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Abstract

Point cloud registration is a key problem for computer
vision applied to robotics, medical imaging, and other ap-
plications. This problem involves finding a rigid transfor-
mation from one point cloud into another so that they align.
Iterative Closest Point (ICP) and its variants provide sim-
ple and easily-implemented iterative methods for this task,
but these algorithms can converge to spurious local optima.
To address local optima and other difficulties in the ICP
pipeline, we propose a learning-based method, titled Deep
Closest Point (DCP), inspired by recent techniques in com-
puter vision and natural language processing. Our model
consists of three parts: a point cloud embedding network,
an attention-based module combined with a pointer gener-
ation layer to approximate combinatorial matching, and a
differentiable singular value decomposition (SVD) layer to
extract the final rigid transformation. We train our model
end-to-end on the ModelNet40 dataset and show in several
settings that it performs better than ICP, its variants (e.g.,
Go-ICP, FGR), and the recently-proposed learning-based
method PointNetLK. Beyond providing a state-of-the-art reg-
istration technique, we evaluate the suitability of our learned
features transferred to unseen objects. We also provide pre-
liminary analysis of our learned model to help understand
whether domain-specific and/or global features facilitate
rigid registration.

1. Introduction

Geometric registration is a key task in many compu-
tational fields, including medical imaging, robotics, au-
tonomous driving, and computational chemistry. In its most
basic incarnation, registration involves the prediction of a
rigid motion to align one shape to another, potentially obfus-
cated by noise and partiality.

Many modeling and computational challenges hamper the
design of a stable and efficient registration method. Given ex-
act correspondences, singular value decomposition yields the
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Figure 1. Left: a moved guitar. Right: rotated human. All methods
work well with small transformation. However, only our method
achieve satisfying alignment for objects with sharp features and
large transformation.

globally optimal alignment; similarly, computing matchings
becomes easier given some global alignment information.
Given these two observations, most algorithms alternate be-
tween these two steps to try to obtain a better result. The re-
sultant iterative optimization algorithms, however, are prone
to local optima.

The most popular example, Iterative Closest Point (ICP)
[5, 40], alternates between estimating the rigid motion based



on a fixed correspondence estimate and updating the corre-
spondences to their closest matches. Although ICP mono-
tonically decreases a certain objective function measuring
alignment, due to the non-convexity of the problem, ICP
often stalls in suboptimal local minima. Many methods
[37, 13, 55] attempt to alleviate this issue by using heuristics
to improve the matching or by searching larger parts of the
motion space SE(3). These algorithms are typically slower
than ICP and still do not always provide acceptable output.

In this work, we revisit ICP from a deep learning perspec-
tive, addressing key issues in each part of the ICP pipeline us-
ing modern machine learning, computer vision, and natural
language processing tools. We call our resulting algorithm
Deep Closest Point (DCP), a learning-based method that
takes two point clouds and predicts a rigid transformation
aligning them.

Our model consists of three parts: (1) We map the input
point clouds to permutation/rigid-invariant embeddings that
help identify matching pairs of points (we compare PointNet
[33] and DGCNN [50] for this step); then, (2) an attention-
based module combining pointer network [48, 46] predicts
a soft matching between the point clouds; and finally, (3) a
differentiable singular value decomposition layer predicts
the rigid transformation. We train and test our model end-
to-end on ModelNet40 [52] in various settings, showing our
model is not only efficient but also outperforms ICP and
its extensions, as well as the recently-proposed PointNetLK
method [18]. Our learned features generalize to unseen
data, suggesting that our model is learning salient geometric
features.

Contributions: Our contributions include the following:

o We identify sub-network architectures designed to address
difficulties in the classical ICP pipeline.

e We propose a simple architecture to predict a rigid trans-
formation aligning two point clouds.

e We evaluate efficiency and performance in several settings
and provide an ablation study to support details of our
construction.

e We analyze whether local or global features are more
useful for registration.

e We release our code to facilitate reproducibility and future
research.

2. Related Work

Point cloud registration methods: ICP [5] is the best-
known algorithm for solving rigid registration problems; it
alternates between finding point cloud correspondences and
solving a least-squares problem to update the alignment. ICP
variants [37, 40, 6] consider issues with the basic method,
like noise, partiality, and sparsity; probabilistic models [2,

, 19] also can improve resilience to uncertain data. ICP
can be viewed as an optimization algorithm searching jointly

for a matching and a rigid alignment. Hence, [|3] propose
using the Levenberg—Marquardt algorithm to optimize the
objective directly, which can yield a better solution. For
more information, [32, 37] summarize ICP and its variants
developed over the last 20 years.

ICP-style methods are prone to local minima due to non-
convexity. To find a good optimum, Go-ICP [55] uses a
branch-and-bound (BnB) method to search the motion space
SE(3). It outperforms local ICP methods when a global
solution is desired but is several orders of magnitude slower
than other ICP variants despite using local ICP to acceler-
ate the search process. Other methods attempt to identify
global optima using Riemannian optimization [36], convex
relaxation [27], and mixed-integer programming [21].

Recently, descriptor learning methods have brought sig-
nificant progress in point cloud registration: 3DMatch [59]
proposes learning a local volumetric patch descriptor to es-
tablish correspondences; 3DFeatNet [56] takes similar ap-
proach to point cloud representation for local regions; PPF-
FoldNet [9] uses a folding-based autoencoder to learn a lo-
cal descriptor; and 3DSmoothNet [14] employs a voxelized
smoothed density value (SDV) representation for descriptor
learning. The critical difference between our algorithm and
these techniques is that we carry out end-to-end registration
prediction while the others target descriptor learning. Also,
these works rely on keypoint detection and outlier removal
using RANSAC. Concurrent work [26] proposes an end-
to-end pipeline for point cloud registration. A significant
difference is that theirs computes loss for each point sample
while ours optimizes the registration objective directly.

Learning on graphs and point sets: A broad class of
deep architectures for geometric data termed geometric deep
learning [7] includes recent methods learning on graphs
[51, 60, 12] and point clouds [33, 34, 50, 57].

The graph neural network (GNN) is introduced in [39];
similarly, [11] defines convolution on graphs (GCN) for
molecular data. [24] uses renormalization to adapt to the
graph structure and applies GCN to semi-supervised learning
on graphs. MoNet [28] learns a dynamic aggregation func-
tion based on the graph structure, generalizing GNN. Finally,
graph attention networks (GAT) [47] incorporate multi-head
attention into GCN. DGCNN [50] (discussed below) can be
regarded as a graph neural network applied to point clouds
with dynamic edges.

Another branch of geometric deep learning includes Point-
Net [33] and other algorithms designed to process point
clouds. PointNet can be seen as applying GCN to graphs
without edges, mapping points in R? to high-dimensional
space. PointNet only encodes global features gathered from
the point cloud’s embedding, impeding application to tasks
involving local geometry. To address this issue, PointNet++
[34] applies a shared PointNet to k-nearest neighbor clus-
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Figure 2. Network architecture for DCP, including the Transformer module for DCP-v2.

ters to learn local features. As an alternative, DGCNN [50]
explicitly recovers the graph structure in both Euclidean
space and feature space and applies graph neural networks
to the result. PCNN [3] uses an extension operator to define
convolution on point clouds, while PointCNN [25] applies
Euclidean convolution after applying a learned transforma-
tion. Finally, SPLATNet [43] encodes point clouds on a
lattice and performs bilateral convolution. All these works
aim to apply convolution-like operations to point clouds and
extract local geometric features.

Sequence-to-sequence learning and pointer networks:
Many tasks in natural language processing, including ma-
chine translation, language modeling, and question answer-
ing, can be formulated as sequence-to-sequence (seq2seq)
problems. [45] first uses deep neural networks (DNN) to
address seq2seq problems at large scale. Seq2seq, however,
often involves predicting discrete tokens corresponding to
positions in the input sequence. This problem is difficult
because there is an exponential number of possible match-
ings between input and output positions. Similar problems
can be found in optimal transport [41, 31], combinatorial
optimization [20], and graph matching [54]. To address this
issue, in our registration pipeline we use a related method to
Pointer Networks [48], which use attention as a pointer to
select from the input sequence. In each output step, a Pointer
Network predicts a distribution over positions and uses it as
a “soft pointer.” The pointer module is fully differentiable,
and the whole network can be trained end-to-end.

Non-local approaches: To denoise images, non-local
means [8] leverages the simple observation that Gaussian
noise can be removed by non-locally weighted averaging
all pixels in an image. Recently, non-local neural networks
[49] have been proposed to capture long-range dependencies
in video understanding; [53] uses the non-local module to
denoise feature maps to defend against adversarial attacks.
Another instantiation of non-local neural networks, known as

relational networks [38], has shown effectiveness in visual
reasoning [38], meta-learning [44], object detection [17],
and reinforcement learning [58]. Its counterpart in natural
language processing, attention, is arguably the most fruitful
recent advance in this discipline. [46] replaces recurrent neu-
ral networks [22, 16] with a model called the Transformer,
consisting of several stacked multi-head attention modules.
Transformer-based models [10, 35] outperform other recur-
rent models by a considerable amount in natural language
processing. In our work, we also use a Transformer to learn
contextual information of point clouds.

3. Problem Statement

In this section, we formulate the rigid alignment prob-
lem and discuss the ICP algorithm, highlighting key is-
sues in the ICP pipeline. We use X and ) to denote two
point clouds, where X = {z1,...,x;,...,zx} C R? and
YV=A{y,,... Yy , Y} C R3. For ease of notation, we
consider the simplest case, in which M = N. The meth-
ods we describe here extend easily to the M # N case
because DGCNN, Transformer, and Softmax treat inputs as
unordered sets. None requires X and ) to have the same
length or a bijective matching.

In the rigid alignment problem, we assume ) is trans-
formed from X by an unknown rigid motion. We denote the
rigid transformation as [Rxy,txy]| where Rxy € SO(3)
and tyy € R®. We want to minimize the mean-squared
error E(Rxy,txy), which—if X’ and Y are ordered the
same way (meaning x; and y, are paired)—can be written

N
1
E(Rxy,txy) = S IRxyzi +tay —yill>. (D)
[

Define centroids of X and Y as

1 o 1
EZN;% and y:N;yi. 2)



Then the cross-covariance matrix H is given by

H = Z(-’v ~Z)(y; ~ ). S)

We can use the singular value decomposition (SVD) to de-
compose H = USV ". Then, the alignment minimizing
E(-,-)in (1) is given in closed-form by

Ryy=VU' and tyy=-RyyT+7. 4
Here, we take the convention that U, V' € SO(3), while S is
diagonal but potentially signed; this accounts for orientation-
reversing choices of H. This classic orthogonal Procrustes
problem assumes that the point sets are matched to each
other, that is, that =; should be mapped to y; in the final
alignment for all ¢. If the correspondence is unknown, how-
ever, the objective function £ must be revised to account for
matching:

N
1
E(Rxy,txy)= NZHRXW% Ftxy — Yma - S)
i

Here, a mapping m from each point in X to its corresponding
point in ) is given by

m(z;,Y) = argmin | Rxyx; +txy —y;l.  (g)
J

Equations (5) and (6) form a classic chicken-and-egg
problem. If we know the optimal rigid transformation
[Rxy,txy], then the mapping m can be recovered from
(6); conversely, given the optimal mapping m, the transfor-
mation can be computed using (4).

ICP iteratively approaches a stationary point of F in (5),
including the mapping m(-) as one of the variables in the
optimization problem. It alternates between two steps: find-
ing the current optimal transformation based on a previous
mapping m*~! and finding an optimal mapping m”* based
on the current transformation using (6), where k£ denotes
the current iteration. The algorithm terminates when a fixed
point or stall criterion is reached. This procedure is easy to
implement and relatively efficient, but it is extremely prone
to local optima; a distant initial alignment yields a poor
estimate of the mapping m, quickly leading to a situation
where the algorithm gets stuck. Our goal is to use learned
embeddings to recover a better matching m(-) and to use
this matching to compute a rigid transformation, as we will
detail in the next section.

4. Deep Closest Point

Having established preliminaries about the rigid align-
ment problem, we are now equipped to present our Deep
Closest Point architecture, illustrated in Figure 2. In short,

we embed point clouds into high-dimensional space using
PointNet [33] or DGCNN [50] (§4.1), encode contextual
information using an attention-based module (§4.2), and fi-
nally estimate an alignment using a differentiable SVD layer

(§4.4).
4.1. Initial Features

The first stage of our pipeline embeds the unaligned input
point clouds X and Y into a common space used to find
matching pairs of points between the two clouds. The goal
is to find an embedding that quotients out rigid motion while
remaining sensitive to relevant features for rigid matching.
We evaluate two possible choices of learnable embedding
modules, PointNet [33] and DGCNN [50].

Since we use per-point embeddings of the two input
point clouds to generate a mapping m and recover the
rigid transformation, we seek a feature per point in the
input point clouds rather than one feature per cloud. For
this reason, in these two network architectures, we use the
representations generated before the last aggregation func-
tion, notated Fr = {zf zf . zf . zk} and Fy =
{yf yk .. yF, ... y%}, assuming a total of L layers.

In more detail, PointNet takes a set of points, embeds each
by a nonlinear function from R? into a higher-dimensional
space, and optionally outputs a global feature vector for the
whole point cloud after applying a channel-wise aggregation
function f (e.g., max or }_). Let x! be the embedding of
point ¢ in the [-th layer, and let hla be a nonlinear function
in the [-th layer parameterized by a shared multilayer per-
ceptron (MLP). Then, the forward mechanism is given by
2! = bl ).

While PointNet largely extracts information based on the
embedding of each point in the point cloud independently,
DGCNN explicitly incorporates local geometry into its rep-
resentation. In particular, given a set of points X', DGCNN
constructs a k-NN graph G, applies a nonlinearity to the
values at edge endpoints to obtain edgewise values, and per-
forms vertex-wise aggregation (max or ) ) in each layer.
The forward mechanism of DGCNN is thus

o= f({hp(@ @ ) Vi EeND, D

where N; denotes the neighbors of vertex 4 in graph G. While
PointNet features do not incorporate local neighborhood in-
formation, we find empirically that DGCNN’s local features
are critical for high-quality matching in subsequent steps of
our pipeline (see §6.1).

4.2. Attention

Our transition from PointNet to DGCNN is motivated
by the observation that the most useful features for rigid
alignment are learned jointly from local and global informa-
tion. We additionally can improve our features for matching
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by making them task-specific, that is, changing the features
depending on the particularities of X and ) together rather
than embedding X and ) independently. That is, the task
of rigidly aligning, say, organic shapes might require differ-
ent features than those for aligning mechanical parts with
sharp edges. Inspired by the recent success of BERT [10],
non-local neural networks [49], and relational networks [38]
using attention-based models, we design a module to learn
co-contextual information by capturing self-attention and
conditional attention.

Take Fx and Fy to be the embeddings generated by the
modules in §4.1; these embeddings are computed indepen-
dently of one another. Our attention model learns a function
¢ RVXP 5 RNXP _ RNXP ‘\where P is embedding di-
mension, that provides new embeddings of the point clouds
as

Oy = Fx + ¢(Fx, Fy)
oy = Fy + ¢(Fy, Fx)

Notice we treat ¢ as a residual term, providing an addi-
tive change to Fx and Fy depending on the order of its
inputs. The idea here is that the map Fx — ®» modifies
the features associated to the points in X in a fashion that is
knowledgeable about the structure of ); the map Fy, — @y
serves a symmetric role. We choose ¢ as an asymmetric
function given by a Transformer [46]. The Transformer is a
framework to solve sequence-to-sequence problems. It con-
sists of several stacked encoder-decoder layers. The encoder
takes one sequence/set (F x) and encodes it to an embedding
space by using a self-attention layer and shared multi-layer
perceptron (MLP). The decoder has two parts: The first
part takes another sequence/set (Fy) and encodes it in the
same way as the encoder, and the second part relates two
embedded sequences/sets using co-attention. Therefore, the
output embeddings (® x and ®y,) have contextual informa-
tion from both sequences/sets (Fx and Fy). The matching
problem we encounter in rigid alignment is analogous to the
sequence-to-sequence problem that inspired its development,
other than their use of positional embeddings to describe
where words are in a sentence.

®)

4.3. Pointer Generation

The most common failure mode of ICP occurs when the
matching estimate m” is far from optimal. When this occurs,
the rigid motion subsequently estimated using (6) does not
significantly improve alignment, leading to a spurious local
optimum. As an alternative, our learned embeddings are
trained specifically to expose matching pairs of points using
a simple procedure explained below. We term this step
pointer generation, again inspired by terminology in the
attention literature introduced in §4.2.

To avoid choosing non-differentiable hard assignments,
we use a probabilistic approach that generates a (singly-
stochastic) “soft map” from one point cloud into the other.

That is, each x; € X is assigned a probability vector over
elements of Y given by

m(x;, V) = softmax(q)yq);). )

Here, ®, € RV*P denotes the embedding of ) generated
by the attention module, and ®,, denotes the i-th row of
the matrix ® » from the attention module. We can think of
m(x;, ) as a soft pointer from each x; into the elements of

V.
4.4. SVD Module

The final module in our architecture extracts the rigid
motion from the soft matching computed in §4.3. We use
the soft pointers to generate a matching averaged point in )
for each point in X:

9, =Y 'm(z;,Y) € R (10)

Here, we define Y € RV*3 to be a matrix containing the
points in Y. Then, Rxyy and txy are extracted using (4)
based on the pairing x; — ¥, over all <.

To backpropagate gradients through the networks, we
need to differentiate the SVD. [29] describes a standard
means of computing this derivative; versions of this calcula-
tion are included in PyTorch [30] and TensorFlow [1]. Note
we need to solve only 3 x 3 eigenproblems, small enough
to be solved using simple algorithms or even (in principle) a
closed-form formula.

4.5. Loss

Combined, the modules above map from a pair of point
clouds X and Y to a rigid motion [Ryy, txy] that aligns
them to each other. The initial feature module (§4.1) and
the attention module (§4.2) are both parameterized by a set
of neural network weights, which must be learned during
a training phase. We employ a fairly straightforward strat-
egy for training, measuring the deviation of [Rxy,txy]
from ground truth for synthetically-generated pairs of point
clouds.

We use the following loss function to measure our model’s
agreement to the ground-truth rigid motions:

Loss = ||R}ng(y —I|I” + |ltxy — t%ylI> + Al60)°.
(11D

Here, g denotes ground-truth. The first two terms define a
simple distance on SE(3). The third term denotes Tikhonov
regularization of the DCP parameters 6, which serves to
reduce the complexity of the network.

5. Experiments

We compare our models to ICP, Go-ICP [55], Fast Global
Registration (FGR) [61], and the recently-proposed Point-
NetLK deep learning method [18]. We denote our model
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Figure 3. Top left: input. Top right: result of ICP with random
initialization. Bottom left: initial transformation provided by DCP.
Bottom right: result of ICP initialized with DCP. Using a good
initial transformation provided by DCP, ICP converges to the global
optimum.

without attention (§4.2) as DCP-v1 and the full model with
attention as DCP-v2. Go-ICP is ported from the authors’
released code. For ICP and FGR, we use the implementa-
tions in Intel Open3D [62]. For PointNetLK, we adapt the
code partially released by the authors. Notice that FGR [61]
uses additional geometric features. In all experiments, the
proposed method does nor make an assumption that a good
initial pose is given; the test point clouds are generated in the
same way as the training point clouds. ICP and its variants
are initialized with an identity transformation matrix.

The architecture of DCP is shown in Figure 2. We use 5
EdgeConv (denoted as DGCNN [50]) layers for both DCP-
vl and DCP-v2. The numbers of filters in each layer are
[64, 64,128,256, 512]. In the Transformer layer, the number
of heads in multi-head attention is 4 and the embedding
dimension is 1024. We use LayerNorm [4] without Dropout
[42]. Adam [23] is used to optimize the network parameters,
with an initial learning rate of 0.001. We divide the learning
rate by 10 at epochs 75, 150, and 200, training for a total of
250 epochs. DCP-v1 does not use the Transformer module
but rather employs identity mappings @y = Fx and ®y =
Fy.

We experiment on the ModelNet40 [52] dataset, which
consists of 12,311 meshed CAD models from 40 categories.
Of these, we use 9,843 models for training and 2,468 models
for testing. We follow the experimental settings of PointNet
[33], uniformly sampling 1,024 points from each model’s
outer surface. As in previous work, points are centered and
rescaled to fit in the unit sphere, and no features other than
(x,y, z) coordinates appear in the input.

We measure mean squared error (MSE), root mean
squared error (RMSE), and mean absolute error (MAE) be-
tween ground truth values and predicted values. Ideally, all
of these error metrics should be zero if the rigid alignment is

Model MSE(R) RMSE(R) MAE(R) MSE(#) RMSE(t) MAE(®)

(@) 894.897339  29.914835 23.544817 0.084643 0.290935  0.248755
Go-ICP [55] 140.477325 11.852313  2.588463  0.000659  0.025665 0.007092
FGR [01] 87.661491 9.362772 1.999290  0.000194  0.013939  0.002839
PointNetLK [18] 227.870331 15.095374  4.225304  0.000487  0.022065  0.005404

DCP-v1 (ours) 6.480572 2.545697 1.505548  0.000003 0.001763  0.001451
DCP-v2 (ours) 1.307329 1.143385  0.770573  0.000003 0.001786  0.001195

Table 1. ModelNet40: Test on unseen point clouds

Model MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE()

ICp 892.601135 29.876431 23.626110 0.086005 0.293266 0.251916
Go-ICP [55] 192258636 13.865736  2.914169  0.000491  0.022154  0.006219
FGR [01] 97.002747  9.848997  1.445460  0.000182 0.013503  0.002231
PointNetLK [18] 306.323975 17.502113 5280545  0.000784  0.028007  0.007203

DCP-v1 (ours) 19201385  4.381938  2.680408  0.000025 0.004950  0.003597
DCP-v2 (ours) 9.923701 3.150191  2.007210  0.000025 0.005039  0.003703

Table 2. ModelNet40: Test on unseen categories

perfect. All angular measurements in our results are in units
of degrees.

5.1. ModelNet40: Full Dataset Train & Test

In our first experiment, we randomly divide all the point
clouds in the ModelNet40 dataset into training and test sets,
with no knowledge of the category label; different point
clouds are used during training and during testing. During
training, we sample a point cloud X'. Along each axis, we
randomly draw a rigid transformation; the rotation along
each axis is uniformly sampled in [0,45°] and translation
is in [—0.5,0.5]. X’ and a transformation of X’ by the rigid
motion are used as input to the network, which is evaluated
against the known ground truth using (11).

Table 1 evaluates the performance of our method and its
peers in this experiment (vanilla ICP nearly fails). DCP-v1
already outperforms other methods under all the performance
metrics, and DCP-v2 exhibits even stronger performance.

5.2. ModelNet40: Category Split

To test the generalizability of different models, we split
ModelNet40 evenly by category into training and testing sets.
We train DCP and PointNetLK on the first 20 categories,
then test them on the held-out categories. ICP, Go-ICP, and
FGR are also tested on the held-out categories. As shown in
Table 2, on unseen categories, FGR behaves more strongly
than other methods. DCP-v1 has much worse performance
than DCP-v2, supporting our use of the attention module.
Although the learned representations are task-dependent,
DCP-v2 exhibits smaller error than others except for FGR,
including the learning-based method PointNetLK.

5.3. ModelNet40: Resilience to Noise

We also experiment with adding noise to each point of
the input point clouds. We sample noise independently from
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Model MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)
ICcp 882.564209 29.707983  23.557217 0.084537 0.290752  0.249092

Go-ICP [55] 131182495 11.453493  2.534873  0.000531  0.023051  0.004192
FGR [01] 607.694885 24.651468 10.055918 0.011876 0.108977  0.027393
PointNetLK [18]  256.155548  16.004860  4.595617  0.000465 0.021558  0.005652

6.926589 2.631841 1.515879  0.000003  0.001801  0.001697
1.169384 1.081380  0.737479  0.000002  0.001500 0.001053

DCP-v1 (ours)
DCP-v2 (ours)

Table 3. ModelNet40: Test on objects with Gaussian noise

# points ICcp Go-ICP FGR PointNetLK ~ DCP-vl  DCP-v2
512 0.003972  15.012375 0.033297  0.043228  0.003197 0.007932
1024 0.004683  15.405995 0.088199  0.055630  0.003300 0.008295
2048 0.044634  15.766001 0.138076  0.146121  0.040397  0.073697
4096 0.044585 15.984596 0.157124  0.162007  0.039984  0.74263

Table 4. Inference time (in seconds)

N(0,0.01), clip the noise to [—0.05,0.05], and add it to X’
during testing. In this experiment, we use the model from
§5.1 trained on noise-free data from all of ModelNet40.

Table 3 shows the results of this experiment. ICP typically
converges to a far-away fixed point, and FGR is sensitive
to noise. Go-ICP, PointNetLLK, and DCP, however, remain
robust to noise.

5.4. DCP Followed By ICP

Since our experiments involve point clouds whose initial
poses are far from aligned, ICP fails nearly every experiment
we have presented so far. In large part, this failure is due to
the lack of a good initial guess. As an alternative, we can
use ICP as a local algorithm by initializing ICP with a rigid
transformation output from our DCP model. Figure 3 shows
an example of this two-step procedure; while ICP fails at
the global alignment task, with better initialization provided
by DCEP, it converges to the global optimum. In some sense,
this experiment shows how ICP can be an effective way to
“polish” the alignment generated by DCP.

5.5. Efficiency

We profile the inference time of different methods on a
desktop computer with an Intel 17-7700 CPU, an Nvidia
GTX 1070 GPU, and 32G memory. Computational time
is measured in seconds and is computed by averaging 100
results. As shown in Table 4, DCP-v1 is the fastest method
among our points of comparison, and DCP-v2 is only slower
than vanilla ICP.

6. Ablation Study

We conduct several ablation experiments in this section,
dissecting DCP and replacing each part with an alternative
to understand the value of our construction. All experiments
are done in the same setting as the experiments in §5.1.

Metrics PN+DCP-vl, DGCNN+DCP-vl PN+DCP-v2 DGCNN+DCP-v2

MSE(R) 17.008427 6.480572 49.863022 1.307329
RMSE(R) 4.124127 2.545697 7.061375 1.143385
MAE(R) 2.800184 1.505548 4.485052 0.770573
MSE(t) 0.000697 0.000003 0.000258 0.000003
RMSE(t) 0.026409 0.001763 0.016051 0.001786
MAE(t) 0.01327 0.001451 0.010546 0.001195

Table 5. Ablation study: PointNet or DGCNN?

Metrics DCP-v1+MLP DCP-v1+SVD DCP-v2+MLP DCP-v2+SVD

MSE(R) 21.115917 6.480572 9.923701 1.307329
RMSE(R) 4.595206 2.545697 3.150191 1.143385
MAE(R) 3.291298 1.505548 2.007210 0.770573
MSE(t) 0.000861 0.000003 0.000025 0.000003
RMSE(t) 0.029343 0.001763 0.005039 0.001786
MAE(t) 0.022501 0.001451 0.003703 0.001195

Table 6. Ablation study: MLP or SVD?

6.1. PointNet or DGCNN?

We first try to answer whether the localized features gath-
ered by DGCNN provide value over the coarser features
that can be measured using the simpler PointNet model. As
discussed in [50], PointNet [33] learns a global descriptor of
the whole shape while DGCNN [50] learns local geometric
features via constructing the k-NN graph. We replace the
DGCNN with PointNet (denoted as PN) and conduct the
experiments in §5.1 on ModelNet40 [52], using DCP-v1 and
DCP-v2. Table 5. Models perform consistently better with
DGCNN than their counterparts with PointNet.

6.2. MLP or SVD?

While MLP is in principle a universal approximator, our
SVD layer is designed to compute a rigid motion specifically.
In this experiment, we examine whether an MLP or a custom-
designed layer is better for registration. We compare MLP
and SVD with both DCP-v1l and DCP-v2 on ModelNet40.
Table 6 shows both DCP-vl and DCP-v2 perform better
with SVD layer than MLP. This supports our motivation to
compute rigid transformation using SVD.

6.3. Embedding Dimension

[33] remarks that the embedding dimension is an impor-
tant parameter affecting the accuracy of point cloud deep
learning models up to a critical threshold, after which there
is an insignificant difference. To verify our choice of dimen-
sionality, we compare models with embeddings into spaces
of different dimensions. We test models with DCP-v1 and
v2, using DGCNN to embed the point clouds into R?'2 or
R'924_ The results in Table 7 show that increasing the em-
bedding dimension from 512 to 1024 does marginally help
DCP-v2, but for DCP-v1 there is small degeneracy. Our
results are consistent with the hypothesis in [33].
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Metrics DCP-v1 (512) DCP-v1 (1024) DCP-v2(512) DCP-v2 (1024)
MSE(R) 6.480572 7.291216 1.307329 1.217545
RMSE(R) 2.545697 2.700225 1.143385 1.103424
MAE(R) 1.505548 1.616465 0.770573 0.750242
MSE(t) 0.000003 0.000001 0.000003 0.000003
RMSE(t) 0.001763 0.001150 0.001786 0.001696
MAE(t) 0.001451 0.000677 0.001195 0.001170

Table 7. Ablation study: Embedding dimension

7. Conclusion

In some sense, the key observation in our Deep Closest
Point technique is that learned features greatly facilitate rigid
alignment algorithms; by incorporating DGCNN [50] and an
attention module, our model reliably extracts the correspon-
dences needed to find rigid motions aligning two input point
clouds. Our end-to-end trainable model is reliable enough to
extract a high-quality alignment in a single pass, which can
be improved by iteration or “polishing” via classical ICP.

DCP is immediately applicable to rigid alignment prob-
lems as a drop-in replacement for ICP with improved behav-
ior. Beyond its direct usage, our experiments suggest several
avenues for future inquiry. One straightforward extension is
to see if our learned embeddings transfer to other tasks like
classification and segmentation. We could also train DCP to
be applied iteratively (or recursively) to refine the alignment,
rather than attempting to align in a single pass; insight from
reinforcement learning could help refine approaches in this
direction, using mean squared error as a reward to learn a
policy that controls when to stop iterating.

We are also interested in testing on scenes, which often
have up to 300,000 points. Current deep networks, however,
can only handle object-level point clouds (each usually has
around 500 to 5,000 points); this is a common limitation
of recent point cloud learning methods. Testing on scenes,
no matter the task, requires designing an efficient scene-
level point cloud encoding network, which is a promising
but challenging direction for point cloud learning generally.
Finally, we hope our method can be incorporated into larger
pipelines to enable high-accuracy Simultaneous Localization
and Mapping (SLAM) or Structure from Motion (SFM).
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