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ABSTRACT: We present the first application of machine learning on per- and
polyfluoroalkyl substances (PFAS) for predicting and rationalizing carbon−fluorine
(C−F) bond dissociation energies to aid in their efficient treatment and removal.
Using a variety of machine learning algorithms (including Random Forest, Least
Absolute Shrinkage and Selection Operator Regression, and Feed-forward Neural
Networks), we were able to obtain extremely accurate predictions for C−F bond
dissociation energies (with deviations less than 0.70 kcal/mol) that are within
chemical accuracy of the PFAS reference data. In addition, we show that our machine
learning approach is extremely efficient, requiring less than 10 min to train the data
and less than a second to predict the C−F bond dissociation energy of a new
compound. Most importantly, our approach only needs knowledge of the simple
chemical connectivity in a PFAS structure to yield reliable resultswithout recourse
to a computationally expensive quantum mechanical calculation or a three-
dimensional structure. Finally, we present an unsupervised machine learning algorithm that can automatically classify and
rationalize chemical trends in PFAS structures that would otherwise have been difficult to humanly visualize or process
manually. Collectively, these studies (1) comprise the first application of machine learning techniques for PFAS structures to
predict/rationalize C−F bond dissociation energies and (2) show immense promise for assisting experimentalists in the targeted
defluorination of specific bonds in PFAS structures (or other unknown environmental contaminants) of increasing complexity.

■ INTRODUCTION

The efficient treatment and removal of per- and polyfluoroalkyl
substances (PFAS) continues to garner immense interest due to
their deleterious health effects and widespread presence in
surface and groundwater sources. In particular, PFAS have been
detected in hundreds of locations worldwide and have been
linked to harmful health effects in the liver, kidneys, blood, and
immune system.1,2 One of the most common ways that PFAS
contaminants impact the environment is through their presence
in high-performance firefighting foams, which are used to
extinguish fuel-based fires.3−5 In addition, these compounds are
also used in many nonstick and stain-repellent household
products and can be unintentionally introduced into the
environment when manufacturing waste is improperly disposed
of.6,7 Because PFAS molecules contain a variety of strong
carbon−fluorine (C−F) bonds, they become persistent in the
environment and are extremely difficult to treat/remove once
they have contaminated water resources.8,9

While long-chain PFAS molecules such as perfluorooctanoic
acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are no
longer manufactured in the U.S., many smaller-chain PFAS are
still in widespread use. For example, aqueous film-forming foams

used in high-performance fire extinguishers contain at least
hundreds of PFAS structures,3,4,10,11 many of which are
composed of fluorocarbon chains of varying lengths and a
diversity of organic head groups. Because of this immense
chemical diversity, prior works by us12 and others13−15 have
shown that the efficient cleanup of these contaminated sites can
only be attained if all the PFAS species (not just PFOA or PFOS
alone) are properly accounted for and treated. However, the
sheer number and variety of PFAS contaminants is immense,
and an in-depth experimental (or even theoretical) study of this
nearly limitless number of chemical compounds is extremely
difficult.
We show for the first time that PFAS species and their

defluorinationmechanisms are natural candidates for harnessing
machine learning approaches. Over the past few years, our
society has witnessed an unprecedented growth in the use of
machine learning and artificial intelligence in technological

Received: August 3, 2019
Revised: September 6, 2019
Accepted: September 9, 2019
Published: September 9, 2019

Letter

pubs.acs.org/journal/estlcuCite This: Environ. Sci. Technol. Lett. 2019, 6, 624−629

© 2019 American Chemical Society 624 DOI: 10.1021/acs.estlett.9b00476
Environ. Sci. Technol. Lett. 2019, 6, 624−629

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

A
LI

FO
R

N
IA

 S
A

N
 D

IE
G

O
 o

n 
O

ct
ob

er
 8

, 2
01

9 
at

 1
9:

19
:4

4 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

pubs.acs.org/journal/estlcu
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.estlett.9b00476
http://dx.doi.org/10.1021/acs.estlett.9b00476


applications such as automated medical diagnostics software,16

handwriting recognition,17 computer vision,18 and autonomous
vehicles19 (to name a select few). While there has been prior
work on using machine learning approaches for chemical/
material applications,20−23 these advanced algorithms have not
been previously applied to PFAS-based environmental studies
with the specific purpose of predicting/rationalizing C−F bond
dissociation energies to aid in their efficient treatment/removal.
In this work, we show that the sheer variety of PFAS structures
and defluorination mechanisms naturally lends itself to a data-
drivenmachine learning approach, which can subsequently yield
both efficient and accurate results. By training a computer on
over 560 distinct C−F bond energies found in representative
PFAS molecules (cf. Figure S1 in the Supporting Information),
we show that a machine learning algorithm can give extremely
accurate predictions (deviations less than 0.70 kcal/mol) that
are within chemical accuracy of the PFAS reference data.
Furthermore, our machine learning approach is extremely
efficient and only requires knowledge of the chemical
connectivity of a PFAS molecule (i.e., a user can simply sketch
an arbitrary PFAS structure by hand on paper, which can be
entered into our machine-learned model to predict an accurate
C−F bond dissociation in a few seconds). Finally, we show that
advanced machine learning algorithms can be used to (1)
automatically classify the C−F bonds across a variety of PFAS
structures and (2) rationalize chemical trends in these structures
without any human intervention. Collectively, these studies
comprise the first application of machine learning techniques for
PFAS structures, with the specific purpose of predicting/
rationalizing C−F bond dissociation energies to aid in their
efficient treatment and removal.

■ MATERIALS AND METHODS

To predict and understand C−F bond dissociation energies in
various PFAS structures of environmental importance, we
utilized a variety of machine learning techniques that include
Random Forest, Least Absolute Shrinkage and Selection
Operator (LASSO) Regression, Feed-forward Neural Network
(FNN), and t-distributed Stochastic Neighbor Embedding (t-
SNE) algorithms.17 The first three algorithms are categorized as
supervised machine learning techniques since they require
training data that is prelabeled by a teacher/expert (i.e., in a
“supervised” fashion). Regression methods in each of these
algorithms are then subsequently used to find patterns in the
data via different optimization techniques. In the context of the
PFAS structures examined in this work, the “labels” are the
density functional theory (DFT) computed C−F bond
dissociation energies, and the desired output from each of
these algorithms is an accurate prediction of a C−F bond
dissociation energy of a PFAS structure not in the original training
data set. The last t-SNE algorithm mentioned previously is an
unsupervised machine learning technique since no training
labels are given, and the algorithm must find patterns in the data
on its own (i.e., in an “unsupervised” fashion) to determine how
to categorize/cluster the provided data. In the context of the
present study, the goal of the t-SNE machine learning algorithm
is to categorize all of the PFAS C−F bond dissociation energies
into clusters/families (described further in the Results and
Discussion section) to understand which chemical functional
groups are responsible for the observed bond dissociation
energies. Further algorithmic details for the four machine
learning approaches and additional information on our DFT

calculations are given in prior works12,24 and in the Supporting
Information.
To utilize the various machine learning approaches, we

require a set of chemical descriptors to enable a computer to
autonomously and rapidly process this extensive data set. For
practical/efficiency purposes, the chosen descriptors should not
be expensive to compute and, therefore, should satisfy the
following four requirements for describing PFAS molecular
structures: the desired chemical descriptor should (1) use a
simple algorithm, (2) not rely on a quantum chemistry
calculation to be carried out, (3) not require an optimized 3D
geometry of the molecule, and (4) not explicitly use bond orders
(i.e., single or double bonds). These requirements were
specifically followed since any descriptor requiring a complex
calculation (such as an optimized 3D geometry) would defeat
the purpose of using machine learning since creation of the
descriptor, in essence, would just be as complicated as doing a
quantum calculation/optimization itself. To satisfy these
requirements, we have chosen to utilize the chemically intuitive
bond descriptor scheme by Qu et al.,25 which utilizes the
Chemistry Development Kit libraries.26 Although the prior work
by Qu et al. originally focused on organic molecules containing
H, C, N, O, and S atoms, we have modified their open-source
Java-based source code (available for download at http://www.
bmwong-group.com/software) to include various C−F bond
descriptors for the PFAS structures examined in this study.
Within this scheme, geometric boundaries or “spheres” are used
to encode the distance between the target bond of interest and
the other atoms in the molecule. To visually conceptualize this
more easily, Figure 1 gives a graphical representation of the
various spheres and bond descriptors for dissociating a specific
C−F bond in a prototypical PFAS molecule. In this scheme,
each atom is labeled according to its element name and
coordination number. For example, the carbon atom in a
methane molecule would be labeled as C4 (since it is
coordinated to four hydrogen atoms), the carbon atom in
ethylene would be labeled as C3, and so on. For all of the
molecules in this study, we consider only 15 atom types: C2, C3,
C4, H1, N1, N2, N3, N4, O1, O2, S1, S2, S3, S4, and F1. As
shown in Figure 1, the classification of atoms in different spheres
is based on their distance between itself and an atom in the target
bond on the shortest possible path.25 For example, atoms 1 and 6
are involved in the target C−F bond to be dissociated and
belong to sphere 0; atoms 2, 3, and 5 are one bond away from the
target 1−6 bond and, therefore, belong to sphere 1, and so on.
With the atom labels and spheres properly defined for each

unique PFAS C−F bond, this information can be encoded as a
point descriptor table, which is shown in Figure 1c. Simply put,
the individual entries in this table correspond to the number of
atom types in a specific sphere. Next, a pair descriptor table (not
shown in Figure 1) can be constructed, which contains
information on the number of pairs of atom types in specific
spheres at designated distances between them. Together, these
simple descriptors can be automatically processed via machine
learning algorithms to accurately predict a C−F bond
dissociation energy of a general PFAS molecule.

■ RESULTS AND DISCUSSION
In this section, we compare the performance of each of the
machine learning algorithms on predicting C−F bond
dissociation energies for a variety of PFAS molecular structures.
Among the three supervised machine learning approaches
examined in this work (i.e., Random Forest, LASSO Regression,
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and FNN), the FNN algorithm (available as a standalone
Python code within a .zip file in the Supporting Information) is
the most complex and was originally designed to “learn” highly
convoluted patterns in the underlying data, as discussed below.
Figure 2 shows a schematic of our one-hidden-layer neural
network, which consists of one input layer, one fully connected
hidden layer, and one output neuron. In the context of our
current study, the various PFAS bond descriptors were used in
the input layer, and the output was the predicted PFAS bond
dissociation energy. Within the hidden layer, a numerical
mapping occurs between the input and output layers, which is
described/controlled by mathematical activation functions.
As is customary for any supervised machine learning

approach, we subdivided the data into two sets: a training and
test set, described further below. Among the 564 unique C−F
bond dissociation energies, 414 randomly chosen C−F bonds
were utilized in the training set to enable each of the three
supervised machine learning algorithms to autonomously learn
patterns in the data. The remaining 150 C−F bond dissociation

energies were then subsequently utilized to test the predictive
performance of each machine learning algorithm, as shown in
Figure 3. The diagonal line in all of these figures represents an
ideal 100% agreement between that particular machine learning
algorithm and the corresponding reference DFT bond
dissociation energies. Among the three supervised machine
learning algorithms, Figure 3 shows that the FNN approach
yields predictions that are in excellent agreement with the
referenceDFT data with an impressiveR2 value of 0.93. Tomake
an additional comparison across the various supervised machine
learning algorithms, we calculated the Mean Absolute Deviation
(MAD) and Root Mean Squared Error (RMSE) from our
reference DFT bond dissociation energies for the Random
Forest, LASSO Regression, and FNN approaches in Table 1
based on the four-sphere bond descriptor model described
previously. Themost salient result of Figure 3 and Table 1 is that
the FNN machine learning algorithm gives strikingly accurate
predictions (MAD = 0.70 kcal/mol) that are within chemical
accuracy of the PFAS bond dissociation reference data. In other
words, the error introduced by the FNN algorithm is quite small
and within the accuracy of the employed theoretical method
(namely, B3LYP+D3BJ/6-311+G(2d,2p)).
As a final example of utilizing machine learning approaches to

understand PFAS defluorination mechanisms, Figure 4 plots the
classifications/trends resulting from the t-SNE algorithm, which
is an unsupervised machine learning approach for finding
patterns in the data without any prior training labels from the
user. In simple terms, the t-SNE algorithm allows the
visualization of high-dimensional data as two-dimensional
“clusters”, where data points grouped within a cluster share
similar characteristics with each other. In the context of our
study on PFAS molecules, Figure 4 shows that C−F bonds with
similar bond dissociation energies are automatically clustered
together by the t-SNE algorithm. Specifically, C−F bonds with
large dissociation energies (enclosed by the yellow ellipse for
clarity) are mostly attached to the terminal end groups of
molecules. In contrast, C−F bonds with low dissociation
energies (enclosed by the blue ellipse) arise from branched
molecules. Finally, clusters enclosed by the lime green ellipse at
the bottom of Figure 4 represent C−F bonds that are mostly
adjacent to the terminal carbon of themolecule, whereas clusters
enclosed by the teal green ellipse arise from C−F bonds that
exist in the middle of the molecular chain. It is important to
reiterate that these clusters/classifications were automatically
chosen by the unsupervised t-SNE machine learning algorithm
(without human intervention). As such, these results demon-

Figure 1. Schematic of the chemical descriptors and data used by our
machine learning algorithms to autonomously and rapidly process C−F
bond dissociation energies in general PFAS structures. Panel (a) depicts
a specific target C−F bond to be dissociated, and panel (b) shows the
atom labeling scheme and spheres used to construct the point
descriptor table in panel (c). It is important to note that the 3D and 2D
structures in panels (a) and (b) are shown only for illustrative purposes
and are not used by ourmachine learning algorithms, whereas the simple
pair descriptor table in panel (c) encodes the actual data that is used by
the machine learning algorithms in this work.

Figure 2. Schematic of the Feed-forward Neural Network used to
predict PFAS bond dissociation energies in this work. PFAS bond
descriptors are used in the input layer, which is subsequently processed
by a hidden layer to learn a (nonlinear) mathematical mapping for
generating predicted PFAS bond dissociation energies at the output
layer.

Environmental Science & Technology Letters Letter

DOI: 10.1021/acs.estlett.9b00476
Environ. Sci. Technol. Lett. 2019, 6, 624−629

626

http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.9b00476/suppl_file/ez9b00476_si_002.zip
http://dx.doi.org/10.1021/acs.estlett.9b00476


strate that the t-SNE algorithm can be a useful tool for
automatically classifying and rationalizing chemical trends in
PFAS structures that would otherwise have been difficult to
humanly visualize or process manually.
In conclusion, we have presented the first application of

machine learning on PFAS structures with the specific purpose
of predicting/rationalizing C−F bond dissociation energies to
aid in efficient PFAS treatment and removal. Using a variety of
supervised machine learning algorithms (including Random
Forest, LASSO Regression, and FNN approaches), we were able
to demonstrate that the sheer variety of PFAS structures and
defluorination mechanisms naturally lends itself to a machine
learning approach, which can subsequently yield both efficient
and accurate results. In terms of efficiency, we have shown that
our machine-learned model only requires knowledge of the

Figure 3.Comparison of the accuracy among the (a) RandomForest, (b) LASSORegression, and (c) FNNmachine learning algorithms for predicting
C−F bond dissociation energies in the PFAS test set. The diagonal line in each panel represents a perfect match between that particular machine
learning algorithm and the corresponding reference DFT data.

Table 1. Mean Absolute Deviation (MAD) and Root Mean
Squared Error (RMSE) Values for Each of the Three
Supervised Machine Learning Algorithms on Predicting
PFAS Bond Dissociation Energiesa

Random
Forest

LASSO
Regression

Feed-forward Neural
Network (FNN)

MAD (kcal/mol) 2.42 (1.77) 1.96 (1.44) 0.70 (0.51)
RMSE (kcal/mol) 2.65 (1.94) 1.87 (1.37) 1.22 (0.89)

aThe values in parentheses correspond to MADs and RSMEs
Computed on a log10(K) scale (i.e., MAD/RSME values divided by
2.303·R·T).

Figure 4.Clustering/categorization of C−F bond dissociation energies
in various PFAS structures automatically predicted by the t-SNE
machine learning algorithm. The yellow ellipse encloses C−F bonds
attached to the terminal end groups of molecules and have large
dissociation energies; in contrast, the blue ellipse contains C−F bonds
in branched molecules and have low dissociation energies. Clusters
enclosed by the lime green ellipse are associated with C−F bonds
adjacent to the terminal carbon of the molecule, whereas clusters
enclosed by the teal green ellipse arise fromC−F bonds in the middle of
the molecular chain.
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simple chemical connectivity in a PFAS structure (i.e., neither a
3D geometry nor even a rough estimate of bond lengths/
orientations are required) to yield reliable results. In other
words, a user can simply sketch an arbitrary PFAS structure by
hand on paper that can be entered into our machine-learned
model to obtain accurate dissociation energies for any of its C−F
bonds in less than a second (without having to do a
computationally expensive quantum mechanical optimization
or frequency calculation). In terms of accuracy, we have shown
that the FNN machine learning algorithm gives extremely
accurate predictions (deviations less than 0.70 kcal/mol) that
are within chemical accuracy of the PFAS reference data;
therefore, this approach can be used to predict bond dissociation
energies for other unexplored PFASmolecules of environmental
significance. In our final application of machine learning, we
have shown that the unsupervised t-SNE machine learning
algorithm can automatically categorize and rationalize chemical
trends in PFAS structures that would otherwise have been
difficult to humanly visualize/process manually. Taken together,
the combined use of the t-SNE algorithm with the highly
accurate/efficient FNN machine learning approach shows
immense promise for assisting experimentalists in the targeted
defluorination of specific bonds in PFAS structures (or other
environmental contaminants) of increasing complexity.
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