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Inter-annual variation in seasonal dengue
epidemics driven by multiple interacting
factors in Guangzhou, China
Rachel J. Oidtman1, Shengjie Lai 2,3,4, Zhoujie Huang2, Juan Yang2, Amir S. Siraj 1, Robert C. Reiner Jr.5,

Andrew J. Tatem3,4, T. Alex Perkins1 & Hongjie Yu2

Vector-borne diseases display wide inter-annual variation in seasonal epidemic size due to

their complex dependence on temporally variable environmental conditions and other factors.

In 2014, Guangzhou, China experienced its worst dengue epidemic on record, with incidence

exceeding the historical average by two orders of magnitude. To disentangle contributions

from multiple factors to inter-annual variation in epidemic size, we fitted a semi-mechanistic

model to time series data from 2005–2015 and performed a series of factorial simulation

experiments in which seasonal epidemics were simulated under all combinations of year-

specific patterns of four time-varying factors: imported cases, mosquito density, temperature,

and residual variation in local conditions not explicitly represented in the model. Our results

indicate that while epidemics in most years were limited by unfavorable conditions with

respect to one or more factors, the epidemic in 2014 was made possible by the combination

of favorable conditions for all factors considered in our analysis.
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In response to warming temperatures and other consequences
of climate change, many regions are undergoing changes in
their suitability for pathogens whose transmission is sensitive

to weather conditions1,2. Although there are clear links between
local weather conditions and the transmission of numerous
pathogens undergoing changes in response to climate change,
those links can be difficult to isolate in epidemiological
analyses3,4. In an area where a pathogen is endemic, its
host population may often be considerably immune, resulting in
inter-annual variation driven by a combination of time-varying
weather conditions and nonlinear feedbacks of population
immunity5–7. Those feedbacks may furthermore vary with shift-
ing patterns of host demography, which modulate ebbs and flows
in the pool of susceptible hosts over time8. In an area where a
pathogen is not endemic but is instead transmitted in the context
of limited seasonal epidemics, pathogen importation can play a
critical role in limiting or enabling transmission, depending on
whether importation occurs at times when weather conditions are
conducive to local transmission9.

One disease that is subject to this entire suite of issues is
dengue. This viral disease is vectored by Aedes aegypti and Aedes
albopictus mosquitoes, which have a life cycle that is sensitive to
both temperature10 and the availability of water, either from
rainfall11 or human-associated water resources12. The time
required for dengue virus (DENV) to incubate in the mosquito
(known as the extrinsic incubation period) is also highly sensitive
to temperature10, which in turn affects the proportion of adult
female mosquitoes that live long enough to become infectious to
humans13. At the same time, each of the four DENV serotypes
confers lifelong homotypic immunity, which can result in a sig-
nificant dampening of transmission in endemic settings7. These
issues, along with complex differences and interactions among its
serotypes, heterogeneous rates of reporting, and local differences
in human living conditions have made it challenging to isolate the
influence of weather conditions on DENV transmission14,15. Low
population immunity could make associations between climatic
and weather conditions and DENV transmission clearer in low-
transmission settings, but importation often dominates incidence
patterns in settings with low population immunity to such a
degree that opportunities to investigate the influence of weather
conditions on local transmission can be somewhat limited16.

The recent history of DENV in mainland China presents an
ideal opportunity to examine how temporal variation in local
climatic conditions and pathogen importation interact to drive
inter-annual variability in transmission in a seasonally epidemic
context. Since 1990, mainland China has experienced highly
variable, but relatively low DENV transmission, with a median of
376 and a range of 2–6836 cases reported annually from 1990 to
200417. More recently, increasingly large seasonal epidemics have
occurred, with a median of 438 and a range of 59–47,056 cases
from 2005 to 201417. These epidemics have been highly seasonal
and distinct from year to year, given the markedly seasonal cli-
matic conditions in portions of mainland China where dengue is
locally transmitted. At the same time, the endemic status of
DENV in neighboring southeast Asia ensures a reliable, and
growing, source of DENV importation18.

Of central importance to recent trends for dengue in mainland
China is Guangzhou, a city of 14 million in the southern province
of Guangdong, where 94.3% of all locally acquired dengue cases
in mainland China occurred during 2005–201417. Following an
epidemic of 37,445 locally acquired dengue cases in Guangzhou
in 2014, there has been growing interest in modeling this event.
Different models have identified different drivers, leading to
inconsistent conclusions. Two studies concluded that weather
conditions were the primary driver of DENV transmission19,20,
whereas others concluded that importation patterns, delayed

outbreak response, or both importation patterns and delayed
outbreak response were causal drivers of the 2014 epidemic21–23.
Still others found that neither weather conditions nor importation
was key drivers of transmission, but instead that urbanization was
pivotal24,25. Two analyses19,20 that used incidence data aggre-
gated at a monthly timescale for 2005–2015 showed high pre-
dictive capability at one-month lead times but did not facilitate
clear interpretation of how importation interacts with local
conditions to result in high inter-annual variation in transmis-
sion. Mechanistic models applied to date have used daily or
weekly data, but only for 2013–2014, and therefore only con-
sidered years with anomalously high transmission21,23–25. As a
result, it is unclear how well those models could explain the
strikingly low incidence observed in years other than 2013–2014.

Here, we applied a stochastic, time-series susceptible-infected-
recovered (TSIR) model26 that we fitted to daily dengue incidence
data from 2005 to 2015 to determine the relative roles of local
conditions and pathogen importation in driving inter-annual
variation in DENV transmission. To make detailed inferences
with incidence data at daily resolution, we made several
enhancements to the standard TSIR framework, including a
realistic description of the DENV generation interval, lagged
effects of covariates on transmission, and flexible spline rela-
tionships between covariates and their contributions to trans-
mission. After fitting the model and checking its consistency with
the data to which it was fitted, we conducted simulation experi-
ments in which we examined how the annual incidence of locally
acquired dengue differed across simulations with inputs about
local conditions and importation patterns that varied from year to
year. For the purpose of these analyses, we considered local
conditions to be those that relate to the term describing local
transmission in our model, which include mosquito density,
temperature, and other unspecified factors captured by a time-
varying residual term. Using a series of factorial simulation
experiments, we quantified the relative contributions of local
conditions and importation to inter-annual variation in dengue
incidence.

Results
Relationships between local conditions and transmission. In
the 11-year time series that we examined, there was marked
seasonal variation in local dengue incidence and in putative dri-
vers of DENV transmission (Fig. 1). We estimated a latent
mosquito density curve, m(t), using two different types of ento-
mological data (Breteau index, mosquito ovitrap index) (Fig. 1c),
resulting in a seasonal pattern of mosquito density. Although
inter-annual variation in mosquito density and temperature was
minimal (Fig. 1c, d), there was pronounced inter-annual variation
in imported and local dengue incidence (Fig. 1a, b).

To understand the association between temporal variation in
local conditions and local DENV transmission, we fitted two
bivariate basis functions with cubic B-splines that allowed for
distinct lagged relationships between temperature, mosquito
density, and their effects on the transmission (Fig. 2). For
temperature, we found that its contribution on a given day to the
time-varying transmission coefficient, β(t), peaked near the
temperature optimum of 33.3 °C assumed by the prior but with
considerable uncertainty (posterior median: 33.6 °C; 95%:
24.8–36 °C). The magnitude of these daily temperature contribu-
tions was somewhat larger at shorter lags (Fig. 2a). For mosquito
density, we found a positive relationship between m(t) and β(t) at
all lags, with the daily contribution of mosquito density at
intermediate (~20–30 d) lags being 10–15% larger than at shorter
(~1–20 d) or longer (~30–50 d) lags (Fig. 2b). In addition, we
estimated a term, β0(t), that explicitly modeled residual variation
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in β(t) that was not accounted for by temperature or mosquito
density but that was necessary to reproduce observed patterns of
local dengue incidence (Fig. 3). The 95% posterior predictive
interval for this term was entirely positive during the transmis-
sion season in 2014, whereas in other years it fluctuated relatively
tightly around zero (Fig. 3b). Under an alternative model
formulation with a constant residual variation term (Supplemen-
tary Methods 2), the model could not match the observed
patterns of local incidence; specifically, this alternative model
formulation could not recreate the unusually high incidence
observed in 2014 (Supplementary Methods 2 Fig. 10). This
implies that appealing to systematic differences with respect to
one or more unspecified local conditions is necessary to explain
the anomalously high incidence observed in 2014.

By estimating three separate components of β(t), we were able
to evaluate the relative contributions to β(t) of each of mosquito
density, temperature, and unspecified local conditions at different
points in time (Fig. 3). We found that mosquito density tended to
have a smaller but more variable effect compared to temperature,
which resulted in considerably lowered β(t) values at low
temperatures. In most years, the effect of mosquito density on
β(t) tended to be more pronounced within a shorter seasonal time
window than did that of temperature, as indicated by peaked
patterns of contributions of mosquito density to transmission
(Fig. 1c) relative to broad, flat patterns of contributions of
temperature to transmission (Fig. 3d). The contributions of β0(t)
to β(t) were highly variable across different draws from the

posterior, other than the consistently large, positive effect in 2014
(Fig. 3b).

Checking model consistency with data. We used data on
imported cases to seed 1000 simulations of local DENV trans-
mission over the entire 2005–2015 time period, with local
transmission patterns in each simulation determined by a dif-
ferent random draw from the posterior distribution of model
parameters. Over the period as a whole, daily medians of simu-
lated local dengue incidence were highly correlated (ρ= 0.966)
with observed local incidence (Fig. 4a). Within each year,
observed features of local dengue incidence patterns were gen-
erally consistent with simulations. For annual incidence across
years and peak weekly incidence, observed values fell within the
95% posterior predictive intervals (PPI) in 11/11 years (Supple-
mentary Figs. 1, 2). For total number of weeks with non-zero
incidence and for the length of the transmission season (time
elapsed between first and last cases), observed values fell within
the 95% PPIs in 8/11 years (Supplementary Figs. 3, 4). Years for
which observed values fell outside of the 95% PPI tended to be
those with intermediate levels of transmission (2006, 2013) or
longer transmission seasons (2010, 2015). Years for which
observed values most consistently fell within the 95% PPIs were
those with either low (2007, 2008) or high (2014) transmission. In
addition, we found that the fitted model correctly ranked 2014 as
the year with the highest annual incidence 100% of the time
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Fig. 1 Time series of data from 2005 to 2015 in Guangzhou, China. a Local dengue incidence. b Imported dengue incidence. c Breteau index (BI) of
mosquito density indicated by ‘+’, mosquito ovitrap index (MOI) of mosquito larval density indicated by ‘o’, and maximum-likelihood estimate of the latent
mosquito density variable, m(t), indicated by curve. d Daily mean temperature
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(Fig. 5). Other notable high years included 2013 and 2006, which
were both correctly ranked as years with relatively high local
incidence. Years with low local incidence that our model ranked

correctly included 2008–2011 and 2015. Altogether, these results
suggest that our model is capable of recreating key features of the
incidence time series and, therefore, is suitable for exploring
drivers of inter-annual variation in local incidence. As described
in Supplementary Methods 1, a simpler alternative model with
many of the same features was found to be unsuitable for this
task, underscoring the need for the level of detail incorporated
into our primary model. Likewise, the inclusion of additional
weather variables did not improve the model’s ability to explain
inter-annual variation in local dengue incidence (Supplementary
Methods 2).

Disentangling drivers of inter-annual variation. Once we
determined that simulations from the fitted model were con-
sistent with observed patterns, we performed a two-way factorial
simulation experiment in which we swapped local conditions (i.e.,
mosquito density, temperature, and residual variation in local
transmission captured by β0(t)) from each year with imported
case patterns from each other year and used those conditions to
drive simulations of 1000 replicate transmission seasons under
each of these 122 combinations (Supplementary Fig. 5). Some of
the more extreme contrasts illustrate the reasoning behind this
approach. For example, given local conditions in 2014, our model
projects that much higher local incidence would have been
observed under importation conditions experienced in most other
years (Fig. 6, top). In contrast, given imported case patterns from
2008, our model projects that very low local incidence would have
resulted from local conditions in every year, including 2014
(Fig. 6, bottom). While simulations from these example years
demonstrate how sensitive local incidence can be to interactions
between importation and local conditions, the two-way analysis
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of variance provides a summary of these interactions across all
years considered in our study.

Of the 50.2% of variation in simulated local incidence that was
accounted for by the model in a two-way analysis of variance,
local conditions accounted for approximately 88.9% and
imported case patterns accounted for the remaining 11.1%
(Table 1, first row). A large amount of residual variation (49.8%)
in simulated local incidence across replicates was not explained
by either factor, which is consistent with the highly stochastic
nature of epidemics in this setting where DENV transmission is
so volatile. On the whole, these results showed that high local
incidence was unlikely to occur in years in which local conditions
were not highly suitable for transmission (Fig. 7). Performing a
similar factorial simulation experiment in which we omitted 2014,
we found that the model accounted for only 11.1% of the overall
variation in simulated local incidence, 38.3% of which was
accounted for by local conditions (Table 1, second row). This
result showed that when we omitted 2014, the model accounted
for much less variation in simulated local incidence than when
2014 was included and that importation patterns described more
of the variation in simulated local incidence than local conditions.

To parse the individual contributions of each local variable to
inter-annual variation in local incidence, we performed a four-
way factorial simulation experiment in which we swapped all
possible combinations of imported case patterns, mosquito
density, temperature, and β0 from different years. We performed

a set of 1000 replicate simulations for each of the 14,641 possible
ways that year-specific patterns could be combined, allowing us to
account for possible interactions among these four variables.
Calculating the variation explained by β0 in the four-way analysis
of variance, we found that it accounted for 75.4% of all variation
in local incidence accounted for by the model (Table 2). Imported
cases contributed the next largest portion of variation (11.3%),
whereas mosquito density (9.5%) and temperature (3.8%) each
contributed less. Repeating this four-way analysis of variance
without data from 2014, the proportions of all variation explained
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Table 1 Sum of squared error from two-way factorial
simulation experiment

Years included Sum of squared error, SSQ (% Total, % Model)

β0+M+ T I Residual Total

2005–2015 4.1 × 105

(44.6, 88.9)
5.1 × 104

(5.6, 11.1)
4.6 × 105

(49.8)
9.1 × 105

2005–2013, 2015 1.7 × 104

(4.3, 38.3)
2.8 × 104

(6.8, 61.7)
3.7 × 105

(88.9)
4.1 × 105

SSQ is attributable to inter-annual variation in local conditions (β0+M+ T), imported case
patterns (I), and residual variation from stochasticity across model simulations (Residual). The
% Total values were calculated by dividing the SSQ explained by a given variable by the SSQ
Total. The % Model values were calculated by dividing the SSQ explained by a given variable by
the sum of SSQ values from the two model terms; thus, there is no % Model value to report in
the Residual column
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by the models were somewhat more consistent across these four
variables (Table 2, second row). Furthermore, the rankings of
relative contributions of the four variables changed, with
mosquito density (35.9%) and imported cases (39.2%) playing
dominant roles in driving inter-annual variation in local
incidence in the absence of data from 2014.

Discussion
Populations subject to seasonal epidemics of any number of
diseases are prone to high variability in epidemic size, due to
inter-annual variation in imported cases that seed those epi-
demics and inter-annual variation in local conditions that drive
transmission. We estimated the relative contributions of local
conditions (i.e., temperature, mosquito density, and other
unknown local factors) and importation in driving inter-annual
variation in dengue epidemics in Guangzhou, China, which has
recently been subject to seasonal epidemics ranging four orders of
magnitude in size. Other studies19–24 have investigated the same
11-year time series, either in whole or in part, but arrived at
differing conclusions and did not take full advantage of the

exceptional level of detail in this data set (Supplementary
Table 1). By leveraging these data more fully and using a mod-
eling framework that blends elements of mechanistic and statis-
tical modeling, we showed that local conditions and importation
patterns jointly determined epidemic size in most years and that
anomalies in unexplained conditions affecting local transmission
were responsible for one anomalously large epidemic. Specific
examples from this 11-year time series reinforce the notion that
either or both of these factors can limit epidemic size.

Regarding the large epidemic in 2014, our results suggest that
unknown factors captured by β0(t) played a dominant role in
driving this extreme event. For this reason, the unknown factors
that β0(t) was picking up on should now be of great interest. One
possibility is that transmission was actually not much higher in
2014 but instead that a larger proportion of DENV infections
resulted in symptomatic disease in 2014 than in other years. This
could have occurred if a large number of residents of Guangzhou
experienced a mild or asymptomatic first infection prior to 2014
and then experienced a more severe second infection in 201427.
This may be a possibility given that an increase in the diversity of
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Table 2 Sum of squared error from four-way factorial simulation experiment

Years included Sum of squared error, SSQ (% Total, % Model)

β0 M I T Residual Total

2005–2015 4.2 × 107 (31.1, 75.4) 5.2 × 106 (3.9, 9.5) 6.3 × 106 (4.6, 11.3) 2.1 × 106 (1.6, 3.8) 7.8 × 107 (58.7) 1.3 × 108

2005–2013, 2015 7.6 × 105 (1.3, 10.5) 2.6 × 106 (4.6, 35.9) 2.9 × 106 (5.1, 39.2) 1.0 × 106 (1.8, 14.3) 5.0 × 107 (87.2) 5.7 × 107

SSQ is attributable to inter-annual variation in each model term (β0, M, I, T) and residual variation from stochasticity across model simulations (Residual). The % Total values were calculated by dividing
the SSQ explained by a given variable by the SSQ Total. The % Model values were calculated by dividing the SSQ explained by a given variable by the sum of SSQ values from the four model terms; thus,
there is no % Model value to report in the Residual column
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DENV serotypes circulating in this region was observed over the
period of our study. Specifically, DENV-1 was the only serotype
isolated from locally acquired cases in 2005–2008, and, while it
remained dominant thereafter, the three other serotypes were also
isolated in those years28,29. A second, related possibility is that
there were serotype differences in the severity of symptoms30.
However, an analysis31 pairing information about serotype etiology
and symptoms in a subset of cases did not support this hypothesis.
A third possibility is that media attention during the 2014
epidemic32,33 could have heightened awareness of dengue and led
to an increase in the number of people detected by the surveillance
system34. In summary, all of these hypotheses predict that some of
the increase in reported cases in 2014 could have been attributable
to an increase in the proportion of infections that resulted in
detection by public health surveillance, albeit for different reasons.

It is also possible that high estimates of β0(t) for 2014 could
reflect an increase in local transmission, rather than a difference in
detectability. First, although mosquito densities were not notably
higher in 2014 than in other years, there could have been unde-
tected changes in the composition of the mosquito population that
enhanced their competence for transmission. Demographic
dynamics are known to result in substantial temporal variation in
the age profile of mosquito populations35, which has been shown to
be a key determinant of dengue epidemic size in some settings36.
Second, it is also possible that the multiple DENV genotypes in
circulation in 201437,38 could have been more transmissible than
those that had been in circulation previously. One recent study
combining laboratory experiments with simulation modeling
showed that differences in the extrinsic incubation periods of dif-
ferent genotypes of a single serotype of DENV can vary to such a
degree that dengue outbreak sizes could vary by as much as 30%39.
Third, it is possible that a larger number of unobserved imported
infections in 2014 could have given rise to locally acquired cases
that were incorrectly attributed to other cases in our analysis. This
could be a result of high levels of DENV transmission in other
prefectures in Guangdong province in 201429 or differences in the
proportion of imported infections that were clinically apparent,
which could vary from year to year depending on the immunolo-
gical profile of people who reside elsewhere and visit Guangzhou.

Although it is somewhat unsatisfying that our analysis could
not pinpoint the cause of the 2014 epidemic more specifically,
clearly defining the roles that known factors played and ruling
them out as primary drivers of the 2014 epidemic is also of great
value. Our results did show that temperature played a role in
delimiting the transmission season, that mosquito density influ-
enced the timing and extent of transmission within a season, and
that importation regulated the potential for local transmission in
a given season. Our modeling approach was unique in allowing us
to isolate each of those effects by building on prior knowledge
about them in such a way that we captured their differential
influence at different lags and captured the extent to which
imported dengue cases translated into locally acquired cases. Had
we fitted our model solely to data from 2013 to 2014, as others
have21,23–25, we likely would have misestimated the contributions
of these factors to local transmission and would not have been
able to detect the anomalous local conditions in 2014 that appear
to have driven the large epidemic that year.

Our model incorporates a number of innovations that were
essential for obtaining our results, including the ability to
accommodate daily incidence data, to adapt the timescale of
transmission to the pathogen’s generation interval, to estimate
multiple lagged effects in a flexible manner, and to isolate the
timing of residual variation in transmission, all of which may
prove useful to time series analyses of climate-sensitive
pathogens4,40. At the same time, there are important limitations
of our approach. First, even though it is well known that many

DENV infections are inapparent27, we worked under the
assumption that cases detected through passive surveillance were
representative of the true incidence of infection. Combining data
augmentation methods41 with hypotheses about ways in which
reporting rates might vary through time could offer one way to
relax this assumption. Unobserved DENV importation by peo-
ple42, or potentially even mosquitoes, could explain some of the
residual variation captured by β0(t). Second, we assumed that the
population was immunologically naïve and remained so over
time. The limited data available pertaining to this question sug-
gest that DENV immunity is indeed low (2.43%, range:
0.28–5.42%)28, meaning that impacts of immunity on transmis-
sion should be negligible. These effects could be stronger
at finer spatial scales, however43. Third, although the sensitivity
analyses that we performed did not indicate a compelling need to
incorporate data on local variables other than temperature
and mosquito density, there are biological reasons why additional
variables, such as precipitation11 and humidity44, could be
important. Future work in this setting or elsewhere could
potentially explain more inter-annual variation in dengue inci-
dence if better ways to leverage additional, biologically appro-
priate covariates could be devised.

Our finding that epidemic size in any given year depends on a
complex interaction between importation and local conditions
suggests that public health authorities should not focus on only
one of these factors at the exclusion of others. As some studies
have done21–23, it is tempting to attribute the increase in local
dengue incidence in Guangzhou to the concurrent increase in
imported dengue. Our results suggest that doing so belies the
important role that local conditions play in limiting or enhancing
transmission in any given year. What an overly simplistic view
risks is allowing for another epidemic like the one in 2006, which
our results suggest was driven by favorable local conditions
despite relatively low importation. Moreover, understanding and
reducing the favorability of local conditions for transmission may
also mean the difference between years like 2014 and 2015, with
importation high in both years but local transmission much lower
in 2015. Given the global expansion of DENV and other viruses
transmitted by Aedes mosquitoes, improved understanding of the
interactions among multiple drivers in settings with potential for
seasonal DENV transmission—including portions of Australia,
the United States, and the Mediterranean—will be essential for
reducing the risk of large epidemics such as the one observed in
Guangzhou in 2014.

Methods
Data. Data on locally acquired and imported dengue cases from 2005 to 2015 were
obtained from the Health Department of Guangdong Province (http://www.gdwst.
gov.cn). We considered data from Guangzhou, the capital and most populous city
of the Guangdong province, located in southern China with a humid subtropical
climate (Supplementary Fig. 9). As a statutorily notifiable infectious disease in
China since 1989, dengue is diagnosed according to national surveillance protocol
with standardized case definitions described in detail elsewhere17. In short, prob-
able and confirmed dengue cases were diagnosed and reported by local physicians
according to an individual’s epidemiological exposure, clinical manifestations, or
confirmed laboratory results. An imported case was defined as one for which the
patient had traveled abroad to a dengue-endemic country within 15 days of the
onset of illness. In some cases, importation was defined based on laboratory results
showing that the infecting DENV had a high sequence similarity in the preM/E
region compared with viruses isolated from the putative source region where the
patient had traveled. Among all 217 dengue cases imported from other countries,
the suspected country of origin was recorded for 204 (94.5%) cases: 76.1% came
from Southeast Asia, 13.2% from South Asia, and 4.9% from Africa, with Thailand
(22.1%), Malaysia (15.2%), Indonesia (9.3%), the Philippines (7.4%), and Cam-
bodia (7.4%) being the top five countries of origin. In the absence of meeting the
criteria for an imported case, a dengue case was considered locally acquired. This
determination was made by local public health institutes. All the data used in this
study were anonymized; the identity of any individual case cannot be uncovered.

Information about DENV serotype was known for some cases, but not at
sufficient resolution to be taken into account in our analysis. The proportion of
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locally acquired cases for which DENV serotype was identified ranged from 11.7%
(188/1603 reported cases across Guangdong province) during the relatively low-
transmission period from 2005 to 201128 to 0.8% (345/45,225 reported cases across
Guangdong province) during the large epidemic in 201429,32. As summarized
elsewhere28,29, DENV-1 appeared to be the dominant serotype in 2005–2011, with
reports of the other three serotypes during 2012–2015. Within a given serotype,
multiple genotypes were observed across all years and in 2014 in particular37,38.

We utilized indices of both adult mosquito density and larval density, which
are available from the Guangzhou Center for Disease Control and Prevention
(http://www.gzcdc.org.cn). Adult Ae. albopictus mosquitoes were sampled by light
traps with mosquito ovitrap index (MOI). The MOI was defined as the number of
positive ovitraps for adult and larval Ae. albopictus per 100 retrieved traps45.
Breteau index (BI), which measures the density of Ae. albopictus mosquito
larvae, was the number of positive containers per 100 houses inspected45,46.
Both indices were measured monthly and comprised the information on
mosquito density sampled in residential households (>50 households sampled
per month), parks, construction sites, and other urban areas. Data on daily average
temperature were obtained from the China Meteorological Data Sharing Service
System (http://data.cma.cn).

Model description. A general framework that can be used to model the rela-
tionship between cases from one generation to the next is the TSIR model26. Under
an adaptation of that model to realistically account for time lags associated with
vector-borne pathogen transmission47, It is defined as the number of new local
cases at time t and It′ is the effective number of cases, both local and imported, that
could have generated a local case at time t. This effective number of cases in the
previous generation is defined as

I′t ¼
X49

τ¼1

ωτ It�τ þ ιt�τð Þ; ð1Þ

where ωτ is the probability that the serial interval is τ days47. We informed the
values of ωτ that describe the length of the serial interval using a probability density
function derived by Siraj et al.48 based on first-principles assumptions about DENV
transmission. This formulation takes into account lags associated with DENV
incubation in humans (intrinsic incubation period), DENV incubation in mos-
quitoes (extrinsic incubation period), and mosquito longevity, resulting in a
probabilistic summary of the time that elapses between one human case and
another. The flexibility afforded by Eq. (1) allowed us to fully utilize the daily
resolution of case data available for Guangzhou, which distinguished between
imported and local cases, ιt and It, respectively.

Consistent with other TSIR models, the relationship between It′ and It was
assumed to take the form

It ¼ β tð Þ I
′
t

N
S′t ; ð2Þ

where β(t) is the transmission coefficient on day t, N is population size, and S′t is
the number of susceptible people who could potentially become infected and
present on day t. Due to the low incidence of dengue in Guangzhou on a per
population basis (40,108 cases detected by surveillance during 2005–2015 in a city
of 14 million), the number of susceptible people at any given time changes very
little and remains very close to the overall population size. Therefore, we assumed
that S′t ≈N, meaning that these terms canceled out in Eq. (2). Also because of such
low incidence, including many days with zero incidence, accounting for the role of
stochasticity in transmission was essential. Eq. (2) has a clear and direct stochastic
analogue in

It � negative binomial β tð ÞIt′; It′ð Þ; ð3Þ

where β(t)It′ is the mean parameter and It′ is the clumping parameter of the negative
binomial distribution49,50.

We assumed that the potential for local transmission at time t, represented by β
(t), was determined by a combination of latent variables representing mosquito
abundance at time t, m(t), temperature at time t, Tt, and other factors not
accounted for directly by available data, such as mosquito control or preventative
measures taken by local residents. We additionally considered the possibility that
relative humidity and precipitation may be contributing to transmission patterns,
but did not include these in our final model as the overall correlations between
simulated local incidence and observed local incidence for these models was poorer
than the model that only considered temperature and mosquito abundance
(Supplementary Methods 2). Although the role of these factors in driving
transmission is commonly assumed by models51 and consistent with the highly
seasonal nature of DENV transmission in Guangzhou17, it is also clear that these
factors may influence transmission considerably in advance of a case occurring. For
example, high mosquito densities would be expected to affect transmission
2–3 weeks in advance, rather than instantaneously, to allow mosquitoes sufficient
time to become infected, incubate the virus, and transmit it48.

To afford the model sufficient flexibility to account for such lagged effects, we
allowed β(t) to depend on weighted sums of daily effects of m(t−τ) and Tt−τ for
τ∈ {1, …, 49}, which spanned the full range of serial intervals that we assumed

were possible based on the serial interval formulation by Siraj et al.48. Because the
effects of m(t−τ) and Tt−τ could differ for different values of τ in complex ways, we
defined flexible bivariate basis functions sm(m(t−τ), τ)) and sT(Tt−τ, τ) with cubic
B-splines to capture the contribution of daily conditions on day t−τ to β(t) using
the fda package in R52. Although not represented explicitly, the sT(Tt−τ, τ) function
is sufficiently flexible to account for the combined effects of the temperature-
sensitive virus and vector traits, such as the extrinsic incubation period, mosquito
mortality, and mosquito bites. Whereas other models represent those factors
explicitly based on mechanistic assumptions, we model their combined influence in
a more statistical fashion. Mathematically, each of sm(m(t−τ), τ) and ST(Tt−τ, τ)
was defined by nine parameters associated with a 3 × 3 matrix that defined the
height of each component of the bivariate spline ranging 1–49 days for τ, 4–36 °C
for T, and 0–5 for m, with the units of the latter corresponding to the scale of the
mosquito oviposition index. That particular choice of units was not of consequence
to the model, however, because a different choice would simply result in different
values of parameters in sm(m(t−τ), τ) but yield the same values of β(t).

These lagged daily effects combined to define

β tð Þ ¼ e
P49

τ¼1
sT Tt�τ ;τð Þe

P49

τ¼1
sm m t�τð Þ;τð Þeβ0 tð Þ; ð4Þ

where β0(t) is a univariate cubic B-spline function that defines the time-varying
contribution of local factors other than temperature and mosquito abundance to
β(t). We interpret β0(t) as corresponding to local factors due to the fact that it
modulates local transmission in our model—i.e., how many locally acquired cases
result from each case in the preceding generation. Mathematically, we specified
β0(t) as a univariate spline with three evenly spaced knots per year across the
11-year time period, requiring a total of 33 parameters. We also represented the
latent mosquito density variable m(t) using a univariate cubic B-spline function
with three knots per year for the 11-year time period. This variable allowed us to
reconcile differences between the MOI and BI mosquito indices and to obtain daily
values for mosquito abundance based on monthly indices.

Model fitting. We used a two-step process to estimate the posterior probability
distribution of model parameters. First, we fitted the entomological model (i.e., m(t))
using maximum likelihood. Second, we fitted the epidemiological model using a
Sequential Monte Carlo (SMC) algorithm in the BayesianTools R library53.

For the entomological likelihood, the probability of the full mosquito index time

series, MOI
*

and BI
*
, depends on the 33 parameters that define m(t) (referred to

collectively as θ
*

m) and three parameters, μBI, σBI, and σMOI, that define an
observation model relating m(t) to the data. Under this model, the probabilities of
these data are

Pr MOI
*

θ
*

m; σMOI

����
� �

¼
Y

t

ϕ MOIt m tð Þ; σMOIjð Þ ð5Þ

and

Pr BI
*

θ
*

m; μBI ; σBI

����
� �

¼
Y

t

ϕ BIt μBIm tð Þ; σBI
��� �

; ð6Þ

where ϕ(x|μ, σ) denotes a normal probability density with parameters μ and σ
evaluated at x and m tð Þ denotes the monthly average of m(t). Together, Eqs. (5)
and (6) specify

L θ
*

m; σMOI ; μBI ; σBI MOI
*

;BI
*���

� �
¼

Pr MOI
*

θ
!

m;σMOI

���
� �

Pr BI
*

θ
!

m;μBI ;σBI

���
� �

;

ð7Þ

which is the overall likelihood of the entomological model and its parameters.

We obtained maximum-likelihood estimates of θ
!

m , σMOI, μBI, and σBI by
maximizing the log of Eq. (7) using the Nelder-Mead optimization algorithm under
default settings in the optim function in R54. To safeguard against obtaining an
estimate that represented a local rather than global optimum, we repeated this
optimization procedure 1000 times under different initial conditions. The initial
conditions for each of these runs came from separate draws from a posterior
distribution obtained through SMC estimation using the BayesianTools R library53.

Of the 1000 estimates of θ
!

m , σMOI, μBI, and σBI that this yielded, we chose the one
with the highest log likelihood to derive our maximum-likelihood estimate of m(t)
for use in the epidemiological model (Supplementary Fig. 8).

For the epidemiological likelihood, the probability of the local incidence data,

I
!
, depends on a total of 51 parameters in addition to m(t) that define β(t), with

nine for θ
*

sm
, nine for θ

*

sT
, and three for each of the eleven years spanned by θ

*

0.
Although the transmission model (Eq. 3) is stochastic, it does not readily lend itself

to calculation of the probability of I
!

as a function of these parameters.
Consequently, we used a simulation-based approach to approximate the
probability of each daily value of It under a given value of the 51 model parameters.
To do so, we performed 100 simulations of the entire time series of local incidence
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across 2005–2015, with each simulation driven by data on imported cases feeding
into Eq. (3) for a given β(t). As new local cases were generated in these simulations
of local transmission, those new local cases fed back into generating subsequent
local cases, again following Eq. (3). Using these simulations, we approximated a
probability of the local incidence data by treating the number of local cases on a
given day as a beta-binomial random variable. This assumes that all residents of
Guangzhou are subject to a probability of being infected and detected by
surveillance as a locally acquired dengue case on each day. Uncertainty in that
probability was assumed to follow a beta distribution with parameters informed by
the ensemble of simulated incidence. Specifically, parameters of this beta
distribution followed Bayesian conjugate distributional relationships as αt ¼
1þP100

i¼1 It;i and βt ¼ N �P100
i¼1 It;i þ 155, where N= 14,040,000. This effectively

treats simulated incidence values as prior observations that inform a posterior
estimate of the daily probability of infection with DENV as a beta random variable.
From there, the probability of a given incidence It on day t—and the contribution
of that data point to the likelihood of the model parameters used to simulate those
incidence patterns—is calculated according to a beta-binomial distribution, which
treats each individual’s infection outcome as resulting from a Bernoulli trial with
probability informed by the beta distribution. In summary, 100 values of It,i
simulated for each day in 2005–2015 using a single βt specified

L θ
*

sm; θ
*

sT ; θ
*

0 I
*
; T
*
;m tð Þ

���
� �

¼
Y

t

beta binomial It αt ; βt ;N
��� �

ð8Þ

as the overall likelihood of the epidemiological model parameters.
Given that numerous studies have investigated relationships between temperature,

mosquito density, and DENV transmission, we sought to leverage that information by
specifying prior distributions for epidemiological model parameters. Doing so still
permits the data to influence parameter estimates in the posterior via the likelihood,
but it does so in such a way that parameter values in the posterior are penalized
somewhat if they deviate strongly from prior understanding of which parameter

values are plausible based on previous work. For θ
*

sm
and θ

*

sT
, we used relationships

between T, m, and R0 (which is similar to our transmission coefficient β47) recently
described by Siraj et al.48. In doing so, we assumed that relationships among these
variables were identical at all lags τ, given a lack of specific prior understanding of
how these relationships vary at different lags. Given that the scales of m and that of
Siraj et al.48 are not directly comparable, we parameterized the prior distribution
around values ofm with relevance to the time series ofm(t) in Guangzhou. That is, at
the temperature optimum of 33.3 °C estimated by Siraj et al.48, we set our prior for β
such that β= 0 when m= 0 and β= 2.5 when m= 3. The latter value of m is just
above the maximum value estimated for Guangzhou, and the corresponding value of
β is equal to the median seasonal estimate of daily R0 in Iquitos, Peru, a dengue-
endemic setting with empirical estimates of seasonal R056 that Guangzhou should be
unlikely to exceed. At the same time, posterior estimates of the parameters did have
the flexibility to yield values of β in excess of 2.5 should the data support such values
via the likelihood. Consistent with standard theory for mosquito-borne disease
epidemiology13, values of the prior at other temperatures were obtained by reducing
the value of β linearly in proportion to m and by the proportion of R0 from Siraj
et al.48 for other temperatures relative to its value at 33.3 °C. Using 1000 Monte Carlo
samples of the relationship between T, m, and R0 from Siraj et al.48, we obtained 1000

estimates of θ
*

sm
and θ

*

sT
by using the optim function in R to minimize the sum of

squared differences between R0 values from Siraj et al.48 and corresponding values of

β defined by θ
*

sm
and θ

*

sT
and with β0= 0. A multivariate normal distribution fitted to

those 1000 estimates of θ
*

sm
and θ

*

sT
represented our prior distribution of those

parameters. Separately, we defined the prior distribution of each parameter in θ
*

0 as
normally distributed with mean 0 and standard deviation 5, given our expectation
that residual variation in β(t) not attributable to temperature or mosquito density
should be minimal, on average.

We obtained an estimate of the posterior distribution of epidemiological
parameters using an SMC algorithm implemented in the BayesianTools R library57.
To assess convergence, we performed three independent runs of the SMC
algorithm set to ten iterations of 10,000 samples each (Supplementary Figs. 6, 7).
We then calculated the Gelman-Rubin convergence diagnostic statistic across the
three independent runs, along with the multivariate potential scale reduction factor
(Supplementary Table 2)58.

Simulation experiments. To verify that the behavior of the transmission model
was consistent with the data to which it was fitted, we simulated an ensemble of
2000 realizations of daily local incidence using parameter values drawn from the
estimated posterior distribution. These simulations were performed for all of
2005–2015 in the same manner in which the likelihood was approximated; i.e.,
driven by imported case data and with local transmission following Eqs. (1–4). We
compared simulated and empirical local incidence patterns in two ways. First, we
computed Pearson’s correlation coefficient between daily local incidence data and
median values from the simulation ensemble. Second, we compared simulated and
empirical patterns on an annual basis in terms of four features of local incidence
patterns: annual incidence, peak weekly incidence, total number of weeks with

non-zero local incidence, and number of weeks between the first and last local case.
Consistency between simulated and empirical values of these quantities was
assessed using Bayesian p-values, with values >0.025 and <0.975 indicating con-
sistency between empirical values and the model-derived ensemble55.

To partition inter-annual variation in local incidence into portions attributable
to inter-annual variation in local conditions or importation patterns, we performed
a simulation experiment with a two-way factorial design. In this experiment, we
grouped temperature, mosquito density, and residual variation in local conditions
together as one set of predictor variables and importation patterns as the other.
Each year from 2005 to 2015 was considered as a factor for each set of predictors.
An ensemble of 1000 simulations was generated for each of the 122 combinations
of 11 years of each of the two sets of predictors. For example, with temperatures,
mosquito densities, and β0(t) values from 2005, 1000 simulations were performed
with imported cases from each of 2005–2015, and likewise for temperatures,
mosquito densities, and β0(t) values from 2006 to 2015. We summed annual local
incidence for each of these 122,000 simulations and performed a two-way analysis
of variance, resulting in estimates of the variation (defined in terms of sum of
squared error, SSQ) in annual incidence attributable to local conditions, to
importation, and to a portion unexplained by either predictor set due to the
stochastic nature of the simulations. Because the number of 1000 replicates was at
our discretion in this simulation experiment, the p-value from this analysis of
variance was not meaningful59.

To quantify the overall portion of variation attributable to each predictor
variable, we performed an additional simulation experiment with a four-way
factorial design. In this experiment, we interchanged temperature, mosquito
density, β0(t) values, and importation patterns from different years, again
considering each year as a factor for each predictor variable. An ensemble of
1000 simulations was generated for each of the 14,641 combinations of 11 years of
all four predictors. Similar to the two-way factorial experiment, we summed annual
local incidence for each of these simulations and performed a four-way analysis of
variance. This resulted in direct estimates of the variation in annual incidence
attributable to temperature, mosquito density, β0(t) values, importation patterns,
and to a portion attributable to stochasticity.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data, code, and description of how to replicate the analyses are available on GitHub at
https://github.com/roidtman/NatComm_dengue_China.
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