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Fig. 1. Given two probability distributions over a discrete surface (left and right), our algorithm generates an interpolation that takes the geometric structure

of the surface into account.

We propose a technique for interpolating between probability distributions
on discrete surfaces, based on the theory of optimal transport. Unlike pre-
vious attempts that use linear programming, our method is based on a
dynamical formulation of quadratic optimal transport proposed for flat do-
mains by Benamou and Brenier [2000], adapted to discrete surfaces. Our
structure-preserving construction yields a Riemannian metric on the (finite-
dimensional) space of probability distributions on a discrete surface, which
translates the so-called Otto calculus to discrete language. From a practi-
cal perspective, our technique provides a smooth interpolation between
distributions on discrete surfaces with less diffusion than state-of-the-art
algorithms involving entropic regularization. Beyond interpolation, we show
how our discrete notion of optimal transport extends to other tasks, such
as distribution-valued Dirichlet problems and time integration of gradient
flows.
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1 INTRODUCTION

Probability distributions are key objects in geometry processing
that can encode a variety of quantities, including uncertain feature
locations on a surface, color histograms, and physical measurements
like the density of a fluid. A central problem related to distributions
is that of interpolation: Given two probability distributions over a
fixed domain, how can one transition smoothly from the first to the
second?

Optimal transport gives one potential solution. This theory lifts
the geometric structure of a surface to a Riemannian structure on
the space of probability distributions over the surface, the latter
being endowed with the so-called Wasserstein metric; the set of
distributions equipped with this metric is sometimes called Wasser-
stein space. To interpolate between two probability distributions,
one computes a geodesic in Wasserstein space between the two.
This definition is sometimes referred to as McCann’s displacement
interpolation [1997], applied to graphics e.g. in [Bonneel et al. 2011].

Even though optimal transport theory is now well-understood
[Santambrogio 2015; Villani 2003, 2008], the interpolation problem
remains challenging numerically. Related problems, like the compu-
tation of Wasserstein distances or barycenters in Wasserstein space,
can be tackled by fast and scalable algorithms like entropic regular-
ization or semi-discrete methods, developed only a few years ago.
Most of these methods, however, fail to reproduce the Riemannian
structure of Wasserstein space and/or are prone to diffusion: The
interpolation between two peaked probability distributions is more
diffuse in the midpoint than optimal transport theory suggests. This
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drawback can inhibit application of transport in computer graphics
practice, in which blurry interpolants are often undesirable.

As an alternative, we define a Riemannian structure on the space
of probability distributions over a discrete surface, designed to mimic
that of the Wasserstein distance between distributions over a smooth
manifold. Our construction is inspired by the Benamou-Brenier
formula [2000], previously discretized only on flat grids without
structure preservation. This Riemannian structure automatically
defines geodesics and distances between probability distributions. In
particular, the geodesic problem can be recast as a convex problem
and be tackled by iterative methods phrased using local operators
familiar in geometry processing and finite elements (gradients, di-
vergence and Laplacian on the surface). Our method does not require
precomputation of pairwise distances between points on the surface.

Compared to other methods, our interpolation can be rephrased as
a geodesic problem and numerically exhibits less diffusion when in-
terpolating between peaked distributions. In cases where the sharp-
ness captured by our method and predicted by optimal transport
theory is undesirable visually, we provide a quadratic regularizer
that controllably reduces congestion of the computed interpolant;
unlike entropically-regularized transport, however, our optimiza-
tion problem does not degenerate or become harder to solve when
the regularization term vanishes. Although the computation of in-
terpolants remains quite slow for meshes with more than a few
thousand vertices and improving the scalability of numerical rou-
tines used to optimize our convex objective remains a challenging
task for future work, we demonstrate application to tasks derived
from transport, e.g. computation of harmonic mappings into Wasser-
stein space and integration of gradient flows.

In addition to our algorithmic contributions, we regard our work
as a key theoretical step toward making optimal transport compati-
ble with the language of discrete differential geometry (DDG). Our
Riemannian metric induces a true geodesic distance—with a triangle
inequality—on the space of distributions over a triangulated surface
expressed using one value per vertex. Inspired by an analogous
construction on graphs [Maas 2011], we leverage a non-obvious ob-
servation that a strong contender for structure-preserving discrete
transport on meshes actually involves a real-valued external time
variable, rather than discretizing transport as a linear program as
in most previous work. The resulting geodesic problem naturally
preserves convexity and other key properties from the theoretical
case while suggesting an effective computational technique.

2 RELATED WORK
2.1 Linear programming and regularization

Landmark work by Kantorovich [1942] showed that optimal trans-
port can be phrased as a linear programming problem. If both prob-
ability distributions have finite support, we end up with a finite-
dimensional linear program solvable using standard convex pro-
gramming techniques. A variety of solvers has been designed to
tackle this linear program, which exploit the particular structure
of the objective functional [Edmonds and Karp 1972; Klein 1967;
Orlin 1997]. These methods, however, usually require as input the
pairwise distance matrix, a dense matrix that scales quadratically in
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the size of the support and is difficult to evaluate if the points are
on a curved space.

A landmark paper by Cuturi [2013] reinvigorated interest in nu-
merical transport by proposing adding an entropic regularizer to
the problem, leading to the efficient Sinkhorn (or matrix rebalanc-
ing) algorithm. This algorithm, which involves iteratively rescaling
the rows and columns of a kernel in the cost matrix, is highly par-
allelizable and well-suited to GPU architectures. When the cost
matrix involves squared geodesic distances along a discrete sur-
face, Solomon et al. [2015] showed that Sinkhorn iterations can be
written in terms of heat diffusion operators, eliminating the need
to store the cost matrix explicitly. While they are efficient, these
entropically-regularized techniques suffer from diffusion, making
them less relevant to problems in which measures are sharp or
peaked. They also do not define true distances on the space of dis-
tributions over mesh vertices.

When the transport cost is equal to geodesic distance, i.e. the
1-Wasserstein distance, optimal transport is equivalent to the Beck-
mann problem [Santambrogio 2015, Chapter 4], for which specific
and efficient algorithms can be designed [Li et al. 2018; Solomon et al.
2014]. These methods cannot be applied to the quadratic Wasserstein
distance, which is needed to make transport-based interpolation
nontrivial, namely to recover McCann’s displacement interpola-
tion [1997]. In particular, the optimal transport problem defining
the 1-Wasserstein distance does not come with a time dependency
allowing to define a smooth interpolation and suffers from non-
uniqueness coming from the lack of strict convexity.

2.2 Semi-discrete optimal transport

When one of the distributions has a density w.r.t. Lebesgue while
the other one is discrete, the transport problem can be reduced to
a finite-dimensional convex problem whose number of unknowns
scales with the cardinality of the support of the discrete distribution.
Leveraging tools from computational geometry, this semi-discrete
problem can be solved efficiently up to fairly large scale when the
cost is Euclidean [Aurenhammer et al. 1998; De Goes et al. 2012;
Kitagawa et al. 2016; Lévy 2015; Mérigot 2011].

Semi-discrete transport has been used to tackle problems for
which the precise structure of the optimal transportation map is
relevant, as in fluid dynamics [de Goes et al. 2015b; Gallouét and
Meérigot 2017; Mérigot and Mirebeau 2016]. It also has been used for
approximating barycenters in the stochastic case [Claici et al. 2018]
and as a measure of proximity for shape reconstruction [de Goes
et al. 2011; Digne et al. 2014]. Extensions of semi-discrete transport
to curved spaces can be found in [de Goes et al. 2014; Mérigot
et al. 2018]. Although they can be fast and give explicit transport
maps, these methods are not suited for the application we have in
mind: They rely on the computation of transport maps between
two probability distributions that are not of the same nature (one
is discrete, the other has a density) and hence cannot be used to
implement a distance or interpolation cleanly.

2.3 Fluid dynamic formulations

By switching from Lagrangian to Eulerian descriptions of trans-
port, Benamou and Brenier [2000] proved that optimal transport
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could be rephrased using fluid dynamics: Instead of computing a
coupling, they show that transport with quadratic costs is equiva-
lent to finding a time-varying sequence of distributions smoothly
interpolating between the two measures. The problem that they
obtain is convex and solved via the Alternating Direction Method of
Multipliers (ADMM) [Boyd et al. 2011]. Proof of the convergence of
ADMM in the infinite-dimensional setting (i.e. when neither time
nor the geometric domain is discretized) is provided in [Guittet
2003; Hug et al. 2015]. Papadakis et al. [2014] reread the ADMM
iterations as a proximal splitting scheme and show how one can
build different algorithms to solve the convex problem. This fluid
dynamic formulation also appears in mean field games [Benamou
and Carlier 2015].

In all of the above work, however, the authors work in a flat
space and use finite difference discretizations of the densities and
velocity fields. Hence their work does not contain a clear indication
about how to handle the problem on a discrete curved space, and
theoretical properties of their models after discretization remain
unverified.

The algorithm for approximating 1-Wasserstein distances pre-
sented by Solomon et al. [2014] achieves some of the objectives
mentioned above. Their vector field formulation is in some sense
dynamical, and their distance satisfies properties like the triangle
inequality after discretization. As mentioned above, however, their
optimization problem lacks strict convexity and is not suitable for
interpolation.

2.4 Dynamical transport on graphs and meshes

Maas [2011] defines a Wasserstein distance between probability
distributions over the vertices of a graph. The (finite-dimensional)
space of distributions in this case inherits a Riemannian metric with
some structure preserved from the infinite-dimensional definition;
for instance, the gradient flow of entropy corresponds to a notion
of heat flow along the graph. A similar structure is proposed by
Chow et al. [2016], but they recover a different heat flow. Erbar
et al. [2017] propose a numerical algorithm for approximating the
discrete Wasserstein distance introduced by Maas, but the distribu-
tions they produce have a tendency to diffuse along the graph. This
flaw is not related to their numerical method but rather comes from
the very definition of their optimal transport distance. It is also not
obvious what is the best way to adapt their construction to discrete
surfaces rather than graphs.

2.5 Interpolation and geodesics

Optimal transport is not the only way to interpolate between prob-
ability distributions; for instance, Azencot et al. [2016] use a time-
independent velocity field to advect functions and match them. Their
method, however, cannot be understood as a geodesic curve in the
space of distributions. In another direction, Heeren et al. [2012] have
provided an efficient way to discretize in time geodesics in a high-
dimensional space of thin shells. Their formulation is not well-suited
for optimal transport where direct discretization of the Benamou—
Brenier formula is possible. Finally, methods like [Panozzo et al.
2013] provide a means of averaging points on discrete surfaces,
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Fig. 2. Top row: Interpolation of probability distributions. The left and right
distributions are data and the middle ones are the output of our algorithm.
Bottom row: Display of the momentum m = pv, where v is a time-dependent
velocity-field advecting the left distrbution on the right one. We have used
the regularization described in Subsection 5.4 with & = 0.1.

@

t=1/4 t=1/2 t_3/4

t=0 t=1/3 t=2/3 t=1

Fig. 3. Top row: schematic view of the static formulation of optimal transport
(1). The initial distribution j2° is on the left, and the final distribution ! is
on the right. The quantity dz(x, y) represents the amount of mass that is
transported from x to y. The coupling 7 is chosen in such a way that the
total cost is minimal. Bottom row: dynamical formulation between the same
distributions (computed with the algorithm in Section 4). To go from the
top to the bottom row, once one has the optimal 7, a proportion dz(x, y)
of particles follows the geodesic (in this case a straight line) between x
and y with constant speed. The macroscopic result of all these motions is a
time-varying sequence of distributions, displayed in blue.

although it is not clear how to extend them to the more general
distribution case.

3 OPTIMAL TRANSPORT ON A DISCRETE SURFACE
3.1 Optimal transport on manifolds

We begin by introducing briefly optimal transport theory on a
smooth space. Let M be a connected and compact Riemannian mani-
fold with metric (, ) and induced norm || ||; defined : MxM — R4
to be geodesic distance.

Denote by P (M) the space of probability measures on M. This
space is endowed with the quadratic Wasserstein distance from
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optimal transport: If i°, g' € P(M), then the distance Wz (i, g')
between them is defined as

Wi )= min [ dgtdren.

where the minimum is taken over all probability measures 7 on
the product space M x M whose first (resp. second) marginal is 7°
(resp. jit).

The problem (1) can be interpreted as follows: dz(x, y) denotes
the quantity of particles located at x that are sent to y, and the cost
for such a displacement is d(x, y)?. The constraint on the marginals
enforces that 7 describes a way of moving the distribution of mass
° onto ji'. Thus, the variational problem (1) reads: Find the cheapest
way 7 to send ji° onto /i!, and the result (i.e. the minimal cost) is
defined as the squared Wasserstein distance between i° and .
In some generic cases [Brenier 1991; Gangbo and McCann 1996],
the optimal r is located on the graph of amap T : M — M,
which means that a particle x € M is sent onto a unique location
y=T(x) e M.

The space (P(M), Wz) is a complete metric space [Santambrogio
2015; Villani 2003], and—at least formally—it has the structure of
an (infinite-dimensional) Riemannian manifold. Revealing this man-
ifold structure requires some manipulation and rephrasing of the
original problem (1), detailed below.

As first noticed by Benamou and Brenier [2000], the Wasserstein
distance between ji° and i! can be obtained by solving an alternative,
physically-motivated optimization problem:

. 1
o miny, v /0 fM%HthZd,utdt
Wi, g') = {st. p0=p0 pt =g, @
Orpr+V - (uv) = 0.

As we will have to deal with functions and vectors depending both
on time and space, here and moving forward we adopt the following
convention: Upper indices denote time, and lower indices denote
space. Moreover, t € [0, 1] will denote an instant in time, and f
will later denote a generic triangle (f for face) in a triangulation.
In (2), the minimum is taken over all curves y : [0,1] — P(M)
and all time-dependent velocity fields v : [0, 1] X M — TM such
that the continuity equation d;p + V - (uv) = 0 is satisfied in the
sense of distributions. The optimal curve p is known as McCann’s
displacement interpolation [1997].

The physical interpretation of this problem is as follows. Imagine
probability distributions as distributions of mass, e.g. the density of
a fluid. The curve p represents an assembly of particles in motion,
distributed as ° at t = 0 and 7' at t = 1. At time ¢, a particle
located at x € M moves with velocity v%. The continuity equation
Orp + V- (uv) = 0 simply expresses the conservation of mass. For a
given time ¢, the cost / M %Hvt I2dy! is the total kinetic energy of
all the particles. Hence, the cost minimized in (2), i.e. the integral
w.r.t. time of the kinetic energy, is the action of the curve. As there
is no congestion cost—that is, the particles do not interact with each
other—(2) is the least-action principle for a pressureless gas.

Formulation (1) is static, since it directly determines the target for
each particle at t = 1 given the arrangement at ¢t = 0. On the other
hand, (2) is dynamical, recovering a curve in (M) interpolating
smoothly between ° and fi!. To convert from the static to the
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dynamical formulation, one takes an optimal transport plan 7 from
(1) and an assembly of particles distributed according to g°. If a
particle located at x € M at time t = 0 and is supposed, according
to 7, to be sent to y € M, then this particle follows a constant-speed
geodesic along M from x to y. The optimal curve y in (2) is exactly
the resulting macroscopic motion of all the particles, illustrated in
Figure 3.

Calling m = pv the momentum and using the change of variables
(1, v) & (u, m), problem (2) becomes convex, because the mapping
(11, v) = 1/2||v||? is not jointly convex while (i1, m) — 1/2||m||%/p
is. Its dual reads

Y TR e R i Y 3
a2 st. g+ 3IVell? <0on[0,1] x M,

where the maximization is performed over real-valued functions
¢ :[0,1] x M — R [Santambrogio 2015; Villani 2008]. The relation
v = V¢ holds whenever v (resp. ¢) is a minimizer (resp. maximizer)
of the primal (resp. dual) problem. In particular, in (2), we can restrict
ourselves to the set of v such that v/ = V¢! for every t € [0,1].

Equation (2) defines a formal Riemannian structure on (M)
[Otto 2001]. Given u € P (M) with a density bounded from below by
a strictly positive constant, the tangent space T, (M) is identified
as the set of functions §p : M — R with 0-mean: §y is the partial
derivative w.r.t. time of a curve whose value at time 0 is . If Sy €
T, P (M), we can compute ¢ : M — R the solution (unique up to
translation by constants) of the elliptic equation

V- (uVe) = =bp. (4)
Then, the norm of §y is defined as
2 1 2
18ullT, Py = 5 " IVeoll*dp. (5)

Endowed with this scalar product obtained from the polarization
identity (x,y) = %(Hx +y||? = ||x — y||?), one can check, and the
derivation appears in the supplemental material, that the Wasser-
stein distance W5 can be interpreted as the geodesic distance induced
by (4) and (5). This is precisely the content of the Benamou-Brenier
formula (2).

One needs to assume p > ¢ > 0 on M for the elliptic equation (4)
to be well-posed. Nevertheless, one can still give a meaning to this
Riemannian structure using tools from analysis in metric spaces
[Ambrosio et al. 2008].

3.2 Discrete surfaces

The previous subsection contains only well-understood results. Let
us now start our contribution: to mimic these definitions and prop-
erties when the manifold is replaced by a triangulated surface.
Instead of a smooth manifold M, we consider the case where
we only have access to a triangulated surface S = (V, E, T), which
consists of a set V C R3 of vertices, a set E C V X V of edges linking
vertices, and a set T C V X V X V of triangles containing exactly
3 vertices linked by 3 edges. For a given face f € T, we denote by
Vf C V the set of vertices v such thatv € f; for a given vertexv € V,
we denote by T, C T the set of faces f such thatv € f. The area of
a triangle f € T is denoted by |f|. Each vertex v is associated to a
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barycentric dual cell (see Figure 4) whose area, equal to % Xrer, If1
is denoted by |v|.

Following standard constructions from first-order finite elements
(FEM), a scalar function on M will be seen as having one value per
vertex, i.e. belonging to RIVI. A distribution u € M will be also
discretized by one value per vertex representing the density w.r.t.
the volume measure. In other words, the volume of the dual cell
centered atv € V, measured with g, is [v|u,,. We denote by P(S) the
set of probability distributions on the discrete surface:

P(S) := {p eRIVIst. Uy = 0forallv € Vand Z v|o = 1} .

veV
(6)
For instance, the volume measure is represented by the vector in
P(S) parallel to (1,1,...,1)7T.

The set V of vertices can be interpreted as a discrete metric space,
either by using directly the Eulidean distance on R3 or by some
version of the discrete geodesic distance along S. Hence, a natural
attempt to discretize the 2-Wasserstein distance would be to use
(1) and replace d by the distance between vertices. As pointed out
in [Gigli and Maas 2013; Maas 2011], however, this discretization
leads to a space without a smooth structure. For instance, there
do not exist non-constant smooth (e.g., Lipschitz) curves valued in
such a space; whereas in a space with a smooth structure (e.g. a
Riemannian manifold), one expects the existence of non-constant
Lipschitz curves, namely the (constant-speed) geodesics.

Let us briefly recall the argument. We take the simplest example
of a space consisting of two points. If X = {x¢, x1} contains two
points separated by a given distance ¢, a probability distribution y on
X is characterized by a single number iy, € [0,1], as py; = 1 — fix,.
If ! is a curve valued in P(X), one can compute Wa(u?, u%) =

N y,tm — jiy, |. In particular, if ¢ is Lipschitz with Lipschitz constant

L, our expression for Wy implies [u%, — p5,| < %—jh‘ — s|?. There is
an exponent 2 on the r.h.s, but only 1 on the Lh.s.: it is precisely
this discrepancy which is an issue. Indeed, dividing by |t — s| on
both side and letting s — ¢, one sees that t = ,uf(o is differentiable
everywhere with derivative 0, i.e. is constant.

For this reason, we prefer to discretize the Benamou-Brenier for-
mulation (2), as it will automatically give a Riemannian structure on
the space P(S). In this sense, the basic inspiration for our technique
is the same as that of Maas [2011], although on a triangulated surface
we enjoy the added structure afforded by an embedded manifold
approximation of the domain rather than an abstract graph.

As (2) involves velocity fields, a choice has to be made about their
representation [de Goes et al. 2015a]. To take full advantage of the
triangulation, we want to use triangles and not only edges to define
our objective functional. The latter choice leads to formulas similar
to [Chow et al. 2016; Maas 2011], which, as we say above, exhibit
strongly diffuse geodesics. We prefer to represent vector fields on
triangles. More precisely, a (piecewise-constant) velocity field v is
represented as an element of (R3)ITI ie. as one vector per triangle,
with the constraint that \{Z which is a vector of R3, is parallel to
the plane spanned by f, which means that our velocity fields lie in
a subspace of dimension 2|T]|.
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Ifp € RIVI represents a real-valued function, we compute its
gradient along the mesh using the first-order (piecewise-linear)
finite element method [Brenner and Scott 2007]: For each triangle f,
we compute ¢, the unique affine function defined on f coinciding
with ¢ on the vertices of f. Then, the gradient of ¢ in f is simply
defined as the gradient of ¢ at any point of f; as the gradient is
constant on each triangle, we need to store only one vector per
triangle. Since this operator is linear, let us denote by G € R3ITIXIVI
its matrix representation. In particular, the Dirichlet energy of ¢ €
RVl is defined as

Dir(p) = 5 > If1IGoy I )

feT

The sum is weighted by the areas of the triangles to discretize a
surface integral. The first variation of this Dirichlet energy can be
expressed in matrix form as (GT M7G)p, where My € R3ITIX3IT]
is a diagonal weight matrix whose elements are the areas of the
triangles. The matrix GT M7G is the so-called cotangent Laplace

matrix of a triangulated surface [Pinkall and Polthier 1993].

3.3 Dual problem on meshes

Let us introduce our discrete Benamou-Brenier formula by starting
from its dual formulation (3). Since the objective functional is linear,
its discrete counterpart is straightforward as both y and ¢ are defined
on vertices. On the other hand, in the constraint d;¢ + %||V(p||2 <0,
we would like to replace V¢ by Gg but then the two terms of the
sum do not live on the same space.

The constraint 9; ¢+ % IVol|? < 0is apriori not coercive. Suppose
¢ satisfies the constraint, and take another function ¢ with the
property that ¢ + sy satisfies the constraint for arbitrarily large
s > 0. Expanding the inequality d;(¢ + sy/) + %HV(p +sVy)2 <o
and taking the limit s — +oo shows that i satisfies this property if
and only if [|[V¢/|| = 0 and 9;¢ < 0; these two conditions together
imply that the objective functional in (3) is smaller when evaluated
at ¢ + sy rather than at ¢. This is a property that we would like to
keep at the discrete level. To do so, we enforce a discrete analogue of
the constraint at each vertex of the mesh. To go from ||Gg||?, which
is defined on triangles, to something defined on vertices, we first
take the squared norm and subsequently average in space:!

Definition 3.1. Let fig, i1 € P(S). The discrete (quadratic) Wasser-
stein distance Wy (fio, fi1) is defined as the solution of the following
convex problem:

sup, Zoev |V|§0Lﬂ}; = Zoev |V|(P(z))ﬁ(z))

ot 4 ] 2feT, |f|||(G<{))}||2

+ - <0
P05 3|

for all (t,v) € [0,1] X V,

W20, i) = 4 st. (8)

where the unknown is a function ¢ : [0,1] XV — R.

The denominator 3|v| is nothing else, by definition, than }; feT, If].
In particular, the value (ZfeTv Hall (an)} 1 2) (3|v])~! is the average,

!If we do the opposite (averaging and then taking the square), there are spurious modes
in the kernel of the quadratic part of the constraint, which leads to poor results when
working with non-smooth densities.
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weighted by the areas of the triangles, of ||(th)jfp||2 for f € Ty.

One can check that the same reasoning as above can be performed.
Indeed, if ¢ : [0, 1] XV — R satisfies the constraint in (8) and ¢ + sy
also satisfies it for arbitrarily large s > 0, it implies, taking s — +oo,
that
1 2f st vef |f|||(G¢)}I|2
- <0. )
2 3|v|

This inequality must hold for all (¢,v) € [0, 1]x V. Thus, we conclude
(and it is for this implication that it is important to average after
taking squares) that Gy is identically 0. In other words, for all t €
[0, 1], the function ¢/ is constant over the discrete surface. Plugging
this information back into the constraint in (8) and taking again
s — +oo, we see that d; < 0. Hence, the value lﬁo (which is
constant over the surface) is larger than ¢!. With this information
(G¢ = 0 and 9;¢¥ < 0), the value of the objective functional must
be smaller for ¢ + sy than for ¢ as soon as s > 0.

3.4 Riemannian structure of the space of probabilities on a
discrete surface

To recover an equation which looks like the primal formulation of
the Benamou-Brenier formula (2), it is enough to write the dual of
the discrete formulation (8). The latter formulation, as explained
above, was important to justify the choice of the way we average
quantities that do not live on the same grid.

We introduce additional notation to deal with the averaging of
the density p. If 4 € P(S), we denote by ji € RIT! the vector given
by, forany f €T,

. 1
fr=3 D, b (10)
UEVf

This is a natural way to average u from vertices to triangles, appear-
ing in the dual formulation given below:

PropOSITION 3.2. The following identity holds:
. 1 .
mingy [ (per IVEIPIF1AL) de
wil gy = {3t K= =g (1)
> 9y (Mur i1 —GTM-TatvE]),, =
t(Mypg,) + ( TV Do =0
forall (t,v) € [0,1] X V.

Recall that M7 € R3ITP3IT] and ptyy € RIVIXIVI are diagonal matri-
ces corresponding to multiplication by the area of the triangles and
of the dual cells respectively. Then, -G My represents a discrete
version of the (integrated) divergence operator, suggesting that the
constraint can be interpreted as a discrete continuity equation. The
derivation of this result, detailed in the supplemental material, relies
on an inf-sup exchange, similar to the case of a smooth surface M.

Proposition 3.2, very similar to (2), shows that W; is the geodesic
distance for a Riemannian structure on the space $(S), at least for
non-vanishing densities. Let us detail the metric tensor for a density
p € P(S) with ming p,, > 0. As the set P(S) is a codimension-1
subset of the linear space RV, the tangent space at y is naturally
{xeRIVIst. 2vev Vlxy = 0}. Inanalogy to (4), take 6 € T, P(S).
We call ¢ € RIVI a solution of

My = —(GT My MyG)g, (12)
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Fig. 4. Left: temporal grids G, and st for N = 4. Right: a vertex ()

time
surrounded by 6 adjacent triangles, the dual barycentric cell is in gray.

where M, € R3ITHSIT] s o diagonal matrix corresponding to mul-
tiplication on each triangle by fi. As ji > 0 everywhere on V, this
equation is well-posed: The kernel of GT MM G is of dimension
one (it consists only of the constant functions), and My dy lies in
the image of this operator. When the distribution p is uniform, (12)
boils down to a Poisson equation, as the operator —(GT MM 1G) is
proportional to the cotangent Laplacian.

One can then define the norm of 6y on the tangent space T,P(S)
as

1 "
1817, pcs) = 5 2 1Go)IP1f iy (13)
fer

The function ¢ is unique up to an additive constant, which lies in
the kernel of the matrix G, so this norm is well-defined.

To put everything in one formula, the scalar product (6, § V)Ty P(S)
between two elements of the tangent space at p can be expressed as
(5V)TPIJ (6p), where the matrix P, is expressed as

1 _ e
P, = EM‘T,G T(MMr)~'G™ My (14)

One can check, and the derivation is provided in the supplemental
material, that Wy is exactly the geodesic distance induced by this
metric tensor.

PROPOSITION 3.3. The function Wy : P(S) X P(S) is a distance.

Proor. Itisa general fact that the geodesic distance on a manifold
(defined by minimization over all possible trajectories) is a distance,
see for instance [Jost 2008, Section 1.4]. O

A natural question is whether the space (P(S), Wy) converges
to (P(M), W) as S becomes a finer and finer discretization of a
manifold M. For a discrete Wasserstein distance like the one of
Maas [2011], based on the graph structure of S—which corresponds
to the case where velocity fields are discretized by their values on
edges and a particular choice of scalar product—the answer is known
to be positive in the case where M is the flat torus [Gigli and Maas
2013; Trillos 2017] in the sense of Gromov-Hausdorff convergence
of metric spaces, while a very recent work by Gladbach, Kopfer
and Mass [2018] has refined the analysis and exhibits necessary
conditions for such a convergence to hold. The high technicality of
the proofs of these results, however, indicates that the question for
our particular definition is likely to be challenging and out of the
scope of the present article.
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4 TIME DISCRETIZATION OF THE GEODESIC PROBLEM
4.1 Discrete geodesic

So far, we have defined a structure-preserving notion of optimal
transport on a triangle mesh. While our model has many properties
in common with the continuum version of transport, the resulting
optimization problem is infinite-dimensional since the unknown
ut is indexed by a time variable ¢t € [0,1]. Our next step is to
derive a time discretization that approximates this interpolant in
practice. Put simply, we want to solve the geodesic problem, i.e.,
given i°, ! € P(S), we want to approximate the solution g of (11).
To this end, we discretize in time the dual problem (8).

Our infinite-dimensional problem can be classified as a second-
order cone program (SOCP) [Boyd and Vandenberghe 2004, Section
4.4.2]; we choose a discretization that preserves this structure. The
main issue is that with a standard finite difference scheme, the de-
rivative d; ¢ ends up on a grid staggered w.r.t. the one on which ¢ is
defined. Hence, we average to define the constraint on a compatible
grid. We apply the same idea as before: With the term involving
|Go||%, we average after taking the square to avoid the introduction
of any spurious null space.

Let N be the number of discretization points in time. We consider
two grids: the staggered grid tsitme :={k/N : k=0,1,...,N}
and the centered grid G_ = {(k+1/2)/N : k=0,1,...N -1},
see Figure 4 The staggered grid has N + 1 elements whereas the
centered one has only N. We call 7 := 1/N the time step. The linear

operator D : R%ime — RYime defined by

t+7/2 _ t—7/2
4 ¢
(Dg)' = (15)
T
is a natural discretization of tlrtle time derivative.
Next, we discretize ¢ € RYne<IV| a function depending both on
. . ;1 Zfero FIIGOI? .
space and time. The constraint d;¢;, + 5 — SRl < 0 will
fime- 1t is enough t(t) rzeplace 0rp
Zrery IfIIGO)LII
by Dg. On the other hand, the term %fﬂgl—vlf
defined on Qtsitme, will be also averaged in time. In other words, the
fully discrete problem reads:

be imposed on the centered grid

, which is

Find ¢ € R%ime*!V| maximizing
Z’UEV |V|¢%)ﬁ%) - ZZ}EV |V|(p(z))ﬂ9)
t+it/2
| Zper, NG T2

1
t. (Dp)L, + = <0
S ( (P)v + 2 ] Z 2 3|V|
ief-1,1}
forall (t,v) € Gy . XV,
(16)

The constraint still stays quadratic, and hence the fully-discrete
problem is still a SOCP.

4.2 Algorithm

To tackle (16) algorithmically, we follow Benamou and Brenier [2000]
by building an augmented Lagrangian and using the Alternating
Direction Method of Multipliers (ADMM). The main issue is that the
constraint is nonlocal—since it involves discrete derivatives—and
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nonlinear. We construct a splitting of the problem that decouples
these two effects.

To this end, we introduce two additional variables A and B. We
enforce the constraint A = D¢, and hence A is defined on the
grid G . X V. On the other hand, the variable B stores the values
of Gy but with some redundancy. Each (G(p)} appears in more
than one inequality constraint in (16), and B is chosen so that each
component of B appears in only one inequality constraint. In detail,
B is defined on the grid G{ . X {+1} X T X V with the constraint
that (f,v) € T XV is such thatv € f. We will impose the constraint

i iT/2 .
that BY! = (G(p)]‘j”/ forall (t,4, f,v) € G, X {21} X T X V.
We introduce the notation g = (A,B) and write ¢ = Ap if A,B

satisfy the relations written above. Define

Flp)= ) Mlobih = ) IWleb i, (17)

veV veV

and C to be the function such that C(4, B) = C(g) = 0 if
V(t,v) € ggme XV,

t,i
D1 1 Tpen FIIBL R
Av + 5 _—3|V| <0 (18)

ie{-1,1} 2
and —oo otherwise. The discrete problem (16) can be written

max F(p) + C(q). (19)
q=A¢

The idea is to introduce a Lagrange multiplier o = (i, m) associated
to the constraint ¢ = A¢ and to build the augmented Lagrangian

L(p.q.0) = Fp) + C(@) +{0.q — Ap) = Zllg ~ Aol (20)

In this equation, (o, ¢ — Ap) = (4, A— D)y + (m, B — Gp)T, where
the scalar product (, )y (resp. (, )7) is weighted by the areas of
the vertices (resp. the triangles) and the time step 7.

The saddle points of the Lagrangian (20)—which do not depend
on the parameter r—are precisely the solutions to the problem (16),
and g, the first component of ¢ associated to the constraint A = Dg,
is an approximation of the time-continuous geodesic (11). On the
other hand, the second component m is an approximation of the
momentum pv.

To compute a saddle point, we use ADMM, which consists in
iterations of the following form [Boyd et al. 2011]:

(1) Given g and o, find ¢ that maximizes L.
(2) Given ¢ and o, find q that maximizes L.
(3) Do a gradient descent step (with step r) to update o.

The parameter r > 0 is arbitrary and tuned to speed up the conver-
gence; see [Boyd et al. 2011] for discussion. In our case, details of the
iterations are briefly presented below and summarized in Algorithm
1.

Maximization w.r.t. ¢. The Lagrangian L is simply a quadratic
function of ¢, so its maximization amounts to inverting the matrix
AT A which, in our case, behaves like a space-time Laplacian.

More precisely, writing ¢ € RV as a (N + 1) x |V| matrix
(with rows indexed by time and columns by space), the equation
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Algorithm 1 GEODEsIC COMPUTATION

function Gropgsic(z’, i!)
Initialize ¢, A, B, g, m < 0
while PrimalResidual and DualResidual > ¢ do
¢ < solution of (21)
fors,v € tcime xV do
update A and B by solving (22)
end for
Update p and m through (23)
end while
return p
end function

satisfied by a maximizer of L over ¢ reads

r [DTMyDg + 3(ETE)p(GT M1 G)|
= N(ji'Ii=1 — i°T;=0) - D" My (s — rA) — (m — rB)M7G . (21)

Again recall that the unknown here is ¢; the remaining symbols

c st
are fixed matrices. In this equation, E € RG%ime*Yiime stands for the
t—r/2+¢t+r/2

2

averaging in time defined by (Eg)! = £ . The matrices

I;—gand I;- € RGime<V stand for the indicator of t = 0 (resp.t = 1),
namely they contain zeros except on the first (resp. last) row which
is full of ones. The factor 3 comes from the fact that each value of
(Go)r is duplicated 3 times in B, one for each vertex which belongs
to f. The operator G is almost the same as G but takes in account
the fact that the values of Gg are duplicated in B (hence in m): G
corresponds to the adjoint of the second component of the operator
A.

(DT My D) is the discrete Laplacian in time, and G M7G is the
discrete Laplacian on S. In fact, (21) is a Poisson equation with a
space-time Laplacian. Equation (21) admits more than one solution
but they only differ by a constant whose value does not modify the
value of L.

The linear operator to invert is the same at each iteration, and
hence standard precomputation techniques can be used to speed up
the application of its inverse.

Maximization wr.t. A, B. The Lagragian L is also quadratic w.r.t. g,
but there is a quadratic constraint on these two variables due to the
presence of C(g). Because of the redundancy in B, each component
of A or B is subject to only one constraint. More precisely, we can
check that one needs, for each (t,v) € gtcime X V, to minimize

2
1
v (4 - 0ot - 11t

)

ie{x1} veVy

. 12
BLL - G-ttt (22)

under the constraint (18). This minimization amounts to a Euclidean

projection on the set of A, B satisfying (18), which can be carried

out by solving a cubic equation in one variable, independently on

each point of G . X V. These equations are solved using Newton’s
ime

method.
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Dual update. This gradient descent corresponds to the following
operations:

o iy~ (A — (D))

t,i ti ti t+ir/2 (23)
me, <—mf’v—r(Bf,v—(G<p)f ),
forany (t,v) € G XV andany (t,i, f,v) € G X {1} xT X V.

5 EXPERIMENTS

Recall that our main practical contribution is to be able interpo-
late between probability distributions using an optimal transport
model that preserves structure from the non-discretized case. We
will illustrate the robustness of our method: It can handle peaked dis-
tributions, and it lifts the intrinsic geometry of the discrete surface
while being insensitive to the choice of mesh topology.

The typical computation is the following: We enter the data g°, '
and compute a solution of the discrete problem (16). Then, we plot
the evolution over time of y, which approximates the geodesic in
the Riemannian metric described in Subsection 3.4. As a byproduct
of the optimization process, we also obtain the optimal momentum
m = pv, which can be also plotted, see Figure 2. The code used
to conduct all our experiments is available at https://github.com/
HugoLav/DynamicalOTSurfaces.

As the color map is sometimes normalized independently for
different time instants on the same interpolation curve, let us un-
derscore this fact: For every example, we have checked numerically
that the densities are always nonnegative and that mass is always
preserved over time.

5.1 Convergence of the ADMM iterations

For fixed boundary data /i° and /i, we plot in Figure 5 the primal
and dual error defined by Boyd et al. [2011], as a function of the
number of iterations of the ADMM scheme. We usually need on
the order of a few thousand iterations to satisfy our convergence
criteria, this number being dependent of the boundary data °, !
(the more diffuse, the fewer iterations are needed).

Because our objective functional is scaled according to the ge-
ometry of the mesh (i.e. scalar products are weighted by the areas
of the triangles and the number of time steps), the number of it-
erations needed does not depend on the size of the resolution of
the mesh nor the number of discretization points in time, but the
computation time needed per iteration does. Typical values of the
timings are given in Table 1, they are of the order of 1 second per
ADMM iterations for meshes with a few thousand vertices.

5.2 CVXimplementation

Since the optimization problem in Equation (25) is a convex cone
problem, we have also used a straightforward implementation in
CVX [Grant and Boyd 2008, 2014], with Mosek as a solver [MOSEK
ApS 2017]. This approach is provided as a simpler alternative to the
ADMM implementation, and has comparable performance on small
meshes with standard precision settings (fewer than 1000 vertices).
In general, it is difficult to compare the error thresholds across the
two implementations due to algebraic rearrangements performed
by CVX. See Table 1.
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Table 1. Timing data for various meshes and boundary data from the figures (numbers listed in the table). N denotes the number of time discretization
points and « is the value of the congestion regularization parameter (see Section 5.4). For the ADMM method, the number of iterations and timing are given.
Iterations were stopped once an error of 107* was reached for the L? norm of both the primal and dual residual. One can see that the time per iteration
depends on the size of the mesh and the temporal grid, but the number of iteration is quite insensitive to these parameters and rather depends on the
boundary conditions and the regularization parameter. For the CVX implementation of the optimization problem, the solver time and the total time (includes
CVX pre-processing) are given. Standard precision settings were used, but are hard to interpret absolutely due to unknown algebraic rearrangement of the

problem. * denotes that CVX reported a failure in this case. Results obtained on an 8-core 3.60GHz Intel i7 processor with 32GB RAM.

Mesh Figure || N 4 |T| a ADMM Iters. | ADMM Time (s) || Mosek Time (s) | CVX Total (s)
Punctured sphere 10 13 | 1020 | 2024 | 0.02 546 16 23 27
Punctured sphere 10 31 | 1020 | 2024 | 0.02 547 47 114 122

Hand 8 13 | 1515 3026 | 0.02 846 47 37 47

Hand 8 31 1515 3026 | 0.02 858 97 174 191

Armadillo 7 31 5002 10000 0 929 332 766 882
Armadillo 7 63 | 5002 10000 0 808 649 3719 3970
Armadillo 7 31 5002 10000 1 308 116 938" 1054

Face 2 31 5002 10000 0.1 415 155 1829 1944

Airplane 9 31 3772 7540 0.1 535 144 764 831
Planar square 3 31 | 11838 | 23242 0 565 473 10270 11082

T T
—— Primal residual

—— Dual residual

2
Oul ol o el

L2 norm

wl ol il ol 0

| | | | | |
0 1,000 2,000 3,000 4,000 5,000

Number of iterations

Fig. 5. Amplitude of the primal and dual residual [Boyd et al. 2011, Section
3.3] in L? norm. The distributions ° and fi' are delta functions located
on respectively the right and left hand of the armadillo. We also show the
midpoint /2 for different numbers of iterations (10,50 and 5000). After
a few hundred iterations, there is no visible difference in y'/2. There is a
jump in the value of the dual residual at around 4600 iterations. It is due
to a change in the value of the parameter r, which is updated according to
the heuristic rule presented in Section 3.4.1 of [Boyd et al. 2011].

5.3 Convergence with discretization in space and time

As indicated in Section 3, it is not known theoretically whether
our discrete distance converges to the true Wasserstein distance
when the mesh is refined. This is also the case as far as the time
discretization is concerned; one could likely adapt the method of
proof of Erbar et al. [2017], but doing so is out of the scope of this
article.

In Figure 6, however, we present some experiments indicating that
convergence under space and time refinement is likely to be true.
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Number of discretization points in time Number of discretization points in space

Fig. 6. Top row: the test case. The inputs, i.e. probability distributions at
times + = 0 and ¢ = 1, correspond to the same density translated two
different ways. Optimal transport predicts that at time ¢ = 1/2 we should
observe the same density again, but translated to the midpoint between the
two inputs; this gives us ground truth we can use to verify our algorithm’s
output. Bottom row: convergence plots. On the left: error, measured in L!
norm, where the mesh is fixed (regular triangle mesh with 100 points per
side of the square) and the number N of discretization points in time varies.
On the right: error, measured in L! norm, where the number of discretization
points in time is fixed (127 points) and the mesh is a regular triangle mesh
whose number of points per side varies and is plotted on the x-axis.

These were conducted in the simplest case: translation of a given
density on a flat space. For this problem, the ground truth is known,
and for a flat space it is clear what it means to refine the mesh:
We have use a regular triangle mesh with an increasing number of
points per side. The error was evaluated at time ¢ = 1/2 between the
computed geodesic and the ground truth. As a measure of error, as
the distributions are compactly supported, we use a total variation
norm (in other words the L! norm between the densities) rather
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than the Kullback-Leibler divergence. As expected, we observe a
decrease in error as the temporal and spatial meshes are refined.

5.4 Congestion and regularization

In optimal transport there is no price paid for highly-congested
densities. Imagine the probability distributions as an assembly of
particles moving along the surface. Along a geodesic in Wasserstein
space, each particle evolves in time by following a geodesic on the
surface—but does not feel the presence of its neighbors.

Now imagine, due to the particular structure of the triangle mesh,
there is a small shortcut in terms of geodesic distance through
which all geodesics tend to concentrate. This is likely to appear
near a hyperbolic vertex [Polthier and Schmies 2006]. Then all
the particles have the incentive to take this shortcut, resulting in
densely-populated zones, as they are not prone to congestion. As
an example, see the first row of Figure 7 in which, to go from the
left to the right of the armadillo, all the particles go through only
two paths, leaving the rest of the mesh without any mass.

This effect, although visually unpleasant, would be observed on a
smooth surface M as soon as geodesics concentrate in some regions.
A way to remove this artifact is to penalize congestion; we can do
so with little modification to the algorithm.

We penalize the densities by their L? norms: The choice of the
exponent 2 is important, as it preserves the quadratic structure of
the optimization problem. Namely, we add to the Lagrangian (20)
the term

DV ZT'V'(AL”L'%%)Z)’

teGy . vEV A teGg . vEV
(24)
where the parameter « tunes the scale of the congestion effect and
A € RGtmexV corresponds to the dual variable associated to the
congestion constraint.
Using the notation from Section 4.2, one can write the problem
as maximizing

~max F(p,A) +C(q), (25)
A, N)=q
but this time
1
Flo.)= (7)== > Y thl@h)? (26)
teGE . VEV

and A(p, 1) = (=1, 0) — A(p). Then one runs exactly the same algo-
rithm, with a straightforward adaptation of the update formulas.

After regularization, the interpolation is no longer a geodesic.
For instance, the interpolation between two instances of the same
probability distribution is not constant in time, because the L? norm
potentially can be reduced by diffusing outward in the intermediate
time steps. On the other hand, undesirable sharp features and oscil-
lations can be removed, as seen in Figure 7. Note that regardless of
the level of regularization, the interpolating curves are still valued
in P(S), i.e. mass is still preserved along the interpolation.

The tuning of the parameter & allows our method to be robust to
noisy mesh inputs, as shown in Figure 8. Noisy meshes have more
local variation in curvature, leading to a higher tendency for con-
gested trajectories, but this can be tamed via greater regularization.

ACM Trans. Graph., Vol. 37, No. 6, Article 250. Publication date: November 2018.

Recall that the dynamical formulation of optimal transport can
be interpreted as the least-action principle for a pressureless gas.
The effect of the penalization of congested densities can be seen,
from the modeling point of view, as adding a pressure force: the
trajectories of the moving particles are no longer geodesics, they
are bent by the pressure forces. The congestion term can also be
see as an instance of variational mean field games, for which the
augmented Lagrangian approach has been applied for flat spaces
with grid discretization [Benamou et al. 2017].

Rather than a drawback, we see the regularization as an added
feature of our method. Without regularization, one has a faithful
discrete Benamou—-Brenier formula on discrete surfaces with Rie-
mannian structure. For applications in physics or gradient flows
(Subsection 6.2), this is likely the preferable formulation. For graph-
ics, where blurriness might be sharpened a posteriori, penalizing
concentration of mass is reasonable. Either can be achieved thanks
to our regularization term without additional computational cost
and only by adding a few lines of code.

5.5 Intrinsic geometry

To illustrate the fact that the discrete Wasserstein metric is really
associated to the geometric structure of the mesh, we perform the
following experiment. We design a mesh where the right part is
much coarser than the left one, and we let the density evolve. As
one can see in Figure 9, the jump in coarseness does not affect the
density and does not produce any numerical artifact.

5.6 Arbitrary topologies

The discrete formulation that we have chosen applies without change
to meshes with boundary and those of non-spherical topology. This
is illustrated in Figure 10 with two meshes topologically equivalent
to a disc and a torus.

In the first example, the interpolating distribution stays near the
boundary, approximately following the geodesic between the means
of the endpoint distributions. In the second example, one can see
the initial distribution splitting to travel both ways to the other side
of a handle, before merging again to achieve the final distribution.

5.7 Comparison to convolutional method

Solomon et al. [2015] provide a convolutional method for approx-
imating the Wasserstein geodesic between two distributions sup-
ported on triangle meshes. Their approach solves a regularized
optimal transport barycenter problem using a modified Sinkhorn al-
gorithm, with a heat kernel taking the place of explicitly-calculated
pairwise distances between vertices. As a result, their method blurs
the input distributions, and the interpolated distributions are typi-
cally of higher entropy than the endpoints. This is combated with a
nonconvex projection method that attempts to lower the entropy of
intermediate distributions to an approximated bound.

In comparing our methods, we found that [Solomon et al. 2015]
also tends to produce interpolating distributions that do not travel
with constant speed. This effect can be seen in Figures 11 and 12,
where their interpolating distributions remain mostly stationary
for times near t = 0 and ¢ = 1, but move with high speed for times
near t = 1/2. Loosening the entropy bound in the nonconvex step
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Fig. 7. Effect of the regularizing parameter & penalizing congestion. On each row, the interpolation between the same boundary data (distributions located on

the right and on the left of the armadillo) is shown. Different rows corres
independently from the others, explaining the change in intensity. Mass is

helps somewhat, but the problem persists regardless. Most likely
this effect is due to the fact that the entropy reduction step of their
algorithm is not geometry-aware but rather simply sharpens the
regularized interpolant.

Our method does not suffer from this issue, and the spread of
our interpolating distributions is comparable or better in both cases.
Furthermore, unless the regularizer « is large, our interpolating
distributions tend to diffuse only in the direction of the geodesics
along which particles are traveling, which better mimics the behav-
ior of Wasserstein geodesics; this diffusion is reduced by adding
more time steps to our interpolation problem.

Our formulation also has comparable runtimes to the convolu-
tional method of Solomon et al. [2015]. For instance, the implemen-
tation of the convolutional method provided by the authors of that
paper took 57 and 141 seconds to converge, on the punctured sphere
(1020 vertices) and teapot (3900 vertices), respectively, for 13 time
steps. This is to be put in comparision with the timings provided in
Subsection 5.2.

The comparisons in this section were computed on a 3.60GHz
Intel i7-7700 processor with 32GB of RAM. For the convolutional
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pond to different to different values of a. The color in each image is normalized
always preserved along the interpolation.

method, the heat kernel was used to diffuse to t = 0.0015 with 10
implicit Euler steps.

6 APPLICATIONS AND EXTENSIONS
6.1

As P(M) can be viewed as a Riemannian manifold of infinite di-
mension, one can consider not only geodesics valued in this space,
but also harmonic mappings. That is, we consider a domain Q and
a function p : x € Q — p* which takes fixed values on 9Q the
boundary of Q and minimizes the Dirichlet energy

. 1
Dirn) = 5 [ 19013

where the norm || ||~ is defined in (5). Such harmonic mappings
have been introduced under the name soft maps by Solomon et
al. [2013; 2012] for the purpose of surface mapping; one can also
find a formal definition and theoretical analysis in [Lavenant 2017;
Lu 2017].

As explained by Lavenant [2017], if some boundary conditions
fi: 0Q — P(M) are given, the Dirichlet problem consists in mini-
mizing the Dirichlet energy (27) of y under the constraint that y = f1

Harmonic mappings

(27)
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Fig. 8. Robustness to noisy meshes, after adjusting the parameter a. Top row: original mesh, & = 0.02; middle row: noisy mesh, & = 0.1; bottom row: very
noisy mesh, @ = 0.2. The bounding boxes of the meshes were of side length ~1.5. Noisy mesh vertices were obtained by uniformly random perturbation, in the
normal direction, of magnitudes up to 0.02 and 0.04, for the middle and bottom row, respectively.

on 0Q. Specifically, it is a convex problem whose dual reads

maxy  foo ([ o6 ) na(di) dx o5
st.Vo-p+ %HVM(;)HZ <0onQ XM,

where ¢ is defined on Q X M and valued in TQ (i.e. for a point
(x,y) € QXM, one has ¢(x, y) € TxQ), ng(x) is the outward normal
to Q, and dx is the integration on dQ w.r.t. the surface measure. In
the case where Q is a segment, the dual problem (3) for the geodesics
is recovered.

To discretize (28), we use the same strategy as for the geodesic
problem. We assume that we have Sq = (Vq, Eq, Tq) a triangulation
of the surface Q. The discrete unknown ¢ maps every element of
Tq X V onto a vector in R3 (thought as the tangent space of Sq). The
divergence Vg, - ¢ is replaced by its discrete counterpart which lives
on Vg X V. On the other hand, V y¢ is naturally seen as a vector in
R3 for each pair of triangles in T x T. We apply the same idea: For
the term ||V p0||?, first square and then average (weighting by the
area of the triangles) to put it on the grid Vo X V. Once we have a
fully-discrete problem, we build an augmented Lagragian and use
ADMM: The solution y is the Lagrange multiplier associated to the
constraint A= Vg - ¢.
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In Figure 13, we show an example where Sq is a triangulation of
an equilateral triangle and S the triangulation of a flat square. On the
corners of the triangle we put some distributions, and on the side, as
part of the boundary data, we have chosen to put the geodesic in the
Wasserstein space between the distributions on the corners. This
choice is arbitrary, we could have chosen other configurations on the
edges of the boundary of the triangle Q. This picture resembles the
barycentric interpolation [Benamou et al. 2015; Cuturi and Doucet
2014; Solomon et al. 2015], though no theoretical evidence indicates
that harmonic and barycentric interpolation coincide.

6.2 Gradient flows in the Wasserstein space

The seminal work of Jordan et al. [1998], demonstrates that by
considering the gradient flow

Aep’ = ~VpunF(u'), (29)

where V) is the gradient w.r.t. the scalar product defined by (4)
and (5), one can recover several well-known PDE (Fokker-Planck,
porous medium equations, aggregation diffusion equations) by an
appropriate choice of the functional F : (M) — R [Ambrosio et al.
2008; Santambrogio 2015]. Moreover, a natural implicit discretization
comes with this equation: The idea is to take a time step s > 0 and
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Fig. 9. Top row: mesh and initial/final probability distributions. Notice the
difference of coarseness in the mesh. Bottom row: interpolation shown at
different times where no effect of the difference in coarseness is seen. We
have used the regularization described in Subsection 5.4 with o = 0.1.
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Fig. 10. Our formulation easily handles non-spherical topologies. In the
top row is a punctured sphere, and in the bottom row is a genus-1 teapot
mesh. These interpolations were generated with & = 0.02 and ¢ = 0.2,
respectively.

to define y*S for k = 0,1, . .. recursively in the following way:

w2 , ks
u(k+1)s = arg min [% . (30)

p

+ F(p)

The scheme above, defined in arbitrary metric spaces, is refered
to as minimizing movement scheme, in the framework of optimal
transport it is sometimes known as a JKO integrator, after the work
of Jordan, Kinderlehrer and Otto [1998].

In the case of a discrete surface S with the Riemannian structure
on P(S), (29) makes sense and can be written

Orpt = —(Pye)'VE(') (31)

where P, is the metric tensor defined in (14) and VF is the usual
gradient of F as a function from RIVI to R. We can still define an
iterative scheme to compute solutions of (31) by solving (30), where
W3 has been replaced by the discrete Wasserstein distance Wy;. As
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long as F : P(S) — R is convex, the discrete version of (30) can be
tackled by the same augmented Lagrangian and ADMM iterations
at the price of introducing an additional variable [Benamou et al.
2016].

We cannot recover cotangent Laplacian heat flow as a gradient
flow for the Wasserstein distance Wy; to get such a result, one would
need to define /i by some nonlinear averaging process rather than
(10). Such a choice would increase the complexity of computing
geodesics, and it would be likely to introduce more diffusion as in
[Erbar et al. 2017; Maas 2011].

The advantages of our numerical method are that positivity is
automatic and that mass is preserved. Moreover, as we expect the
difference between two solutions ,uks and /,t(k“)s to be very small,
we do not need a large number of discretization points in time N
(we chose N = 5 in practice) for the computation of the discrete
Wasserstein distance.

We apply our model to two different cases, illustrated in Figure
14. The first corresponds to

_ Zoev VIWopo  if iy < ,u* WevV,
Fp) =

(32)
+00 else,

where W contains one value per vertex. This choice of F yields
a crowd motion model [Maury et al. 2010; Santambrogio 2018]:
The probability distribution wants to flow to the areas where W is
low, but at the same time its density is constrained to stay below
a threshold p*. This model can only be formulated in terms of a
gradient flow in Wasserstein space and not as an evolution PDE,
justifying the use of a JKO integrator. The second corresponds to

Fp) = = 3 o)™ (53)

veV

In the case of a continuous manifold M, this choice of F yields the
porous medium equation d;u = A(p™) [Vazquez 2007]. With the
scheme (30), we do not recover a discrete cotangent Laplacian, but
the computed solution still exhibits features of the porous medium,
like a finite speed of propagation and a convergence to a uniform
probability distribution.

7 DISCUSSION AND CONCLUSION

Although techniques using entropic regularization or semi-discrete
optimal transport can interpolate between distributions on a discrete
surface, they do not provide a Riemannian structure and are subject
to practical limitations that restrict the scenarios to which they can
be applied. Using an intrinsic formulation of dynamical transport,
we can realize the theoretical and practical potential of optimal
transport on discrete domains enabled by the Riemannian structure
on the space of probability distributions, the so-called Otto calculus.
Our technique can be phrased in familiar language from discrete
differential geometry and is implementable using standard tools in
that domain. The key ingredients, namely first- and second-order
operators in geometry processing (gradient, divergence, Laplacian)
as well as SOCP optimization, remain in the realm of what is already
widely used.

We have demonstrated the power of our model by showing how
it can handle a variety of geometries and peaked distributions, while
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Fig. 11. Constant-speed interpolation. Indicator distributions on handle ends of a pliers mesh are interpolated. Top row: our method, calculated with & = 0.001;
middle row: method of Solomon et al. [2015], calculated with entropy bounded by that of the endpoint distributions; bottom row: method of Solomon et
al. [2015], calculated with no entropy bound. As can be seen, the method of Solomon et al. [2015] stays mostly stationary except for the middle frames.
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Fig. 12. Constant-speed interpolation. Delta distributions on a horse mesh are interpolated. Top row: our method, calculated with ¢ = 0.01; middle row:
method of Solomon et al. [2015], calculated with entropy bounded by that of endpoint distributions; bottom row: method of Solomon et al. [2015], calculated
with no entropy bound. For the middle row, the motion is even more concentrated in the middle frames. As seen in the bottom row, exclusion of the entropy
bound helps somewhat, but the result still is mostly stationary, save for the middle frames.
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Fig. 13. (a) Data: boundary conditions, i.e. value of the probability distribu-
tions at the boundary vertexes of a regular triangulation of an equilateral
triangle. (b) Result: interpolation over the interior of the triangular mesh
obtained by minimizing the Dirichlet energy with the boundary constraints.
The mesh of the source domain Q is a regular triangulation of a triangle
with 15 vertexes per side but for clarity reasons we display the value of
the probability distributions only a subset of the set of vertexes. The target
domain M is a flat square triangulated with 30 vertexes by side.
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introducing little diffusion. Mass may concentrate to yield a visually
inelegant result, but this behavior is at the core of optimal trans-
port theory and expected: No price is paid for mass congestion, and
hence any concentration of geodesics will result in a concentration
of mass. Nevertheless, as we have shown, one can easily modify the
optimization problem to penalize congested densities, leading to
smoother interpolants with a controllable level of diffusion. Unlike
entropically-regularized transport, however, our optimization prob-
lem does not degenerate as the coefficient in front of the regularizer
vanishes.

Beyond evaluation of transport distances, our framework extends
to support other tasks involving transport terms. We can reliably
compute harmonic mappings valued in this discrete Wasserstein
space, and the JKO integrator based on our discrete Wasserstein
distance exhibits expected qualitative behavior.

The main drawback of our approach remains its scalability. The
bottleneck of the computations is the solution of a linear system
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Fig. 14. First row: gradient flow in discrete Wasserstein space of the functional (32).The potential is chosen to be W(x, y, z) = z: the mass flows down and
then saturates because of the density constraint. Congestion can be observed as the mass goes through the thinner part. Second row: gradient flow of the
internal energy (33) starting from a delta function on the surface of the plier. The colors do not correspond to the same scale for different times; otherwise
nothing would be seen for ¢ > 0 thanks to the peaked distribution at # = 0. Notice the finite speed of propagation of the density.

whose number of unknowns is the product of the number of dis-
cretization points in time and the size of the mesh. This is an ex-
tremely structured linear system on a product manifold, for which
specialized matrix inversion techniques may exist. In any event,
with the current bottleneck our method can handle meshes with few
thousand vertices but is not currently practical for larger meshes.
As one of the first structure-preserving discretizations of trans-
port on meshes, our work also suggests several exciting avenues for
future research. Many theoretical properties of our discrete Wasser-
stein distance remain to be explored. For instance, while we have
shown that our formulation is a true Riemannian distance, one could
verify the extent to which a wealth of other theoretical properties of
transport are preserved. Convergence of our transport over meshes
to the true transport in the limit of mesh refinement also remains
an open problem for our techniques and others in a similar class.
From a practical perspective, a natural next step is to accelerate the
optimization procedure as much as possible; a faster solver for the
convex optimization problem would clearly benefit our method.
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