LPGA: Line-Of-Sight Parsing with Graph-based
Attention for Math Formula Recognition

Mahshad Mahdavi, Michael Condon
Document and Pattern Recognition Lab
Rochester Institute of Technology
Rochester, NY, USA
mxm7832@rit.edu
mpc7497 @rit.edu

Abstract—We present a model for recognizing typeset math
formula images from connected components or symbols. In
our approach, connected components are used to construct a
line-of-sight (LOS) graph. The graph is used both to reduce
the search space for formula structure interpretations, and to
guide a classification attention model using separate channels for
inputs and their local visual context. For classification, we used
visual densities with Random Forests for initial development,
and then converted this to a Convolutional Neural Network
(CNN) with a second branch to capture context for each input
image. Formula structure is extracted as a directed spanning
tree from a weighted LOS graph using Edmonds’ algorithm. We
obtain strong results for formulas without grids or matrices in
the InftyCDB-2 dataset (90.89% from components, 93.5% from
symbols). Using tools from the CROHME handwritten formula
recognition competitions, we were able to compile all symbol and
structure recognition errors for analysis. Our data and source
code are publicly available.

Index Terms—Iline-of-sight graph, math recognition, CNN,
MST-based parsing

I. INTRODUCTION

Mathematical notation is a key component in technical
communication, and in recent years there has been growing
interest in both the automatic recognition and retrieval of
mathematical notation [1]. In addition to research efforts, this
includes a variety of commercial systems from companies in-
cluding PhotoMath, MyScript, Wiris, and WolframAlpha. The
potential benefits of easy-to-enter, easy-to-modify, and easy-
to-search formulas are vast: this could provide powerful new
applications for technical experts, researchers, and educators.
More generally, easier manipulation and access for formulas
may help increase mathematical literacy in the general public
(e.g., by allowing people to easily look up formulas and
symbols based on their appearance).

Math encodings represent the appearance or mathematical
content of formulas. As illustrated in Figure 1, the appearance
and content of mathematical expressions can be defined using
trees. Encodings for appearance represent a formula based
on the arrangement of symbols on writing lines, which we
call a Symbol Layout Tree (SLT [2]). ISIEX is essentially an

We thank the National Science Foundation (USA) and the Alfred P. Sloan
Foundation for their support of this work.

Kenny Davila
Department of CSE
University at Buffalo
Buffalo, NY, USA

kennydav @buffalo.edu

Richard Zanibbi
Document and Pattern Recognition Lab
Rochester Institute of Technology
Rochester, NY, USA
rxzvcs @rit.edu

(Right | | Right | | Right | = | Rignt| : }u‘)v 2
EXP
/\
ADD 2
A
a b

Fig. 1: Math representations: Symbol Layout Tree (SLT, top)
and Operator Tree (OPT, bottom) for (a + b)?

SLT representation with additional formatting commands (e.g.,
to control sizes, spacing, and font faces). The Operator Tree
(OPT) in Figure 1 represents the application of operations to
operands, from the leaves to the root of the tree.

In this work, we concern ourselves with recovering visual
structure (SLT) from both raster images (e.g., PNG) and vector
images that provide symbol locations and identities directly
(e.g., born-digital PDFs). An SLT can be transformed into
an OPT using an expression grammar, but we don’t consider
recognizing formula semantics in this paper.

Mathematical expression recognition comprises three major
tasks: detecting symbols, classifying symbols, and determining
expression structure. These tasks may be solved in a sequen-
tial feed-forward manner, or in a globally integrated fashion
[3], [4]. In feed-forward approaches, errors in symbol tasks
are inherited by the structural analysis, and so recognition
accuracy tends to decrease with increasing the expression
size. Integrated approaches do not rely on previous steps,
meaning that structural analysis interacts directly with symbol
segmentation and symbol classification. A common approach
for global solutions is applying sequence-to-sequence learning
models to generate captions for formula images. These meth-
ods generate string outputs in IXTEX, using global context from
attention models to avoid local ambiguity [5]. Jointly training
an encoder-decoder system that maps raw images to string

output is appealing, but this also makes diagnosing errors hard,
as the correspondence between the output I&IEX string and the
input image is difficult to determine.

In our work, we recognize formulas from connected com-
ponents in images or images with provided symbols. This
permits us to use evaluation tools that automatically identify
errors at the level of connected components or symbols and
their relationships [6], providing a concrete understanding of
the obstacles and hard cases that must be overcome. For
example, we saw that our ground-truth spatial relationships
for punctuation needed changing to improve accuracy.

To utilize visual context in symbol and relationship classi-
fication, we apply a visual attention model organized around
a line-of-sight graph over connected components or symbols
[71, [8]. This disambiguates similar symbols and relationships
(e.g., fraction line vs. minus), and allows a simple feed-
forward system to obtain accurate results when classifying
symbols after symbol segmentation and structure recognition.

Our Line-of-Sight Parsing with Graph-based Attention
(LPGA) model parses a line-of-sight graph over connected
components by (1) locating symbols, (2) extracting an SLT
from line-of-sight graph over detected symbols using a max-
imum spanning tree, and (3) classifying symbols. This is a
generalization and extension of the work by Hu using LOS
graphs for parsing math that is handwritten online [7]. Here,
in addition to using Random Forests with visual densities,
we have also created a VGG-16-based Convolutional Neural
Network with two branches to automatically learn input and
context features separately. We call our new method LPGA
(Line-of-sight Parsing with Graph-based Attention).

We also provide a new dataset containing formulas with-
out grids or matrices from the InftyCDB-2 dataset [9],
with annotations down to the level of connected compo-
nents (InftyMCCDB-2). The LPGA source code and modified
InftyCDB-2 dataset are publicly available.!

In the remainder of the paper, we introduce related work,
define the LPGA model, present results on the InftyMCCDB-2
data set, and discuss future work.

II. RELATED WORK

In the following we provide an overview of approaches
proposed for segmentation, classification, and parsing, with
a focus on methods pertinent to formula recognition.

A. Segmentation

Segmentation is a task of grouping related primitives.
These primitives could be pixels from an image, or strokes
from a handwritten equation. The main challenge of symbol
segmentation in typeset mathematical expression images is
fractured symbols whose components were split by printing
and scanning noise. These cases are often hard because the
appearance of the fracture might be unique or rarely seen.

Almost all state-of-the-art systems for segmentation are
neural net based systems [10]-[12]. The main idea in these

Uhttps://www.cs.rit.edu/ dprl/software.html

works is converting fully-connected layers into convolutional
layers and concatenating the intermediate feature maps. Im-
provements in performance result either from embedding more
context or generating high-resolution feature maps. Embed-
ding context is done by employing larger kernels [13], adding
a global pooling branch to extract context information like
in ParseNet [14], or using Atrous Spatial Pyramid Pooling,
which is a substitution for larger kernels and delivers a
wider field of view at the same computational cost [10].
To generate high-resolution feature maps, techniques such as
Deconvolution [12], Unpooling [15] and Dilated Convolution
[16] are deployed. Some post-processing techniques such as
Conditional Random Fields (CRFs) [17] or Bilateral Solvers
are often employed to refine predictions near boundaries and
improve segmentation accuracy.

Most methods of this type usually use complicated decoder
blocks, which are computationally expensive. We believe
such computation is unnecessary for the task of segmenting
connected components to generate math symbols, since the
nature of this problem makes it possible to utilize much
simpler methods. Similar to ParseNet, we extract context from
a side channel in our CNN that embeds local visual cues for
each target edge between connected components. In the basic
version of our system, LPGAgp, we include context as visual
densities using 2D grids and shape context features [7].

B. Classification

Common algorithms for symbol classification include near-
est neighbor, support vector machines, random forests, hidden
markov models, convolutional neural networks, and bidirec-
tional long short-term (BLSTM) memory networks. These
classifiers can be used in isolation, or combinations of classi-
fiers may be used either in parallel or as a cascade. Nguyen
et al. [18] propose a linear combination of a DMCN (Deep
Maxout Convolutional Network) and BLSTM (Bidirectional
Long short-term memory) networks for symbol recognition.
They employ BLSTM for online features and CNN for of-
fline features and compare them against more traditional ap-
proaches: MRF (Markov Random Field) for online and MQDF
(Modified Quadratic Discriminant Function) for offline.

In typeset images, the data is inherently non-sequential with
respect to time, in both the pixels that make up a symbol and
the symbols themselves in the expression. Many approaches
impose a spatial ordering on expression images, either a linear
left to right order, or a form of two dimensional ordering.
We do not commit to an order for gathering features: rather,
we independently extract convolutional features around image
areas predicted to be symbols by our attention graph.

C. Farsing

Parsing mathematical expressions converts input primitives
(e.g., images, handwritten strokes, or symbols) to a description
of formula structure. A common set of features used to rep-
resent the spatial relations between components are geometric
features. Visual features have also been used recently [19],
[20]. Systems that use visual features are usually built around

neural networks. IM2TEX, inspired by a sequence-to-sequence
model designed for image caption generation, directly feeds
the typeset formula image into a Convolutional Network
to extract a feature grid learned by the network [5]. The
feature grid is passed through an LSTM to generate candidate
KTEX tokens. The token list is then given to a decoder to
build the expression string. Results show their system produces
IATEX strings that when rendered exactly match the input image
for 79.88% of the IM2LATEX-100K test dataset [5]. Their
approach is interesting in that it is trained using only images
and ISIEX strings, and produces a IAIEX string as output.
Diagnosing error is difficult when expressions are incorrect,
as the correspondence between the string and input image is
not simple to determine.

In Zhang et al. [21], a multi scale attention model is used
in the encoder with the purpose of preserving details, which
improves recognition of handwritten inputs. The encoder is
made of two branches, i.e., except for the main branch which
produces low-resolution annotations, another feature map is
extracted before the last pooling layer which has higher
resolution.

Many systems do not use a single algorithm to go from
images to a fully recognized expression, instead they look at
the problems individually and combine results from subtasks.
Syntactic methods combine recognition modules using an
expression grammar, which both defines legal expressions and
drives the search for an interpretation by the parser. In state-of-
the-art systems, production rules are probabilistic (e.g., using
Stochastic Context-Free Grammars (SCFGs) [22]). Grammar-
based systems continue to produce competitive results [23],
but grammars require manual construction, and expressions
not captured by a grammar produce errors.

I1I. LPGA MODEL

Recovering a formula SLT from an image can be posed
as a graph search problem [24]. In our case, we attempt to
extract an SLT containing symbols and their associated spatial
relationships from a weighted graph defined over connected
components (in raster images) or symbols (for vector images).
Unlike grammar-based techniques such as Stochastic Context-
Free Grammars (SCFGs) [4], graph-based parsing does not
require an expression grammar; the language model consists of
only node and edge labels. Parsing a graph involves identifying
a sub-graph with minimal cost or maximum probability subject
to certain constraints. For math recognition, the final subgraph
is usually a Symbol Layout Tree.

Ideally, for graph-based parsing the search graph contains
edges representing all relationships and symbols (i.e., perfect
recall), with few extraneous edges increasing the search space
size (i.e., high precision). Previously, Line-Of-Sight (LOS)
graphs have been used to parse handwritten formulae; for the
CROHME handwritten math recognition benchmark, they pro-
vide perfect recall for stroke pairs belonging to symbols, and
can represent SLTs for roughly 98% of CROHME formulae,
which is much higher than for Time-series, Minimum Span-
ning Tree, Delaunay, and k-NN graphs for k& € {1,2,...,6}

[8]. On average, the number of edges in the LOS graphs was
3.3 times the number of strokes, which is much smaller than
the quadratic number of edges in a complete graph providing
perfect SLT recall (n(n — 1)/2 for n strokes).

We parse LOS graphs to recognize formulas in images,
rather than in online handwritten strokes. As shown in Fig-
ure 2, our LPGA (Line-of-Sight Parsing with Graph-based
Attention) model first generates a LOS graph over connected
components. A binary classifier then identifies which directed
LOS edges correspond to components that should be merged
into symbols. Symbols that can see each other are connected
in a second LOS graph. Edges are classified into nine spatial
relationships, including ‘NoRelation’ (see previous Section).
A classifier is used to determine the highest relationship
probability for each edge; NoRelation is filtered to prevent
extracting a forest of disconnected subtrees, which is invalid
for an SLT. Edmonds’ algorithm [25] then extracts a directed
maximum spanning tree from the relationship probabilities on
the symbol LOS graph edges, producing an SLT. The final step
is to classify the symbols in the extracted SLT (for space, this
is not shown in Figure 2). Symbol classification is performed
on segmented symbols using only visual features.

Line-of-Sight Graph Modifications. Some structures in
mathematical expressions directly impact the line-of-sight
graph construction. A common problem is that baseline punc-
tuation such as commas, periods, and dots are blocked by
subscripted expressions (see Figure 6). We modify LOS graphs
to check whether a given symbol has a much smaller blocked
symbol in roughly the subscript region. To restrict where
baseline punctuation is looked for, we use an angle range
of 310-360 degrees in which the child symbol must be at
least 3.5 times smaller than the parent. If so, then an edge
is added from the symbol to its ‘blocked’ symbol in the
subscript region. The second modification reduces the amount
of blocking caused by subscript and superscript symbols. We
define ‘transparent edges’ on the symbol bounding boxes,
where the angle blocked by a child symbol is reduced by
shrinking its apparent bounding box size.

Geometric Features. Geometric features are used for clas-
sification of split/merge relationships between connected com-
ponent pairs, and symbol relationships between symbol pairs.
These features include distance measures, area overlaps and
differences, size ratios, and angles. For pairs of connected
components or symbols a common set of features are dis-
tances and differences based on the bounding boxes around
each stroke/symbol. These distances include: distance between
center points, difference in vertical position of bounding box
tops and bottoms, difference in horizontal positions of left and
right edges, difference in area, and amount of overlapping area.
In particular, we have found that geometric features work well
when trying to discern spatial relationship between symbols.

Classification Models. In the first version of our system,
LPGARg, visual density features were captured using grids and
shape contexts [26]. The resulting histograms for the input
and its local context were combined with geometric features.
The local context was defined using a neighborhood size fixed

2 o
-0 O
gA—— —> Merge -\ /
i Z ReNa -
(.)
T erge

LOS on connected components

Segmentation

N N\
o € 7
0 ‘ (3
) i] D)
<g (o \Riant (.)ﬂi/ N
— 0 - — \Q/R/@% = = %«;/*\
N N\ \z) ® z)

Symbol layout tree

LOS on symbols

Fig. 2: Recognizing formula structure from connected components (CCs) in an image. CCs share an edge if an unobstructed
line can be drawn from one bounding box center to a point on the convex hull of the other. After segmentation, symbols are
connected in a second LOS graph, and the spatial relationships represented by edges are classified. Edmonds’ algorithm then
selects a maximum spanning tree to produce a Symbol Layout Tree (SLT).

relative to the input. Random Forests are used for classification
of symbols and edges.

Features are extracted only from image regions containing
components or symbols sharing an edge in an LOS graph,
and for symbol nodes in the symbol LOS graph. This means
instead of exhaustively searching the input image to find
salient areas, we have a predefined map based on edges
and nodes of the LOS graph (see Figure 3). This allows
us to meaningfully capture visual context without using a
probabilistic/sequential attention model. We instead use hyper-
parameters defining the amount of visual context to use in each
classifier type (binary segmentation, relationship classification,
and symbol classification).

In the second version of our system we use Convolu-
tional Neural Networks for classification of LOS edges and
symbols (LPGAcnn). Visual features for inputs are learned
and extracted automatically by a two channel multi-layer
convolutional neural network, using the standard VGG-16
architecture in each channel [27]. Thus, for each target image,
a parallel branch provides contextual information around the
target for better decision making (see Figure 3). Features
from these two channels are concatenated before being passed
through a softmax layer. For segmenting connected com-
ponents and classifying spatial relationships, the geometric
features described above are added directly to the final feature
vector before classification. All features values are normalized
between [-1,1].

We use the same architecture for classifying pairs of con-
nected components as merge/split (see Figure 3), classifying
relationships between pairs of symbols, and classifying in-
dividual symbols. They differ only in that symbol classifi-
cation takes a single symbol as input rather than a pair of
components/symbols, and so the associated geometric features
for those pairs are not added before the final dense layer.
Figure 3 shows our CNN classifier for segmenting connected
components into symbols, by classifying each edge in a LOS
graph over connected components as ‘merge’ or ‘split’ (see
Figure 2). In Figure 3, the input is the pair of connected
components in the equals sign (=). If we were classifying
the ‘=, processing would stop at the first dense layer.

Implementation and Training. The CNN specifications
are explained in [27] and visualized in Figure 3. We remove

Context
224%224

Target pair
224%224

2

conv 2

| conv 5 | |

| pool 5 | |

l

Global average pooling
(7.7,512)

Global average pooling
(7,7,512)

\/

Concatenate 1
(7,7,1024)

Geometric
Features

Fig. 3: LPGAcnn classification architecture. In this example,
the red edge between connected components in the equals sign
(=) is being classified for symbol segmentation (see Figure 2).
Two independent branches based on VGG-16 blocks represent
the input (left side) and the attention context (right side).
Geometric features are added before the final dense layers.

the fully connected layers and add a Global average pooling
layer followed by a Dense layer with a drop out rate of
0.5. We freeze the first four blocks with the ImageNet pre-
trained weights and train the top layers. Non-trainable layers
are grayed out in Figure 3. We train the two branches jointly
by updating all the trainable weights after passing each batch,
and force the network to use the visual clues from the context
channel to classify the target input. The model has a total of
30.48 million parameters, of which 15.21 million are trainable.
We use an Adam optimizer to learn the parameters. The batch

size was set to 32, momentum to 0.9 and the learning rate
was initially set to 103, and then decreased by a factor of
10 when the validation set accuracy stopped improving. The
training was regularized by weight decay set to 0.004. The
system is built using Keras [28] and experiments were run on
an 8GB Nvidia 1080 GPU.

The implementation used for random forests is from the
python scikit-learn library. We set the parameters at: 50 trees,
maximum tree depth of 40, 30 randomly sampled features at
each node during training, and the Gini measure was used to
select split points. These experiments were run on a server
with an 8-core Intel Xeon E5-2667 processor (3.20 GHz per
core), and 256 GB RAM was available.

IV. THE INFTYMCCDB-2 DATASET

For our experiments we use InftyMCCDB-2, a modified
version of InftyCDB-2 [9] which contains mathematical ex-
pressions from scanned article pages. The dataset has 21,056
mathematical expressions. We remove formulas with matrices
and grids, leaving 19,381 formulas. The dataset includes 213
symbol classes, and is split into two sets: training (12551
images), and testing (6830 images) with approximately the
same distribution of symbol classes and relation classes. The
expressions range in size from a single symbol to more than
75 symbols, with an average of 7.33 symbols per expression.

The original InftyCDB-2 provides ground truth at the
symbol level. We extracted connected component bounding
boxes, and generated new ground truth for each image using
a labeled adjacency matrix (‘label graph’) representation [6].
When generating the CCs, we ensure that each connected
component belongs to at most one symbol, based on character
bounding box information. Table III indicates detection results
on individual symbols. A label graph file stores connected
components with individual identifiers, groupings of com-
ponents into symbols with their labels, and finally directed
Symbol Layout Tree edges.

There are seven spatial relationships in InftyCDB-2: hor-
izontal (HORIZONTAL), right/left superscript (RSUP and
LSUP), right/left subscript (RSUB and LSUB), above (UP-
PER) and below (UNDER). We add an eighth spatial relation
for baseline punctuation (PUNC).

Punctuation Representation. As seen in Figure 4, punctu-
ation symbols are spatially more similar to subscripted sym-
bols than horizontally adjacent symbols. Having punctuation
symbols on the baseline separated from symbols on the main
baseline, and placed in their own nested region relative to their
parent symbol allows horizontal relationships to be represented
in a more consistent manner, and punctuation to be associated
with subexpressions more accurately. Baseline punctuation is
given its own relation class, punctuation (PUNC, see Fig. 4).
PUNC relationships can be easily converted back to HORI-
ZONTAL relationships using a simple graph rewriting rule.

V. SYSTEM DESIGN EXPERIMENTS

A series of experiments were conducted to refine our CNN
classification model for segmentation, symbol relationships,

Expression baseline
Expression and punctuation baseline
Z 1) 23 8
Altered expression structure
Fig. 4: Modifying SLTs for punctuation. As shown in the
middle image, punctuation is represented using horizontal
relationships (red edges) despite the marked shift in vertical

positions. To avoid inconsistent ‘horizontal’ relationships, we
define a punctuation relation (PUNC, shown in green).

and symbols. For each set of experiments, parameters and
structure designs which give the best result in a 5-fold cross
validation were used for testing.

Context. These experiments aimed to study context in
feature extraction. Experiments showed that having context
is helpful in all three tasks. It is expected that contextual
information will be beneficial for labelling edges, but it is
also useful for symbol recognition. Having a more global
view resolves class ambiguities for visually similar classes as
shown in Table I. Symbol classification accuracy on the test
set improves from 98.13% to 99.43% when having a second
branch for context.

How much context should we use? Previous experiments for
LPGARgr found that increasing histogram size to capture more
visual context from surrounding symbols improves classifica-
tion accuracy. We did a grid search to optimize the radius of
the context window in the second channel for each task. We
find a radius factor («), which is multiplied with original target
radius and produce the context radius: reonext = @ X Ttarget- A
radius factor of 1.75, 1.5 and 4.0 produced the best results
for segmentation, parsing and classification respectively. It is
worth noting that the input includes two connected compo-
nents or symbols for segmentation and parsing and only a
single target symbol for classification (7 is larger for the
first two tasks); so the chosen radius for all three tasks provide
similar contextual information.

ALL vs ELSE in context channel. The next set of
experiments, studied whether we should keep the target in
the context window (ALL) or just pass everything around it
(ELSE). We hypothesize that ALL should perform better, as
at some depth in the context channel the field of view will
capture the target, and since the two channels are mutually
trained, it hopefully will learn the target shape. Hence, by
not removing the target from the context channel, the model
can potentially capture some relative positions. Experiments
show little difference between these two situations, e.g., less
than 0.5% for segmentation, so we decided to pass the entire
image region into the context branch.

Early Fusion vs Late Fusion. We also tested alternative

TABLE I: Effect of visual context attention on classification of
similar symbols. Shown are the top-5 most frequent confusions
for visually similar classes before using context, and then after.

Errors
Ground Truth | Prediction | No Aft. | w. Att.
overline (e.g.,) | minus 192 27
fractionline overline 122 10
minus overline 94 9
cdots (---) Idots (...) 21 8
letter | one (1) 18 10

ways of representing contextual information. We initially did
source separation in the inputs by having the target in one
channel, and context in the other channel (early fusion). This
works well when using visual density features in LPGARgg.
Instead of having one visual density histogram, there are three
histograms for parent, child and context. In the convolutional
layers of LPGAcnn, the three channels for parent, child
and context will collapse into one 2D feature map once it
convolves with the first kernel. The kernel moves along the
height and width with the defined stride and its depth is the
same as the inputs, e.g., in first layer kernels have depth
of three if the model accepts RGB images. In other words,
RGB channels of an input image are merged very early and
basically no individual weight is trained for target and context
individually as we hoped.

To have separate weights for the input and context, and
in order to train both mutually, we decided to have a separate
branch for context and merge the branches later in the pipeline.
This allows the network to see the context while focusing more
on the target. It worth mentioning that another advantage of
late fusion is faster convergence during training.

We also explored a three-branch structure in which the
parent and child was fed to the system separately and a third
branch to capture context, but the performance deteriorates
compared to having parent and child as target in one channel.
That could happen due to the fact that we are freezing weights
in the first four convolutional blocks in all three branches, and
thereby not back propagating through all the layers during
training. Without this, training would not converge.

Multi-Resolution Context. Low resolution context im-
proves the result when using visual density in LPGAgg. That
encouraged us to investigate different resolutions for the con-
text channel. Experimental results showed that coarser context
lowers the accuracy. We investigate three different resolution,
224 pixels height and width which is the default size for
VGG16, 112 x 112 pixel resolution and 48 x 48. Decreasing
the context input resolution in symbol classification task with
a late fusion structure and context radius factor of 4 decreases
the accuracy from 99.34(%) into 99.03(%) for halving the
input size and 98.24(%) for the smallest inputs (48 x 48).

Spatial Features on Side Channel. For defining the relation
between connected components in segmentation or symbols
in parsing, relative position of parent and child plays a key
role. We studied whether embedding the structural information
extracted from the input graph into classification is useful. We

concatenate the spatial features extracted from the node pairs
in LOS graphs with the final feature vector before passing
it through the softmax layer. Feature vectors are normalized
using a tanh activation function before concatenation meaning
the last ReLu function is also replaced with tanh for domain
adaptation. The result shows geometric features can improve
the performance of relation classifiers, e.g. from 98.69% to
99.34% for the segmentation task.

VI. EXPERIMENTS ON INFTYMCCDB-2

In this section, we present results for LPGA using random
forests vs. CNNs for classification on the InftyMCCDB-2
dataset. Results are compiled using the LgEval library [6]
created for the CROHME competitions. Our evaluation metrics
are recognition rates for formulas, and F-scores for symbol and
relationship detection and classification.

Expression-Level Results. The main experimental results
show that Line-Of-Sight Parsing with Graph-based Attention is
effective for scanned typeset math expressions (see Table II).
Results are presented under two conditions: from connected
components, and from given symbols (i.e., where segmentation
and classification rates are 100%). From connected compo-
nents, our system recognizes 90.89% of expressions perfectly,
i.e., no error in character recognition or structure analysis.
For comparison, the reported expression rate for the INFTY
system is 89.6% [29] on the original Infty-CDB2 dataset
(i.e., including formulas with matrices and grids). Examples
of correctly recognized formula images from the dataset are
shown in Figure 5.

Table II also shows the percentage of test formulas where
connected components are correctly merged into symbols,
and the number of formulas with correctly segmented and
classified symbols. Similar results are reported for formulas
without relationship errors in Table II. A correctly detected
relationship requires a pair of valid symbols to share or not
share a relationship as indicated in ground truth. Formulas
have correct structure if symbols and relationships are detected
correctly, ignoring their classification. Finally, in the rightmost
column we see the expression rate, where formulas have both
valid structure and symbol/relationship classification.

Using our CNNs rather than random forests improves the
expression rate for raster images, but not for parsing from
given symbols. The biggest improvement produced by our
CNNs is for symbol classification, where the automatically
inferred convolutional features seem to be more effective than
the visual density histograms used in LPGAgg. Our CNN-
based relationship classifier performs just slightly less well
than the random forest model. It is possible that the separation
of each pair of components/symbols in separate channels
might be producing this (very small) improvement. However,
the CNN models provide more opportunity to produce globally
optimized end-to-end trainable systems in the future.

In terms of memory and run time, RF classifiers require
440M space and CNN model size is 700M. The execution time
is 1.38 seconds per sample for LPGAcnn and 1.62 seconds per
sample for LPGARgg, on average.

TABLE II: InftyMCCDB-2 test set results for correct symbol/relationship locations (Detection), correct symbol/relationship
classes (Det.+Class), unlabeled formula SLT structure, and structure with correct labels (Str.+Class). Percentage of correct

formulas are shown.

Symbols Relationships Formulas
| Detection Det.+Class | Detection Det.+Class | Structure Str.+Class
CC Input
LPGARFr 97.18 92.80 93.81 93.25 93.81 90.06
LPGAcCNN 97.29 95.17 93.37 92.59 93.37 90.89
Symbol Input
LPGARFp - - 94.36 93.50 94.36 93.50
LPGACNN - - 94.28 93.00 94.28 93.00

Symbol Segmentation. Table III indicates detection results
for individual symbols. In LPGARgg, the most frequent failure
cases are over segmentation of lower case ¢, and double
prime. In both cases the individual connected components
look like other symbol classes. These cases are segmented
correctly with the aid of context in LPGAcnn. For the CNN,
undersegmentation occurs when two symbols are close to each
other, which probably is a consequence of missing details in
pooling layers. Figure 6 shows some of these segmentation
errors. The most frequent error is merging h with overline.
Another common error is merging 1 with a fraction line.
Interestingly, Table 5 in Mouchere et al. [6] shows that this also
is the most common error for handwritten math expressions
in previous CROHME competitions.

To avoid such confusions, we plan to either extract multi
resolution-feature maps from different convolution blocks to
compensate for fine detailed dropped by pooling layers, or
decrease the number of pooling layers in the context branch.

Symbol Classification. Shape-based classification leads to
the problem of trying to distinguish symbol classes with
identical or similar shapes. In both the CNN and RF ver-
sions of LPGA, use of visual context that improves symbol
classification, as seen for LPGAcny in Table 1.

From Table III, the classifier in LPGAcnn performs slightly
better. Figure 6 shows some of the most common symbol
recognition errors for LPGAcnn. In the first row, the cal-
ligraphic ‘F” is recognized as ‘=’. The confusion between
‘e’ and ‘a’ is not completely solved with context, since their
spatial position does not differ as much as other visually
similar pairs such as fraction line & minus, overline & minus,
etc.

Expression Parsing. Before adding the PUNC spatial rela-
tionship, the two main recognition errors for punctuation were
adding them to the end of a subscripted baseline, or incorrectly
classifying the relation as a subscript instead. After adding
the PUNC relationship, the frequency of these errors were
reduced, and more relationships are detected and correctly
classified, increasing the expression rate by roughly 2% for
the RF and CNN-based models.

A relationship class confusion matrix shows that most
errors are missed relationships, with missed PUNC relation-
ships being the most frequent. The most common errors are
missing PUNC edges between a and comma, and x and
comma. Although our modified LOS construction tries to

[4+4,¢)dw= | (ng—f—aéqbik)

ZXBRZ ZXBR2
j e~ (@) dVU§ C
B (z)

V(z, WO)GB'El_l X By, |wo|<2r,

H(M;z)=n! <%>nnw(a:) ﬁ dw; A\ dw

J=1

Fig. 5: Images correctly recognized by LPGAcnN.-

#ZR,h) pw(d) H=9(E, %)
PinE= mglo)+ Y
Pm=]7'r an—laan) "”l}\b—l[
Lewoym—1

(a) Segmentation (b) Parsing () Symbols

Fig. 6: LPAcnn errors. (a) overline merged with h, prime
merged with ¢, 1 merged with fraction line, comma merged
with dots. (b) Missing LOS edges blocked by subscripts;
missing HOR relation between p and (, missing PUNC relation
between comma and x, and between comma and a. (¢)
Calligraphic F' classified as equal, o confused with a, and
integral classified as f.

avoid problems with subscripted expressions blocking the line-
of-sight between a symbol and its associated comma or other
punctuation, this still occurs with large subscripts (see Figure
6).

VII. CONCLUSION AND FUTURE WORK

We have presented a novel approach for recognizing typeset
formula images, in which we extract features using a simple
attention model organized around a line-of-sight graph over
connected components. Constraining the search space from
pixels to nodes and edges of the attention graph appears to

TABLE III: InftyMCCDB-2 Results for individual symbols
and spatial relationships recognized from connected compo-

nents.
Symbol Detection Symbol Detection + Class
Precision Recall F-score Precision Recall F-score
LPGARgp 99.24 99.44 99.34 98.41 98.61 98.51
LPGAcNN 99.24 99.45 99.35 98.84 99.05 98.95
Relation Detection Relation Detection + Class
Precision Recall F-score Precision Recall F-score
LPGARgr 97.43 98.23 97.33 97.17 97.96 97.56
LPGAcnN 97.71 98.23 97.97 97.48 98.00 97.74

be effective for scanned typeset expressions, and we obtain
strong results using relatively simple classifiers and maximum
spanning tree extraction. Contextual features improved classi-
fication accuracy for merging connected components, spatial
relationships, and symbols.

The current system performs recognition tasks in isolation
using a predefined attention. A promising direction for future
work is training the classifiers jointly on all edges and nodes
in graphs over connected components. This could solve errors
that happen locally by providing a global view of the entire ex-
pression. Another opportunity would be using multi-resolution
feature maps extracted from different convolution blocks, in
order to avoid losing fine details dropped by pooling layers.
Finally, grids, matrices, and tables may be represented as trees,
and we believe that we can generalize our technique to handle
these simply by expanding the set of spatial relationships [30].

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[10]

REFERENCES

R. Zanibbi and D. Blostein, “Recognition and retrieval of mathematical
expressions,” International Journal on Document Analysis and Recog-
nition (IJDAR), vol. 15, no. 4, pp. 331-357, 2012.

R. Zanibbi and A. Orakwue, “Math search for the masses: Multimodal
search interfaces and appearance-based retrieval,” in Conferences on
Intelligent Computer Mathematics. Springer, 2015, pp. 18-36.

A.-M. Awal, H. Mouchere, and C. Viard-Gaudin, “A global learning
approach for an online handwritten mathematical expression recognition
system,” Pattern Recognition Letters, vol. 35, pp. 68-77, 2014.

F. Alvaro, J.-A. Sanchez, and J.-M. Benedi, “An integrated grammar-
based approach for mathematical expression recognition,” Pattern
Recognition, vol. 51, pp. 135-147, 2016.

Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush, “Image-
to-markup generation with coarse-to-fine attention,” arXiv preprint
arXiv:1609.04938, 2016.

H. Mouchere, R. Zanibbi, U. Garain, and C. Viard-Gaudin, “Advancing
the state of the art for handwritten math recognition: the crohme
competitions, 2011-2014,” International Journal on Document Analysis
and Recognition (IJDAR), vol. 19, no. 2, pp. 173-189, 2016.

L. Hu and R. Zanibbi, “Mst-based visual parsing of online handwritten
mathematical expressions,” in 2016 15th International Conference on
Frontiers in Handwriting Recognition (ICFHR). 1EEE, 2016, pp. 337-
342.

——, “Line-of-sight stroke graphs and parzen shape context features
for handwritten math formula representation and symbol segmentation,”
in 2016 15th International Conference on Frontiers in Handwriting
Recognition (ICFHR). 1EEE, 2016, pp. 180-186.

M. Suzuki, S. Uchida, and A. Nomura, “A ground-truthed mathematical
character and symbol image database,” in Document Analysis and
Recognition, 2005. Proceedings. Eighth International Conference on.
IEEE, 2005, pp. 675-679.

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” arXiv preprint
arXiv:1706.05587, 2017.

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]
(27]

[28]
[29]

[30]

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2881-2890.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431-3440.

C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, “Large kernel mat-
tersimprove semantic segmentation by global convolutional network,”
in Computer Vision and Pattern Recognition (CVPR), 2017 IEEE
Conference on. 1EEE, 2017, pp. 1743-1751.

W. Liu, A. Rabinovich, and A. C. Berg, “Parsenet: Looking wider to
see better,” arXiv preprint arXiv:1506.04579, 2015.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” arXiv
preprint arXiv:1511.00561, 2015.

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected crfs,” arXiv preprint arXiv:1412.7062, 2014.

H. Dai Nguyen, A. D. Le, and M. Nakagawa, “Deep neural networks
for recognizing online handwritten mathematical symbols,” in Pattern
Recognition (ACPR), 2015 3rd IAPR Asian Conference on. IEEE,
2015, pp. 121-125.

F. Alvaro and R. Zanibbi, “A shape-based layout descriptor for classi-
fying spatial relationships in handwritten math,” in Proceedings of the
2013 ACM symposium on Document engineering. ~ACM, 2013, pp.
123-126.

R. H. Anderson, “Syntax-directed recognition of hand-printed two-
dimensional mathematics,” in Symposium on Interactive Systems for
Experimental Applied Mathematics: Proceedings of the Association for
Computing Machinery Inc. Symposium. ACM, 1967, pp. 436-459.

J. Zhang, J. Du, and L. Dai, “Multi-scale attention with dense encoder
for handwritten mathematical expression recognition,” arXiv preprint
arXiv:1801.03530, 2018.

F. Alvaro, J.-A. Sanchez, and J.-M. Benedi, “Recognition of on-line
handwritten mathematical expressions using 2d stochastic context-free
grammars and hidden markov models,” Pattern Recognition Letters,
vol. 35, pp. 58-67, 2014.

M. Mahdavi, R. Zanibbi, H. Mouchere, and U. Garain, “ICDAR 2019
CROHME + TFD: Competition on recognition of handwritten math-
ematical expressions and typeset formula detection,” in Proc. ICDAR,
2019, to appear.

Y. Eto and M. Suzuki, “Mathematical formula recognition using virtual
link network,” in Document Analysis and Recognition, 2001. Proceed-
ings. Sixth International Conference on. 1EEE, 2001, pp. 762-767.

J. Edmonds, “Optimum branchings,” Journal of Research of the national
Bureau of Standards B, vol. 71, no. 4, pp. 233-240, 1967.

“Details omitted for anonymous review - not a peer-reviewed publica-
tion,” 2017.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

F. Chollet et al., “Keras,” 2015.

M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T. Kanahori, “Infty:
an integrated ocr system for mathematical documents,” in Proceedings
of the 2003 ACM symposium on Document engineering. ACM, 2003,
pp. 95-104.

R. Zanibbi, K. Davila, A. Kane, and F. W. Tompa, “Multi-stage math
formula search: Using appearance-based similarity metrics at scale,” in
Proc. Int’l ACM SIGIR Conference on Research and Development in
Information Retrieval, 2016, pp. 145-154.

