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ARTICLE INFO ABSTRACT

Time series data provide a crucial window into infectious disease dynamics, yet their utility is often limited by
the spatially aggregated form in which they are presented. When working with time series data, violating the
implicit assumption of homogeneous dynamics below the scale of spatial aggregation could bias inferences about
underlying processes. We tested this assumption in the context of the 2015-2016 Zika epidemic in Colombia,
where time series of weekly case reports were available at national, departmental, and municipal scales. First, we
performed a descriptive analysis, which showed that the timing of departmental-level epidemic peaks varied by
three months and that departmental-level estimates of the time-varying reproduction number, R(t), showed
patterns that were distinct from a national-level estimate. Second, we applied a classification algorithm to six
features of proportional cumulative incidence curves, which showed that variability in epidemic duration, the
length of the epidemic tail, and consistency with a cumulative normal density curve made the greatest con-
tributions to distinguishing groups. Third, we applied this classification algorithm to data simulated with a
stochastic transmission model, which showed that group assignments were consistent with simulated differences
in the basic reproduction number, Ry. This result, along with associations between spatial drivers of transmission
and group assignments based on observed data, suggests that the classification algorithm is capable of detecting
differences in temporal patterns that are associated with differences in underlying drivers of incidence patterns.
Overall, this diversity of temporal patterns at local scales underscores the value of spatially disaggregated time
series data.
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1. Introduction forces, such as feedbacks associated with changes in population im-

munity (Bjgrnstad and Grenfell, 2001; Koelle and Pascual, 2004). An

Time series have been used for many years to make inferences about
processes that shape infectious disease dynamics (Turchin and Taylor,
1992). This long history has resulted in an appreciation for a number of
common challenges for time series analysis (Hastings, 2010). One such
challenge is disentangling the effects of multiple interacting forces,
which can include both extrinsic forces, such as weather, and intrinsic

even more fundamental challenge lies in defining the time series in the
first place, especially with respect to space (Levin, 1992). The question
is, at what spatial scale should epidemiological data be aggregated for
time series analysis?

In practice, the spatial scale at which data are aggregated to form a
time series is more often dictated by the scale at which data are
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available than by the scale that is optimal for inference or prediction.
For example, during the recent invasions of chikungunya virus (CHIKV)
and then Zika virus (ZIKV) across the Americas, the Pan American
Health Organization published weekly case reports aggregated nation-
ally. Despite an abundance of evidence that chikungunya and dengue
viruses — which are also transmitted by Aedes aegypti mosquitoes — are
characterized by spatially focal transmission (Salje et al., 2016, 2017),
applications ranging from estimation of time-varying reproduction
numbers (Ferguson et al., 2016) to forecasting (Escobar et al., 2016; Del
Valle et al., 2018) have utilized data aggregated at national scales for
countries as vast and spatially heterogeneous as Brazil and Mexico.

Unlike most other countries in the Americas, routine surveillance of
Zika in Colombia was reported on a weekly basis in each of its 1123
municipalities during the 2015-2016 epidemic (Instituto Nacional de
Salud, 2017). Although such case reports are underestimates of the true
extent of transmission of most infectious diseases, particularly those
with high proportions of asymptomatic infections, they still provide a
uniquely valuable resource given the paucity of publicly available data
at similar scales in most countries (Chretien et al., 2016). Such data are
particularly valuable for Zika, given that a range of spatial scales are
relevant for activities related to its prevention and control. On the one
hand, vector control activities are planned and budgeted on multiple
administrative levels but must be targeted on a very local level. On the
other hand, communications, surveillance, and possible vaccination
programs are generally planned and implemented only on larger ad-
ministrative scales.

In the many contexts in which time series data are only available at
larger administrative scales, analyses at those scales often assume that
dynamics below that scale are homogeneous (Reiner et al., 2013;
Perkins et al., 2013; Smith et al., 2014). Our goal in this study was to
test this common assumption using a unique data set on the ZIKV in-
vasion of Colombia. We did so using a three-part approach that allowed
us to characterize heterogeneity in temporal incidence patterns and to
explore possible drivers of that heterogeneity. First, we performed
standard descriptive analyses of epidemiological time series at three
different spatial scales to characterize the extent to which results from
these analyses differ across different spatial scales. Second, we per-
formed a classification analysis of proportional cumulative incidence
curves at departmental and municipal scales to identify differences in
temporal dynamics at each of these scales. Third, we assessed possible
drivers of these differences by validating the classification algorithm
against simulated data and by exploring associations with environ-
mental variables relevant to transmission.

As a whole, this three-part approach provides insight about het-
erogeneities in epidemic dynamics at different spatial scales and es-
tablishes a new method for classifying local epidemic dynamics in a
manner consistent with differences in underlying drivers of those dy-
namics. All data and code used in this study are available at https://
github.com/TAlexPerkins/TimeSeriesSpatialScale.

2. Methods
2.1. Data

The focal point of our analysis was a collection of municipal-level
time series of weekly Zika case reports at the municipal level in
Colombia spanning August 2015 through September 2016. The primary
source of these data was the Colombian National Institute of Health
(Instituto Nacional de Salud, INS), which made official weekly reports
of the cumulative numbers of suspected and confirmed Zika cases
available in real time during the epidemic (Boletin Epidemiolégico -
Todos los documentos, 2018). The version of these data that we used in
this analysis were processed in a manner that addressed inconsistencies
between data reported at municipal and departmental scales, as de-
scribed by Siraj et al. (2018). Specifically, to correct for the fact that the
total of municipal-level data from 2015 (3875 cases) was less than the
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total of national-level data from 2015 (11,712), we imputed the 7837
missing cases at the municipal level for 2015 by multiplying each
municipality’s weekly incidence in 2015 by a factor required to achieve
better known cumulative totals for each municipality as of the first
week of 2016.

2.2. Descriptive analysis of weekly case reports

We performed two preliminary analyses of differences in weekly
case report patterns at different scales of spatial aggregation. First, we
generated a bar plot of national case reports color-coded by which of 33
departments those national cases arose from. Likewise, for each of those
departments, we generated a bar plot of departmental case reports
color-coded by which of its municipalities those departmental cases
arose from. Second, we made estimates of the time-varying effective
reproduction number, R(t), for each time series. Following Ferguson
et al. (2016), we used the EstimateR function from the EpiEstim library
(CRAN - Package EpiEstim, 2017) in R to estimate R(t) for each time
series based on the method introduced by Cori et al. (2013). In brief,
this method is based on an assumed distribution of the serial interval
(i.e., the timing between onset of primary and secondary cases) that can
be used to estimate the number of cases in the previous generation that
gave rise to those observed in the present generation, thereby enabling
estimation of R(¢).

2.3. Classification analysis of proportional cumulative incidence curves

We focused our analysis on cumulative, rather than raw, incidence
because of the extreme variability in raw incidence patterns in this data
set. This variability could occur for several reasons, including stochas-
ticity (Rohani et al., 2002), variability in underreporting (Imai et al.,
2016), or focal transmission below the scale of spatial aggregation
(Mammen et al., 2008). With raw incidence, time series with a small
number of cases appear extremely noisy, and temporal patterns would
be difficult to extract. With proportional cumulative incidence, vastly
different temporal patterns are more readily comparable, because they
all begin at 0 and end at 1 but arrive there by different paths. Others
(King et al., 2015) have criticized the use of cumulative incidence data
from epidemics, although these criticisms mostly pertain to parameter
estimation and forecasting, neither of which we do here. Rather, our
goal was to characterize diversity in the temporal patterns of an epi-
demic as viewed from different perspectives spatially.

The cumulative incidence curves that we examined were propor-
tional, meaning that they all reached 1 at the time the last case was
reported in a given area. Mathematically, for weekly reported Zika
incidence I;, in location i in week t, we calculated proportional cumu-
lative incidence as

Dt hie

G = ==
hIV @

We excluded 2/33 departments and 307/1123 municipalities from our
analysis that reported no Zika cases.

As a basis for classifying proportional cumulative incidence curves,
we defined six features F of these curves that we hypothesized represent
dimensions in which curves from different areas vary. Four of these
features were defined in reference to cumulative normal density curves,
Gi(1), that we fitted to each C;.. This involved estimating mean and
standard deviation parameters of G (t) for each C;. on the basis of least
squares using the optim function in R. These six features (defined in
Table 1) were chosen because they provided a way to quantify the
duration of local epidemics (small Fsp, short F;;, = short epidemic), to
capture whether epidemics appeared strongly locally driven (low F 2,
large F, = sporadic transmission fueled by importation), and to char-
acterize shapes that deviated substantially from those predicted by
simple epidemic models (Fsq, and Fys; near zero = “SIR-like” epidemic).
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Table 1
Features used to classify proportional cumulative incidence curves.
Feature Definition Interpretation
N . R
Fsp Standard deviation of C;(£) Rate of increase in incidence
Fp2 RZ of éi (¢) in reference to C;, Degree to which incidence conforms to a smooth, epidemic-like pattern
Fg Difference between the 5% quantile of C;, and the 5% quantile of C;(f) Degree to which there was a long, slow build-up in incidence
Fost Difference between the 95% quantile of C;, and the 95% quantile of é\‘i (t) Degree to which there was a long, drawn-out tail in incidence
Fxr Weeks between first and last non-zero I, Overall duration of the epidemic
F Weeks with I;; = 0 between first and last non-zero I;, Consistency of incidence over the course of the epidemic

Although these idealized scenarios motivated the selection of these
features, the fact that all six features were calculated for each C;, meant
that we were able to capture a wide range of patterns in between these
extremes.

We explored variation in C;,. at both departmental and municipal
scales. To describe how variation in C;, curves at those scales was
distributed across the six-dimensional feature space, we performed a
partitioning around medoids (PAM) clustering analysis (Reynolds et al.,
2006) on centered and scaled values of the features using the pam
function in the cluster library (Maechler et al., 2017) in R. This algo-
rithm identifies medoids of k groups, where each medoid is a member of
its group that minimizes the dissimilarity between itself and all other
group members. We performed this analysis for values of k ranging two
to ten and compared groupings for different values of k on the basis of
their average silhouette values. A silhouette value describes how much
more dissimilar one point is from points in the next most similar group
compared to points in its own group (Rousseeuw, 1987). An ideal
classification would be indicated by silhouette values for data points in
all groupings close to 1. Silhouette values nearer to or below 0 indicate
that points do not cluster well with the group to which they are as-
signed.

2.4. Elucidation of driving processes

To aid in the interpretation of the classification analysis of empirical
patterns of temporal incidence, we performed identical analyses of si-
mulated patterns of temporal incidence. The value of doing so is that it
provides a form of validation of the classification analysis: i.e., de-
monstrating that it is capable of identifying groups that correspond to
known differences in underlying drivers of incidence patterns. For this
analysis, we defined groups of municipalities on the basis of whether
the simulated R, value for a municipality was above or below 1, given
the significance of this threshold for determining invasion outcomes.
We performed classification analyses on 100 data sets simulated with a
stochastic model of ZIKV transmission developed by Ferguson et al.
(2016) and tailored to Colombia as described in Appendix S1. Although
this model was not fitted to empirical data and is therefore limited in its
realism, we did ensure that total incidence nationally was comparable
to the observed national total of 85,353 suspected cases. We felt that
this was important to ensure that the level of stochasticity in the si-
mulated data was comparable to that in the empirical data. Otherwise,
it was not critical that simulated data matched the empirical data, as
the goal of this analysis was to evaluate the extent to which curves
assigned to one group or another were classified in a way that was
consistent with differences in the processes that generate those curves
(i.e., Rp<lor=>1).

Although the analysis of simulated data provides a test of the al-
gorithm, it does not facilitate inference of whether there truly are dif-
ferences in the processes underlying local incidence patterns. Doing so
convincingly would require more comprehensive analyses, ideally in-
volving data about variables assumed to play an intermediary role in a
hypothesized causal pathway between environmental variables and
disease incidence (Metcalf et al., 2017). To explore whether there might
at least be perceptible associations between environmental variables

and groups identified by the classification analysis, we performed a
series of one-way analyses of variance at both departmental and mu-
nicipal scales. Specifically, our objective was to examine whether mean
values of relevant environmental variables differed across these groups.
Variables that we examined included modeled values of R, derived
from Perkins et al. (2016) as described in Appendix S1, and seven
variables compiled for municipalities and departments in Colombia by
Siraj et al. (2018): Ae. aegypti occurrence probability, two measures of
normalized difference vegetation index (NDVI), mean temperature,
percent urban land cover, human population, and the gross cell product
(GCP), a spatially disaggregated version of the gross domestic product
economic index.

3. Results
3.1. Descriptive analysis of weekly case reports

As a whole, the temporal pattern at the national level was consistent
with what could be construed as a typical epidemic trajectory, marked
by an increase over approximately five months, a peak around the
beginning of February 2016, and a steady decline thereafter over a
period of approximately eight months (Fig. 1A). Under a standard set of
assumptions about epidemic dynamics, this pattern can be used to es-
timate the temporal trajectory of the effective reproduction number, R
(t) (Cori et al., 2013). Applying this technique at the national level
yielded estimates of R(t) that began high (range: 1.5-3.5 for the first
four months) and gradually declined below 1 by the time the epidemic
concluded (Fig. 1A), which could be consistent with expectations for an
epidemic of an immunizing pathogen in an immunologically naive host
population, among other explanations.

Examination of temporal incidence patterns for each of the four
largest departments in terms of total incidence (Valle del Cauca, Norte
de Santander, Santander, Tolima, Fig. S1) showed that patterns at the
departmental level were quite different than those at the national level.
First, the timing of peak incidence in the departments in Fig. 1B-E
varied by around three months. Second, the shapes of the incidence
patterns in those departments varied, with Valle del Cauca and San-
tander (Fig. 1B and D) showing high incidence sustained over a period
of several months and Norte de Santander and Tolima (Fig. 1C and E)
showing sharper peaks trailed by relatively low incidence for several
months after.

This high degree of variability in temporal incidence patterns had
substantial impacts on estimates of R(t). At the national level, R(t) es-
timates never exceeded 3.5, whereas in Santander R(t) was estimated to
exceed 5 (Fig. 1D) and in Valle del Cauca it was estimated to exceed 10
(Fig. 1B), due in both cases to more rapid increases in incidence at the
departmental level than the national level. In Norte de Santander, R(t)
appeared to twice fall well below 1 but then quickly rise back above 1
(Fig. 1C).

Examination of temporal patterns at the municipal scale revealed
even more variability in temporal patterns than at the department level.
In the department of Norte de Santander (Fig. 1C), for example, it was
clear that one municipality dominated the departmental pattern
(Fig. 1F). The municipalities with the second and third highest
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Fig. 1. Weekly Zika case reports at the national level (A), for each of the four departments with the largest case report totals (B: Valle del Cauca; C: Norte de
Santander; D: Santander; E: Tolima), at the departmental level for Norte de Santander (F), and for each of its four municipalities with the largest case report totals (G:
Cucuta; H: Villa del Rosario; I: Los Patios; J: Ocafa). On the top row, colors match across A and B-E, with the addition of yellow in A that includes all departments
other than those in B-E. On the bottom row, colors match across F and G-J, with the addition of yellow in F that includes all municipalities other than those in G-J.
Time-varying estimates of the effective reproduction number, R(t), are shown in each panel. A map showing the location of these departments is available in Fig. S1.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

incidence both experienced short, unimodal patterns of incidence
during the first two months, but incidence patterns thereafter were
mostly low and erratic (Fig. 1G and H). Other municipalities in the
department had only low, erratic incidence with no sign of a distinct
epidemic (e.g., Fig. 1J). With the exception of the first few weeks of
transmission, estimates of R(t) at the municipal level were character-
ized by erratic fluctuations and much more uncertainty than was ap-
parent at the departmental or national level.

3.2. Classification analysis of proportional cumulative incidence curves

At the departmental level, there was only modest clustering overall,
with the highest average silhouette value corresponding to two groups
(0.256), a slightly lower value for three groups (0.254), and falling no
lower than 0.201 for up to ten groups (Fig. S2). Example fits of cu-
mulative normal density curves for clustering based on two groups are
available in Fig. S3. Fsp and Fysq were the features that were most
important for distinguishing two groups (Fig. S4), and F,, contributed
further to distinguishing three groups (Fig. S5). Differences in Fsp were
associated with a difference of approximately two months in the time
elapsed between the attainment of 5% and 80% of cumulative

incidence (Fig. 2, top left: blue longer than red), and differences in Fosg
were associated with a difference of approximately two months in the
time elapsed between the attainment of 80% and 99% of cumulative
incidence, but for different groups (Fig. 2, top left: red longer than
blue). Overall, this meant that the time elapsed between attainment of
5% and 99% of cumulative incidence for both groups was similar, but
with one group experiencing epidemics that were fast initially but slow
to finish and another group experiencing epidemics that were slower
initially but finished more quickly. These patterns were clearest for the
curves associated with the medoid of each group (Fig. 2, top) but were
generally apparent for the curves associated with the groups as a whole
(Fig. S6). Spatially, groups tended to cluster along northern, central,
and southern strata (Fig. 3, left), with incidence-weighted cartographs
showing that the epidemic was mostly dominated by distinct northern
and central strata (Fig. 3, top right).

There was somewhat stronger clustering at the municipal level, with
the highest average silhouette value corresponding to three groups
(0.352), somewhat lower values for five and six groups (0.334, 0.326),
and no lower than 0.297 for up to ten groups (Fig. S7). Example fits of
cumulative normal density curves for clustering based on three groups
are available in Fig. S8. F,, and Fsp were the features that were most
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Fig. 2. Proportional cumulative incidence curves at the departmental level (top) with two (left) or three (right) groups and at the municipal level (bottom) with two
(left), three (middle), and four (right) groups. Only one representative curve is shown for each group, with that curve being chosen on the basis of being associated
with the medoid of its group. (For interpretation of the references to colour in the text, the reader is referred to the web version of this article.)

important in distinguishing two groups (Fig. S9), Fys, made additional
contributions to distinguishing three groups (Fig. S10), and F 2 con-
tributed to distinguishing four groups (Fig. S11). Proportional cumu-
lative incidence curves with short F, and small Fsp comprised the most
visually distinct group and remained relatively consistent regardless of
the number of groups (Fig. 2, bottom). Some differences among the
other groups were also apparent in the proportional cumulative in-
cidence curves, with some having a long tail (Fig. 2, bottom middle:
green) or two discrete jumps (Fig. 2, bottom middle: blue). The timing
of discrete jumps varied across municipalities, but curves within a
group otherwise resembled the curve associated with the medoid for
that group (compare Fig. 2 bottom with Fig. S12). Spatially, depart-
ments generally consisted of a mixture of municipalities from different
groups, and the prominence of some groups in the cartograms varied
depending on whether the cartograms were weighted by area, popu-
lation, or incidence (Fig. 4). The cartograms weighted by population
showed that a sizeable portion of the population lives in cities that had
no reported cases, such as Medellin and Bogot4 (Fig. 4, black in the
center column). Among municipalities that did have reported cases, the
cartograms weighted by incidence showed that a relatively large pro-
portion of reported cases came from municipal-level epidemics char-
acterized by large F4, and Fsp (Fig. 4, right column).

3.3. Elucidation of driving processes

We focused our analysis of simulated data at the municipal level
given that the simulation model was not equipped to simulate trans-
mission between municipalities, which is likely important for recreating
departmental-level patterns. Overall, our model parameterization

assumed that Ry > 1 in 34.6% of municipalities. A total of 12.6%
(range: 10.4-14.1%) of municipalities had zero simulated cases, with
99.0% (range: 97.0-100.0%) of those having Ry < 1.

Out of 100 simulated datasets, the classification algorithm selected
two groups eight times, three groups 80 times, and five and six groups
four times each. Average silhouette value was 0.313 (range: 0.288-
0.347) when there were two groups and 0.327 (range: 0.291-0.352)
when there were three groups (see Fig. S13 for a representative sil-
houette plot from a randomly selected simulated dataset). Although this
indicates a modest preference of the algorithm for three groups, we
focused subsequent analyses on the two-group classification due to our
desire to evaluate the correspondence between groups selected by the
classification analysis and groups defined by R, above or below 1.

With the two-group classification, 99.1% (range: 90.3-100.0%) of
municipalities with Ry > 1 were placed into the group characterized by
larger F,; and Fsp. Of the municipalities with Ry < 1, 74.0% (range:
36.3-80.5%) were also placed into that group, with the others placed
into the group with smaller Fy, and Fsp (see Fig. S14 for an example
from a randomly selected simulated dataset). When municipalities were
classified into three groups, a new group characterized by moderately
low F4, and Fsp and negative Fys; contained 18.8% (range: 0.2-36.1%)
of municipalities with Ry > 1 and 44.7% (range: 23.0-56.5%) with
Ro < 1 (see Fig. S15 for an example from a randomly selected simulated
dataset). In the presence of this third group, 79.9% (range: 63.4-89.7%)
of municipalities with Ry > 1 and 32.1% (range: 22.8-38.8%) with
Ro < 1 were placed into the group characterized by larger Fy, and Fsp.

Visual inspection of five simulated datasets showed that the pro-
portional cumulative incidence curves of municipalities placed in the
group characterized by large F; and Fsp generally resembled the curves
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Fig. 3. Cartograms at the departmental level weighted by area (left), population (center), and incidence (right). Department assignments to two (top) and three
(bottom) groups are indicated by color, with transparency inversely proportional to silhouette value. The one department (Bogota) with zero incidence is indicated in
black and given a weight equivalent to 1/5 of a case to allow for its inclusion in the right column.

of municipalities with Ry > 1 (Fig. 5, red). In contrast, proportional
cumulative incidence curves of municipalities with Ry < 1 were more
diverse than those placed in the group characterized by low F;; and Fsp
(Fig. 5, blue). A similar pattern was apparent spatially, with munici-
palities placed in the group characterized by large F,, and Fsp generally
overlapping with municipalities with Ry > 1, but municipalities with
Ry < 1 frequently placed in the group characterized by large F;; and Fsp
(Fig. 6).

Such a high proportion of municipalities with Ry < 1 being placed
into the group characterized by large F,, and Fsp may be an artefact of
imported case patterns being forced unrealistically strongly according
to national-level incidence patterns (Appendix S1). This gave populous
municipalities with low R, the appearance of an epidemic more char-
acteristic of a municipality with higher Ry. Consequently, the classifi-
cation algorithm may perform better on empirical data from munici-
palities with Ry < 1 than this analysis of simulated data suggests.

With respect to the empirical data, group assignments at the mu-
nicipal scale were associated with perceptible differences in relevant
environmental variables. For two groups, differences between groups
were statistically significant for all eight variables examined
(p < 0.002 for all; Table S1). The group typified by steep, short curves
(Fig. 2, bottom left: red) was associated with lower Ae. aegypti occur-
rence probability (0.04 vs. 0.05; Fg36 = 19.7, p < 1079, higher NDVI

(aqua: 0.09 vs. 0.07; Fg3¢ = 12.9, p < 10 (terra: 0.10 vs. 0.07;
Fg36 = 13.3, p< 10%), lower temperature (21.7 vs. 23.9°CG;
Fass = 32.9, p < 107), lower urban cover (0.02 vs. 0.07; Fgss = 29.6,
p < 107), lower population (13,506 vs 49,144; Fg3s = 10.2, p < 102,
lower GCP (6016 vs. 6676; Fg36 = 8.3, p < 102), and lower R, (1.1 vs.
1.7; Fgse = 16.1, p < 10™) (Table S1). Differences among groups were
significant only for the urban cover variable for three groups, and for no
variables for four groups (Table S1). At the departmental scale, group
assignments based on empirical data were generally not associated with
differences in relevant environmental variables (Table S2).

4. Discussion

Temporal incidence patterns play a vital role in modeling infectious
disease dynamics and inferring drivers thereof. By analyzing data from
the 2015-2016 Zika epidemic in Colombia, we showed that temporal
patterns can appear very different depending on the spatial scale at
which data are aggregated. Whereas national-level dynamics appeared
to follow a unimodal pattern consistent with behavior of standard
epidemic models, departmental-level dynamics were somewhat more
varied and municipal-level dynamics were the most varied. Simulations
of our transmission model suggest that high variability in municipal-
level dynamics results from differences in Ry > 1 or < 1, as well as the
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Fig. 4. Cartograms at the municipal level weighted by area (left), population (center), and incidence (right). Municipality assignments to two (top), three (middle),
and four (bottom) groups are indicated by color, with transparency inversely proportional to silhouette value. Municipalities with zero incidence are indicated in
black and were given a weight equivalent to 1/5 of a case to allow for their inclusion in the right column.

stochasticity of transmission dynamics in populations of this size.
Combining our observations of empirical patterns at different spatial
scales with a formal classification of temporal incidence patterns and a
model-based exploration of mechanisms capable of generating those
patterns, we deduced that there is distinct variation in temporal pat-
terns subnationally and that much of that variation may be driven by
spatial variation in local conditions. Associations between group as-
signments and relevant environmental variables were most apparent at
the municipal scale, consistent with the hypothesis that linkages be-
tween temporal dynamics and underlying processes are strongest at fine
spatial scales.

Similar to our findings of differing dynamics at municipal and de-
partmental scales, theoretical analyses of a range of ecological models
have proposed that dynamics approach deterministic behavior as spa-
tial scales grow larger and data become increasingly more aggregated
(Rand and Wilson, 1995). For example, methods based on long-term
dynamics have been proposed for identifying the scales at which be-
havior transitions from stochastic to deterministic in models of plant
competition and predator-prey interactions (Keeling et al., 1997;
Pascual and Levin, 1999). Epidemics, however, are inherently transient
in nature, leaving open the question of how best to define characteristic
spatial scales in that context. It is certainly the case that the data from
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Colombia that we examined displayed greater stochasticity at finer
spatial scales. At the same time, the greater variability in temporal
patterns that we observed at finer scales suggests that models that as-
pire to a deterministic representation of behavior at coarser scales must
account for spatial structure at finer scales. Indeed, a recent attempt to
fit a national-scale transmission model to national-scale time series of
Zika case reports from Colombia showed that ignoring subnational
spatial structure inhibited that model’s fit to the data (Shutt et al.,
2017). A theoretical exploration of similar issues concluded that the
scale at which spatial structure must be modeled explicitly is expected
to vary by pathogen and geographic context, with less mobile patho-
gens requiring explicit spatial representation at finer scales (Mills and
Riley, 2014).

Both stochasticity and spatial interaction are expected to contribute
to variability in temporal dynamics at local scales (Durrett and Levin,
1994). For some municipalities, temporal incidence patterns appeared
to be dominated by stochasticity (e.g., those with discrete jumps). For
others, there were implications for a role of spatial interaction (e.g.,
those with two sharp increases or a long tail). Whereas our simulation
model was realistic with respect to demography and the inclusion of
spatiotemporal variability in local transmission, it made the very sim-
plistic assumption about spatial interaction that importation patterns
have identical timing and magnitude in all municipalities. This may
have caused municipalities with Ry < 1, particularly those with larger

populations, to display patterns that simply reflected the national trend
used to drive importation. Analyses of subnational spatiotemporal dy-
namics in a range of contexts show that importation patterns vary
substantially over time and as a function of regional connectivity or
being positioned on an international border (Grenfell et al., 2001;
Cummings et al., 2004; Dalziel et al., 2013; Rodriguez-Morales et al.,
2016). Future work that includes more realistic spatial interaction
among subnational units would be helpful for resolving the hypothesis
proposed here about the importance of spatial interaction in shaping
temporal patterns at each of the spatial scales that we considered.
Our analysis identified intriguing differences in temporal patterns
across spatial scales, but at the same time there are important limita-
tions to acknowledge. First, although our conclusions are not dependent
on the magnitude of transmission, they do require that patterns in case
report data reflect patterns in underlying transmission. With a high rate
of asymptomatic infection and the likelihood of extensive variability in
reporting rates (Lessler et al., 2016), particularly at the municipal level,
some caution is due. Second, our ability to ascribe meaning to the
groups identified by our classification algorithm was limited by the
simplicity of our simulation model, particularly with respect to spatial
interaction. Consequently, while this analysis identified important re-
lationships between spatial scale and epidemic characteristics, it does
not provide a complete or comprehensive understanding of the spatial
transmission dynamics of ZIKV in Colombia. Third, our model relied on
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a simplified description of seasonal transmission, when in fact patterns
of seasonality could vary spatially and interact with introduction timing
(Huber et al., 2017).

Previous analyses of Zika (Ferguson et al., 2016; Shutt et al., 2017),
as well as chikungunya (Escobar et al., 2016; Perkins et al., 2015), have
drawn inferences and made forecasts on the basis of nationally ag-
gregated time series data. These efforts depend on the implicit as-
sumption that spatially disaggregated temporal patterns are homo-
geneous and consistent with spatially aggregated temporal patterns.
Our analysis showed that while national-level patterns may be some-
what reflective of departmental-level patterns, municipal-level patterns
of cumulative incidence are diverse and not well approximated by na-
tional-level patterns. This finding presents a challenge, given that data
at such a fine scale are often not available. One potential remedy to this
challenge is to specify a transmission model at a finer scale than the
scale at which data are available and then aggregate modeled incidence
patterns prior to fitting to aggregated data. Taking this approach to
modeling the chikungunya epidemic in Colombia demonstrated that a
model specified at a higher spatial resolution than the scale at which
data were available provided a better fit to aggregated data than a
model specified at the scale at which data were aggregated (Moore

et al., 2018). Similar approaches will likely be necessary to understand
spatial variation in transmission dynamics for Zika, which remains
important for time-sensitive applications such as site selection for
vaccine trials (Perkins, 2017; Asher et al., 2017) and anticipating future
epidemics (Ferguson et al., 2016).
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