8B. The linear A-
Mode method performs much worse as the boundaries are not 
clear, and the aluminum and copper are not distinguishable.  In 
both cases, A-mode imaging does show the PVC material as 
significantly different than both aluminum and copper.  

From the EBME derived bulk modulus and density, three 
distinct materials and their boundaries can be readily 
recognized. The large contrast in elastic properties between the 
PVC plastic and metals allows for the estimation of its width 
from the linear EBME. Using the bulk modulus in Fig. 8B, PVC 
is 31mm with a bulk modulus of 9.26 GPa resulting in -11% 
error in the width resolution and 5.5% error from a bulk 
modulus of 8.75 GPa determined using accepted standard 

Fig. 9. Effective bulk modulus and effective density mapping linearly scaled. 
(A) is the raster scanned area for visible comparison with (B) and (C). (B) is 
EBME from Eq. 14. The color bar is ranged 1 GPa to 160 GPa. (C) is the 
effective density derived from Eq. 15.  The density color bar is ranged 800 𝑘𝑔 ∙
𝑚−3 to 8000 𝑘𝑔 ∙ 𝑚−3. 

Fig. 8. A-Mode scanned image of hard material composite. (A) is entire raster 
scanned area for visible comparison with (B) and (C). From left to right, copper 
is 15mm wide. PVC plastic is 35mm wide. Aluminum is 10mm. (B) is 
traditional A-mode imaging in logarithmic (dBm) scale. (C) is traditional A-
mode imaging in linear (watts) scale. 
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techniques. For copper, the averaged bulk modulus is 138 GPa, 
about 4.4% off of the value derived from standard techniques. 
Aluminum has the highest degree of error in the bulk modulus 
at -10.5%, an averaged 60.7 GPa from EBME versus 68.6 GPa 
standardized. Density is also relatively well characterized as the 
EBME derived values from averaging each of the areas of the 
sample materials comes to 7720 𝑘𝑔 ∙ 𝑚−3, 1480 𝑘𝑔 ∙ 𝑚−3, and 
2544 𝑘𝑔 ∙ 𝑚−3  for copper, PVC, and aluminum respectively. 
Errors for the density as compared with non-EBME techniques 
are -3.3%, 5.3%, and -5.8%. Additionally, as Fig. 9 shows, 
logarithmic scaled EBME (Fig. 10C) more accurately 

represents the hard material distribution shown in Fig. 10A as 
compared with the logarithmic A-Mode result shown in Fig. 
10B. 

The width from EBME showed about 5mm overestimation 
on the copper and aluminum side comparing with photograph. 
The overestimation in width was due to the comparable size of 
the transducer and the samples. The transducer was 25.4mm (1 
inch) diameter large, but the copper block was about 20mm 
wide and the aluminum was only 10mm wide.  

 

C. Experiment 3 – Soft tissue phantom composite sample 2 
Soft materials, specifically soft materials that mimic organic 

tissues, present special challenges for ultrasonic 
characterization. The materials are commonly dispersive and 
attenuate sound much faster than hard materials. Additionally, 
tissue-like materials may have features similar to water, making 
them indistinguishable in standard A-Mode imaging modalities. 
For Experiment 3, examination of two separate samples 
comprised of composites of gelatin tissue phantoms was carried 
out.  Sample 1 consisted of gelatin tissue phantoms synthesized 
using [35], where three (3) gelatin blocks, 22.5%, 18.0%, and 
3.5% gelatin respectively, were placed adjacent to each other.  

The total scanned area for Sample 1 was 100 x 10 mm, where 
the 22.5% gelatin tissue phantom was 28mm wide, the 18.0% 
gelatin tissue phantom 52mm in width, and 3.5% gelatin a 
width of 20mm. The A-Mode image of Sample 1 is given in Fig. 
11.  In both the logarithmic (Fig. 11B) and linear (Fig. 11C) 

scaled images, only the boundary of the highest weight % 
gelatin is clearly distinguishable, with an average width of 
31.5mm between the logarithmic and linear scales. Based on 
comparison of the image of the sample (Fig. 11A), and the A-
Mode mapping, no reasonable information is gleaned for the 18% 
and 3.5% gelatin samples using the A-Mode modality.   

Unlike standard A-Mode, the three different tissue phantoms 
can clearly be distinguished by the EBME technique as seen in 
Fig. 12. From Fig, 12B, EBME shows the 22.5% gelatin to be 
~29mm wide with a bulk modulus of 2.45 GPa. The 18.0% and 
3.5% gelatin tissue phantoms are ~52mm and 18mm with 
averaged effective bulk modulus of 2.17 GPa and 1.31 GPa. 
The efficacy of the EBME is supported by bulk modulus values 
determined using standard evaluation method as 2.82 GPa, 2.52 
GPa, and 1.71 GPa.  

Density values for the three composites are also clearly 
distinct and able to be used to characterize the sample as a 
composite of three distinct materials (Fig. 12C). Averaged 
density and widths from EBME are 1329.4 𝑘𝑔 ∙ 𝑚−3 and 26mm 
for 22.5% gelatin, 1182.5 𝑘𝑔 ∙ 𝑚−3  and ~54mm for 18.0% 
gelatin, and 877.3 𝑘𝑔 ∙ 𝑚−3 and 20mm for the lowest ratio 3.5% 
gelatin tissue phantom.  

 Ultrasonic images used for evaluation are commonly scaled 
to a standard material or medium. Here, we created a scaled 

Fig. 11. A-Mode scanning method for Sample 1, comprised of three tissue 
phantoms with 22.5% (far left), 18% (middle), and 3.5% (far right) gelatin 
by weight. (A) is whole raster scanned area for visible comparison. (B) 
Logarithmic scaled intensity. (C) Linear scaled intensity. Only the highest 
weight % gelatin is clearly distinguishable. 

Fig. 12. EBME bulk modulus and density, linearly scaled. (A) is the 
photographic image of the sample, with materials in the same order as Fig. 11. 
(B) Effective bulk modulus using Eq. 14 with a color range of 1.5 GPa to 3.25 
GPa. (C) Effective density using Eq. 15 where the color bar scales from 900 
𝑘𝑔 ∙ 𝑚−3 to 1400 𝑘𝑔 ∙ 𝑚−3. 

Fig. 10. A-mode scanned imaging and bulk modulus elastagraphy 
logarithmically scaled. (A) is the raster scanned area for visible comparison 
with (B) and (C). (B) is A-mode scanned imaging logarithmically scaled. (C) is 
the bulk modulus using EBME, logarithmically scaled (𝑙𝑜𝑔10 𝐾). The color bar 
is ranged 8.3 to 11.3. 3.2 GPa, 32 GPa, and 100 GPa labels are located on the 
logarithmic scale color bar. 
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parameter for the EBME determined bulk modulus and density, 
where the values are scaled to the ambient medium, water (Fig. 
13).   The relative bulk modulus, 𝐾𝑟 = 𝐾𝑠𝑎𝑚𝑝𝑙𝑒/𝐾𝑤𝑎𝑡𝑒𝑟 , and the 
relative density, 𝜌𝑟 =

𝜌𝑠𝑎𝑚𝑝𝑙𝑒

𝜌𝑤𝑎𝑡𝑒𝑟
, serve to indicate the extent of the 

deviation of an examined material from the ambient medium. 
All the tissue samples maintain relative values close to that of 
water. In practical applications, 𝐾𝑟  and 𝜌𝑟 could be calibrated 
to an ideal sample where 𝐾𝑟 = Ksample K𝐼𝑑𝑒𝑎𝑙⁄ and 
ρr = ρSample ρ𝐼𝑑𝑒𝑎𝑙⁄ , which might be easier to use.  

Unlike the standard A-Mode case, the relative values for the 
samples allow for the 3.5% tissue phantom to be visualized with 
an apt comparison to water. In medical applications, scaling to 
healthy tissues values may lead to faster recognition of 
potentially harmful artifacts in tissue.  

For Sample 2, we applied the same techniques to tissue 
phantoms with compositions that were more similar than 
Sample 1. Three tissue phantoms of 16.8%, 10.0%, and 6.8% 
gelatin were synthesized using the method described in ref [35]. 
The widths of the phantoms were 16mm, 35mm, and 19mm, 
with densities from standard techniques of 1163 𝑘𝑔 ∙ 𝑚−3 , 
1106 𝑘𝑔 ∙ 𝑚−3, and 1064 𝑘𝑔 ∙ 𝑚−3, and bulk modulus values 
of 2.31 GPa, 2.13 GPa, and 2.01 GPa. The low variation in 
physical properties amongst the phantoms was selected to 
mimic low variation experienced in tissues in practice.  

The reference A-Mode scan of Sample 2 is given in Fig. 14. 
Both the logarithmic and linear scale figures identify the 
existence of the lowest concentration tissue phantom as 
relatively homogenous material on the right (Fig. 14B, 14C).  

The relative bulk modulus and density of Sample 2 is shown 
in Fig. 15 with much greater clarity than standard A-Mode 
imaging. Visually, 𝐾𝑟  most strongly indicates the existence of 
three distinct materials in the sample (Fig. 15B). The widths of 
the samples using EBME with scaled elastic values are 18mm 
for the 16.5% phantom on the left, 30mm for the 10.0% 
phantom in the center, and 20mm for the lowest gelatin 
concentration material on the far right of Fig. 15. The estimated 
widths are 12.5%, -14.3%, and 5.3% off the actual values, but 
still vastly superior to the A-Mode technique which could not 
identify three clear materials.  

For Sample 2, weak reflection from the tissue phantoms and 
the lack of application of advanced signal processing 
techniques led to relatively high SNR as compared with hard 
materials such as steel. The impact of the low SNR was most 
strongly manifested in the EBME derived average density and 
bulk modulus values for the samples which had errors of -7.7%, 
8.6%, and 18.4% for the bulk modulus, and 11.2%, -5.6%, and 
3.1% for density. Regardless, without advanced signal 
processing techniques, the EBME method greatly improved the 
clarity of the samples as compared with standard A-Mode 
methods while being effective with remote application. 

 
D. Discussion 

Existing research shows measured mechanical properties and 
acoustic properties of tissue using ultrasound occupy a range of 
values instead [38]. Organic tissues normally possess much 
larger acoustic impedance than water. In this experiment, 6.8% 
gelatin tissue phantom is representative of very soft liver tissue 
[34]. The 10% and 16.8% gelatin tissue phantom are 
representative of tumors at different stages [34, 39]. Prior work 
on the difference of speed of sound between healthy tissue and 
tumor tissue has been measured at less than 2% [33]. The 
density and bulk modulus of tumor tissue, however, has been 
found to be discernably larger than healthy tissue [39]. The 
Effective Bulk Modulus elastography (EBME) technique for 

Fig. 13. Relative bulk modulus and density of the Sample 1 as compared to 
water. (A) Image of the entire scanned area for reference. (B) Relative EBME 
derived bulk modulus ratio where 𝐾𝑟 = 𝐾𝑆𝑎𝑚𝑝𝑙𝑒 𝐾𝑤𝑎𝑡𝑒𝑟⁄ . (C) Relative density 
of the tissue phantoms defined as 𝜌𝑟 =

𝜌𝑠𝑎𝑚𝑝𝑙𝑒

𝜌𝑤𝑎𝑡𝑒𝑟
. 

Fig. 14. A-Mode of Sample 2. (A) Image of Sample  2 for reference. Gelatin 
weights of the tissue phantoms are 16.8% (left – 16mm)), 10.0% (middle-
35mm), and 6.8% (right-19mm). (B) Standard A-Mode image scaled 
logarithmically. (C) Linear scaled A-Mode  image of  Sample 2.  

Fig. 15. Relative bulk modulus and density mapping of Sample 2 using EBME. 
(A) Image of Sample 2 for reference. Gelatin weights of the tissue phantoms 
are 16.8% (left – 18mm)), 10.0% (middle-33mm), and 6.8% (right-19mm).  (B) 
Relative bulk modulus scaled to water,  𝐾𝑟 = 𝐾𝑆𝑎𝑚𝑝𝑙𝑒 𝐾𝑤𝑎𝑡𝑒𝑟⁄ . (C) Relative 
density scaled to water, 𝜌𝑟 = 𝜌𝑆𝑎𝑚𝑝𝑙𝑒 𝜌𝑤𝑎𝑡𝑒𝑟⁄ .  
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the remotely determining the bulk modulus and density map in 
this work was able to clearly distinguish between tissue 
phantom equivalents of tumorous and healthy tissue. For 
medical applications, EBME may provide a new path to 
practical biomedical elastography and tomography applications.  

The physical properties of healthy and tumor tissues vary 
amongst and between states of health of patients [33].  
Additionally, the accurate determination of elastic properties 
using a monostatic setup requires adequate pressure wave 
reflection which presents challenges for some liquids in soft 
materials. Elastography maps that use absolute values for the 
bulk modulus, density, and any other elastic properties may not 
be the most effective modality for examination of a material. 
Relative density ( 𝜌𝑟 ) and relative bulk modulus ( 𝐾𝑟 ) can 
potentially provide greater insight into the examination of a 
material. Setting the scale according to a fixed density or bulk 
modulus that is preferred, the user of EBME can qualitatively 
determine the elastic properties of a sample as shown in Fig. 11.  
For medical applications, this may be interpreted as setting the 
relative scales to the values of a known healthy tissue in an 
analysis, giving the trained eye more efficient guidance to areas 
of a sample that may be of concern.  

The elastography technique presented in this study is unique 
as compared with other existing elastography methods. Table 1 
is a comparison of the existing ultrasonic elastography methods. 
All existing methods need an external force or sonic pulse 
induced deformation of the sample, unlike EBME. 
Deformations of a sample may incur unwanted peripheral 
effects. As with other methods, some knowledge of at least the 
ambient materials must be known for EBME to be effective. 
Standard practice for prior methods is the knowledge or 
assumption of a reference bulk modulus or density for creating 
elastography maps. In EBME, direct knowledge of the bulk 
modulus or density of a reference material is not explicitly 
required.  

The need to deform a medium for gathering elastographic 
information make characterizations of hard materials more 
difficult. Metals or hard plastic, specifically, do not easily 
deform without significant applied pressure due to large 
elasticity constants. Moreover, the linear elasticity strain range 
is normally small for metals and alloys [40, 41, 42], and 
especially for hard plastic [43, 44]. Strain map and Poisson’s 
ratio map might be not capable on those materials, because of 
non-ultrasonic measurable small linear range strain. Large 
stress easily exceeds the small linear deformation range. 
Polymer plastics [45, 46], many alloys [47, 48, 49], even 
polycrystalline metals [50] are usually non-isotropic materials, 
which their anisotropy were measured by shear waves. Once the 
results from shear wave maps become directional. Those shear 
wave methods are not reliable anymore in imaging.  EBME, as 
demonstrated in the experiments above, maintains an advantage 
over existing techniques it is effective for both hard and soft 
materials. The lack of a required external, deforming pressure 
also means EBME is a form of remote sensing that can readily 
be transportable.  

EBME is the first noninvasive elastography method without 
any external stress or applying any noise correlation (time 
reversal) techniques [51, 52, 53, 54, 55, 56]. The main 
advantage of our EBME is its noninvasive nature and the 
capability of applying the technique to both hard and soft 
materials without issue. For imaging soft biomass (M mode), 
external stress or vibration is able to provide material 
deformation that can be measured with ultrasound to calculate 
elasticity. However, hard materials present a particular 
challenge for techniques that require deformation that’s 
measurable with ultrasound. The linear elastic deformation with 
applied pressure is normally too small in hard materials to be 
measured with ultrasound. The lack of need for external stress 
means EBME can effectively evaluate elasticity in both hard 
and soft materials without perturbing the sample under 
evaluation. Though calibration before a scan with a known 
material will increase the accuracy of the effective bulk 
modulus as compared to other means, it is not necessary to 
determine the contrast in elastic properties. For clinical 
applications, the mechanical properties of the initial material do 
not vary significantly enough to require calibration for each in 
vivo test. Transferring the method to practice would require 
input from physicians and others in the medical field on, at 
minimum, the primary material encountered in their field.   

 
TABLE I 

ULTRASONIC ELASTOGRAPHY METHODS COMPARISON 

Methods Wave 
Mode 

External 
force 

Elasticity 
values 

Water 
ambient 

Input 
Values 

Strain Map 
[14, 15, 17] L ✓ ✗ ✗ ✗ 

Impulse 
strain map 

[18, 19] 
L or T ✓ 𝐸 ✗ 𝑍, 𝑓𝜎, 𝜎

 

Poisson’ 
ratio map 
[13, 20] 

L ✓ 𝜐 ✓ ✗ 

Transient 
shear wave 

map 
[29] 

T ✓ 𝐸 ✗ 𝜌, 𝜎, 𝑓𝜎
 

Point shear 
wave map 

[23, 24, 25] 
T ✓ 𝐸 or 𝐺 ✗ 𝜌, 𝜎, 𝑓𝜎 

Surface 
shear wave 

map 
[22] 

T ✓ 𝐸 or 𝐺 ✗ 𝜌, 𝜎, 𝑓𝜎 

EBME 
Bulk 

Modulus 
L ✗ 𝑲 ✓ 𝐝, 𝐙𝟎 

EBME 
Density L ✗ 𝝆 ✓ 𝐝, 𝐙𝟎 

 
Table. 1 Comparison between existing ultrasonic elastography techniques and 
the new, EBME method (Bold font) presented in this study. L is the 
longitudinal mode wave, T is the transverse (shear) mode wave, 𝐸 is Young’s 
Modulus, 𝐺 is shear Modulus, 𝐾 is Bulk Modulus, 𝜐 is Poisson’s ratio, 𝜌 is 
sample density, 𝑍 is sample material acoustic impedance, 𝑓𝜎 is dynamics force 
frequency, 𝜎 is applied external stress or radiational force on imaged sample, 
and 𝑑  is sample thickness. 𝑍0

 is acoustic impedance of reference ambient 
material. ✓ indicated required and ✗ means not required or none.  
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As mentioned throughout the work, additional signal 
processing to improve the SNR of the collected data may 
improve accuracy of EBME method as applied in this work. 
Additionally, analysis was undertaken with the premise of 
exclusive use of longitudinal waves as the ambient medium was 
liquid. Further considerations of transverse waves and their 
impact on the efficacy of EBME may improve effectiveness of 
the method as applied to hard and soft materials. This study 
presented a novel M mode imaging technique for both biomass 
and industrial materials under controlled, laboratory conditions. 
Further investigation is needed for the method for addressing 
complex geometries, advanced signal processing, and 
automated detection of internal interfaces.    

V. CONCLUSON 

In this study, a new remote, non-destructive monostatic 
method to produce the bulk modulus elastography and effective 
density mapping was introduced. The Elastic Bulk Modulus 
Elastography (EBME) method does not require an external, 
forced deformation of the material being analyzed, and is 
functional for both hard and soft materials. The technique does 
not require explicit knowledge of the elastic properties of a 
reference material for application. EBME proved effective in 
discerning between tissue phantoms with small variations in 
their bulk elastic properties in addition to accurately 
determining the density and bulk modulus of hard materials. 
Use of the relative density and bulk modulus of a material using 
EBME may enable faster detection of unwanted defects in a 
material. Errors in EBME in this work were primarily a function 
of low signal to noise ratios from impedance matched tissue 
phantoms that have low reflectivity in water ambient. In all, the 
method provides a promising alternative to existing methods for 
the ultrasonic characterization of the elastic properties of hard 
and soft materials.  
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