
146

Dynamic Graph CNN for Learning on Point Clouds

YUE WANG and YONGBIN SUN, Massachusetts Institute of Technology

ZIWEI LIU, UC Berkeley/ICSI

SANJAY E. SARMA, Massachusetts Institute of Technology

MICHAEL M. BRONSTEIN, Imperial College London/USI Lugano

JUSTIN M. SOLOMON, Massachusetts Institute of Technology

Fig. 1. Point cloud segmentation using the proposed neural network. Bottom: schematic neural network architecture. Top: Structure of the feature spaces

produced at different layers of the network, visualized as the distance from the red point to all the rest of the points (shown left-to-right are the input

and layers 1–3; rightmost figure shows the resulting segmentation). Observe how the feature space structure in deeper layers captures semantically similar

structures such as wings, fuselage, or turbines, despite a large distance between them in the original input space.

Point clouds provide a flexible geometric representation suitable for count-

less applications in computer graphics; they also comprise the raw output

The authors acknowledge the generous support of Army Research Office Grant No.
W911NF-12-R-0011, of Air Force Office of Scientific Research Award No. FA9550-19-
1-0319, of National Science Foundation Grant No. IIS-1838071, of ERC Consolida-
tor Grant No. 724228 (LEMAN), from an Amazon Research Award, from the MIT-
IBM Watson AI Laboratory, from the Toyota-CSAIL Joint Research Center, from the
Skoltech-MIT Next Generation Program, and from Google Faculty Research Award.
Any opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the views of these
organizations.
Authors’ addresses: Y.Wang, Y. Sun, S. E. Sarma, and J. M. Solomon,Massachusetts In-
stitute of Technology; emails: yuewang@csail.mit.edu, {yb_sun, sesarma, jsolomon}@
mit.edu; Z. Liu, The Chinese University of Hong Kong; email: zwliu.hust@gmail.com;
M. M. Bronstein, Imperial College London / USI Lugano; email: m.bronstein@
imperial.ac.uk.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/10-ART146 $15.00
https://doi.org/10.1145/3326362

of most 3D data acquisition devices. While hand-designed features

on point clouds have long been proposed in graphics and vision, however,

the recent overwhelming success of convolutional neural networks

(CNNs) for image analysis suggests the value of adapting insight from

CNN to the point cloud world. Point clouds inherently lack topological

information, so designing a model to recover topology can enrich the

representation power of point clouds. To this end, we propose a new

neural network module dubbed EdgeConv suitable for CNN-based high-

level tasks on point clouds, including classification and segmentation.

EdgeConv acts on graphs dynamically computed in each layer of the

network. It is differentiable and can be plugged into existing architectures.

Compared to existing modules operating in extrinsic space or treating

each point independently, EdgeConv has several appealing properties: It

incorporates local neighborhood information; it can be stacked applied to

learn global shape properties; and in multi-layer systems affinity in feature

space captures semantic characteristics over potentially long distances

in the original embedding. We show the performance of our model on

standard benchmarks, including ModelNet40, ShapeNetPart, and S3DIS.

CCS Concepts: • Computing methodologies → Neural networks;

Point-based models; Shape analysis;

Additional Key Words and Phrases: Point cloud, classification, segmenta-

tion

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3326362

146:2 • Y. Wang et al.

ACM Reference format:

YueWang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein,

and Justin M. Solomon. 2019. Dynamic Graph CNN for Learning on Point

Clouds. ACM Trans. Graph. 38, 5, Article 146 (October 2019), 12 pages.

https://doi.org/10.1145/3326362

1 INTRODUCTION

Point clouds, or scattered collections of points in 2D or 3D, are ar-

guably the simplest shape representation; they also comprise the

output of 3D sensing technology, including LiDAR scanners and

stereo reconstruction. With the advent of fast 3D point cloud ac-

quisition, recent pipelines for graphics and vision often process

point clouds directly, bypassing expensive mesh reconstruction or

denoising due to efficiency considerations or instability of these

techniques in the presence of noise. A few of the many recent ap-

plications of point cloud processing and analysis include indoor

navigation (Zhu et al. 2017), self-driving vehicles (Liang et al. 2018;

Qi et al. 2017a; Wang et al. 2018b), robotics (Rusu et al. 2008b), and

shape synthesis and modeling (Golovinskiy et al. 2009; Guerrero

et al. 2018).

These modern applications demand high-level processing of

point clouds. Rather than identifying salient geometric features

like corners and edges, recent algorithms search for semantic cues

and affordances. These features do not fit cleanly into the frame-

works of computational or differential geometry and typically re-

quire learning-based approaches that derive relevant information

through statistical analysis of labeled or unlabeled datasets.

In this article, we primarily consider point cloud classification

and segmentation, two model tasks in point cloud processing. Tra-

ditional methods for solving these problems employ handcrafted

features to capture geometric properties of point clouds (Lu et al.

2014; Rusu et al. 2009, 2008a). More recently, the success of deep

neural networks for image processing has motivated a data-driven

approach to learning features on point clouds. Deep point cloud

processing and analysis methods are developing rapidly and out-

perform traditional approaches in various tasks (Chang et al. 2015).

Adaptation of deep learning to point cloud data, however, is far

from straightforward. Most critically, standard deep neural net-

work models require input data with regular structure, while point

clouds are fundamentally irregular: Point positions are continu-

ously distributed in the space, and any permutation of their or-

dering does not change the spatial distribution. One common ap-

proach to process point cloud data using deep learning models is

to first convert raw point cloud data into a volumetric representa-

tion, namely a 3D grid (Maturana and Scherer 2015;Wu et al. 2015).

This approach, however, usually introduces quantization artifacts

and excessive memory usage, making it difficult to go to capture

high-resolution or fine-grained features.

State-of-the-art deep neural networks are designed specifically

to handle the irregularity of point clouds, directly manipulating

raw point cloud data rather than passing to an intermediate reg-

ular representation. This approach was pioneered by PointNet (Qi

et al. 2017b), which achieves permutation invariance of points by

operating on each point independently and subsequently applying

a symmetric function to accumulate features. Various extensions

of PointNet consider neighborhoods of points rather than acting

on each independently (Qi et al. 2017c; Shen et al. 2017); these allow

the network to exploit local features, improving upon performance

of the basic model. These techniques largely treat points indepen-

dently at local scale to maintain permutation invariance. This in-

dependence, however, neglects the geometric relationships among

points, presenting a fundamental limitation that cannot capture

local features.

To address these drawbacks, we propose a novel simple oper-

ation, called EdgeConv, which captures local geometric structure

while maintaining permutation invariance. Instead of generating

point features directly from their embeddings, EdgeConv gener-

ates edge features that describe the relationships between a point

and its neighbors. EdgeConv is designed to be invariant to the or-

dering of neighbors, and thus is permutation invariant. Because

EdgeConv explicitly constructs a local graph and learns the em-

beddings for the edges, the model is capable of grouping points

both in Euclidean space and in semantic space.

EdgeConv is easy to implement and integrate into existing deep

learningmodels to improve their performance. In our experiments,

we integrate EdgeConv into the basic version of PointNet without

using any feature transformation. We show the resulting network

achieves state-of-the-art performance on several datasets, most

notablyModelNet40 and S3DIS for classification and segmentation.

Key Contributions. We summarize the key contributions of our

work as follows:

• We present a novel operation for learning from point clouds,

EdgeConv, to better capture local geometric features of point

clouds while still maintaining permutation invariance.

• We show the model can learn to semantically group points

by dynamically updating a graph of relationships from layer

to layer.

• We demonstrate that EdgeConv can be integrated into mul-

tiple existing pipelines for point cloud processing.

• We present extensive analysis and testing of EdgeConv and

show that it achieves state-of-the-art performance on bench-

mark datasets.

2 RELATED WORK

Hand-Crafted Features. Various tasks in geometric data pro-

cessing and analysis—including segmentation, classification, and

matching—require some notion of local similarity between shapes.

Traditionally, this similarity is established by constructing feature

descriptors that capture local geometric structure. Countless

papers in computer vision and graphics propose local feature

descriptors for point clouds suitable for different problems and

data structures. A comprehensive overview of hand-designed

point features is out of the scope of this article, but we refer the

reader to Biasotti et al. (2016), Guo et al. (2014), and Van Kaick

et al. (2011) for discussion.

Broadly speaking, one can distinguish between extrinsic and

intrinsic descriptors. Extrinsic descriptors usually are derived from

the coordinates of the shape in 3D space and includes classical

methods like shape context (Belongie et al. 2001), spin images

(Johnson and Hebert 1999), integral features (Manay et al. 2006),

distance-based descriptors (Ling and Jacobs 2007), point feature

histograms (Rusu et al. 2009, 2008a), and normal histograms

(Tombari et al. 2011), to name a few. Intrinsic descriptors treat

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

https://doi.org/10.1145/3326362

Dynamic Graph CNN for Learning on Point Clouds • 146:3

Fig. 2. Left: Computing an edge feature, ei j (top), from a point pair, xi and xj (bottom). In this example, hΘ () is instantiated using a fully connected layer,

and the learnable parameters are its associated weights. Right: The EdgeConv operation. The output of EdgeConv is calculated by aggregating the edge

features associated with all the edges emanating from each connected vertex.

the 3D shape as a manifold whose metric structure is discretized

as a mesh or graph; quantities expressed in terms of the metric

are invariant to isometric deformation. Representatives of this

class include spectral descriptors such as global point signatures

(Rustamov 2007), the heat and wave kernel signatures (Aubry et al.

2011; Sun et al. 2009), and variants (Bronstein and Kokkinos 2010).

Most recently, several approaches wrap machine learning schemes

around standard descriptors (Guo et al. 2014; Shah et al. 2013).

Deep Learning on Geometry. Following the breakthrough results

of convolutional neural networks (CNNs) in vision (Krizhevsky

et al. 2012; LeCun et al. 1989), there has been strong interest to

adapt such methods to geometric data. Unlike images, geometry

usually does not have an underlying grid, requiring new building

blocks replacing convolution and pooling or adaptation to a grid

structure.

As a simple way to overcome this issue, view-based (Su et al.

2015; Wei et al. 2016) and volumetric representations (Klokov and

Lempitsky 2017; Maturana and Scherer 2015; Tatarchenko et al.

2017; Wu et al. 2015)—or their combination (Qi et al. 2016)—“place”

geometric data onto a grid. More recently, PointNet (Qi et al. 2017b,

2017c) exemplifies a broad class of deep learning architectures on

non-Euclidean data (graphs and manifolds) termed geometric deep

learning (Bronstein et al. 2017). These date back to early methods

to construct neural networks on graphs (Scarselli et al. 2009), re-

cently improved with gated recurrent units (Li et al. 2016) and

neural message passing (Gilmer et al. 2017). Bruna et al. (2013)

and Henaff et al. (2015) generalized convolution to graphs via the

Laplacian eigenvectors (Shuman et al. 2013). Computational draw-

backs of this foundational approach were alleviated in follow-up

works using polynomial (Defferrard et al. 2016; Kipf and Welling

2017; Monti et al. 2017b, 2018), or rational (Levie et al. 2017) spec-

tral filters that avoid Laplacian eigendecomposition and guaran-

tee localization. An alternative definition of non-Euclidean con-

volution employs spatial rather than spectral filters. The Geodesic

CNN (GCNN) is a deep CNN on meshes generalizing the notion of

patches using local intrinsic parameterization (Masci et al. 2015).

Its key advantage over spectral approaches is better generaliza-

tion as well as a simple way of constructing directional filters.

Follow-up work proposed different local charting techniques us-

ing anisotropic diffusion (Boscaini et al. 2016) or Gaussian mixture

models (Monti et al. 2017a; Veličković et al. 2017). In Halimi et al.

(2018) and Litany et al. (2017b), a differentiable functional map

(Ovsjanikov et al. 2012) layer was incorporated into a geometric

deep neural network, allowing to do intrinsic structured predic-

tion of correspondence between nonrigid shapes.

The last class of geometric deep learning approaches attempts

to pull back a convolution operation by embedding the shape into

a domain with shift-invariant structure such as the sphere (Sinha

et al. 2016), torus (Maron et al. 2017), plane (Ezuz et al. 2017), sparse

network lattice (Su et al. 2018), or spline (Fey et al. 2018).

Finally, we should mention geometric generative models, which

attempt to generalize models such as autoencoders, variational

autoencoders (VAE) (Kingma and Welling 2013), and generative

adversarial networks (GAN) (Goodfellow et al. 2014) to the non-

Euclidean setting. One of the fundamental differences between

these two settings is the lack of canonical order between the input

and the output vertices, thus requiring an input-output correspon-

dence problem to be solved. In 3Dmesh generation, it is commonly

assumed that the mesh is given and its vertices are canonically or-

dered; the generation problem thus amounts only to determining

the embedding of the mesh vertices. Kostrikov et al. (2017) pro-

posed SurfaceNets based on the extrinsic Dirac operator for this

task. Litany et al. (2017a) introduced the intrinsic VAE for meshes

and applied it to shape completion; a similar architecture was used

by Ranjan et al. (2018) for 3D face synthesis. For point clouds, mul-

tiple generative architectures have been proposed (Fan et al. 2017;

Li et al. 2018b; Yang et al. 2018).

3 OUR APPROACH

We propose an approach inspired by PointNet and convolution op-

erations. Instead of working on individual points like PointNet,

however, we exploit local geometric structures by constructing a

local neighborhood graph and applying convolution-like opera-

tions on the edges connecting neighboring pairs of points, in the

spirit of graph neural networks. We show in the following that

such an operation, dubbed edge convolution (EdgeConv), has prop-

erties lying between translation-invariance and non-locality.

Unlike graph CNNs, our graph is not fixed but rather is dynam-

ically updated after each layer of the network. That is, the set of

k-nearest neighbors of a point changes from layer to layer of the

network and is computed from the sequence of embeddings. Prox-

imity in feature space differs from proximity in the input, leading

to nonlocal diffusion of information throughout the point cloud.

As a connection to existing work, Non-local Neural Networks

(Wang et al. 2018a) explored similar ideas in the video recognition

field, and follow-up work by Xie et al. (2018) proposed using

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

146:4 • Y. Wang et al.

Fig. 3. Model architectures: The model architectures used for classification (top branch) and segmentation (bottom branch). The classification model takes

as input n points, calculates an edge feature set of size k for each point at an EdgeConv layer, and aggregates features within each set to compute EdgeConv

responses for corresponding points. The output features of the last EdgeConv layer are aggregated globally to form an 1D global descriptor, which is used

to generate classification scores for c classes. The segmentation model extends the classification model by concatenating the 1D global descriptor and all

the EdgeConv outputs (serving as local descriptors) for each point. It outputs per-point classification scores for p semantic labels. ⊕: concatenation. Point
cloud transform block: The point cloud transform block is designed to align an input point set to a canonical space by applying an estimated 3 × 3 matrix.

To estimate the 3 × 3matrix, a tensor concatenating the coordinates of each point and the coordinate differences between its k neighboring points is used.

EdgeConv block: The EdgeConv block takes as input a tensor of shape n × f , computes edge features for each point by applying a multi-layer perceptron

(mlp) with the number of layer neurons defined as {a1, a2, . . . , an }, and generates a tensor of shape n × an after pooling among neighboring edge features.

non-local blocks to denoise feature maps to defend against

adversarial attacks.

3.1 Edge Convolution

Consider an F -dimensional point cloud with n points, denoted by

X = {x1, . . . , xn } ⊆ RF . In the simplest setting of F = 3, each point

contains 3D coordinates xi = (xi ,yi , zi); it is also possible to in-

clude additional coordinates representing color, surface normal,

and so on. In a deep neural network architecture, each subsequent

layer operates on the output of the previous layer, so more gen-

erally the dimension F represents the feature dimensionality of a

given layer.

We compute a directed graph G = (V, E) representing local

point cloud structure, where V = {1, . . . ,n} and E ⊆ V ×V are

the vertices and edges, respectively. In the simplest case, we con-

struct G as the k-nearest neighbor (k-NN) graph of X in RF . The

graph includes self-loop, meaning each node also points to it-

self. We define edge features as ei j = hΘ (xi , xj), where hΘ : RF ×
RF → RF ′ is a nonlinear function with a set of learnable parame-

ters Θ.

Finally, we define the EdgeConv operation by applying a

channel-wise symmetric aggregation operation� (e.g.,
∑

or max)

on the edge features associated with all the edges emanating from

each vertex. The output of EdgeConv at the i-th vertex is thus given

by

x
′
i = �

j :(i, j)∈E
hΘ (xi , xj). (1)

Making analogy to convolution along images, we regard xi as the

central pixel and {xj : (i, j) ∈ E} as a patch around it (see Figure 2).

Overall, given an F -dimensional point cloud with n points, Edge-

Conv produces an F ′-dimensional point cloud with the same num-

ber of points.

Choice of h and �. The choice of the edge function and the ag-

gregation operation has a crucial influence on the properties of

EdgeConv. For example, when x1, . . . , xn represent image pixels

on a regular grid and the graph G has connectivity representing

patches of fixed size around each pixel, the choice θm · xj as the

edge function and sum as the aggregation operation yields stan-

dard convolution:

x ′im =
∑

j :(i, j)∈E
θm · xj . (2)

Here, Θ = (θ1, . . . ,θM) encodes the weights ofM different filters.

Each θm has the same dimensionality as x, and · denotes the Eu-

clidean inner product.

A second choice of h is

hΘ (xi , xj) = hΘ (xi), (3)

encoding only global shape information oblivious of the local

neighborhood structure. This type of operation is used in Point-

Net, which can thus be regarded as a special case of EdgeConv.

A third choice of h adopted by Atzmon et al. (2018) is

hΘ (xi , xj) = hΘ (xj) (4)

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

Dynamic Graph CNN for Learning on Point Clouds • 146:5

Table 1. Comparison to Existing Methods

Aggregation Edge Function Learnable parameters

PointNet (Qi et al. 2017b) — hΘ (xi , xj) = hΘ (xi) Θ
PointNet++ (Qi et al. 2017c) max hΘ (xi , xj) = hΘ (xj) Θ
MoNet (Monti et al. 2017a)

∑
hθm,wn

(xi , xj) = θm · (xj � дwn (u (xi , xj))) wn ,θm
PCNN (Atzmon et al. 2018)

∑
hθm (xi , xj) = (θm · xj)д(u (xi , xj)) θm

The per-point weightwi in Atzmon et al. (2018) effectively is computed in the first layer and could be carried onward as an extra feature; we omit this
for simplicity.

and

x ′im =
∑

j ∈V
(hθ (xj))д(u (xi , xj)), (5)

where д is a Gaussian kernel and u computes pairwise distance in

Euclidean space.

A fourth option is

hΘ (xi , xj) = hΘ (xj − xi). (6)

This encodes only local information, treating the shape as a col-

lection of small patches and losing global structure.

Finally, a fifth option that we adopt in this article is an asym-

metric edge function

hΘ (xi , xj) = h̄Θ (xi , xj − xi). (7)

This explicitly combines global shape structure, captured by the

coordinates of the patch centers xi , with local neighborhood in-

formation, captured by xj − xi . In particular, we can define our

operator by notating

e ′i jm = ReLU(θm · (xj − xi) + ϕm · xi), (8)

which can be implemented as a shared MLP, and taking

x ′im = max
j :(i, j)∈E

e ′i jm , (9)

where Θ = (θ1, . . . ,θM ,ϕ1, . . . ,ϕM).

3.2 Dynamic Graph Update

Our experiments suggest that it is beneficial to recompute the graph

using nearest neighbors in the feature space produced by each

layer. This is a crucial distinction of our method from graph CNNs

working on a fixed input graph. Such a dynamic graph update is

the reason for the name of our architecture, the Dynamic Graph

CNN (DGCNN). With dynamic graph updates, the receptive field

is as large as the diameter of the point cloud, while being sparse.

At each layer, we have a different graph G (l) = (V (l) , E (l)),
where the lth layer edges are of the form (i, ji1), . . . , (i, jikl) such

that x
(l)
ji1
, . . . ,x

(l)
jikl

are the kl points closest to x
(l)
i . Put differently,

our architecture learns how to construct the graph G used in each

layer rather than taking it as a fixed constant constructed before

the network is evaluated. In our implementation, we compute a

pairwise distance matrix in feature space and then take the closest

k points for each single point.

3.3 Properties

Permutation Invariance. Consider the output of a layer,

x
′
i = max

j :(i, j)∈E
hΘ (xi , xj), (10)

and a permutation operator π . The output of the layer x′i is in-

variant to permutation of the input xj because max is a symmetric

function (other symmetric functions also apply). The global max

pooling operator to aggregate point features is also permutation-

invariant.

Translation Invariance. Our operator has a “partial” translation

invariance property, in that our choice of edge functions Equa-

tion (7) explicitly exposes the part of the function that can be

translation-dependent and optionally can be disabled. Consider a

translation applied to xj and xi ; we can show that part of the edge

feature is preserved when shifting byT . In particular, for the trans-

lated point cloud, we have

e ′i jm = θm · (xj +T − (xi +T)) + ϕm · (xi +T)
= θm · (xj − xi) + ϕm · (xi +T).

If we only consider xj − xi by taking ϕm = 0, then the operator

is fully invariant to translation. In this case, however, the model

reduces to recognizing an object based on an unordered set of

patches, ignoring the positions and orientations of patches. With

both xj − xi and xi as input, the model takes account into the local

geometry of patches while keeping global shape information.

3.4 Comparison to Existing Methods

DGCNN is related to two classes of approaches, PointNet and

graph CNNs, which we show to be particular settings of our

method. We summarize different methods in Table 1.

PointNet is a special case of our method with k = 1, yielding a

graph with an empty edge set E = ∅. The edge function used in

PointNet ishΘ (xi , xj) = hΘ (xi), which considers global but not lo-

cal geometry. PointNet++ tries to account for local structure by ap-

plying PointNet in a localmanner. In our parlance, PointNet++ first

constructs the graph according to the Euclidean distances between

the points, and in each layer applies a graph coarsening operation.

For each layer, some points are selected using farthest point sam-

pling (FPS); only the selected points are preserved while others are

directly discarded after this layer. In this way, the graph becomes

smaller after the operation applied on each layer. In contrast to

DGCNN, PointNet++ computes pairwise distances using point in-

put coordinates, and hence their graphs are fixed during training.

The edge function used by PointNet++ is hΘ (xi , xj) = hΘ (xj), and
the aggregation operation is also a max.

Among graph CNNs, MoNet (Monti et al. 2017a), ECC

(Simonovsky and Komodakis 2017), Graph Attention Networks

(Veličković et al. 2017), and the concurrent work (Atzmon et al.

2018) are themost related approaches. Their common denominator

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

146:6 • Y. Wang et al.

Fig. 4. Structure of the feature spaces produced at different stages of our shape classification neural network architecture, visualized as the distance between

the red point to the rest of the points. For each set, Left: Euclidean distance in the input R3 space; Middle: Distance after the point cloud transform stage,

amounting to a global transformation of the shape; Right: Distance in the feature space of the last layer. Observe how in the feature space of deeper layers

semantically similar structures such as shelves of a bookshelf or legs of a table are brought close together, although they are distant in the original space.

is a notion of a local patch on a graph, in which a convolution-type

operation can be defined.1

Specifically, Monti et al. (2017a) use the graph structure to com-

pute a local “pseudo-coordinate system” u in which the neighbor-

hood vertices are represented; the convolution is then defined as

an M-component Gaussian mixture,

x ′im =
∑

j :(i, j)∈E
θm · (xj � дwn (u (xi , xj))), (11)

1Simonovsky and Komodakis (2017) and Veličković et al. (2017) can be considered
instances of Monti et al. (2017a), with the difference that the weights are constructed
employing features from adjacent nodes instead of graph structure; Atzmon et al.
(2018) is also similar except that the weighting function is hand-designed.

where д is a Gaussian kernel, � is the elementwise (Hadamard)

product, {w1, . . . ,wN } encode the learnable parameters of the

Gaussians (mean and covariance), and {θ1, . . . ,θM } are the learn-

able filter coefficients. Equation (11) is an instance of our general

operation Equation (1), with a particular edge function

hθm,wn
(xi , xj) = θm · (xj � дwn (u (xi , xj)))

and � = ∑. Again, their graph structure is fixed, and u is con-

structed based on the degrees of nodes.

Atzmon et al. (2018) can be seen as a special case of Monti

et al. (2017a) with д as predefined Gaussian functions. Remov-

ing learnable parameters (w1, . . . ,wN) and constructing a dense

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

Dynamic Graph CNN for Learning on Point Clouds • 146:7

Table 2. Classification Results on ModelNet40

Mean Overall

Class Accuracy Accuracy

3DShapeNets (Wu et al. 2015) 77.3 84.7

VoxNet (Maturana and Scherer 2015) 83.0 85.9

Subvolume (Qi et al. 2016) 86.0 89.2

VRN (single view) (Brock et al. 2016) 88.98 —

VRN (multiple views) (Brock et al. 2016) 91.33 —

ECC (Simonovsky and Komodakis 2017) 83.2 87.4

PointNet (Qi et al. 2017b) 86.0 89.2

PointNet++ (Qi et al. 2017c) — 90.7

Kd-net (Klokov and Lempitsky 2017) — 90.6

PointCNN (Li et al. 2018a) 88.1 92.2

PCNN (Atzmon et al. 2018) — 92.3

Ours (baseline) 88.9 91.7

Ours 90.2 92.9

Ours (2048 points) 90.7 93.5

Table 3. Complexity, Forward Time, and Accuracy of Different Models

Model size(MB) Time(ms) Accuracy(%)

PointNet (Baseline) (Qi et al. 2017b) 9.4 6.8 87.1

PointNet (Qi et al. 2017b) 40 16.6 89.2

PointNet++ (Qi et al. 2017c) 12 163.2 90.7

PCNN (Atzmon et al. 2018) 94 117.0 92.3

Ours (Baseline) 11 19.7 91.7

Ours 21 27.2 92.9

graph from point clouds, we have

x ′im =
∑

j :j ∈V
(θm · xj)д(u (xi , xj)), (12)

where u is the pairwise distance between xi and xj in Euclidean

space.

While MoNet and other graph CNNs assume a given fixed graph

on which convolution-like operations are applied, to our knowl-

edge ourmethod is the first forwhich the graph changes from layer

to layer and even on the same input during trainingwhen learnable

parameters are updated. This way, our model not only learns how

to extract local geometric features but also how to group points

in a point cloud. Figure 4 shows the distance in different feature

spaces, exemplifying that the distances in deeper layers carry se-

mantic information over long distances in the original embedding.

4 EVALUATION

In this section, we evaluate the models constructed using Edge-

Conv for different tasks: classification, part segmentation, and se-

mantic segmentation. We also visualize experimental results to il-

lustrate key differences from previous work.

4.1 Classification

Data. We evaluate our model on the ModelNet40 (Wu et al. 2015)

classification task, consisting in predicting the category of a pre-

viously unseen shape. The dataset contains 12,311 meshed CAD

Table 4. Effectiveness of Different Components

CENT DYN MPOINTS Mean Class Accuracy(%) Overall Accuracy(%)

88.9 91.7

x 89.3 92.2

x x 90.2 92.9

x x x 90.7 93.5

CENT denotes centralization, DYN denotes dynamical graph recomputation and
MPOINTS denotes experiments with 2,048 points.

Table 5. Results of Our Model with Different Numbers of Nearest

Neighbors

Number of nearest neighbors (k) Mean Overall

Class Accuracy(%) Accuracy(%)

5 88.0 90.5

10 88.9 91.4

20 90.2 92.9

40 89.4 92.4

models from 40 categories. We used 9,843 models for training and

2,468 models for testing. We follow verbatim the experimental set-

tings of Qi et al. (2017b). For eachmodel, 1,024 points are uniformly

sampled from the mesh faces; the point cloud is rescaled to fit into

the unit sphere. Only the (x ,y, z) coordinates of the sampled points

are used, and the original meshes are discarded. During the train-

ing procedure, we augment the data by randomly scaling objects

and perturbing the object and point locations.

Architecture. The network architecture used for the classifi-

cation task is shown in Figure 3 (top branch without spatial

transformer network). We use four EdgeConv layers to extract

geometric features. The four EdgeConv layers use three shared

fully connected layers (64, 64, 128, 256). We recompute the graph

based on the features of each EdgeConv layer and use the new

graph for next layer. The number k of nearest neighbors is 20 for

all EdgeConv layers (for the last row in Table 2, k is 40). Shortcut

connections are included to extract multi-scale features and one

shared fully connected layer (1,024) to aggregate multi-scale fea-

tures, where we concatenate features from previous layers to get a

64 + 64 + 128 + 256 = 512-dimensional point cloud. Then, a global

max/sum pooling is used to get the point cloud global feature, after

which two fully connected layers (512, 256) are used to transform

the global feature. Dropout with keep probability of 0.5 is used in

the last two fully connected layers. All layers include LeakyReLU

and batch normalization. The number k was chosen using a vali-

dation set. We split the training data to 80% for training and 20%

for validation to search the best k . After k is chosen, we retrain

the model on the whole training data and evaluate the model on

the testing data. Other hyperparameters were chosen in a similar

ways.

Training. We use SGD with learning rate 0.1, and we reduce

the learning rate until 0.001 using cosine annealing (Loshchilov

and Hutter 2017). The momentum for batch normalization is

0.9, and we do not use batch normalization decay. The batch size

is 32 and the momentum is 0.9.

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

146:8 • Y. Wang et al.

Fig. 5. Left: Results of our model tested with random input dropout. The

model is trained with number of points being 1024 and k being 20. Right:

Point clouds with different number of points. The numbers of points are

shown below the bottom row.

Fig. 6. Our part segmentation testing results for tables, chairs, and lamps.

Results. Table 2 shows the results for the classification task. Our

model achieves the best results on this dataset. Our baseline using

a fixed graph determined by proximity in the input point cloud

is 1.0% better than PointNet++. An advanced version including

dynamical graph recomputation achieves the best results on this

dataset. All the experiments are performed with point clouds that

contain 1024 points except last row.We further test out model with

2,048 points. The k used for 2,048 points is 40 to maintain the same

Fig. 7. Compare part segmentation results. For each set, from left to right:

PointNet, ours, and ground truth.

density. Note that PCNN (Atzmon et al. 2018) uses additional aug-

mentation techniques like randomly sampling 1,024 points out of

1,200 points during both training and testing.

4.2 Model Complexity

We use the ModelNet40 (Wu et al. 2015) classification experi-

ment to compare the complexity of our model to previous state-

of-the-art. Table 3 shows that our model achieves the best tradeoff

between the model complexity (number of parameters), computa-

tional complexity (measured as forward pass time), and the result-

ing classification accuracy.

Our baseline model using the fixed k-NN graph outperforms the

previous state-of-the-art PointNet++ by 1.0% accuracy, at the same

time being seven times faster. A more advanced version of our

model including a dynamically updated graph computation out-

performs PointNet++, PCNN by 2.2% and 0.6%, respectively, while

being much more efficient. The number of points in each experi-

ment is also 1,024 in this section.

4.3 More Experiments on ModelNet40

We also experiment with various settings of our model on the

ModelNet40 (Wu et al. 2015) dataset. In particular, we analyze the

effectiveness of the different distance metrics, explicit usage of

xi − xj , and more points.

Table 4 shows the results. “Centralization” denotes using con-

catenation of xi and xi − xj as the edge features rather than con-

catenating xi and xj . “Dynamic graph recomputation” denotes we

reconstruct the graph rather than using a fixed graph. Explicitly

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

Dynamic Graph CNN for Learning on Point Clouds • 146:9

Table 6. Part Segmentation Results on ShapeNet Part Dataset

mean areo bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table

. phone board

shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

PointNet 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

Kd-Net 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

LocalFeatureNet 84.3 86.1 73.0 54.9 77.4 88.8 55.0 90.6 86.5 75.2 96.1 57.3 91.7 83.1 53.9 72.5 83.8

PCNN 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8

PointCNN 86.1 84.1 86.45 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0

Ours 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

Metric is mIoU(%) on points.

Fig. 8. Visualize the Euclidean distance (yellow: near; blue: far) between

source points (red points in the left column) andmultiple point clouds from

the same category in the feature space after the third EdgeConv layer.

Notice source points not only capture semantically similar structures in

the point clouds that they belong to but also capture semantically similar

structures in other point clouds from the same category.

centralizing each patch by using the concatenation of xi and

xi − xj leads to about 0.5% improvement for overall accuracy. By

dynamically updating graph, there is about 0.7% improvement,

and Figure 4 also suggests that the model can extract semantically

meaningful features. Usingmore points further improves the over-

all accuracy by 0.6%.

We also experiment with different numbers k of nearest neigh-

bors as shown in Table 5. For all experiments, the number of points

is still 1,024. While we do not exhaustively experiment with all

Fig. 9. Left: The mean IoU (%) improves when the ratio of kept points in-

creases. Points are dropped from one of six sides (top, bottom, left, right,

front, and back) randomly during evaluation process. Right: Part segmen-

tation results on partial data. Points on each row are dropped from the

same side. The keep ratio is shown below the bottom row. Note that

the segmentation results of turbines are improved when more points are

included.

Table 7. 3D Semantic Segmentation Results on S3DIS

Mean overall

IoU accuracy

PointNet (baseline) (Qi et al. 2017b) 20.1 53.2

PointNet (Qi et al. 2017b) 47.6 78.5

MS + CU(2) (Engelmann et al. 2017) 47.8 79.2

G + RCU (Engelmann et al. 2017) 49.7 81.1

PointCNN (Li et al. 2018a) 65.39 —

Ours 56.1 84.1

MS+CU for multi-scale block features with consolidation units; G+RCU for the
grid-blocks with recurrent consolidation units.

possible k , we find with large k that the performance degenerates.

This confirms our hypothesis that for certain density, with large

k the Euclidean distance fails to approximate geodesic distance,

destroying the geometry of each patch.

We further evaluate the robustness of our model (trained on

1,024 points with k = 20) to point cloud density. We simulate the

environment that random input points drops out during testing.

Figure 5 shows that even half of points is dropped, the model still

achieves reasonable results. With fewer than 512 points, however,

performance degenerates dramatically.

4.4 Part Segmentation

Data. We extend our EdgeConv model architectures for part seg-

mentation task on ShapeNet part dataset (Yi et al. 2016). For this

task, each point from a point cloud set is classified into one of a

few predefined part category labels. The dataset contains 16,881

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

146:10 • Y. Wang et al.

Fig. 10. Semantic segmentation results. From left to right: PointNet, ours, ground truth, and point cloud with original color. Notice our model outputs

smoother segmentation results, for example, wall (cyan) in top two rows, chairs (red) and columns (magenta) in bottom two rows.

3D shapes from 16 object categories, annotated with 50 parts in

total. We sampled 2,048 points from each training shape, and most

sampled point sets are labeled with less than six parts. We follow

the official train/validation/test split scheme as Chang et al. (2015)

in our experiment.

Architecture. The network architecture is illustrated in Figure 3

(bottom branch). After a spatial transformer network, three Edge-

Conv layers are used. A shared fully connected layer (1,024)
aggregates information from the previous layers. Shortcut con-

nections are used to include all the EdgeConv outputs as local

feature descriptors. At last, three shared fully connected layers

(256, 256, 128) are used to transform the pointwise features. Batch-

norm, dropout, and ReLU are included in the similar fashion to our

classification network.

Training. The same training setting as in our classification task

is adopted. A distributed training scheme is further implemented

on twoNVIDIA TITANXGPUs tomaintain the training batch size.

Results. We use Intersection-over-Union (IoU) on points to eval-

uate our model and compare with other benchmarks. We follow

the same evaluation scheme as PointNet: The IoU of a shape is

computed by averaging the IoUs of different parts occurring in

that shape, and the IoU of a category is obtained by averaging the

IoUs of all the shapes belonging to that category. The mean IoU

(mIoU) is finally calculated by averaging the IoUs of all the testing

shapes. We compare our results with PointNet (Qi et al. 2017b),

PointNet++ (Qi et al. 2017c), Kd-Net (Klokov and Lempitsky 2017),

LocalFeatureNet (Shen et al. 2017), PCNN (Atzmon et al. 2018), and

PointCNN (Li et al. 2018a). The evaluation results are shown in

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

Dynamic Graph CNN for Learning on Point Clouds • 146:11

Table 6. We also visually compare the results of our model and

PointNet in Figure 7. More examples are shown in Figure 6.

Intra-cloud Distances. We next explore the relationships between

different point clouds captured using our features. As shown in

Figure 8, we take one red point from a source point cloud and com-

pute its distance in feature space to points in other point clouds

from the same category. An interesting finding is that although

points are from different sources, they are close to each other

if they are from semantically similar parts. We evaluate on the

features after the third layer of our segmentation model for this

experiment.

Segmentation on Partial Data. Ourmodel is robust to partial data.

We simulate the environment that part of the shape is dropped

from one of six sides (top, bottom, right, left, front, and back) with

different percentages. The results are shown in Figure 9. On the

left, the mean IoU versus “keep ratio” is shown. On the right, the

results for an airplane model are visualized.

4.5 Indoor Scene Segmentation

Data. We evaluate our model on Stanford Large-Scale 3D Indoor

Spaces Dataset (S3DIS) (Armeni et al. 2016) for a semantic scene

segmentation task. This dataset includes 3D scan point clouds for

6 indoor areas including 272 rooms in total. Each point belongs

to one of 13 semantic categories—e.g., board, bookcase, chair, ceil-

ing, and beam—plus clutter. We follow the same setting as Qi et al.

(2017b), where each room is split into blocks with area 1m × 1m,

and each point is represented as a 9D vector (XYZ, RGB, and nor-

malized spatial coordinates). We sampled 4,096 points for each

block during training process, and all points are used for testing.

We also use the same sixfold cross validation over the six areas,

and the average evaluation results are reported.

The model used for this task is similar to part segmentation

model, except that a probability distribution over semantic object

classes is generated for each input point and no categorical vector

is used here. We compare our model with both PointNet (Qi et al.

2017b) and PointNet baseline, where additional point features (lo-

cal point density, local curvature, and normal) are used to construct

handcrafted features and then fed to an MLP classifier. We further

compare our work with Engelmann et al. (2017) and PointCNN

(Li et al. 2018a). Engelmann et al. (2017) present network architec-

tures to enlarge the receptive field over the 3D scene. Two differ-

ent approaches are proposed in their work: MS+CU for multi-scale

block features with consolidation units; G+RCU for the grid-blocks

with recurrent consolidation Units. We report evaluation results in

Table 7 and visually compare the results of PointNet and ourmodel

in Figure 10.

5 DISCUSSION

In this work, we propose a new operator for learning on point

cloud and show its performance on various tasks. Our model sug-

gests that local geometric features are important to 3D recognition

tasks, even after introducing machinery from deep learning.

While our architectures easily can be incorporated as-is into ex-

isting pipelines for point cloud-based graphics, learning, and vi-

sion, our experiments also indicate several avenues for future re-

search and extension. Some details of our implementation could

be revised and/or re-engineered to improve efficiency or scala-

bility, e.g. incorporating fast data structures rather than comput-

ing pairwise distances to evaluate k-nearest neighbors queries. We

also could consider higher-order relationships between larger tu-

ples of points, rather than considering them pairwise. Another

possible extension is to design a non-shared transformer network

that works on each local patch differently, adding flexibility to our

model.

Our experiments suggest that intrinsic features can be equally

valuable if not more valuable than point coordinates; developing

a practical and theoretically justified framework for balancing in-

trinsic and extrinsic considerations in a learning pipeline will re-

quire insight from theory and practice in geometry processing.

Given this, we will consider applications of our techniques to more

abstract point clouds coming from applications like document re-

trieval and image processing rather than 3D geometry; beyond

broadening the applicability of our technique, these experiments

will provide insight into the role of geometry in abstract data

processing.

REFERENCES
Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer,

and Silvio Savarese. 2016. 3D semantic parsing of large-scale indoor spaces. In
Proceedings of the CVPR.

Matan Atzmon, Haggai Maron, and Yaron Lipman. 2018. Point convolutional neural
networks by extension operators. ACM Trans. Graph. 37, 4, Article 71 (July 2018),
12 pages. DOI:https://doi.org/10.1145/3197517.3201301

Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. 2011. The wave kernel sig-
nature: A quantum mechanical approach to shape analysis. In Proceedings of the
ICCV Workshops.

Serge Belongie, JitendraMalik, and Jan Puzicha. 2001. Shape context: A newdescriptor
for shape matching and object recognition. In Proceedings of the NIPS.

Silvia Biasotti, Andrea Cerri, A. Bronstein, and M. Bronstein. 2016. Recent trends,
applications, and perspectives in 3D shape similarity assessment. Comput. Graph.
Forum 35, 6 (2016), 87–119.

Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. 2016.
Learning shape correspondence with anisotropic convolutional neural networks.
In Proceedings of the NIPS.

Andrew Brock, Theodore Lim, James Millar Ritchie, and Nicholas J. Weston. 2016.
Generative and discriminative voxel modeling with convolutional neural net-
works. In Proceedings of the NIPS.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. 2017. Geometric deep learning: Going beyond euclidean data. IEEE
Signal Process. Mag. 34, 4 (2017), 18–42.

Michael M. Bronstein and Iasonas Kokkinos. 2010. Scale-invariant heat kernel signa-
tures for non-rigid shape recognition. In Proceedings of the CVPR.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv:1312.6203 (2013).

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, QixingHuang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su et al. 2015.
Shapenet: An information-rich 3D model repository. arXiv:1512.03012 (2015).

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional
neural networks on graphs with fast localized spectral filtering. In Proceedings of
the NIPS.

Francis Engelmann, Theodora Kontogianni, Alexander Hermans, and Bastian Leibe.
2017. Exploring spatial context for 3D semantic segmentation of point clouds. In
Proceedings of the CVPR.

Danielle Ezuz, Justin Solomon, Vladimir G. Kim, andMirela Ben-Chen. 2017. GWCNN:
A metric alignment layer for deep shape analysis. Comput. Graph. Forum 36, 5
(2017), 49–57.

Haoqiang Fan, Hao Su, and Leonidas J. Guibas. 2017. A point set generation network
for 3D object reconstruction from a single image. In Proceedings of the CVPR.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. 2018.
SplineCNN: Fast geometric deep learning with continuous B-spline kernels. In
Proceedings of the CVPR.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George
E. Dahl. 2017. Neural message passing for quantum chemistry. arXiv:1704.01212
(2017).

Aleksey Golovinskiy, Vladimir G. Kim, and Thomas Funkhouser. 2009. Shape-based
recognition of 3D point clouds in urban environments. In Proceedings of the ICCV.

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

https://doi.org/10.1145/3197517.3201301

146:12 • Y. Wang et al.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Proceedings of the NIPS.

Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J. Mitra. 2018. PCPNet:
Learning local shape properties from raw point clouds. Comput. Graph. Forum 37,
2 (2018), 75–85. DOI:https://doi.org/10.1111/cgf.13343

Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, and Jianwei Wan. 2014.
3D object recognition in cluttered scenes with local surface features: A survey.
Trans. PAMI 36, 11 (2014), 2270–2287.

Oshri Halimi, Or Litany, Emanuele Rodolà, Alex Bronstein, and Ron Kimmel. 2018.
Self-supervised learning of dense shape correspondence. arXiv:1812.02415 (2018).

M. Henaff, J. Bruna, and Y. LeCun. 2015. Deep convolutional networks on graph-
structured data. arXiv:1506.05163 (2015).

Andrew E. Johnson and Martial Hebert. 1999. Using spin images for efficient object
recognition in cluttered 3D scenes. Trans. PAMI 21, 5 (1999), 433–449.

Diederik P. Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv:1312.6114 (2013).

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised classification with graph
convolutional networks. International Conference on Learning Representations
(ICLR).

Roman Klokov and Victor Lempitsky. 2017. Escape from cells: Deep Kd-networks for
the recognition of 3D point cloud models. (2017).

Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, and Joan Bruna. 2017.
Surface networks. In Proceedings of the CVPR.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification
with deep convolutional neural networks. In Proceedings of the NIPS.

Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E. Howard,
Wayne Hubbard, and Lawrence D. Jackel. 1989. Backpropagation applied to hand-
written ZIP code recognition. Neural Comput. 1, 4 (1989), 541–551.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. 2017. Cay-
leyNets: Graph convolutional neural networks with complex rational spectral fil-
ters. arXiv:1705.07664 (2017).

Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poczos, and Ruslan Salakhut-
dinov. 2018b. Point cloud GAN. arXiv:1810.05795 (2018).

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen.
2018a. PointCNN: Convolution On X-transformed points. In Advances in Neu-
ral Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc.,
820–830. Retrieved from http://papers.nips.cc/paper/7362-pointcnn-convolution-
on-x-transformed-points.pdf.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated graph
sequence neural networks. In Proceedings of the ICLR.

Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. 2018. Deep continuous
fusion for multi-sensor 3D object detection. In Proceedings of the ECCV.

Haibin Ling and David W. Jacobs. 2007. Shape classification using the inner-distance.
Trans. PAMI 29, 2 (2007), 286–299.

Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. 2017a.
Deformable shape completion with graph convolutional autoencoders.
arXiv:1712.00268 (2017).

Or Litany, Tal Remez, Emanuele Rodolà, Alex M. Bronstein, and Michael M. Bron-
stein. 2017b. Deep functional maps: Structured prediction for dense shape corre-
spondence. In Proceedings of the ICCV.

I. Loshchilov and F. Hutter. 2017. SGDR: Stochastic gradient descent with warm
restarts. In Proceedings of the ICLR.

Min Lu, Yulan Guo, Jun Zhang, YanxinMa, and Yinjie Lei. 2014. Recognizing objects in
3D point clouds with multi-scale local features. Sensors 14, 12 (2014), 24156–24173.

Siddharth Manay, Daniel Cremers, Byung-Woo Hong, Anthony J. Yezzi, and Stefano
Soatto. 2006. Integral invariants for shape matching. Trans. PAMI 28, 10 (2006),
1602–1618.

HaggaiMaron,Meirav Galun, NoamAigerman,Miri Trope, Nadav Dym, Ersin Yumer,
Vladimir G Kim, and Yaron Lipman. 2017. Convolutional neural networks on sur-
faces via seamless toric covers. In Proceedings of the SIGGRAPH.

JonathanMasci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. 2015.
Geodesic convolutional neural networks on riemannian manifolds. In Proceedings
of the 3dRR.

Daniel Maturana and Sebastian Scherer. 2015. Voxnet: A 3D convolutional neural net-
work for real-time object recognition. In Proceedings of the IROS.

FedericoMonti, Davide Boscaini, JonathanMasci, Emanuele Rodolà, Jan Svoboda, and
Michael M. Bronstein. 2017a. Geometric deep learning on graphs and manifolds
using mixture model CNNs. In Proceedings of the CVPR.

F. Monti, M. M. Bronstein, and X. Bresson. 2017b. Geometric matrix completion with
recurrent multi-graph neural networks. In Proceedings of the NIPS.

FedericoMonti, Karl Otness, andMichael M. Bronstein. 2018. MotifNet: Amotif-based
graph convolutional network for directed graphs. arXiv:1802.01572 (2018).

Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas
Guibas. 2012. Functional maps: A flexible representation of maps between shapes.
Trans. Graph. 31, 4 (2012), 30.

Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. 2017a. Frustum
PointNets for 3D object detection from RGB-D data. arXiv:1711.08488 (2017).

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017b. PointNet: Deep
learning on point sets for 3D classification and segmentation. In Proceedings of
the CVPR.

Charles R. Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas
J. Guibas. 2016. Volumetric and multi-view CNNs for object classification on 3D
data. In Proceedings of the CVPR.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017c. PointNet++: Deep hierar-
chical feature learning on point sets in a metric space. In Proceedings of the NIPS.

Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, andMichael J. Black. 2018. Generating
3D faces using convolutional mesh autoencoders. arXiv:1807.10267 (2018).

Raif M. Rustamov. 2007. Laplace-beltrami eigenfunctions for deformation invariant
shape representation. In Proceedings of the SGP.

Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. 2009. Fast point feature his-
tograms (FPFH) for 3D registration. In Proceedings of the ICRA.

Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and Michael Beetz. 2008a.
Aligning point cloud views using persistent feature histograms. In Proceedings of
the IROS.

Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai Dolha, and Michael
Beetz. 2008b. Towards 3D point cloud-based object maps for household environ-
ments. Robot. Auton. Syst. J. 56, 11 (Nov. 2008), 927–941.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2009. The graph neural network model. IEEE Tran. Neural Networks
20, 1 (2009), 61–80.

Syed Afaq Ali Shah, Mohammed Bennamoun, Farid Boussaid, and Amar A. El-Sallam.
2013. 3D-Div: A novel local surface descriptor for feature matching and pairwise
range image registration. In Proceedings of the ICIP.

Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. 2017. Neighbors do help: Deeply
exploiting local structures of point clouds. arXiv:1712.06760 (2017).

David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Van-
dergheynst. 2013. The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains. IEEE
Signal Process. Mag. 30, 3 (2013), 83–98.

Martin Simonovsky and Nikos Komodakis. 2017. Dynamic edge-conditioned filters in
convolutional neural networks on graphs. In Proceedings of the CVPR.

Ayan Sinha, Jing Bai, and Karthik Ramani. 2016. Deep learning 3D shape surfaces
using geometry images. In Proceedings of the ECCV.

Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-
Hsuan Yang, and Jan Kautz. 2018. SPLATNet: Sparse lattice networks for point
cloud processing. In Proceedings of the CVPR. 2530–2539.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015.
Multi-view convolutional neural networks for 3D shape recognition. In Proceed-
ings of the CVPR.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. 2009. A concise and provably infor-
mative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 5
(2009), 1383–1392.

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2017. Octree generating
networks: Efficient convolutional architectures for high-resolution 3D outputs. In
Proceedings of the ICCV.

Federico Tombari, Samuele Salti, and Luigi Di Stefano. 2011. A combined texture-
shape descriptor for enhanced 3D feature matching. In Proceedings of the ICIP.

Oliver Van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. 2011. A
survey on shape correspondence. Comput. Graph. Forum 30, 6 (2011), 1681–1707.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. 2017. Graph attention networks. arXiv:1710.10903.

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun.
2018b. Deep parametric continuous convolutional neural networks. In Proceedings
of the CVPR.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018a. Non-local
neural networks. In Proceedings of the CVPR.

Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga, and Hao Li. 2016. Dense
human body correspondences using convolutional networks. In Proceedings of the
CVPR.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 2015. 3D shapenets: A deep representation for volumetric
shapes. In Proceedings of the CVPR.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. 2018.
Feature denoising for improving adversarial robustness. arXiv:1812.03411.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. 2018. FoldingNet: Point cloud
auto-encoder via deep grid deformation. In Proceedings of the CVPR.

Li Yi, Vladimir G. Kim, Duygu Ceylan, I. Shen, Mengyan Yan, Hao Su, A. R. Cewu Lu,
Qixing Huang, Alla Sheffer, Leonidas Guibas et al. 2016. A scalable active frame-
work for region annotation in 3D shape collections. Trans. Graph. 35, 6 (2016),
210.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim, Abhinav Gupta, Li Fei-Fei,
and Ali Farhadi. 2017. Target-driven visual navigation in indoor scenes using deep
reinforcement learning. In Proceedings of the ICRA.

Received January 2019; revised May 2019; accepted June 2019

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

https://doi.org/10.1111/cgf.13343
http://papers.nips.cc/paper/7362-pointcnn-convolution-on-x-transformed-points.pdf
http://papers.nips.cc/paper/7362-pointcnn-convolution-on-x-transformed-points.pdf

