Dynamic Graph CNN for Learning on Point Clouds

YUE WANG and YONGBIN SUN, Massachusetts Institute of Technology
ZIWEI LIU, UC Berkeley/ICSI
SANJAY E. SARMA, Massachusetts Institute of Technology
MICHAEL M. BRONSTEIN, Imperial College London/USI Lugano
JUSTIN M. SOLOMON, Massachusetts Institute of Technology

o+
il

¥

A
\t(

{

EdgeConv EdgeConv —

—

[—:

point cloud
layer 1

layer 2

feature concat.
& —
multi-layer perceptron|

EdgeConv |

—>:

layer 3
|

segmentation
output

Fig. 1. Point cloud segmentation using the proposed neural network. Bottom: schematic neural network architecture. Top: Structure of the feature spaces
produced at different layers of the network, visualized as the distance from the red point to all the rest of the points (shown left-to-right are the input
and layers 1-3; rightmost figure shows the resulting segmentation). Observe how the feature space structure in deeper layers captures semantically similar
structures such as wings, fuselage, or turbines, despite a large distance between them in the original input space.

Point clouds provide a flexible geometric representation suitable for count-
less applications in computer graphics; they also comprise the raw output

The authors acknowledge the generous support of Army Research Office Grant No.
WO911NF-12-R-0011, of Air Force Office of Scientific Research Award No. FA9550-19-
1-0319, of National Science Foundation Grant No. IIS-1838071, of ERC Consolida-
tor Grant No. 724228 (LEMAN), from an Amazon Research Award, from the MIT-
IBM Watson Al Laboratory, from the Toyota-CSAIL Joint Research Center, from the
Skoltech-MIT Next Generation Program, and from Google Faculty Research Award.
Any opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the views of these
organizations.

Authors’ addresses: Y. Wang, Y. Sun, S. E. Sarma, and J. M. Solomon, Massachusetts In-
stitute of Technology; emails: yuewang@csail.mit.edu, {yb_sun, sesarma, jsolomon}@
mit.edu; Z. Liu, The Chinese University of Hong Kong; email: zwliu.hust@gmail.com;
M. M. Bronstein, Imperial College London / USI Lugano; email: m.bronstein@
imperial.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/10-ART146 $15.00

https://doi.org/10.1145/3326362

of most 3D data acquisition devices. While hand-designed features
on point clouds have long been proposed in graphics and vision, however,
the recent overwhelming success of convolutional neural networks
(CNNs) for image analysis suggests the value of adapting insight from
CNN to the point cloud world. Point clouds inherently lack topological
information, so designing a model to recover topology can enrich the
representation power of point clouds. To this end, we propose a new
neural network module dubbed EdgeConv suitable for CNN-based high-
level tasks on point clouds, including classification and segmentation.
EdgeConv acts on graphs dynamically computed in each layer of the
network. It is differentiable and can be plugged into existing architectures.
Compared to existing modules operating in extrinsic space or treating
each point independently, EdgeConv has several appealing properties: It
incorporates local neighborhood information; it can be stacked applied to
learn global shape properties; and in multi-layer systems affinity in feature
space captures semantic characteristics over potentially long distances
in the original embedding. We show the performance of our model on
standard benchmarks, including ModelNet40, ShapeNetPart, and S3DIS.

CCS Concepts: «+ Computing methodologies — Neural networks;
Point-based models; Shape analysis;

Additional Key Words and Phrases: Point cloud, classification, segmenta-
tion

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3326362

146:2 « Y.Wanget al.

ACM Reference format:

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein,
and Justin M. Solomon. 2019. Dynamic Graph CNN for Learning on Point
Clouds. ACM Trans. Graph. 38, 5, Article 146 (October 2019), 12 pages.
https://doi.org/10.1145/3326362

1 INTRODUCTION

Point clouds, or scattered collections of points in 2D or 3D, are ar-
guably the simplest shape representation; they also comprise the
output of 3D sensing technology, including LiDAR scanners and
stereo reconstruction. With the advent of fast 3D point cloud ac-
quisition, recent pipelines for graphics and vision often process
point clouds directly, bypassing expensive mesh reconstruction or
denoising due to efficiency considerations or instability of these
techniques in the presence of noise. A few of the many recent ap-
plications of point cloud processing and analysis include indoor
navigation (Zhu et al. 2017), self-driving vehicles (Liang et al. 2018;
Qi et al. 2017a; Wang et al. 2018b), robotics (Rusu et al. 2008b), and
shape synthesis and modeling (Golovinskiy et al. 2009; Guerrero
et al. 2018).

These modern applications demand high-level processing of
point clouds. Rather than identifying salient geometric features
like corners and edges, recent algorithms search for semantic cues
and affordances. These features do not fit cleanly into the frame-
works of computational or differential geometry and typically re-
quire learning-based approaches that derive relevant information
through statistical analysis of labeled or unlabeled datasets.

In this article, we primarily consider point cloud classification
and segmentation, two model tasks in point cloud processing. Tra-
ditional methods for solving these problems employ handcrafted
features to capture geometric properties of point clouds (Lu et al.
2014; Rusu et al. 2009, 2008a). More recently, the success of deep
neural networks for image processing has motivated a data-driven
approach to learning features on point clouds. Deep point cloud
processing and analysis methods are developing rapidly and out-
perform traditional approaches in various tasks (Chang et al. 2015).

Adaptation of deep learning to point cloud data, however, is far
from straightforward. Most critically, standard deep neural net-
work models require input data with regular structure, while point
clouds are fundamentally irregular: Point positions are continu-
ously distributed in the space, and any permutation of their or-
dering does not change the spatial distribution. One common ap-
proach to process point cloud data using deep learning models is
to first convert raw point cloud data into a volumetric representa-
tion, namely a 3D grid (Maturana and Scherer 2015; Wu et al. 2015).
This approach, however, usually introduces quantization artifacts
and excessive memory usage, making it difficult to go to capture
high-resolution or fine-grained features.

State-of-the-art deep neural networks are designed specifically
to handle the irregularity of point clouds, directly manipulating
raw point cloud data rather than passing to an intermediate reg-
ular representation. This approach was pioneered by PointNet (Qi
et al. 2017b), which achieves permutation invariance of points by
operating on each point independently and subsequently applying
a symmetric function to accumulate features. Various extensions
of PointNet consider neighborhoods of points rather than acting
on each independently (Qi et al. 2017¢; Shen et al. 2017); these allow

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

the network to exploit local features, improving upon performance
of the basic model. These techniques largely treat points indepen-
dently at local scale to maintain permutation invariance. This in-
dependence, however, neglects the geometric relationships among
points, presenting a fundamental limitation that cannot capture
local features.

To address these drawbacks, we propose a novel simple oper-
ation, called EdgeConv, which captures local geometric structure
while maintaining permutation invariance. Instead of generating
point features directly from their embeddings, EdgeConv gener-
ates edge features that describe the relationships between a point
and its neighbors. EdgeConv is designed to be invariant to the or-
dering of neighbors, and thus is permutation invariant. Because
EdgeConv explicitly constructs a local graph and learns the em-
beddings for the edges, the model is capable of grouping points
both in Euclidean space and in semantic space.

EdgeConv is easy to implement and integrate into existing deep
learning models to improve their performance. In our experiments,
we integrate EdgeConv into the basic version of PointNet without
using any feature transformation. We show the resulting network
achieves state-of-the-art performance on several datasets, most
notably ModelNet40 and S3DIS for classification and segmentation.

Key Contributions. We summarize the key contributions of our
work as follows:

e We present a novel operation for learning from point clouds,
EdgeConv, to better capture local geometric features of point
clouds while still maintaining permutation invariance.

o We show the model can learn to semantically group points
by dynamically updating a graph of relationships from layer
to layer.

e We demonstrate that EdgeConv can be integrated into mul-
tiple existing pipelines for point cloud processing.

e We present extensive analysis and testing of EdgeConv and
show that it achieves state-of-the-art performance on bench-
mark datasets.

2 RELATED WORK

Hand-Crafted Features. Various tasks in geometric data pro-
cessing and analysis—including segmentation, classification, and
matching—require some notion of local similarity between shapes.
Traditionally, this similarity is established by constructing feature
descriptors that capture local geometric structure. Countless
papers in computer vision and graphics propose local feature
descriptors for point clouds suitable for different problems and
data structures. A comprehensive overview of hand-designed
point features is out of the scope of this article, but we refer the
reader to Biasotti et al. (2016), Guo et al. (2014), and Van Kaick
et al. (2011) for discussion.

Broadly speaking, one can distinguish between extrinsic and
intrinsic descriptors. Extrinsic descriptors usually are derived from
the coordinates of the shape in 3D space and includes classical
methods like shape context (Belongie et al. 2001), spin images
(Johnson and Hebert 1999), integral features (Manay et al. 2006),
distance-based descriptors (Ling and Jacobs 2007), point feature
histograms (Rusu et al. 2009, 2008a), and normal histograms
(Tombari et al. 2011), to name a few. Intrinsic descriptors treat

https://doi.org/10.1145/3326362

Jig

S / —
- . . - - . X X/[I X
Xi X’.

Xi,-_;.\ /

Jis Ji5

Dynamic Graph CNN for Learning on Point Clouds « 146:3

X, X;
s i2
o . x @ €. eifiz @
EdgeCony Ji3 K /
) ¢
ijig
i x,.’

eij,-4 (S X.
ig Uis Jil

X.

Fig. 2. Left: Computing an edge feature, e;; (top), from a point pair, x; and x; (bottom). In this example, hg() is instantiated using a fully connected layer,
and the learnable parameters are its associated weights. Right: The EdgeConv operation. The output of EdgeConv is calculated by aggregating the edge

features associated with all the edges emanating from each connected vertex.

the 3D shape as a manifold whose metric structure is discretized
as a mesh or graph; quantities expressed in terms of the metric
are invariant to isometric deformation. Representatives of this
class include spectral descriptors such as global point signatures
(Rustamov 2007), the heat and wave kernel signatures (Aubry et al.
2011; Sun et al. 2009), and variants (Bronstein and Kokkinos 2010).
Most recently, several approaches wrap machine learning schemes
around standard descriptors (Guo et al. 2014; Shah et al. 2013).

Deep Learning on Geometry. Following the breakthrough results
of convolutional neural networks (CNNs) in vision (Krizhevsky
et al. 2012; LeCun et al. 1989), there has been strong interest to
adapt such methods to geometric data. Unlike images, geometry
usually does not have an underlying grid, requiring new building
blocks replacing convolution and pooling or adaptation to a grid
structure.

As a simple way to overcome this issue, view-based (Su et al.
2015; Wei et al. 2016) and volumetric representations (Klokov and
Lempitsky 2017; Maturana and Scherer 2015; Tatarchenko et al.
2017; Wu et al. 2015)—or their combination (Qi et al. 2016)—“place”
geometric data onto a grid. More recently, PointNet (Qi et al. 2017b,
2017c) exemplifies a broad class of deep learning architectures on
non-Euclidean data (graphs and manifolds) termed geometric deep
learning (Bronstein et al. 2017). These date back to early methods
to construct neural networks on graphs (Scarselli et al. 2009), re-
cently improved with gated recurrent units (Li et al. 2016) and
neural message passing (Gilmer et al. 2017). Bruna et al. (2013)
and Henaff et al. (2015) generalized convolution to graphs via the
Laplacian eigenvectors (Shuman et al. 2013). Computational draw-
backs of this foundational approach were alleviated in follow-up
works using polynomial (Defferrard et al. 2016; Kipf and Welling
2017; Monti et al. 2017b, 2018), or rational (Levie et al. 2017) spec-
tral filters that avoid Laplacian eigendecomposition and guaran-
tee localization. An alternative definition of non-Euclidean con-
volution employs spatial rather than spectral filters. The Geodesic
CNN (GCNN) is a deep CNN on meshes generalizing the notion of
patches using local intrinsic parameterization (Masci et al. 2015).
Its key advantage over spectral approaches is better generaliza-
tion as well as a simple way of constructing directional filters.
Follow-up work proposed different local charting techniques us-
ing anisotropic diffusion (Boscaini et al. 2016) or Gaussian mixture
models (Monti et al. 2017a; Velickovic¢ et al. 2017). In Halimi et al.
(2018) and Litany et al. (2017b), a differentiable functional map
(Ovsjanikov et al. 2012) layer was incorporated into a geometric

deep neural network, allowing to do intrinsic structured predic-
tion of correspondence between nonrigid shapes.

The last class of geometric deep learning approaches attempts
to pull back a convolution operation by embedding the shape into
a domain with shift-invariant structure such as the sphere (Sinha
etal. 2016), torus (Maron et al. 2017), plane (Ezuz et al. 2017), sparse
network lattice (Su et al. 2018), or spline (Fey et al. 2018).

Finally, we should mention geometric generative models, which
attempt to generalize models such as autoencoders, variational
autoencoders (VAE) (Kingma and Welling 2013), and generative
adversarial networks (GAN) (Goodfellow et al. 2014) to the non-
Euclidean setting. One of the fundamental differences between
these two settings is the lack of canonical order between the input
and the output vertices, thus requiring an input-output correspon-
dence problem to be solved. In 3D mesh generation, it is commonly
assumed that the mesh is given and its vertices are canonically or-
dered; the generation problem thus amounts only to determining
the embedding of the mesh vertices. Kostrikov et al. (2017) pro-
posed SurfaceNets based on the extrinsic Dirac operator for this
task. Litany et al. (2017a) introduced the intrinsic VAE for meshes
and applied it to shape completion; a similar architecture was used
by Ranjan et al. (2018) for 3D face synthesis. For point clouds, mul-
tiple generative architectures have been proposed (Fan et al. 2017;
Li et al. 2018b; Yang et al. 2018).

3 OUR APPROACH

We propose an approach inspired by PointNet and convolution op-
erations. Instead of working on individual points like PointNet,
however, we exploit local geometric structures by constructing a
local neighborhood graph and applying convolution-like opera-
tions on the edges connecting neighboring pairs of points, in the
spirit of graph neural networks. We show in the following that
such an operation, dubbed edge convolution (EdgeConv), has prop-
erties lying between translation-invariance and non-locality.
Unlike graph CNNs, our graph is not fixed but rather is dynam-
ically updated after each layer of the network. That is, the set of
k-nearest neighbors of a point changes from layer to layer of the
network and is computed from the sequence of embeddings. Prox-
imity in feature space differs from proximity in the input, leading
to nonlocal diffusion of information throughout the point cloud.
As a connection to existing work, Non-local Neural Networks
(Wang et al. 2018a) explored similar ideas in the video recognition
field, and follow-up work by Xie et al. (2018) proposed using

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

146:4 « Y.Wanget al.

c o
°) 5§98
3 ; ‘ - S 28
s . spatial o EdgeConv ! EdgeConv EdgeConv | EdgeConv N mip {1024} N mip {512, 265, c} S o
| % Ctransform | X |7 mpe4 T %[0 mip{eagt ™ mip{e4 mip {128} — o = 2
8_ ’ ! = pooling © s
S 3
categorical
vector
mip {64} c 3
| [mip 2 5
EdgeConv : |© | _ EdgeConv EdgeConv | N mip {1024} ¥ /T fepeating | S (256, 256, 128, p) R
mip {64, 64} mip {64, 64} ™ — mip {64} D o o - —>€D—’ o @
{ 1 Max o x €5
| pooling = 4 ..g-
? 3
|
«©
& ¢ k e i "
x| 2, 2 -nn grapl Z | pooling

©
o}"Q])
(\(\
NG

spatial transform

mip{a,a,.,a} :

S

< Ny
nx

X

EdgeConv
mip { a,a, . a")

Fig. 3. Model architectures: The model architectures used for classification (top branch) and segmentation (bottom branch). The classification model takes
as input n points, calculates an edge feature set of size k for each point at an EdgeConv layer, and aggregates features within each set to compute EdgeConv
responses for corresponding points. The output features of the last EdgeConv layer are aggregated globally to form an 1D global descriptor, which is used
to generate classification scores for c classes. The segmentation model extends the classification model by concatenating the 1D global descriptor and all
the EdgeConv outputs (serving as local descriptors) for each point. It outputs per-point classification scores for p semantic labels. @: concatenation. Point
cloud transform block: The point cloud transform block is designed to align an input point set to a canonical space by applying an estimated 3 X 3 matrix.
To estimate the 3 X 3 matrix, a tensor concatenating the coordinates of each point and the coordinate differences between its k neighboring points is used.
EdgeConv block: The EdgeConv block takes as input a tensor of shape n X f, computes edge features for each point by applying a multi-layer perceptron
(mlp) with the number of layer neurons defined as {ay, ay, . . ., a, }, and generates a tensor of shape n X a,, after pooling among neighboring edge features.

non-local blocks to denoise feature maps to defend against
adversarial attacks.

Making analogy to convolution along images, we regard x; as the
central pixel and {x; : (i, j) € &} as a patch around it (see Figure 2).
Overall, given an F-dimensional point cloud with n points, Edge-
Conv produces an F’-dimensional point cloud with the same num-
ber of points.

3.1 Edge Convolution

Consider an F-dimensional point cloud with n points, denoted by
X ={xq,...,%,} € RF . Inthe simplest setting of F = 3, each point
contains 3D coordinates x; = (x;,y;, z;); it is also possible to in-
clude additional coordinates representing color, surface normal,
and so on. In a deep neural network architecture, each subsequent
layer operates on the output of the previous layer, so more gen-
erally the dimension F represents the feature dimensionality of a
given layer.

We compute a directed graph G = (V,E) representing local
point cloud structure, where V = {1,...,n} and & € V XV are
the vertices and edges, respectively. In the simplest case, we con-
struct G as the k-nearest neighbor (k-NN) graph of X in RF. The

Choice of h and UJ. The choice of the edge function and the ag-
gregation operation has a crucial influence on the properties of
EdgeConv. For example, when x1, ..., X, represent image pixels
on a regular grid and the graph G has connectivity representing
patches of fixed size around each pixel, the choice 8y, - x; as the
edge function and sum as the aggregation operation yields stan-
dard convolution:

K= Y. Omex;. @)
Ji.)eE

Here, © = (01, ..., 0)r) encodes the weights of M different filters.

graph includes self-loop, meaning each node also points to it-
self. We define edge features as e;j = hg(xi,X;), where hg : RF x
RF — R’ is a nonlinear function with a set of learnable parame-
ters ©.

Finally, we define the EdgeConv operation by applying a
channel-wise symmetric aggregation operation [J (e.g., Y, or max)
on the edge features associated with all the edges emanating from
each vertex. The output of EdgeConv at the i-th vertex is thus given
by

x;= O he(xix)). (1)
ji(i))es

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

Each 0,, has the same dimensionality as x, and - denotes the Eu-
clidean inner product.
A second choice of h is

he(xi,xj) = he(x;), (3)

encoding only global shape information oblivious of the local
neighborhood structure. This type of operation is used in Point-
Net, which can thus be regarded as a special case of EdgeConv.

A third choice of h adopted by Atzmon et al. (2018) is

he (xi,x;) = he (X)) (4)

Dynamic Graph CNN for Learning on Point Clouds « 146:5

Table 1. Comparison to Existing Methods

Aggregation Edge Function Learnable parameters
PointNet (Qi et al. 2017b) — he(xi,xj) = ho(x;) ©
PointNet++ (Qi et al. 2017c) max he(xi,xj) = ho(x;) (C]
MoNet (Monti et al. 2017a) > he,, w, (Xi»Xj) = Om - (Xj © gw,, (u(xi,X;))) Wn, Om
PCNN (Atzmon et al. 2018))y hg, (xi,Xj) = (Om - x;)g(u(xi, X;)) Om

The per-point weight w; in Atzmon et al. (2018) effectively is computed in the first layer and could be carried onward as an extra feature; we omit this

for simplicity.

and
Xim = Z (ho(x,))9(u(xi, x})), (5)
JjeV
where g is a Gaussian kernel and u computes pairwise distance in
Euclidean space.
A fourth option is

h@(xi,Xj) = h@(Xj - X;j). 6)

This encodes only local information, treating the shape as a col-
lection of small patches and losing global structure.

Finally, a fifth option that we adopt in this article is an asym-
metric edge function

h@(Xi,Xj) = fl@(Xi,X]‘ - Xi). (7)

This explicitly combines global shape structure, captured by the
coordinates of the patch centers x;, with local neighborhood in-
formation, captured by x; — x;. In particular, we can define our
operator by notating

e/ im = ReLU(Om - (Xj = Xi) + ¢, * Xi), 8)

which can be implemented as a shared MLP, and taking
x, = max e, , 9
im = i yeg Um)

where © = (01,...,0p,¢1,....0p)-

3.2 Dynamic Graph Update

Our experiments suggest that it is beneficial to recompute the graph
using nearest neighbors in the feature space produced by each
layer. This is a crucial distinction of our method from graph CNNs
working on a fixed input graph. Such a dynamic graph update is
the reason for the name of our architecture, the Dynamic Graph
CNN (DGCNN). With dynamic graph updates, the receptive field
is as large as the diameter of the point cloud, while being sparse.
At each layer, we have a different graph gU) = ((V(l),(‘)(l)),
where the /th layer edges are of the form (i, ji1), . . ., (i, jik,) such

that x;{l), . x](lz are the k; points closest to xgl). Put differently,
12 1 l

our architecture learns how to construct the graph G used in each
layer rather than taking it as a fixed constant constructed before
the network is evaluated. In our implementation, we compute a
pairwise distance matrix in feature space and then take the closest
k points for each single point.

3.3 Properties

Permutation Invariance. Consider the output of a layer,

x; = max hg(xi,x;), (10)
J:(i.j)e&

and a permutation operator 7. The output of the layer x! is in-
variant to permutation of the input x; because max is a symmetric
function (other symmetric functions also apply). The global max
pooling operator to aggregate point features is also permutation-
invariant.

Translation Invariance. Our operator has a “partial” translation
invariance property, in that our choice of edge functions Equa-
tion (7) explicitly exposes the part of the function that can be
translation-dependent and optionally can be disabled. Consider a
translation applied to x; and x;; we can show that part of the edge
feature is preserved when shifting by T In particular, for the trans-
lated point cloud, we have

=0m- - X +T-(xi+T))+ ¢, - (x;+T)

=9m-(Xj—X,')+¢m~(Xi+T).

’
ijm

If we only consider x; — x; by taking ¢,, = 0, then the operator
is fully invariant to translation. In this case, however, the model
reduces to recognizing an object based on an unordered set of
patches, ignoring the positions and orientations of patches. With
both x; — x; and x; as input, the model takes account into the local
geometry of patches while keeping global shape information.

3.4 Comparison to Existing Methods

DGCNN is related to two classes of approaches, PointNet and
graph CNNs, which we show to be particular settings of our
method. We summarize different methods in Table 1.

PointNet is a special case of our method with k = 1, yielding a
graph with an empty edge set & = @. The edge function used in
PointNet is hg (x;, X;j) = hg(x;), which considers global but not lo-
cal geometry. PointNet++ tries to account for local structure by ap-
plying PointNet in a local manner. In our parlance, PointNet++ first
constructs the graph according to the Euclidean distances between
the points, and in each layer applies a graph coarsening operation.
For each layer, some points are selected using farthest point sam-
pling (FPS); only the selected points are preserved while others are
directly discarded after this layer. In this way, the graph becomes
smaller after the operation applied on each layer. In contrast to
DGCNN, PointNet++ computes pairwise distances using point in-
put coordinates, and hence their graphs are fixed during training.
The edge function used by PointNet++ is hg (x;, Xj) = hg(x;), and
the aggregation operation is also a max.

Among graph CNNs, MoNet (Monti et al. 2017a), ECC
(Simonovsky and Komodakis 2017), Graph Attention Networks
(Velickovi¢ et al. 2017), and the concurrent work (Atzmon et al.
2018) are the most related approaches. Their common denominator

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

146:6 « Y.Wanget al.

!

near N far

Fig.4. Structure of the feature spaces produced at different stages of our shape classification neural network architecture, visualized as the distance between
the red point to the rest of the points. For each set, Left: Euclidean distance in the input R?® space; Middle: Distance after the point cloud transform stage,

amounting to a global transformation of the shape; Right: Distance in the feature space of the last layer. Observe how in the feature space of deeper layers
semantically similar structures such as shelves of a bookshelf or legs of a table are brought close together, although they are distant in the original space.

is a notion of a local patch on a graph, in which a convolution-type
operation can be defined.!

Specifically, Monti et al. (2017a) use the graph structure to com-
pute a local “pseudo-coordinate system” u in which the neighbor-
hood vertices are represented; the convolution is then defined as
an M-component Gaussian mixture,

X = Y. Om (0 g, (u(xi, X)), (11)
Jj:(i,j)e&

Simonovsky and Komodakis (2017) and Velickovi¢ et al. (2017) can be considered
instances of Monti et al. (2017a), with the difference that the weights are constructed
employing features from adjacent nodes instead of graph structure; Atzmon et al.
(2018) is also similar except that the weighting function is hand-designed.

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

where g is a Gaussian kernel, © is the elementwise (Hadamard)
product, {wi,...,wy} encode the learnable parameters of the
Gaussians (mean and covariance), and {01, . .., 0y} are the learn-
able filter coefficients. Equation (11) is an instance of our general
operation Equation (1), with a particular edge function

ho,,. w, (Xi»Xj) = Om (Xj © gw, (u(xi, X))

and [=). Again, their graph structure is fixed, and u is con-
structed based on the degrees of nodes.

Atzmon et al. (2018) can be seen as a special case of Monti
et al. (2017a) with g as predefined Gaussian functions. Remov-
ing learnable parameters (wi, ..., wy) and constructing a dense

Table 2. Classification Results on ModelNet40

Dynamic Graph CNN for Learning on Point Clouds « 146:7

Table 4. Effectiveness of Different Components

MEeaN OVERALL
CLASS ACCURACY ACCURACY

3DSHAPENETS (WU ET AL. 2015) 77.3 84.7
VOXNET (MATURANA AND SCHERER 2015) 83.0 85.9
SUBVOLUME (QI ET AL. 2016) 86.0 89.2
VRN (SINGLE VIEW) (BROCK ET AL. 2016) 88.98 —

VRN (MULTIPLE VIEWS) (BROCK ET AL. 2016) 91.33 —

ECC (SimoNovskY AND KoMoDAKIs 2017) 83.2 87.4
PoINTNET (Q1 ET AL. 2017B) 86.0 89.2
POINTNET++ (Q1 ET AL. 2017¢C) — 90.7
Kp-NET (KLOKOV AND LEMPITSKY 2017) — 90.6
PoINTCNN (LI ET AL. 20184) 88.1 92.2
PCNN (ATzMON ET AL. 2018) — 92.3
OURS (BASELINE) 88.9 91.7
Ours 90.2 92.9
OURs (2048 POINTS) 90.7 93.5

Table 3. Complexity, Forward Time, and Accuracy of Different Models

Monbkrt s1ze(MB) TIME(MS) ACCURACY(%)
POINTNET (BASELINE) (Q1 ET AL. 2017B) 9.4 6.8 87.1
PoOINTNET (Q1 ET AL. 2017B) 40 16.6 89.2
POINTNET++ (QI ET AL. 2017C) 12 163.2 90.7
PCNN (ATZMON ET AL. 2018) 94 117.0 923
OURS (BASELINE) 11 19.7 91.7
Ours 21 27.2 92.9
graph from point clouds, we have
/ —_— . . .
Xim = § Om 'X])g(u(Xz,X])), (12)

jiev
where u is the pairwise distance between x; and x; in Euclidean
space.

While MoNet and other graph CNNs assume a given fixed graph
on which convolution-like operations are applied, to our knowl-
edge our method is the first for which the graph changes from layer
to layer and even on the same input during training when learnable
parameters are updated. This way, our model not only learns how
to extract local geometric features but also how to group points
in a point cloud. Figure 4 shows the distance in different feature
spaces, exemplifying that the distances in deeper layers carry se-
mantic information over long distances in the original embedding.

4 EVALUATION

In this section, we evaluate the models constructed using Edge-
Conv for different tasks: classification, part segmentation, and se-
mantic segmentation. We also visualize experimental results to il-
lustrate key differences from previous work.

4.1 Classification

Data. We evaluate our model on the ModelNet40 (Wu et al. 2015)
classification task, consisting in predicting the category of a pre-
viously unseen shape. The dataset contains 12,311 meshed CAD

CENT DYN MPOINTS MEAN CLASS ACCURACY(%) OVERALL ACCURACY(%)
88.9 91.7
X 89.3 92.2
X X 90.2 92.9
X X X 90.7 93.5

CENT denotes centralization, DYN denotes dynamical graph recomputation and
MPOINTS denotes experiments with 2,048 points.

Table 5. Results of Our Model with Different Numbers of Nearest

Neighbors
NUMBER OF NEAREST NEIGHBORS (K) MEAN OVERALL
CLAss ACCURACY(%) ACCURACY(%)
5 88.0 90.5
10 88.9 91.4
20 90.2 92.9
40 89.4 92.4

models from 40 categories. We used 9,843 models for training and
2,468 models for testing. We follow verbatim the experimental set-
tings of Qi et al. (2017b). For each model, 1,024 points are uniformly
sampled from the mesh faces; the point cloud is rescaled to fit into
the unit sphere. Only the (x, y, z) coordinates of the sampled points
are used, and the original meshes are discarded. During the train-
ing procedure, we augment the data by randomly scaling objects
and perturbing the object and point locations.

Architecture. The network architecture used for the classifi-
cation task is shown in Figure 3 (top branch without spatial
transformer network). We use four EdgeConv layers to extract
geometric features. The four EdgeConv layers use three shared
fully connected layers (64, 64, 128, 256). We recompute the graph
based on the features of each EdgeConv layer and use the new
graph for next layer. The number k of nearest neighbors is 20 for
all EdgeConv layers (for the last row in Table 2, k is 40). Shortcut
connections are included to extract multi-scale features and one
shared fully connected layer (1,024) to aggregate multi-scale fea-
tures, where we concatenate features from previous layers to get a
64 + 64 + 128 + 256 = 512-dimensional point cloud. Then, a global
max/sum pooling is used to get the point cloud global feature, after
which two fully connected layers (512, 256) are used to transform
the global feature. Dropout with keep probability of 0.5 is used in
the last two fully connected layers. All layers include LeakyReLU
and batch normalization. The number k was chosen using a vali-
dation set. We split the training data to 80% for training and 20%
for validation to search the best k. After k is chosen, we retrain
the model on the whole training data and evaluate the model on
the testing data. Other hyperparameters were chosen in a similar
ways.

Training. We use SGD with learning rate 0.1, and we reduce
the learning rate until 0.001 using cosine annealing (Loshchilov
and Hutter 2017). The momentum for batch normalization is
0.9, and we do not use batch normalization decay. The batch size
is 32 and the momentum is 0.9.

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

146:8 « Y.Wanget al.

Accuracy (%)

20, —O—Mean class accuracy| |
—{O—Overall accuracy

0
128 256 384 512 768
Number of points

1024
128 384 768

Fig. 5. Left: Results of our model tested with random input dropout. The
model is trained with number of points being 1024 and k being 20. Right:
Point clouds with different number of points. The numbers of points are
shown below the bottom row.

: ﬁ, gﬁﬂgﬁﬁﬁiﬁ uﬁ
%;b; & EH &
N .
A A
1 B REaw=
DO P

e
EHHEH "
ES RN
&5 R &
NERE.
AI‘-‘

T 40

ya

SRR

»\.,‘l
b~y

Fig. 6. Our part segmentation testing results for tables, chairs, and lamps.

Results. Table 2 shows the results for the classification task. Our
model achieves the best results on this dataset. Our baseline using
a fixed graph determined by proximity in the input point cloud
is 1.0% better than PointNet++. An advanced version including
dynamical graph recomputation achieves the best results on this
dataset. All the experiments are performed with point clouds that
contain 1024 points except last row. We further test out model with
2,048 points. The k used for 2,048 points is 40 to maintain the same

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

PointNet

Ground truth

Fig. 7. Compare part segmentation results. For each set, from left to right:
PointNet, ours, and ground truth.

density. Note that PCNN (Atzmon et al. 2018) uses additional aug-
mentation techniques like randomly sampling 1,024 points out of
1,200 points during both training and testing.

4.2 Model Complexity

We use the ModelNet40 (Wu et al. 2015) classification experi-
ment to compare the complexity of our model to previous state-
of-the-art. Table 3 shows that our model achieves the best tradeoff
between the model complexity (number of parameters), computa-
tional complexity (measured as forward pass time), and the result-
ing classification accuracy.

Our baseline model using the fixed k-NN graph outperforms the
previous state-of-the-art PointNet++ by 1.0% accuracy, at the same
time being seven times faster. A more advanced version of our
model including a dynamically updated graph computation out-
performs PointNet++, PCNN by 2.2% and 0.6%, respectively, while
being much more efficient. The number of points in each experi-
ment is also 1,024 in this section.

4.3 More Experiments on ModelNet40

We also experiment with various settings of our model on the
ModelNet40 (Wu et al. 2015) dataset. In particular, we analyze the
effectiveness of the different distance metrics, explicit usage of
Xi = Xj, and more points.

Table 4 shows the results. “Centralization” denotes using con-
catenation of x; and x; — X; as the edge features rather than con-
catenating x; and x;. “Dynamic graph recomputation” denotes we
reconstruct the graph rather than using a fixed graph. Explicitly

Dynamic Graph CNN for Learning on Point Clouds « 146:9
Table 6. Part Segmentation Results on ShapeNet Part Dataset
mean AREO BAG CAP CAR CHAIR EAR GUITAR KNIFE LAMP LAPTOP MOTOR MUG PISTOL ROCKET SKATE TABLE
PHONE BOARD

SHAPES 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
POINTNET 83.7 834 787 825 749 896 73.0 915 85.9 80.8 95.3 65.2 93.0 812 57.9 72.8 80.6
POINTNET++ 85.1 824 790 877 773 90.8 718 91.0 85.9 83.7 953 716 94.1 813 58.7 76.4 826
Kp-NET 82.3 80.1 746 743 703 886 735 90.2 87.2 81.0 94.9 57.4 86.7 78.1 518 69.9 80.3
LocALFEATURENET | 843 861 730 549 774 888 55.0 90.6 865 75.2 96.1 57.3 91.7 83.1 53.9 725 83.8
PCNN 85.1 824 801 855 795 90.8 732 91.3 86.0 85.0 95.7 73.2 94.8 833 51.0 75.0 818
PorNTCNN 86.1 841 8645 860 808 90.6 79.7 92.3 884 853 96.1 772 953 842 64.2 80.0 83.0
Ours 85.2 84.0 834 867 778 906 74.7 91.2 87.5 82.8 95.7 663 94.9 81.1 635 745 82.6

Metric is mIoU(%) on points.

&

v i

Source points Other point clouds from the same category

Fig. 8. Visualize the Euclidean distance (yellow: near; blue: far) between
source points (red points in the left column) and multiple point clouds from
the same category in the feature space after the third EdgeConv layer.
Notice source points not only capture semantically similar structures in
the point clouds that they belong to but also capture semantically similar
structures in other point clouds from the same category.

centralizing each patch by using the concatenation of x; and
x; — X; leads to about 0.5% improvement for overall accuracy. By
dynamically updating graph, there is about 0.7% improvement,
and Figure 4 also suggests that the model can extract semantically
meaningful features. Using more points further improves the over-
all accuracy by 0.6%.

We also experiment with different numbers k of nearest neigh-
bors as shown in Table 5. For all experiments, the number of points
is still 1,024. While we do not exhaustively experiment with all

: v v W
;M@S‘-&“—’-
i i

Fig. 9. Left: The mean loU (%) improves when the ratio of kept points in-
creases. Points are dropped from one of six sides (top, bottom, left, right,
front, and back) randomly during evaluation process. Right: Part segmen-
tation results on partial data. Points on each row are dropped from the
same side. The keep ratio is shown below the bottom row. Note that
the segmentation results of turbines are improved when more points are

mloU (%)

05 06 07 08
Keep ratio

included.

Table 7. 3D Semantic Segmentation Results on S3DIS

MEAN OVERALL
IoU ACCURACY
POINTNET (BASELINE) (Q1 ET AL. 2017B) 20.1 53.2
PoINTNET (Q1 ET AL. 2017B) 47.6 78.5
MS + CU(2) (ENGELMANN ET AL. 2017) 47.8 79.2
G + RCU (ENGELMANN ET AL. 2017) 49.7 81.1
POINTCNN (LI ET AL. 2018A) 65.39 —
OuRrs 56.1 84.1

MS+CU for multi-scale block features with consolidation units; G+RCU for the
grid-blocks with recurrent consolidation units.

possible k, we find with large k that the performance degenerates.
This confirms our hypothesis that for certain density, with large
k the Euclidean distance fails to approximate geodesic distance,
destroying the geometry of each patch.

We further evaluate the robustness of our model (trained on
1,024 points with k = 20) to point cloud density. We simulate the
environment that random input points drops out during testing.
Figure 5 shows that even half of points is dropped, the model still
achieves reasonable results. With fewer than 512 points, however,
performance degenerates dramatically.

4.4 Part Segmentation

Data. We extend our EdgeConv model architectures for part seg-
mentation task on ShapeNet part dataset (Yi et al. 2016). For this
task, each point from a point cloud set is classified into one of a
few predefined part category labels. The dataset contains 16,881

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

146:10 « Y. Wanget al.

PointNet Ours

Real color

Ground truth

Fig. 10. Semantic segmentation results. From left to right: PointNet, ours, ground truth, and point cloud with original color. Notice our model outputs
smoother segmentation results, for example, wall (cyan) in top two rows, chairs (red) and columns (magenta) in bottom two rows.

3D shapes from 16 object categories, annotated with 50 parts in
total. We sampled 2,048 points from each training shape, and most
sampled point sets are labeled with less than six parts. We follow
the official train/validation/test split scheme as Chang et al. (2015)
in our experiment.

Architecture. The network architecture is illustrated in Figure 3
(bottom branch). After a spatial transformer network, three Edge-
Conv layers are used. A shared fully connected layer (1,024)
aggregates information from the previous layers. Shortcut con-
nections are used to include all the EdgeConv outputs as local
feature descriptors. At last, three shared fully connected layers
(256, 256, 128) are used to transform the pointwise features. Batch-
norm, dropout, and ReLU are included in the similar fashion to our
classification network.

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

Training. The same training setting as in our classification task
is adopted. A distributed training scheme is further implemented
on two NVIDIA TITAN X GPUs to maintain the training batch size.

Results. We use Intersection-over-Union (IoU) on points to eval-
uate our model and compare with other benchmarks. We follow
the same evaluation scheme as PointNet: The IoU of a shape is
computed by averaging the IoUs of different parts occurring in
that shape, and the IoU of a category is obtained by averaging the
IoUs of all the shapes belonging to that category. The mean IoU
(mlIoU) is finally calculated by averaging the IoUs of all the testing
shapes. We compare our results with PointNet (Qi et al. 2017b),
PointNet++ (Qi et al. 2017c), Kd-Net (Klokov and Lempitsky 2017),
LocalFeatureNet (Shen et al. 2017), PCNN (Atzmon et al. 2018), and
PointCNN (Li et al. 2018a). The evaluation results are shown in

Table 6. We also visually compare the results of our model and
PointNet in Figure 7. More examples are shown in Figure 6.

Intra-cloud Distances. We next explore the relationships between
different point clouds captured using our features. As shown in
Figure 8, we take one red point from a source point cloud and com-
pute its distance in feature space to points in other point clouds
from the same category. An interesting finding is that although
points are from different sources, they are close to each other
if they are from semantically similar parts. We evaluate on the
features after the third layer of our segmentation model for this
experiment.

Segmentation on Partial Data. Our model is robust to partial data.
We simulate the environment that part of the shape is dropped
from one of six sides (top, bottom, right, left, front, and back) with
different percentages. The results are shown in Figure 9. On the
left, the mean IoU versus “keep ratio” is shown. On the right, the
results for an airplane model are visualized.

4.5 Indoor Scene Segmentation

Data. We evaluate our model on Stanford Large-Scale 3D Indoor
Spaces Dataset (S3DIS) (Armeni et al. 2016) for a semantic scene
segmentation task. This dataset includes 3D scan point clouds for
6 indoor areas including 272 rooms in total. Each point belongs
to one of 13 semantic categories—e.g., board, bookcase, chair, ceil-
ing, and beam—plus clutter. We follow the same setting as Qi et al.
(2017b), where each room is split into blocks with area 1m X 1m,
and each point is represented as a 9D vector (XYZ, RGB, and nor-
malized spatial coordinates). We sampled 4,096 points for each
block during training process, and all points are used for testing.
We also use the same sixfold cross validation over the six areas,
and the average evaluation results are reported.

The model used for this task is similar to part segmentation
model, except that a probability distribution over semantic object
classes is generated for each input point and no categorical vector
is used here. We compare our model with both PointNet (Qi et al.
2017b) and PointNet baseline, where additional point features (lo-
cal point density, local curvature, and normal) are used to construct
handcrafted features and then fed to an MLP classifier. We further
compare our work with Engelmann et al. (2017) and PointCNN
(Lietal. 2018a). Engelmann et al. (2017) present network architec-
tures to enlarge the receptive field over the 3D scene. Two differ-
ent approaches are proposed in their work: MS+CU for multi-scale
block features with consolidation units; G+RCU for the grid-blocks
with recurrent consolidation Units. We report evaluation results in
Table 7 and visually compare the results of PointNet and our model
in Figure 10.

5 DISCUSSION

In this work, we propose a new operator for learning on point
cloud and show its performance on various tasks. Our model sug-
gests that local geometric features are important to 3D recognition
tasks, even after introducing machinery from deep learning.
While our architectures easily can be incorporated as-is into ex-
isting pipelines for point cloud-based graphics, learning, and vi-
sion, our experiments also indicate several avenues for future re-
search and extension. Some details of our implementation could

Dynamic Graph CNN for Learning on Point Clouds « 146:11

be revised and/or re-engineered to improve efficiency or scala-
bility, e.g. incorporating fast data structures rather than comput-
ing pairwise distances to evaluate k-nearest neighbors queries. We
also could consider higher-order relationships between larger tu-
ples of points, rather than considering them pairwise. Another
possible extension is to design a non-shared transformer network
that works on each local patch differently, adding flexibility to our
model.

Our experiments suggest that intrinsic features can be equally
valuable if not more valuable than point coordinates; developing
a practical and theoretically justified framework for balancing in-
trinsic and extrinsic considerations in a learning pipeline will re-
quire insight from theory and practice in geometry processing.
Given this, we will consider applications of our techniques to more
abstract point clouds coming from applications like document re-
trieval and image processing rather than 3D geometry; beyond
broadening the applicability of our technique, these experiments
will provide insight into the role of geometry in abstract data
processing.

REFERENCES

Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer,
and Silvio Savarese. 2016. 3D semantic parsing of large-scale indoor spaces. In
Proceedings of the CVPR.

Matan Atzmon, Haggai Maron, and Yaron Lipman. 2018. Point convolutional neural
networks by extension operators. ACM Trans. Graph. 37, 4, Article 71 (July 2018),
12 pages. DOI : https://doi.org/10.1145/3197517.3201301

Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. 2011. The wave kernel sig-
nature: A quantum mechanical approach to shape analysis. In Proceedings of the
ICCV Workshops.

Serge Belongie, Jitendra Malik, and Jan Puzicha. 2001. Shape context: A new descriptor
for shape matching and object recognition. In Proceedings of the NIPS.

Silvia Biasotti, Andrea Cerri, A. Bronstein, and M. Bronstein. 2016. Recent trends,
applications, and perspectives in 3D shape similarity assessment. Comput. Graph.
Forum 35, 6 (2016), 87-119.

Davide Boscaini, Jonathan Masci, Emanuele Rodola, and Michael Bronstein. 2016.
Learning shape correspondence with anisotropic convolutional neural networks.
In Proceedings of the NIPS.

Andrew Brock, Theodore Lim, James Millar Ritchie, and Nicholas J. Weston. 2016.
Generative and discriminative voxel modeling with convolutional neural net-
works. In Proceedings of the NIPS.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. 2017. Geometric deep learning: Going beyond euclidean data. IEEE
Signal Process. Mag. 34, 4 (2017), 18-42.

Michael M. Bronstein and Tasonas Kokkinos. 2010. Scale-invariant heat kernel signa-
tures for non-rigid shape recognition. In Proceedings of the CVPR.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv:1312.6203 (2013).

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su et al. 2015.
Shapenet: An information-rich 3D model repository. arXiv:1512.03012 (2015).

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional
neural networks on graphs with fast localized spectral filtering. In Proceedings of
the NIPS.

Francis Engelmann, Theodora Kontogianni, Alexander Hermans, and Bastian Leibe.
2017. Exploring spatial context for 3D semantic segmentation of point clouds. In
Proceedings of the CVPR.

Danielle Ezuz, Justin Solomon, Vladimir G. Kim, and Mirela Ben-Chen. 2017. GWCNN:
A metric alignment layer for deep shape analysis. Comput. Graph. Forum 36, 5
(2017), 49-57.

Haoqiang Fan, Hao Su, and Leonidas J. Guibas. 2017. A point set generation network
for 3D object reconstruction from a single image. In Proceedings of the CVPR.
Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Miller. 2018.
SplineCNN: Fast geometric deep learning with continuous B-spline kernels. In

Proceedings of the CVPR.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George
E. Dahl. 2017. Neural message passing for quantum chemistry. arXiv:1704.01212
(2017).

Aleksey Golovinskiy, Vladimir G. Kim, and Thomas Funkhouser. 2009. Shape-based
recognition of 3D point clouds in urban environments. In Proceedings of the ICCV.

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

https://doi.org/10.1145/3197517.3201301

146:12 « Y. Wanget al.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Proceedings of the NIPS.

Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J. Mitra. 2018. PCPNet:
Learning local shape properties from raw point clouds. Comput. Graph. Forum 37,
2 (2018), 75-85. DOI : https://doi.org/10.1111/cgf.13343

Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, and Jianwei Wan. 2014.
3D object recognition in cluttered scenes with local surface features: A survey.
Trans. PAMI 36, 11 (2014), 2270-2287.

Oshri Halimi, Or Litany, Emanuele Rodola, Alex Bronstein, and Ron Kimmel. 2018.
Self-supervised learning of dense shape correspondence. arXiv:1812.02415 (2018).

M. Henaff, J. Bruna, and Y. LeCun. 2015. Deep convolutional networks on graph-
structured data. arXiv:1506.05163 (2015).

Andrew E. Johnson and Martial Hebert. 1999. Using spin images for efficient object
recognition in cluttered 3D scenes. Trans. PAMI 21, 5 (1999), 433-449.

Diederik P. Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv:1312.6114 (2013).

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised classification with graph
convolutional networks. International Conference on Learning Representations
(ICLR).

Roman Klokov and Victor Lempitsky. 2017. Escape from cells: Deep Kd-networks for
the recognition of 3D point cloud models. (2017).

Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, and Joan Bruna. 2017.
Surface networks. In Proceedings of the CVPR.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification
with deep convolutional neural networks. In Proceedings of the NIPS.

Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E. Howard,
Wayne Hubbard, and Lawrence D. Jackel. 1989. Backpropagation applied to hand-
written ZIP code recognition. Neural Comput. 1, 4 (1989), 541-551.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. 2017. Cay-
leyNets: Graph convolutional neural networks with complex rational spectral fil-
ters. arXiv:1705.07664 (2017).

Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poczos, and Ruslan Salakhut-
dinov. 2018b. Point cloud GAN. arXiv:1810.05795 (2018).

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen.
2018a. PointCNN: Convolution On X-transformed points. In Advances in Neu-
ral Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc.,
820-830. Retrieved from http://papers.nips.cc/paper/7362-pointenn-convolution-
on-x-transformed-points.pdf.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated graph
sequence neural networks. In Proceedings of the ICLR.

Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. 2018. Deep continuous
fusion for multi-sensor 3D object detection. In Proceedings of the ECCV.

Haibin Ling and David W. Jacobs. 2007. Shape classification using the inner-distance.
Trans. PAMI 29, 2 (2007), 286-299.

Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. 2017a.
Deformable shape completion with graph convolutional autoencoders.
arXiv:1712.00268 (2017).

Or Litany, Tal Remez, Emanuele Rodola, Alex M. Bronstein, and Michael M. Bron-
stein. 2017b. Deep functional maps: Structured prediction for dense shape corre-
spondence. In Proceedings of the ICCV.

I. Loshchilov and F. Hutter. 2017. SGDR: Stochastic gradient descent with warm
restarts. In Proceedings of the ICLR.

Min Lu, Yulan Guo, Jun Zhang, Yanxin Ma, and Yinjie Lei. 2014. Recognizing objects in
3D point clouds with multi-scale local features. Sensors 14, 12 (2014), 24156-24173.

Siddharth Manay, Daniel Cremers, Byung-Woo Hong, Anthony J. Yezzi, and Stefano
Soatto. 2006. Integral invariants for shape matching. Trans. PAMI 28, 10 (2006),
1602-1618.

Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer,
Vladimir G Kim, and Yaron Lipman. 2017. Convolutional neural networks on sur-
faces via seamless toric covers. In Proceedings of the SSGGRAPH.

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. 2015.
Geodesic convolutional neural networks on riemannian manifolds. In Proceedings
of the 3dRR.

Daniel Maturana and Sebastian Scherer. 2015. Voxnet: A 3D convolutional neural net-
work for real-time object recognition. In Proceedings of the IROS.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M. Bronstein. 2017a. Geometric deep learning on graphs and manifolds
using mixture model CNNs. In Proceedings of the CVPR.

F. Monti, M. M. Bronstein, and X. Bresson. 2017b. Geometric matrix completion with
recurrent multi-graph neural networks. In Proceedings of the NIPS.

Federico Monti, Karl Otness, and Michael M. Bronstein. 2018. MotifNet: A motif-based
graph convolutional network for directed graphs. arXiv:1802.01572 (2018).

Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas
Guibas. 2012. Functional maps: A flexible representation of maps between shapes.
Trans. Graph. 31, 4 (2012), 30.

Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. 2017a. Frustum
PointNets for 3D object detection from RGB-D data. arXiv:1711.08488 (2017).

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017b. PointNet: Deep
learning on point sets for 3D classification and segmentation. In Proceedings of
the CVPR.

Charles R. Qi, Hao Su, Matthias Niefiner, Angela Dai, Mengyuan Yan, and Leonidas
J. Guibas. 2016. Volumetric and multi-view CNNs for object classification on 3D
data. In Proceedings of the CVPR.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017c. PointNet++: Deep hierar-
chical feature learning on point sets in a metric space. In Proceedings of the NIPS.

Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J. Black. 2018. Generating
3D faces using convolutional mesh autoencoders. arXiv:1807.10267 (2018).

Raif M. Rustamov. 2007. Laplace-beltrami eigenfunctions for deformation invariant
shape representation. In Proceedings of the SGP.

Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. 2009. Fast point feature his-
tograms (FPFH) for 3D registration. In Proceedings of the ICRA.

Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and Michael Beetz. 2008a.
Aligning point cloud views using persistent feature histograms. In Proceedings of
the IROS.

Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai Dolha, and Michael
Beetz. 2008b. Towards 3D point cloud-based object maps for household environ-
ments. Robot. Auton. Syst. J. 56, 11 (Nov. 2008), 927-941.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2009. The graph neural network model. IEEE Tran. Neural Networks
20, 1 (2009), 61-80.

Syed Afaq Ali Shah, Mohammed Bennamoun, Farid Boussaid, and Amar A. El-Sallam.
2013. 3D-Div: A novel local surface descriptor for feature matching and pairwise
range image registration. In Proceedings of the ICIP.

Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. 2017. Neighbors do help: Deeply
exploiting local structures of point clouds. arXiv:1712.06760 (2017).

David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Van-
dergheynst. 2013. The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains. IEEE
Signal Process. Mag. 30, 3 (2013), 83-98.

Martin Simonovsky and Nikos Komodakis. 2017. Dynamic edge-conditioned filters in
convolutional neural networks on graphs. In Proceedings of the CVPR.

Ayan Sinha, Jing Bai, and Karthik Ramani. 2016. Deep learning 3D shape surfaces
using geometry images. In Proceedings of the ECCV.

Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-
Hsuan Yang, and Jan Kautz. 2018. SPLATNet: Sparse lattice networks for point
cloud processing. In Proceedings of the CVPR. 2530-2539.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015.
Multi-view convolutional neural networks for 3D shape recognition. In Proceed-
ings of the CVPR.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. 2009. A concise and provably infor-
mative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 5
(2009), 1383-1392.

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2017. Octree generating
networks: Efficient convolutional architectures for high-resolution 3D outputs. In
Proceedings of the ICCV.

Federico Tombari, Samuele Salti, and Luigi Di Stefano. 2011. A combined texture-
shape descriptor for enhanced 3D feature matching. In Proceedings of the ICIP.
Oliver Van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. 2011. A

survey on shape correspondence. Comput. Graph. Forum 30, 6 (2011), 1681-1707.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. 2017. Graph attention networks. arXiv:1710.10903.

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun.
2018b. Deep parametric continuous convolutional neural networks. In Proceedings
of the CVPR.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018a. Non-local
neural networks. In Proceedings of the CVPR.

Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga, and Hao Li. 2016. Dense
human body correspondences using convolutional networks. In Proceedings of the
CVPR.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 2015. 3D shapenets: A deep representation for volumetric
shapes. In Proceedings of the CVPR.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. 2018.
Feature denoising for improving adversarial robustness. arXiv:1812.03411.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. 2018. FoldingNet: Point cloud
auto-encoder via deep grid deformation. In Proceedings of the CVPR.

Li Yi, Vladimir G. Kim, Duygu Ceylan, I. Shen, Mengyan Yan, Hao Su, A. R. Cewu Lu,
Qixing Huang, Alla Sheffer, Leonidas Guibas et al. 2016. A scalable active frame-
work for region annotation in 3D shape collections. Trans. Graph. 35, 6 (2016),
210.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim, Abhinav Gupta, Li Fei-Fei,
and Ali Farhadi. 2017. Target-driven visual navigation in indoor scenes using deep
reinforcement learning. In Proceedings of the ICRA.

Received January 2019; revised May 2019; accepted June 2019

https://doi.org/10.1111/cgf.13343
http://papers.nips.cc/paper/7362-pointcnn-convolution-on-x-transformed-points.pdf
http://papers.nips.cc/paper/7362-pointcnn-convolution-on-x-transformed-points.pdf

