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Abstract

As emerging and re-emerging infectious arboviruses like dengue, chikungunya, and Zika

threaten new populations worldwide, officials scramble to assess local severity and trans-

missibility, with little to no epidemiological history to draw upon. Indirect estimates of risk

from vector habitat suitability maps are prone to great uncertainty, while direct estimates

from epidemiological data are only possible after cases accumulate and, given environmen-

tal constraints on arbovirus transmission, cannot be widely generalized beyond the focal

region. Combining these complementary methods, we use disease importation and trans-

mission data to improve the accuracy and precision of a priori ecological risk estimates. We

demonstrate this approach by estimating the spatiotemporal risks of Zika virus transmission

throughout Texas, a high-risk region in the southern United States. Our estimates are, on

average, 80% lower than published ecological estimates—with only six of 254 Texas coun-

ties deemed capable of sustaining a Zika epidemic—and they are consistent with the num-

ber of autochthonous cases detected in 2017. Importantly our method provides a framework

for model comparison, as our mechanistic understanding of arbovirus transmission contin-

ues to improve. Real-time updating of prior risk estimates as importations and outbreaks

arise can thereby provide critical, early insight into local transmission risks as emerging

arboviruses expand their global reach.

Author summary

When novel infectious diseases like chikungunya or Zika emerge and threaten global

spread, public health officials worldwide must assess the risk for local introductions and

outbreaks. These assessments are made in anticipation of local case data, and officials

must draw upon historic evidence from similar diseases or locations. Thus, accurate local

risk assessments have most often been limited to retrospective analyses and have been
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unavailable in real-time during an emerging epidemic. Here we present a method that can

harness both historic and current data to produce early risk assessments and update pro-

jections in real-time. We demonstrate our approach by estimating local transmission risk

for Zika throughout the state of Texas. Our findings suggest that the majority of Texas

counties face little risk for sustaining a Zika epidemic, and successfully predict the number

of locally transmitted cases across the state. Real-time updating of local transmission risk

estimates during an emerging epidemic can thus provide actionable, early insight for pub-

lic health response as emerging arboviruses expand their global reach.

Introduction

The explosive emergence of Zika virus (ZIKV) in the Americas in 2016 caught the global

health community by surprise. Officials scrambled not only to control the disease at its source

but also to anticipate and rapidly contain global transmission via infected travelers [1]. The

rate at which a newly introduced pathogen spreads can vary enormously though, particularly

for ZIKV and other pathogens with multi-faceted drivers of their transmission [2]. For exam-

ple, serological surveys of human exposure to the ecologically similar dengue virus (DENV) on

either side of the Texas-Mexico border indicated far higher DENV exposure in the Mexican

community, despite virtually identical climatic conditions and even higher mosquito abun-

dance in the Texan community [3]. This result suggests that a priori prediction of risk may be

quite challenging.

Epidemiological risk assessment—estimating the severity and transmissibility of a threaten-

ing disease—can be vital to successful mitigation with limited resources. Historical outbreak

data can provide invaluable insight into future epidemic risk. However, for a pathogen that has

yet to arrive or has just begun to spread, we are forced to borrow epidemiological data from

other populations or related pathogens, or to indirectly assess risk based on environmental

suitability. For example, as the first importations of ZIKV arrived in the US in 2016, early

attempts to determine the likelihood and rate of local transmission relied primarily on dengue

epidemiological data from regions with markedly different climatic and socioeconomic condi-

tions [4–6].

These ecological risk assessments provide information regarding the basic reproduction

number of a disease (R0)—the expected number of secondary human infections resulting from

a single human infection—which provides a meaningful and predictive measure of local epide-

miological risk. For ZIKV, R0 encompasses the combined effects of the multi-step transmission

life cycle: a mosquito biting an infected individual, incubating the disease and becoming

infected, and finally biting and infecting a new susceptible individual. In a naive population,

R0 indicates whether importations can potentially lead to sustained local epidemics; if so, it

also provides insight into the probability, magnitude, and speed of spread [7, 8]. However, eco-

logical estimates often carry considerable uncertainty stemming from model parameterization

and regional extrapolation, and suggest a wide range of possible epidemic outcomes, from ter-

minal importations to stuttering chains of transmission to full blown epidemics [4, 9–11].

Once an outbreak is underway, early case data can be used to directly estimate R0 [12–14]. For

arboviruses with environmentally constrained spatial heterogeneity, such case-based estimates

cannot be easily extrapolated from one region to others.

Here, we introduce a method for performing real-time updating of ecologically informed

estimates of R0 that reconciles discrepancies between initial estimates of R0 and real-time data

on local transmission of an emerging arbovirus. This approach is applicable to settings in
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which there is an ongoing threat of arbovirus importation and in which transmission has not

precipitated a large-scale epidemic. In particular, this work was motivated by recent introduc-

tions of ZIKV into the continental US. As hundreds of cases arrived from affected regions

throughout the Americas, officials sought to estimate risks of autochthonous (local) transmis-

sion and identify high-risk regions in the southern US. However, given the novelty of ZIKV

and the large proportion of ZIKV cases that go undetected, early ecological estimates had high

uncertainty [5, 6, 15–17]. Our method combines indirect and direct estimation methods to

reduce such uncertainty and increase accuracy at high spatiotemporal resolution. We first

build prior ecological estimates of local R0 and then harness real-time importation data—cases

that arrive in a naive location with or without subsequently infecting others—to update the

estimates, while explicitly modeling case reporting uncertainty. As a case study, we use the

almost complete absence of secondary transmission following 298 importations of ZIKV into

the state of Texas in 2016 and 2017 to lower and narrow local estimates of R0.

Materials and methods

We used a two-step procedure to estimate the monthly R0 for each of the 254 Texas counties

(hereafter county-month R0): (1) estimate a priori county-month R0 distributions using pub-

lished ecological models of ZIKV transmission [4, 6], and (2) using these as Bayesian priors,

generate posterior R0 distributions based on reported importations and subsequent local

transmission.

Data

We analyzed all known ZIKV importations into Texas from January 2016 to September 2017,

including the county and notification date; county-level purchasing power parity (PPP) in US

dollars [18]; daily temperature data at a 5 km x 5 km resolution for 2016-2017 and historical

averages from 1960-1990 [19, 20]. For each county and month, we averaged daily temperatures

across all 5 km x 5 km grid cells whose center fell within the county; we aggregated 5 km x 5

km mosquito (Aedes aegypti) occurrence probabilities similarly [21]. Those data are available

at dx.doi.org/10.18738/T8/HYZ53B.

In all, six mosquito-borne, autochthonous cases of ZIKV were reported in Texas in 2016

and one was reported in 2017 [22]. For updating R0 estimates, we analyzed 2016 data where

two autochthonous cases were detected in Cameron County from passive surveillance–one in

November and one in December 2016; we excluded four nearby cases discovered during the

November follow-up investigation, because our model does not incorporate active surveil-

lance. As sensitivity analyses, we re-estimated R0 assuming that no cases were detected and

that all six cases were detected (S1 Fig). Accounting for this worst-case scenario lead to

increased estimates for risk across the state, but expected risk still remained well below epi-

demic potential. For validating our estimates, we analyzed 2017 data and considered only one

of the two reported autochthonous cases, as the second case occurred outside the timeline of

our 2017 importation data.

A priori county-month R0 estimates

For ZIKV to be locally transmitted in a location, a mosquito must bite an individual, the mos-

quito must be infectious with the virus, and then that mosquito must bite a susceptible individ-

ual and transmit that virus. We focus our analysis on a singular value, R0, which captures the

individual contributions of these factors on the potential for human to human transmission.

Following Perkins et al. [6], we estimated R0 using a temperature-dependent Ross-Macdonald
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formulation,

R0ðTÞ ¼
mbca2e�mðTÞnðTÞ

mðTÞr
; ð1Þ

with parameters as defined in Table 1. Although others have considered temperature depen-

dence in parameters other than μ and n (e.g., [23, 24]), we opted for our relatively simple for-

mulation for a few reasons. First, effects of temperature on μ and n are likely to be the most

critical to include, due to their relatively strong influence on R0 [25]. Second, whereas tempera-

ture can influence m in multiple ways [23], we elected to model m in an alternative fashion

that incorporates influences from a wider range of factors than temperature alone. Third, our

approach for scaling R0 through data assimilation—which is the primary goal of this work—is

applicable to essentially any formulation of a priori county-month R0. The R0 prior used here

is particularly germane to the real-time nature of this exercise, given that an early (but largely

similar) version of it was available as a preprint near the very beginning of the time window of

our analysis [26].

The ratio of mosquitoes to people, m, makes use of two spatially varying inputs: Ae. aegypti
occurrence probability and an index of economic purchasing power. The first of these was

based on a global collection of Ae. aegypti occurrence records used to inform an occurrence

probability model that made use of a number of environmental variables, including a tempera-

ture suitability index, precipitation, enhanced vegetation index, and urbanicity [21]. The sec-

ond of these features spatial estimates of purchasing power parity (PPP) [18], which offers a

relative spatial index of economic wealth that other work [6, 32] has shown can serve as a use-

ful proxy for spatial variation in economic factors affecting mosquito-human contact. Here,

we used gridded estimates of those two spatially variable inputs for Texas, but otherwise fol-

lowed the methodology of Perkins et al. [6] for translating them into a gridded surface of m. In

brief, this involved transforming mosquito occurrence probability into a proxy for mosquito

abundance and multiplying it by a shape-constrained additive model of PPP, which resulted in

a convex, monotonically decreasing relationship between PPP and m. We do not consider the

near-term effects of precipitation on local ZIKV transmission risk, but one could be included

in future iterations, given a validated a priori model describing the relationship.

To derive a priori distributions of R0 for each county-month, we drew 1,000 Monte Carlo

samples from each parameter underlying the R0 formulation described above. This accounted

for uncertainty in μ, n, Ae. aegypti occurrence probability, and the relationship between PPP

and m, consistent with previous descriptions of uncertainty for each of those parameters [6].

These parameter draws were applied to the appropriate county and month data for Texas.

Finally, we fit gamma distributions to each probability distribution for local transmission risk

for use as informative priors, see S2 Fig for comparisons between the samples and the fitted

gamma distributions.

Autochthonous transmission likelihood

We developed a likelihood function describing the expected outbreak size following an impor-

tation, using the approach from [13]. Assuming that the secondary case distribution for each

infected individual is negative binomial with mean R0 and dispersion parameter, k, and that all

cases are detected, then the probability of an outbreak of chain size, j, is can be described by

[13, 14] as

sðj;R0; kÞ ¼
Gðkj þ j � 1Þ

GðkjÞGðj þ 1Þ

ðR0=kÞ
j�1

ð1 þ ðR0=kÞÞ
kjþj�1

ð2Þ
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where Γ(n) = (n − 1)!. However, not all cases are detected and we assume the imported index

case is always detected and correctly classified as an importation, so the probability of detect-

ing a chain of size, j, from a given importation is given by

s�ðj;R0; k; pdÞ ¼
X1

l¼j

sðl; R0; kÞ �
l � 1

j � 1

� �

� pj�1

d � ð1 � pdÞ
l�j

ð3Þ

where pd is the case detection probability [13, 14]. This equation can be understood intuitively.

If cases can be missed then there are infinitely many ways in which an outbreak of a certain

size can be detected (e.g. 5 detected cases could stem from an outbreak of size 6 with 1 case

missed, or size 7 with 2 missed etc). This equation enumerates those possibilities and sums

their individual marginal probabilities. Importantly, this allows for local, undetected cases. We

take the product of all likelihoods for each imported case as

Lð~Oja; ~R0 ; k; pdÞ ¼
Ylengthð~OÞ

i¼1

s�ðOi; aR0gi ;oi
; k; pdÞ ð4Þ

where ~O, contains the observed outbreak sizes for each importation (terminal importations

have an outbreak size of one), R0gi ;oi
denotes the county(γ)-month(ω) R0 for the location and

time that the importation occurred, and α is a statewide scaling factor applied to each R0gi ;oi
.

The introduction of the state-wide scaling factor allows for localized importations to inform

statewide estimates, but assumes that biases in the a priori R0 estimation procedure are con-

stant across counties and months. While our analysis does not assume that all imported cases

are detected, we do not explicitly model missed imported cases and simply explore the conse-

quences of these potentially missed cases in a sensitivity analysis. If systematic biases in the

spatiotemporal detection of imported cases are discovered, our method should be updated

accordingly. Details of simulations and validation of the likelihood can be found in S1 File and

S3 Fig.

Estimating the dispersion parameter

The negative binomial dispersion parameter governs the variability in secondary cases follow-

ing each importation, with values near zero meaning that most importations yield few or no

cases while a few “superspreaders” produce many. Superspreading dynamics are known to

occur with mosquito-borne diseases like ZIKV [33, 34]. We assume that ZIKV secondary case

Table 1. Parameters used to create prior R0 estimates from the literature.

Parameter Description Distribution Value (CI) Source

b Mosquito-to-human transmission probability Constant 0.4 [27]

c/r Human-to-mosquito transmission probability times the duration of human

infectiousness (days)

Constant 3.5 [28]

a Mosquito biting rate Constant 0.67 [29]

μ(T) Mosquito daily mortality rate Generalized additive model 0.00002 (0.000008,

0.287)1
[25,

30]

n(T) Extrinsic incubation period in mosquitoes (days) Exponential 6.1 (3.4, 9.9)1 [31]

m Mosquito-human ratio Spatially variable with Ae. aegypti and

G-Econ indices

0.36 (0.20, 0.60) [6]

1. At 30 ˚C

https://doi.org/10.1371/journal.pntd.0007395.t001
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distributions are the same as that of dengue virus (DENV) [35], though these estimates should

be updated as ZIKV-specific secondary case distributions are identified. Padmanabha et al.

describe the relationship between regional R0 and the percentage of DENV imported cases

that generate over 20 secondary infections (p20), as R0 = 0.63 × 100 × p20 + 0.58. As we require

p20 > 0 for all values of R0, we set p20 to an arbitrarily low, but non-zero value (p20 = 1 × 10−8)

for values of R0 < 0.58. We then found the dispersion parameter for every value of R0 that lead

to the expected p20 value from that previously estimated relationship. The result was that a sin-

gle dispersion parameter captured the relationship well for all R0 values and thus we set the

dispersion parameter, k = 0.12, for all analyses (S4 Fig). The highly dispersed nature of the sec-

ondary case distribution suggests that most importations will not lead to epidemics, even if R0

> 1. For example, even with R0 = 1.5, we would only expect to see an epidemic stemming from

�8% of imported cases.

Updating posterior R0 estimates

Given our set of prior distributions for county-month transmission risk, we set out to estimate

the statewide scaling factor, α, as a means to update our a priori transmission risk estimates.

We estimate the posterior distribution for this scaling factor for each day with a new importa-

tion between January 2016 and January 2017 (our method also explicitly updates county-

month R0 estimates for county-month combinations with imported cases). Importantly, this

doesn’t indicate that α is changing through time, but rather that we refine our estimate for it as

more data accumulate. We assumed a uniform prior for α of U � (0, 2), and used a blocked

Gibbs sampling algorithm of MCMC. For each MCMC step we provide the detected imported

cases to date and propose each county-month R0, a single α, and a probability of case detection,

pd. County-month R0 proposals were normally distributed around the previous sample with

standard deviation of 0.1, α proposals were distributed U � (0, 2). We used a previously esti-

mated distribution for pd as a strong, informative prior, pd � N(5.74%, sd = 1.49%), as there

are identifiability issues given its relationship with α, and assumed it to not vary spatiotempo-

rally [32]. There were no differences between the posterior and prior distributions for the

reporting rate S5 Fig. We used the Metropolis-Hastings probability to accept or reject propos-

als. Our chains consisted of 200,000 samples with a burn-in duration of 100,000, thinning

every 10 steps. We ran a single chain for each parameter set, and assessed convergence through

visual inspection of the trace plots (S6 Fig). Further algorithmic details and code are available

on Github (https://github.com/sjfox/rnot_updater). To help with an intuitive understanding

of the method we also present a hypothetical situation (S1 File and S7 Fig).

Validating posterior county-month R0 estimates

We derived the expected number of autochthonous cases from the importation data through

September 2017 (at that time, the most recent importation was detected in mid-May) and

compared the estimates to the actual reported autochthonous cases. We incorporated uncer-

tainty into our estimates by sampling from the posterior county-month R0 distributions and

simulating outbreaks accordingly (full details in S1 File).

Results

In the face of a novel emerging infectious disease threat, public health officials must borrow

information from related diseases and/or from epidemics in geographically distinct regions.

Adapting these models to new regions necessarily increases the uncertainty in risk estimates,

but can prove invaluable for data-driven public health decision-making. Here we present a

rational framework for updating these initially uncertain estimates with real-time case data
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from the emergence of Zika in Texas. The results are structured as such: we first present data

from Texas’ baseline importation and transmission risk estimates, we then update those esti-

mates with importation and local transmission data, and finally present findings from validat-

ing those estimates using out of sample data.

Baseline importation and transmission risks in Texas

Prior to making importation-based updates, our initial median estimates of R0 across Texas’

254 counties in 2016 range from approximately 0 to 1.5 throughout the year with July and

August having the highest transmission risk (Fig 1A). Given the potential implications for

determining the epidemic potential of a county, throughout the manuscript, we conduct a

one-sided test at a 1% significance level of the resultant probability distributions. We thus take

a conservative approach and only consider counties whose probability distribution’s 99th per-

centile (upper bound) is above one to be at risk for an epidemic (R0 > 1). Simply put, we only

classify counties as no epidemic risk if there is less than a 1% chance of R0 > 1. Initial upper

bound estimates reach as high as three, and 119 (47%) of Texas counties are expected to be at

risk of a local epidemic in at least one month of the year (Fig 1A, S8 Fig). When we considered

historic average temperatures rather than 2016 temperatures, the projected 2017 risks were

consistently lower, with the largest differences occurring during the unseasonably warm 2017

winter (S9 Fig). Case importations peaked in July, August, and September of 2016, with 164

(55%) of the 298 total 2016 importations arriving then (Fig 1B). The few detected autochtho-

nous cases occurred in November and December, when expected risk was relatively low but

not negligible.

Fig 1. Texas importations and baseline transmission risk estimates for 2016-17. (A) Initial ZIKV R0 estimates using ecological risk models parameterized

with actual 2016-2017 temperatures. Each solid line shows median values for one of Texas’ 254 counties. Dashed line shows the highest upper bound (99th

percentile) across all counties. Horizontal dotted red line illustrates the threshold for county-month epidemic risk (R0 = 1). (B) Daily ZIKV importations

into Texas. Blue arrows indicate importations that produced detected autochthonous transmission; shading indicates training (2016) and testing (2017)

periods.

https://doi.org/10.1371/journal.pntd.0007395.g001
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Updated transmission risks in Texas

Based on all importations and autochthonous cases that occurred in Texas prior to January

2017, we estimate that all Texas counties have a median posterior R0 below 1 (Fig 2). Median

estimates range from 0 to 0.29; upper-bound estimates range from 0 to 1.12, with only six (5%)

of the original 119 high-risk counties maintaining epidemic potential (S10 Fig). The six coun-

ties with remaining epidemic risk are all contained within the greater Houston metropolitan

area, and all have relatively low estimated transmission risk estimates ranging from 0.25-0.29

(Grimes, Houston, Madison, Montgomery, Walker, and Waller counties). When we assume

historic averages rather than 2016 temperatures, we obtain similar results (S11 Fig).

In a sensitivity analysis that assumes �20 times more undetected importations, we found

that the estimated risks decreased further (S1 Fig). We also varied the number of detected

autochthonous cases in November: as they decrease from one to zero, the estimated risks

decrease considerably; as they increase to five, estimated risks increase, with 83 counties

becoming at risk for a local outbreak (S1 Fig). However expected transmission risk for these

counties is still well below 1, ranging from 0.3-0.6.

Importation events had variable impacts on the posterior estimates, depending on their

timing and location (Fig 3). Terminal importations early in the year, when a priori R0 estimates

were low, had little effect; those arriving in the summer months, when high a priori R0 esti-

mates suggested that transmission should have occurred, led to sharp decreases and a shrink-

ing confidence interval. By early November, the median α decreased from 1.0 to 0.06 with a

95% CI of 0.002-0.30. The two secondary transmission events detected in November and

Fig 2. Posterior median county R0 estimates for Texas, based on ZIKV importations through January 2017. This

assumes that all importations were terminal except for two autochthonous cases detected in Cameron County in late

2016.

https://doi.org/10.1371/journal.pntd.0007395.g002
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December increased the posterior R0 estimates and widen the confidence interval slightly, but

did not provide enough evidence to qualitatively change the transmission risk estimates. Incor-

porating all data up to January 2017, our best estimate is that R0 values across the state are

roughly one fifth the original estimates (median: 0.19, 95% CI: 0.05-0.48).

Fig 3. Evolving posterior distribution of statewide scaling factor for R0. Zika importations, both with and without subsequent detected

autochthonous transmission, provide insight into local transmission potential, via a statewide scaling factor, α. This shows the posterior distributions

of α, for each day of 2016 that had at least one imported case. Median estimates reach a minimum in early November, just before the detected

autochthonous transmission events (upside-down blue triangles). Red shading indicates the average statewide monthly temperature. Note: the scaling

factor is never less than zero.

https://doi.org/10.1371/journal.pntd.0007395.g003
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Interestingly, based on the a priori R0 estimates, we would have predicted local transmission

to occur during the summer when importations and transmission risk were high. In fact, these

initial expectations for transmission were lowered even further prior to the detected locally

acquired case in November. Since we estimated the posterior distributions for transmission

risk and the statewide scaling factor jointly, we were able to compare the prior and posterior

estimates to understand if specific counties were downgraded more or less than expected by

the statewide average. We find that the ratio between prior and posterior estimates tends to

average near the statewide scaling factor of 0.19, except for counties that experienced many

reported importations during the year (S12 Fig). These counties tended to have lower than

average ratios like Harris, Dallas, Tarrant, Bexar, and Cameron counties (S12 Fig). While the

timing of the autochthonous transmission may not have been predicted using our initial risk

estimates, the transmission events both occurred in the southern tip of Texas (Cameron

county), which was predicted to be the highest risk county during those months.

The temporal mismatch between the model predictions and the observed ZIKV local trans-

mission in November and December might stem from the a priori transmission risk model,

which constrains posterior estimates. Specifically, the model does not account for potential

time lags between ZIKV environmental suitability and eventual emergence of locally acquired

cases. Environmental determinants of mosquito population growth may take several weeks or

months to impact arbovirus risk. Furthermore, the timing of case reports following infection

will depend on the timing and severity of symptoms, healthcare seeking behavior and clinical

reporting. To assess how this effect might alter results, we incorporated a two month lag in our

a priori suitability model as estimated in [36]. In essence we shifted transmission risk estimates

two months later than our baseline predictions suggested. For example importations occurring

in November are matched with baseline transmission risk estimates from September. The

resulting model yielded estimates that are more consistent with the observed ZIKV local

transmission, although posterior risk estimates were remarkably consistent with our baseline

results, with the highest risk period shifted by two months (S13 and S14 Figs). In comparing

our baseline model with the lagged one, we calculate a BIC of 2.9 in favor of the lagged model,

suggesting a moderate improvement to model fit.

Expected autochthonous transmission in Texas

We use transmission risk estimates based on importations through December 2016 to estimate

the number of autochthonous cases we would expect to detect in Texas in 2017. Based on our

posterior estimates we estimate a 1% probability of at least one single detected case in Hidalgo

county at the time the secondary transmission occurred. Since the sample size is low, we aver-

age the expected number of secondary cases over the 2017 time period where importation data

were available. Assuming first that only the reported importations occurred in 2017 (26 total),

we estimate that there should have been 0.08 (95%CI: 0-1) detected autochthonous cases in the

state; assuming that many importations went undetected, according to the reporting probabil-

ity (26

pd
� 453 cases), we estimate 1.3 (95% CI: 0-7) detected autochthonous cases. Both of these

estimates are consistent with the single autochthonous case detected in Texas in 2017, though

our results best fit a scenario with many undetected importations (Fig 4).

Discussion

The global expansion of ZIKV was declared a Public Health Emergency of International Con-

cern in February 2016, and caused more than 565,000 confirmed or probable cases and over

3,352 documented cases of congenital Zika syndrome. Although it is receding in most regions

of the world, ecological risk assessments suggest that previously unaffected or minimally
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affected areas may remain at risk for future emergence, including parts of Asia and South

America [37–39]. Differentiating regions that can sustain a ZIKV epidemic (R0 > 1) from

those that cannot is vital to effective planning and resource allocation for future preparedness

plans. To address this challenge, we have developed a simple method for refining uncertain

risk assessments with readily available data on disease importations.

Using previously validated ecological suitability estimates as a starting point, we applied

the method to update ZIKV R0 estimates for each of the 254 counties in Texas, and found that

only six counties have non-negligible probabilities of sustained local transmission, though an

additional 77 counties may also be at low risk if our assumptions about local case data are too

liberal. This is a substantial downgrade in expected risk, given that 43% of the 254 counties

were previously thought to be vulnerable to ZIKV outbreaks, and even counties still at risk for

Fig 4. Expected autochthonous cases in 2017, assuming revised county R0 estimates through September 2017. The

probability distributions are built from 10,000 simulations, each randomly drawing from the R0 posterior distributions.

The dashed blue line indicates the actual number of detected autochthonous cases in state (one), and the solid black

lines indicates the mean expected number of autochthonous cases for the baseline importation scenario, in which only

the reported importations occurred (top) and the increased importation scenario, in which a large fraction of

importations went undetected (bottom).

https://doi.org/10.1371/journal.pntd.0007395.g004
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epidemics on average had R0 estimates downgraded by 80% [4]. Based on these estimates and

the number of importations that occurred in the state, our refined model suggests that there

should have been between zero and one detected case of locally acquired ZIKV between

January and September of 2017, which corresponds to the single transmission event actually

detected in Cameron County in July 2017. Interestingly, a model that incorporates the possi-

bility of many more missed imported cases into the state of Texas fits the data better, with an

expected number of cases close to one (Fig 4).

There is a discrepancy between our model predictions and the ZIKV case data: our final

model predicts the highest local transmission risk to be in the summer across the state, but

most cases of local ZIKV transmission occurred in the winter (6 out of 7). While these case

numbers are low and may simply reflect random variation, the most recent dengue outbreak

in South Texas peaked in November, concurrent with a large dengue epidemic in Northern

Mexico, suggesting that fall may be a higher risk season for arbovirus transmission than our

final predictions indicate [40]. The discrepancy likely stem from errors in our initial risk esti-

mates, which serve as informative priors for our analysis. Our model does not incorporate

a time lag between case importation, local transmission, and case detection, which has been

previously estimated around two months [23, 36, 37]. Incorporating a two month lag in our

model slightly increased the fit of the resulting predictions (BIC = 2.9), but does not produce

qualitatively different results in the magnitude of county risk other than the temporal shift S14

Fig. While these results were promising, we chose to present our baseline results instead of

those from the lagged model, because the baseline model has been previously validated [6].

Importantly our simplistic lagging procedure does not properly encapsulate the mechanistic

intricacies determining the relationship between environmental suitability, mosquito popula-

tion growth, case importation, local transmission, and subsequent detection that account for

the lags outlined in [36]. Our results support these time lags as a crucial element for predicting

ZIKV risk, and highlight the need for future research into the mechanistic underpinnings to

reduce bias and improve model fit and predictive accuracy even further.

The factors driving county transmission risk were primarily temperature and mosquito

population numbers (occurrence probability). Remaining uncertainty in county risk stems

from a lack of detected imported cases, as imported cases primarily helped to downgrade Zika

risk in the absence of local transmission. This provides the counterintuitive explanation for

why our model suggests low epidemic risk for Harris county (containing the city of Houston)

even though it was by far the county with the most imported cases. Given comparable importa-

tion and local case data, this approach could readily update ZIKV transmission risk estimates

for any county in the continental US.

Our estimation method relies on several simplifying assumptions, which we divide into

those concerning this ZIKV test case of the updating procedure, and those concerning the

updating procedure itself. For this specific implementation, we assumed that the shape of the

secondary case distribution resembles that of dengue. Although we have no evidence to the

contrary, this should be updated as ZIKV-specific estimates become available [35]. We also

assumed that transmission is equally likely from imported and locally acquired cases. Imported

cases may be less infectious than locally acquired cases for two reasons, leading us to underesti-

mate local transmission risks. First, they may be more likely to receive care that limits trans-

mission, although most ZIKV cases are inapparent or mild and do not require medical care

[16], and second their local infectious periods may be shorter than those of autochthonous

cases. This assumption could be relaxed in cases where data are available on the relative detec-

tion rates. In this case, we also do not consider the possibility of sexual transmission of ZIKV.

While sexual transmission has occurred and may be important for specific populations [41],

we assumed that mosquito-borne transmission is the dominant mode of infection. Our current
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iteration of the model makes several simplifying assumptions related to how we handle the

temporal dynamics of both the a priori risk estimation and the updating procedure. Our base-

line transmission risk model does not take any outside events that could modulate future risk

into consideration (e.g. rainfall in the previous month causing upticks in mosquito popula-

tions), and future model development will be necessary to account for these important tempo-

ral dynamics [23, 36, 37]. For example, approaches that account for variability in the serial

interval between successive cases and distributed lagged effects of environmental variables on

transmission potential may hold promise for addressing this limitation [42].

The updating method itself also requires several simplifying assumptions. First, it relies on

informative Bayesian priors for the relative spatiotemporal risk of a region. Posterior estimates

could be biased by errors in these priors. At this point, we lack sufficient data from Texas to

improve our estimates of the component parameters of a priori R0. The lack of such data, in

fact, motivated our more modest goal of refining estimates of relative risk across counties. We

could potentially improve model accuracy by incorporating smoothing techniques that more

realistically capture spatiotemporal correlations and heterogeneity in transmission risk across

Texas. This method also treats all importations as independent. However, spatiotemporal het-

erogeneity in case detection probabilities or clustering of cases (e.g., testing of travel compan-

ions) could bias risk estimates. When secondary clusters are detected, we assume they share a

transmission tree stemming from a single detected importation. In this case, the low ZIKV

detection rate suggests that both primary importations and secondary cases are likely to be

missed. If the detection rates between the two types of cases are roughly similar our results

hold. If importations are detected at higher rates than secondary cases, then the resulting risk

estimates will be higher; when we assume the reverse, meaning locally transmitted cases are

more likely to be detected than imported cases, the posterior risk estimates will be reduced.

The additional assumption, that clusters are epidemiologically connected, seems reasonable

for the small contained outbreaks detected in Texas, but may not be appropriate for importa-

tion-fueled arbovirus outbreaks in Florida, for example. In such cases, molecular data might

enable estimation of transmission clusters [43, 44]. Furthermore, there are identifiability issues

associated with estimating the statewide scaling factor alongside the case detection probability,

as both parameters modulate the expected number of secondary cases in the same fashion. We

therefore used a strong, informative prior for the case detection probability from a previous

study, and found no changes in the posterior distribution S5 Fig. If case detection is lower than

we assumed, then the detected cases in Texas would have had to arise from larger outbreaks,

so our final risk estimates would be closer to the prior (larger). Alternatively, if case detection

in Texas is higher than we assumed, there would be an even larger discrepancy between our

prior and resultant posterior risk estimates S15 Fig.

During the height of the ZIKV threat, public health agencies in the US rapidly imple-

mented both preventative measures (e.g., vector control and educational campaigns) and

response measures (e.g., laboratory testing and epidemic trigger plans), particularly in high-

risk southern states. Decision makers sought to identify and narrow the spatiotemporal

scope of outbreak risk to enable targeted responses, efficiently allocate resources, and avoid

false alarms [15, 45]. Our method facilitates such rapid, real-time geographic risk estimation

from typical early outbreak data, and allows for real-time updating of estimates as new data

arise. In interpreting our results from 2016 in retrospect, they would suggest that the baseline

transmission risk combined with the public health response was sufficient to mitigate the

threat of a ZIKV epidemic across the state. Our method cannot disentangle the impact of

public health response from the underlying transmission risk, so we cannot estimate the

impact of the public health interventions. In real time, our results would have validated the

magnitude of the public health response through the summer of 2016, and likely alleviated
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some of the epidemic concerns that arose in the winter when a handful of locally transmitted

cases were detected in the state.

Critically, we can conclude neither that all initial ecological risk assessments for ZIKV will

overestimate risk, although this seems to be the case for ZIKV in Texas and elsewhere in the

US [9], nor that public health preparations and interventions for ZIKV are no longer necessary

in Texas or the southern US. Rather, our results suggest that sustained ZIKV outbreaks are

unlikely, but not impossible (3% of the state remains at low epidemic risk), and provide more

robust and localized estimates of ZIKV risk that can inform more targeted surveillance and

reactions to future ZIKV importations. While our method provides an avenue to improve

imperfect a priori risk estimates using real-time data, future predictions and estimates could

be improved with advances to our mechanistic understanding of transmission risk (e.g., incor-

porating rainfall or improved understanding of mosquito-human contact patterns) [2]. These

estimates should also only be taken as the baseline level of risk for the state. Climate change,

anomalous weather events, or unforeseen circumstances that alter mosquito populations or

mosquito-human interactions could raise or lower the Zika risk in Texas [3, 46].

This framework is novel in its integration of a priori ecological transmission risk estimates

with updating directly from real-time case reports [13, 14]. It thereby provides increasingly

accurate and precise risk assessments to support public health decision making, and can be

generalized to update R0 estimates from importation data, regardless of the a priori method of

estimation. For example, a new approach combining epidemiological and molecular analyses

suggests that transmission risk in Florida is subcritical (i.e., R0 < 1) [44, 47]. Given that Florida

experienced thousands of introductions, only a few of which sparked large outbreaks, coupling

such outbreak-driven estimation with our terminal importation method may provide a power-

ful real-time risk assessment framework for exploiting all available data. This method resem-

bles those used to assess disease transmission risk during elimination efforts, including

malaria in non-endemic regions [48]. The key innovation is that, by starting with ecological

suitability maps, we simultaneously identify important transmission hotspots and leverage

case data from one region to inform risk estimates elsewhere.

We presented a simple and rational method for continuously updating transmission risk

estimates for populations experiencing infectious disease importations, with or without sec-

ondary transmission. As we demonstrated for ZIKV in Texas, large numbers of terminal

importations can profoundly lower both estimated risks of transmission and uncertainty in

prior estimates, particularly those derived from ecological suitability or other models that bor-

row inputs from related pathogens in other parts of the world. Expanding our model to other

regions could sharpen transmission risk estimates, and allow for more targeted public health

interventions in the remaining hot spot locations [5, 9, 17]. Transmission risk estimates always

include uncertainty, but by assimilating data in real-time, our method can help confirm or

revise public health understanding in the midst of an outbreak. Although the threat of ZIKV

emergence in the continental US motivated this study, this new framework can be applied to

improve transmission risk assessments when a disease newly threatens a population via regular

introductions with minimal secondary transmission.
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S1 Fig. Sensitivity analysis of posterior R0 estimates for each county. Each point indicates a

county-month posterior R0 estimate under different estimation scenarios. The x-axis value for

all points is determined by the baseline scenario where posterior R0 estimates consider only a
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single case detected in the November. The y-axis value is based on three sensitivity scenarios:

(1) posterior estimates assuming no secondary transmission (dark grey), (2) five cases of sec-

ondary transmission in November (black), or (3) a single case of secondary transmission, but

increased overall importations (light grey). Points falling above the black dashed line indicate

that that a given scenario increases posterior R0 estimates compared to baseline estimates, and

points below the line indicate the opposite. Estimates are compared for the median (left), and

the 99th percentile (right) of the county-month distributions. Posterior R0 estimates increase if

more secondary transmission is assumed, and decrease if less secondary transmission occurs,

or if the absolute number of importations is increased.

(TIFF)

S2 Fig. Comparison between the empirical prior transmission risk distributions (points)

and the fitted gamma distribution for three example county-month combinations (lines).

(TIFF)

S3 Fig. Comparison between analytical likelihood predictions and simulations. We com-

pare the probability mass functions for the outbreak sizes for our simulations (bars) with the

analytical expectation (red dots). Rows demonstrate four different transmission risk scenarios

(R0), and columns describe three different scenarios: (1) where every case within a transmis-

sion chain is detected (Perfect), (2) where all cases are detected independently with a specific

reporting rate (Imperfect), and (3) where all cases are detected independently with a specific

reporting rate except for the index case which is always detected (Imperfect Import). The

Imperfect Import probability mass function is the one used for all analyses in this article. All

simulations are completed with a reporting probability of 0.0574, and k = 0.12.

(TIFF)

S4 Fig. Match between estimated and assumed dispersion parameter. Probability of a single

importation generating 20 secondary infections from (29) (Line), or using our assumed disper-

sion parameter and negative binomial distribution (Points).

(TIFF)

S5 Fig. Comparison between the informative reporting rate prior distribution (Red line)

and the posterior distribution (histogram).

(TIFF)

S6 Fig. Trace plots used for assessing MCMC convergence. The plots detail the posterior dis-

tribution for alpha assuming the actual temperature from 2016 and 2017, and either 0, 1, or 5

detected cases in the year.

(TIFF)

S7 Fig. R0 updating using importation data. Consider a hypothetical scenario in which the

first 15 terminal ZIKV importations into Texas arrive in Harris county (which includes Hous-

ton) during August 2016. (A) Estimated Harris county R0 for August 2016 a priori (dark grey)

and after accounting for the 15 (light grey) terminal importations (Future August). These dis-

tributions are composed of 1,000 samples from the prior and posterior distributions (respec-

tively). (B) Median R0 estimates for August before (August 2016) and following (Future

August) the importation-based update.

(TIFF)

S8 Fig. Prior R0 estimates for Texas counties for each month. Median and 99 percentiles are

shown for each County. Fill color indicates the estimated Median or 99 percentile estimate for

that county for the given month, with counties showing yellow or red indicating their R0 is
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above one (labels). Estimates are made for each month based on the average monthly tempera-

ture for 2016.

(TIFF)

S9 Fig. Comparison between prior R0 estimates using the historic average temperature for

months versus using the actual temperature from the months in 2016.

(TIFF)

S10 Fig. Posterior R0 estimates for Texas counties for each month using the actual 2016

temperatures. Fill color indicates the estimated Median or 99 percentile estimate for that

county for the given month, with counties showing yellow or red indicating their R0 is above

one (labels). Estimates are made using all importations through December of 2016, and assum-

ing a single transmission event in both November and December.

(TIFF)

S11 Fig. Posterior R0 estimates for Texas counties for each month using historic tempera-

ture data for running estimation procedure and priors. Fill color indicates the estimated

Median or 99 percentile estimate for that county for the given month, with counties showing

yellow or red indicating their R0 is above one (labels). Estimates are made using all importa-

tions through December of 2016, and assuming a single transmission event in November.

(TIFF)

S12 Fig. Comparison between the prior and posterior R0 estimates as a function of the

month of the year. Each point corresponds to a specific county in the state, and the colors

indicate the number of importations that the county experiences during the specific month.

(TIFF)

S13 Fig. Comparison between the posterior distributions of α from the baseline (Normal)

scenario with the lagged (Lagged) scenario.

(TIFF)

S14 Fig. Posterior median county R0 estimates for Texas, based on ZIKV importations

through January 2017. This assumes that all importations were terminal except for two

autochthonous cases detected in Cameron County in late 2016, and shifts the prior transmis-

sion risk estimates by two months compared with the baseline scenario.

(TIFF)

S15 Fig. Posterior estimate comparison based on changes to the the case detection proba-

bility. Dashed line indicates what the posterior estimates would be like if they matched the

baseline posterior risk estimates. Colored points identify posterior estimates for different case

detection probabilities. Yellow points are for a scenario where the probability for detecting

cases was halved, and the purple points indicate estimates for when the probability was dou-

bled.

(TIFF)
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41. Allard A, Althouse BM, Hébert-Dufresne L, Scarpino SV. The risk of sustained sexual transmission of

Zika is underestimated. PLoS Pathog. 2017; 13(9):e1006633. https://doi.org/10.1371/journal.ppat.

1006633 PMID: 28934370

42. Oidtman RJ, Lai S, Huang Z, Siraj AS, Reiner RC, Tatem AJ, et al. Inter-annual variation in seasonal

dengue epidemics driven by multiple interacting factors in Guangzhou, China. bioRxiv. 2018.
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