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Abstract

We show that a choice of Pauli-Villars regulators allows the cancellation of all the conformal and chiral 
anomalies in an effective field theory from Z3 compactification of the heterotic string with two Wilson lines 
and an anomalous U(1).
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1. Introduction

Starting with the determination of the full anomaly structure of Pauli-Villars (PV) regularized 
supergravity [1], we recently showed [2] that an appropriate choice of PV regulator fields allows 
for cancellation of all the T-duality (hereafter referred to as “modular”) anomalies by the four-
dimensional version of the Green-Schwarz term in Z3 and Z7 compactifications of the heterotic 
string without Wilson lines.1 We further matched our results to a string calculation [3] of the 
chiral anomaly in those theories. Here we extend our results to a specific Z3 compactification [4]
(hereafter referred to as FIQS) with two Wilson lines and therefore an anomalous U(1), here-
after referred to as U(1)X . In the following section we briefly describe the orbifold model we 
are studying. In Section 3 we outline the four-dimensional Green-Schwarz mechanism and the 
structure of the anomaly when an anomalous U(1) is present. In Section 4 we discuss some as-
pects of the cancellation of ultra-violet (UV) divergences and anomaly matching that are specific 
to the case with an anomalous U(1), as well as some simplifications with respect to the Z7 case 
studied in [2]. We summarize our results in Section 5. The full set of conditions for cancellation 
of UV divergences and anomaly matching are given in Appendix A, a sample solution to these 
constraints is presented in Appendix B, and the full spectrum for the FIQS model is displayed in 
Appendix C. The determination of the correct Pauli-Villars (PV) masses can have implications 
for soft supersymmetry breaking terms [5].

2. The FIQS model

Here we will give a brief review of the orbifold model we will consider for the rest of the 
paper. The FIQS model [4] is a Z3 orbifold compactification of the 10d E8 ⊗ E8 heterotic string 
compactified to T 6 with two Wilson lines and a nonstandard embedding for the shift vector. The 
embeddings of the shift vector and Wilson lines are given by

V = 1

3
(1,1,1,1,2,0,0,0)(2,0,0,0,0,0,0,0)′ (2.1)

a1 = 1

3
(0,0,0,0,0,0,0,2)(0,1,1,0,0,0,0,0)′ (2.2)

a3 = 1

3
(1,1,1,2,1,0,0,1,1)(1,1,0,0,0,0,0,0)′ (2.3)

Where the prime indicates that the last 8 elements of the above vectors correspond to the second 
factor of E8. With these specifications, the massless spectrum of the FIQS model can be worked 
out following the standard recipes [6]. The 4D gauge group is SU(3) ⊗ SU(2) ⊗ SO(10) ⊗
U(1)8. The generators of the eight U(1) factors can be written as linear combinations of the 
E8 ⊗ E8 Cartan subalgebra generators HI as

Qa =
16∑

I=1

qI
a HI (2.4)

The constants qI
a are determined by requiring that qa · qb = 0 and qa · αbj = 0, where the αbj

are the sixteen dimensional simple root vectors of the nonabelian gauge group factors. Thus the 

1 Corrections to this paper are given in Appendix D.
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index b corresponds to SU(3), SU(2), or SO(10) and j runs over the rank of each group. One 
choice of qa’s is [7]:

�q1 = 6(1,1,1,0,0,0,0,0)(0,0,0,0,0,0,0,0)′ (2.5)

�q2 = 6(0,0,0,1,−1,0,0,0)(0,0,0,0,0,0,0,0)′ (2.6)

�q3 = 6(0,0,0,0,0,1,0,0)(0,0,0,0,0,0,0,0)′ (2.7)

�q4 = 6(0,0,0,0,0,0,1,0)(0,0,0,0,0,0,0,0)′ (2.8)

�q5 = 6(0,0,0,0,0,0,0,1)(0,0,0,0,0,0,0,0)′ (2.9)

�q6 = 6(0,0,0,0,0,0,0,0)(1,0,0,0,0,0,0,0)′ (2.10)

�q7 = 6(0,0,0,0,0,0,0,0)(0,1,0,0,0,0,0,0)′ (2.11)

�q8 = 6(0,0,0,0,0,0,0,0)(0,0,1,0,0,0,0,0)′ (2.12)

To get the charges of the matter fields, one normalizes the U(1)a generators as

Qa → 1√
2 |qa|

Qa, (2.13)

where the 
√
2 is inserted to adhere to the standard phenomenological normalization. For this 

choice, one finds that the traces of Q6, Q7, and Q8 are all nonzero. One can perform a re-
definition of the generators so that only one factor of U(1) has a nonzero trace. In [4], the 
following re-definition was made:

q
(FIQS)
6 = q6 + q7 (2.14)

q
(FIQS)
7 = q7 + q8 (2.15)

qX = q6 − q7 + q8 (2.16)

While Tr
[
Q

(FIQS)
6

]
= Tr

[
Q

(FIQS)
7

]
= 0 in this basis, one also has Tr

[
Q

(FIQS)
6 Q

(FIQS)
7 QX

]
�=

0, which is rather undesirable. Therefore, we will use a different choice such that the above mixed 
anomaly does not appear. In particular, we define

q
(N)
6 = q6 − q8 = q

(FIQS)
6 − q

(FIQS)
7 (2.17)

q
(N)
7 = q6 + 2q7 + q8 = q

(FIQS)
6 + q

(FIQS)
7 (2.18)

In what follows, we will simply drop the superscript N and use these as the definition of the U(1)6
and U(1)7 generators. As a final note, the charges defined above are generally not orthogonal to 
one another, i.e. Tr [QaQb] �= 0 for some a �= b. It is possible to define a new set of charges that 
are mostly orthogonal to one another, but we will not need to do so for our purposes.

We close this section with some relations among the gauge charges qp
a and modular weights 

q
p
n of the chiral superfields �p of the model. These will be useful in the analysis that follows. 

These include the universality conditions

8π2b = Ca +
∑
p

(
2qp

i − 1
)
C

p
a = 1

24

(
2
∑
p

q
p
n − N + NG − 21

)
∀ i, a,

− 2π2δX = 1
TrTX = 1

TrT 3
X = Tr(T 2

a TX) ∀ a �= X. (2.19)

24 3
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Here Ca is the quadratic Casimir in the adjoint representation of the gauge group factor Ga and 
C

p
a is the Casimir for the representation of the chiral supermultiplet �p, Ta is a generator of Ga , 

and N, NG are the number of chiral and gauge supermultiplets respectively, with, in the FIQS 
model,

N = 415, NG = 64, 8π2b = 6, −4π2δX = 3
√
6. (2.20)

In addition we will use the sum rules∑
p

q
p
n = A1,

∑
p

q
p
mq

p
n = A2 + B2δmn,∑

p

qlq
p
mq

p
n = A3 + B3 (δlm + δmn + δnl) + C3δlmδmn,∑

b

qb
a qb

n = Q1a,
∑

b

qb
a qb

mqb
n = Q2a + P2aδmn, (2.21)

with, in particular,

B2 = 42, P2X = 5
√
6. (2.22)

3. Anomalies and anomaly cancellation with an anomalous U(1)

The effective supergravity theory from generic orbifold compactifications with Wilson lines 
is anomalous under both U(1)X and T-duality:

T ′ i = ai − ibiT
i

iciT i + di

, aibi − cidi = 1, ai, bi, ci, di ∈ Z, i = 1,2,3,

�′ a = e− ∑
i qa

i F i (T i )�a, F i(T i) = ln(iciT
i + di), (3.1)

where �a is any chiral supermultiplet other than a diagonal Kähler modulus T i , and qa
i are its 

modular weights.
We are working in the covariant superspace formalism of ref. [8] in which the chiral multiplets 

Zp = T i, S, �a , with S the dilaton superfield, are covariantly chiral:

Dβ̇Zp = 0, (3.2)

with DA, A = a, α a fully covariant superspace derivative. In particular, under a U(1) gauge 
transformation

Z′ p = gq
p
a Zp, Z̄′ p = g−q

p
a Z̄p, A′ a

A = Aa
A − g−1DAg, (3.3)

where g is a hermitian superfield, and AA is the gauge potential in superspace. Gauge invariance 
assures that holomorphy of the superpotential is maintained under (3.3). If gauge invariance 
is unbroken, the gauge potential AA does not appear explicitly in the superspace Lagrangian. 
Instead the usual Yang-Mills superfield strength Wα is obtained as a component of the two-form 
superfield strength FAB . One can still introduce [8] a superfield superpotential Va such that

Wα = −1

8
(D̄2 − 8R)DαVa, V ′

a = Va + �a + �̄a, (3.4)

but Va never appears in the Lagrangian and the chiral superfield �a is independent of g in (3.3).
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However in the presence of an anomalous U(1), gauge invariance is broken. It is easy to see 
that the UV divergences cannot be regulated by PV fields that all have U(1)X invariant masses. 
There is a quadratically divergent term proportional to DXTrTX , where DX is the auxiliary field 
of the U(1)X supermultiplet, which must be canceled by the analogous term from the PV sector. 
Invariant masses require the coupling of PV fields with equal and opposite charges that do not 
contribute to (TrTX)PV . Noninvariant masses arise from the superpotential for PV fields �C :

W(�C,�′ C) = μC�C�′ C, (3.5)

with μC constant (in the absence of threshold corrections, as for the cases considered here). If 
QC

X + Q′ C
X �= 0, holomorphy of (3.5) is not respected under (3.3) for a = X. For this reason we 

do not include the U(1)X connection in the covariant derivative (3.2). Instead of (3.3) we require

�′ C = e−QC
X��C, �̄′ C = e−QC

X�̄�̄C (3.6)

under a U(1)X transformation, and the Kähler potential depends on U(1)X-charged fields 
through the invariant operators �̄eQXVX�.

It was shown in [1] that modular noninvariant masses can be restricted to a subset of PV chiral 
supermultiplets �C with diagonal Kähler metric:

K(�C, �̄C) = exp[f C(Z, Z̄)]|�C |2 (3.7)

and superpotential (3.5).
As in [2], we define a superfield

M2
C =M2

C′ = exp(K − f C − f ′ C) = exp(K − 2f̄ C), f̄ C = 1

2
(f C + f ′ C), (3.8)

whose lowest component m2
C = M2

C

∣∣ is the �C, �′ C squared mass. Then the anomalous part of 
the one-loop corrected supergravity Lagrangian takes the form [1]

Lanom = L0 +L1 +Lr =
∫

d4θE (L0 + L1 + Lr) ≡
∫

d4θE	, (3.9)

where E is the superdeterminant of the supervielbein, and

L0 = 1

8π2

[
Trη lnM2	0 + K (	GB + 	D)

]
, (3.10)

with η = ±1 the PV signature. The operators in (3.10) are given explicitly in [1,2], except that 
now

	0 = 	0
YM + 	′

0, (3.11)

where 	′
0 contains the Gauss-Bonnet Chern-Simons superfield and operators composed of aux-

iliary superfields of the gravity supermultiplet, and

	0
YM =

∑
a �=X

	a
YM = 	YM − 	X

YM, (3.12)

is the Yang-Mills Chern-Simons superfield without the U(1)X term, and 	a
YM is defined by its 

chiral projection:

(D̄2 − 8R)	a = WαWa. (3.13)
YM a α



6 M.K. Gaillard, J.M. Leedom / Nuclear Physics B 949 (2019) 114785
	r is composed of terms linear and higher order in lnM, and 	D represents a “D-term” 
anomaly [1,2] that, together with a contribution to the Gauss-Bonnet term 	GB, arises from un-
canceled total derivatives with logarithmically divergent coefficients, requiring the introduction 
of a field-dependent cut-off:

∂μ� = 1

4
∂μK. (3.14)

L1 is defined by its variation:

�L1 = 1

8π2

1

192
Trη� lnM2	′

L = 1

8π2

1

192
TrηH	′

L + h.c., (3.15)

where under (3.1) and (3.6) lnM2 transforms as

� lnM2 = H + H̄ , (3.16)

with H holomorphic. Defining

(D̄2 − 8R)	f = f αfα, (D̄2 − 8R)	f̄ = f̄ αf̄α, (D̄2 − 8R)	f̄ X = f̄ αXα,

fα = −1

8
(D̄2 − 8R)Dαf, f̄α = −1

8
(D̄2 − 8R)Dαf̄ , (3.17)

we have

	′
L = 192	f − 128	f̄ − 64	f̄ X,

�L1 = 1

8π2 TrηH

(
	f − 2

3
	f̄ − 1

3
	f̄ X

)
+ h.c. (3.18)

In the presence of an anomalous U(1)X the form of f C is taken to be

f C = αCK(Z, Z̄) + βCg(T , T̄ ) + δCk(S, S̄) +
∑
n

qC
n gn(T n, T̄ n) + QC

XVX,

f̄ C = ᾱCK + β̄Cg + δ̄Ck +
∑
n

q̄C
n gn + Q̄C

XVX,

HC =
(
1− 2γ̄ C

)
F(T ) − 2

∑
q̄C
n Fn(T n) − 2Q̄C

X�, γ̄ C = ᾱC + β̄C, (3.19)

where k is the dilaton Kähler potential, and g is defined in (3.31) below. The traces in �Lanom
can be evaluated using only PV fields with noninvariant masses or using the full set of PV fields, 
since those with invariant masses, HC = 0, drop out. The contribution �L0 to the anomaly is 
linear in the parameters αC, βC, qC

n , QC
X , and the trace of the coefficient of 	′

0 is completely 
determined by the sum rules [9]

N ′ =
∑
C

ηC = −N − 29, N ′
G =

∑
γ

ηV
γ = −12− NG,

∑
C

ηCf C = −10K −
∑
p

q
p
n gn −

∑
a

qa
XVX, (3.20)

that are required to assure the cancellation of quadratic and logarithmic divergences. In (3.20)
the index C denotes any chiral PV field, the index γ runs over the Abelian gauge PV superfields 
that are needed to cancel some gravitational and dilaton-gauge couplings, and the sum over p
includes all the light chiral multiplet modular weights with qS

n = 0, qT i

n = 2δi
n. All PV fields 
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with noninvariant masses have δ = 0, and most2 with δ �= 0 have α = β = qn = 0 = QC
X . For the 

purposes of the present analysis we can largely ignore the latter. Similarly, the cancellation of 
linear divergences that give rise to the chiral anomaly proportional to

ImTrφG ·G̃ � Im
1

2

∑
a �=X

{
F(t)Ca −

∑
p

[
F(t) − 2

∑
n

q
p
n Fn(tn) − 2qp

Xλ

]
(T

p
a )2

}
Fa · F̃a

(3.21)

fixes the coefficient of 	0
YM . Here Gμν � −iTaF

a
μν is the field strength associated with the 

fermion connection, t i = T i
∣∣, λ = �| are the lowest components of the chiral supermultiplets 

T i, �, and a left-handed fermion f transforms as

f → eφf (3.22)

under modular and U(1)X transformations; φ = − i
2 ImF for gauginos, and

φ = i

2
ImF −

∑
n

q
p
n Fn(tn) − q

p
Xλ (3.23)

for chiral fermions χp . The compensating PV contribution

Im
(
TrηφG · G̃)

PV
� Im

∑
C

ηC
(
φC + φ′ C)

(T C
a )2FaF̃

a = −ImTrφG · G̃ (3.24)

that cancels (3.21) determines the anomaly coefficient of 	0
YM , since for each pair �C, �′ C the 

sum of fermion phases φC + φ′ C = HC is just the holomorphic part of the variation (3.16), 
(3.19) of the PV mass term � lnM2

C .
In the chiral formulation for the dilaton, the anomaly is canceled by the variation of the su-

perspace Lagrangian

L =
∫

d4θE
(
S + S̄

)
	, (3.25)

where 	 is the real superfield introduced in (3.9). The quantum Lagrangian varies according to

�Lanom =
∫

d4θ

{
b
[
F(T ) + F̄ (T̄ )

] − δX

2

(
� + �̄

)}
	, (3.26)

so the full Lagrangian is invariant provided

�S = −bF(T ) + δX

2
�, F =

∑
i

F i . (3.27)

However the classical Kähler potential for the dilaton is no longer invariant and must be modified:

kclass(S, S̄) = − ln(S + S̄) → k(S, S̄) = − ln(S + S̄ + VGS), (3.28)

2 There is a set of chiral multiplets in the adjoint representation of the gauge group that has f = K − k; these get mod-
ular invariant masses though their coupling in the superpotential to a second set with f = k. These cancel renormalizable 
gauge interactions and gauge-gravity interactions, respectively. Together with a third set, that has f = 0 and contributes 
to the anomaly, they cancel the Yang-Mills contribution to the beta-function..
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where VGS is a real function of VX and of the chiral supermultiplets; it transforms under (3.1)
and (3.4), (3.6) as

�VGS = b
(
F + F̄

) − δX

2

(
� + �̄

)
. (3.29)

A simple solution consistent with string calculation results [10,11] is

VGS = bg(T , T̄ ) − δX

2
VX, (3.30)

where

g(T , T̄ ) =
∑

i

gi(T i, T̄ i ), gi = − ln(T i + T̄ i ) (3.31)

is the Kähler potential for the moduli. The modification (3.28) is the 4d Green-Schwarz (GS) 
term in the chiral formulation. As discussed in [2], the 4d GS mechanism is more simply formu-
lated in the linear multiplet formalism [8] for the dilaton. In this case the linear dilaton superfield 
L remains invariant, its Kähler potential is unchanged, and instead one adds a term to the La-
grangian:

LGS = −
∫

d4θELVGS, �LGS = −�Lanom (3.32)

Only terms in the anomaly that are linear in the combination H̃ , where

H̃ = bF(T ) − δX

2
�, (3.33)

can be canceled by the Green-Schwarz term. The values of b and δX are fixed by the conditions 
(3.20), (3.24) for the cancellation of divergences, together with the universality conditions (2.19), 
that hold for all Z3 and Z7 orbifold compactifications.

In contrast to L0, the contributions to the anomaly from L1 and Lr are nonlinear in the pa-
rameters α, β, qn, QX , and depend on the details of the PV sector. In particular Lr has no terms 
linear in lnM and must vanish. To ensure that the anomaly coefficient depends on the T-moduli 
only through F(T ) we impose [2]

q̄C
n = 0 (3.34)

for (almost3) all PV fields with noninvariant masses.

4. The anomaly and cancellation of UV divergences in the FIQS model

The full set of conditions for cancellation of the divergences and for obtaining an anomaly 
linear in H̃ , Eq. (3.33), that matches the string result [3] is given in the Appendix A. In this 
section we outline some features of the case of Z3 with an anomalous U(1)X . We will be pri-
marily concerned with the contribution of �L1, Eq. (3.18), to the anomaly. This expression is 
nonlinear in the parameters qC

n , QC
X of the PV fields, and therefore model dependent, as noted 

above. This was illustrated in [2] where it was shown that cancellation of the modular anomaly 
requires (3.34). However, the contribution cubic in QC

X is model independent. It is given by

3 The exception is for some PV fields, introduced in Appendix B.6, needed to cancel divergences from light fields with 
Abelian gauge charges.
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�L1(Q
3
X) = −2(� + �̄)

24π2 TrηQ̄X

(
3Q2

X − 2Q̄2
X

)
	X

YM = −2(� + �̄)

24π2 TrηQ3
X	X

YM,

(4.1)

where the sum is over all PV fields, and we used the definition (3.6), (3.19) of Q̄X and the fact 
that ∑

C

ηC(QC
X)p(Q′ C

X )p
′ =

∑
C

ηC(QC
X)p

′
(Q′ C

X )p, (4.2)

for any powers p, p′. Cancellation of the term in TrφG · G̃ that is cubic in Q3
X requires

−2(� + �̄)

24π2 Tr
(
ηQ3

X

)
	X

YM = 2(� + �̄)

24π2 Tr
(
q3
X

)
	X

YM = −δX

2
(� + �̄)	X

YM, (4.3)

from (2.19), so the anomaly (4.1) is consistent with the requirement for anomaly cancellation.
In contrast, anomaly terms quadratic in Q2

X are model dependent. For example, in [1] it was 
assumed that f̄ C = f C for all PV fields with noninvariant masses, giving a contribution

�L1(FQ2
X) = F + F̄

24π2 Trη (1− 2γ̄ )
(
3Q2

X − 2Q̄2
X

)
	X

YM (4.4)

= F + F̄

24π2 Trη (1− 2γ̄ )Q2
X	X

YM = F + F̄

24π2 Trq2
X	X

YM = b

3
(F + F̄ )	X

YM,

(4.5)

from (3.21) and (3.24) with a = X, and (2.19). Here we instead assume, in addition to (3.34), that 
Q̄C

X = 0 if 1 − γ̄ �= 0, that is PV masses can be noninvariant under either T-duality or U(1)X, but 
not both. In this case the last term in (4.4) drops out and we recover a factor three, in agreement 
with the requirement for anomaly cancellation.

The full set of PV fields sufficient to regulate light field couplings is described in Section 
3 of [1]. These include a set ŻP = ŻI , ŻA, with negative signature, ηŻ = −1, that regulates 
most of the couplings, including all renormalizable couplings, of the light chiral supermultiplets 
Zp = T i, �a . The Ż get invariant masses through a superpotential coupling to PV fields ẎP with 
the same signature, opposite gauge charges and the inverse Kähler metric:

(Ta)Ẏ = −(T T
a )Ż = −(T T

a )Z. (4.6)

It remains to cancel the divergences introduced by the fields Ẏ . To this end we take the following 
set:

ψPn : f Pn = αP
ψ K + βP

ψ g + qP
ψ gn + QP

ψVX, αP
ψ + βP

ψ = γ P
ψ , q̄P

ψ = 0,

T P : f P
T = αP

T K + βP
T g + QP

T VX, αP
T + βP

T = γ P
T ,

φC : f φC = αCK. (4.7)

In the solution to the constraints given in Appendix B, the ψC and T C are further subdivided, 
together with additional fields, into sets Sa, a = 1, . . . , 12, some of which are charged under the 
nonanomalous gauge group. The φC regulate certain gravity supermultiplet loops and nonrenor-
malizable coupling of chiral multiplets. These must be included together with the other PV fields 
introduced above in implementing the sum rules (3.20). Their contributions will be included in 
all the finiteness and anomaly conditions that involve only the parameters α in (4.7); otherwise 
they play no role in the analysis below. In the expressions given in the remainder of this section, 
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we drop terms that contain only Xα or Xμν since their contributions are included in the sums 
(3.20) and the additional sum rule [9]∑

C

ηCα2
C = −4. (4.8)

In [2] we also introduced pairs �P , �′ P with modular invariant masses that did not contribute 
to the anomaly, but played an important role in canceling certain divergences. However, because 
the Z3 sum rules (2.21) are much simpler than the analogous sum rules for the Z7 case studied 
in [2], here we need only the set in (4.7).

The quadratic and logarithmic divergences we are concerned with here involve the superfield 
strengths −i(Ta)W

a
α ,

�C
Dα = −1

8
(D̄2 − 8R)DαZp�C

Dp, (4.9)

and

Xα = −1

8
(D̄2 − 8R)DαK, (4.10)

associated with the Yang-Mills, reparameterization and Kähler connections, i(Ta)
C
DAμ,

∂μZp�C
pD and δC

D�μ, respectively, where

�μ = i

4

(
DμziKi −Dμz̄m̄Km̄

)
. (4.11)

Cancellation of quadratic divergences requires

Trη�α = TrηTX = 0, (4.12)

and cancellation of logarithmic divergences requires

Trη�α�β = Trη�αT a = Trη(T a)2 = 0, (4.13)

where η = +1 for light fields. Cancellation of all contributions linear and quadratic in Xα is 
assured by the conditions in (3.20) and (4.8). The Yang-Mills contribution to the term quadratic 
in Wα is canceled by chiral fields in the adjoint (see footnote on page 7) that we need not consider 
here. Finally, cancellation of linear divergences requires cancellation of the imaginary part of

TrηXχ = TrηφG · G̃, G̃μν = 1

2
εμνρσ Gρσ , (4.14)

where Gμν is the field strength associated with the fermion connection4; for left-handed 
fermions:

Gμν = −�C
Dμν + iF a

μν(Ta)
C
D + 1

2
Xμνδ

C
D, (4.15)

where

Xμν =
(
DμziDν z̄

m̄ −Dνz
iDμz̄m̄

)
Kim̄ − iF a

μν(Taz
i)Ki

= 2i
(
∂μ�ν − ∂ν�μ

)
, i = p, s, (4.16)

4 Here we neglect the spin connection whose contribution was discussed in [2].



M.K. Gaillard, J.M. Leedom / Nuclear Physics B 949 (2019) 114785 11
is the field strength associated with the Kähler connection (4.11). For a generic PV superfield 
�C with diagonal metric, its fermion component χC transforms under (3.1) and (3.6) as

χ ′ C = eφC

χC, φC =
(
1

2
− αC − βC

)
F −

∑
i

F i(t i)qC
i − λQX. (4.17)

In evaluating (4.14) we will use the fact that the expression5

εμνρσ gi
μνg

i
ρσ = 0, (4.18)

vanishes identically, and the expressions

Xij = εμνρσ ImF igi
μνg

j �=i
ρσ = 4εμνρσ ImF i∂μgi

ν∂ρgj
σ = 4∂ρ

(
εμνρσ ImF i∂μgi

νg
j
σ

)
,

Xi = 1

2
εμνρσ ImF igi

μνXρσ = 4i∂ρ

(
εμνρσ ImF i∂μgi

ν�σ

)
,

Xia = εμνρσ ImF igi
μνF

a
ρσ = 4∂ρ

(
εμνρσ ImF i∂μgi

νA
a
σ

)
, (4.19)

are total derivatives, where Aa
μ is an Abelian gauge field, and

gi = − ln(t i + t̄ i ), gi
μ = −∂μti − ∂μt̄ ı̄

t i + t̄ ı̄
, gi

μν = ∂μgi
ν − ∂νg

i
μ. (4.20)

The full Kähler potential for Ẏ , with no anomalous U(1)X , is given in [1,2]; here it takes the 
form

K(Ẏ ) = eĠ

(∑
A

e−ga−qaVX |ẎA|2 +
∑
I

e−2gi |ẎI |2 +
∑
N

|ẎN |2
)

+ . . . ,

ga =
∑
n

qa
ngn, Ġ = α̇K + β̇g, α̇ + β̇ = 1, (4.21)

where ẎN=1,2,3 (and their counterparts ŻN ) are gauge singlet PV fields needed [9] to make the 
Kähler potential and superpotential terms for Ż, Ẏ fully invariant, and the ellipsis represents 
terms that make no contribution to the expressions given below. Using the sum rules in (2.21)
and (3.20) we obtain:

Trη̇�Ẏ
α = − [

(N + 2)β̇ − A1
]
gα, Trη̇T Ẏ

X = TrTX,

Trη̇�Ẏ
α �Ẏ

β = −2α̇
[
β̇(N + 2) − A1

]
Xαgβ −

[
β̇2(N + 2) − β̇A1 + A2

]
gβgα

−B2

∑
n

gn
αgn

β

Trη̇�Ẏ
α Ta = δaXTrT

Ẏ
X Ġα − Q1agα, Ġα = α̇Xα + β̇gα. (4.22)

5 It was noted in [2] that the expression (4.18), which is in fact the T -dependent part of the chiral anomaly found in [3], 
vanishes. The authors of [3] attribute [12] this to their approximation that neglects higher order corrections. However 
if these corrections take the form gi (T i , T̄ i ) → gi(T i , T̄ i ) + �i(T i , T̄ i ), our results our unchanged. Note that the 
functional form of �i is severely restricted by the fact that it has to be invariant under T-duality.
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Using (4.19) and (2.21), the part of XẎ that is independent of gauge charges takes the form:

XẎ
χ � 1

2
[(N + 2) − 2A1]FĠ · ˜̇G − (A1 − 2A2)F Ġ · g̃ − A3Fg · g̃

+ total derivative, Ġμν = α̇Xμν + β̇gμν. (4.23)

The modular weights for the ψ satisfy∑
m,n

gnqPm
n = gqP

ψ ,
∑
P

ηP
ψq

Pk

l qPk
n qPk

n = 0,

∑
l,m,n

gmgnqPl
m qPl

n = (qP
ψ )2

∑
n

gngn. (4.24)

Like XẎ
χ , X

ψ
χ depends only on F, gμν and Xμν , and (4.22) and (4.23) can be canceled by some 

combination of the fields in (4.7), with the condition∑
P

ηP
ψ(qP

ψ )2 = B2. (4.25)

The pure T-moduli anomaly is given by

�L1(Fg2) = F

8π2 Trηψ

(
1− 2γ̄ψ

)
q2
ψ	g, (D̄2 − 8R)	g =

∑
n

gα
ngn

α. (4.26)

Consistency with string results [13] requires

Trηψ

(
1− 2γ̄ψ

)
q2
ψ = −8π2b (4.27)

Finally, we require

�L1(QXg2) = − 2�

8π2 TrηQ̄X	f = 1

2
�δX	g. (4.28)

Using (4.24), the condition (4.28) requires∑
P

ηP
ψQ̄P

ψ(qP
ψ )2 = −4π2δX. (4.29)

All other contributions to �L1 are required to vanish.

We conclude this section by noting that cancellation of divergences linear in the U(1)a field 
strengths is much simpler than for the Z7 case considered in [2], as outlined below.

The gauge charges for the FIQS [4] model are listed6 in Appendix C. The universality of 
the anomaly term quadratic in Yang-Mills fields strengths is guaranteed by the universality con-
dition (2.19), as discussed in Section 3. Since gauge transformations commute with modular 
transformations, a set of chiral multiplets �b that transform according to a nontrivial irreducible 
representation R of a nonabelian gauge group factor Ga have the same modular weights qR

n such 
that ∑

b∈R

qb
n(Ta)

b
b = qR

n (TrTa)R = 0. (4.30)

6 We have made some corrections to the U(1)a charges given in (2).
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Therefore terms linear in Yang-Mills field strengths occur only for Abelian gauge group factors. 
We need to cancel the Ẏ -loop contribution to logarithmic divergences(

Trη
∑
n

qng
n
αTa

)
Ẏ

= −
∑
b,n

qb
nQb

ag
n
α = −Q1agα, (4.31)

and, dropping terms proportional to the last expression in (4.19), the relevant Ẏ contributions to 
linear divergences:

XẎ
χ �

∑
a,b,n

Qb
aF̃

a ·
[
gnqb

n

(
F − 2

∑
m

qb
mFm

)
+ 2qb

nFn

(
Ġ − 1

2
X

)]

=
∑
a

F̃ a ·
{[

g
(
1+ 2β̇

) + X (2α̇ − 1)
]
Q1aF − 2

∑
n

gnFnQ2a

}
, (4.32)

where we used (2.21). The last term in (4.32) is canceled by

Xψ
χ � −2

∑
a,P,l,m,n

ηP
ψQP

a qPl
m qPl

n FmF̃ a · gn = −2
∑
a,P

ηP
ψQP

a (qP )2F̃ a ·
∑
n

gnFn, (4.33)

provided∑
P

ηP
ψQP

a (qP )2 = −Q2a. (4.34)

The remaining terms in (4.32), as well as (4.31) can be canceled by a combination of the fields 
in (4.7). For a = X there are additional terms proportional to (TrηTX)PV = −TrTX .

5. The final anomaly in the FIQS model

In Appendix A we show that is possible to cancel all the ultraviolet divergences from the 
Ẏ fields with a choice of the set (4.7) such that the fields with noninvariant masses have the 
properties

Trη(lnM)n>1 = �Trη(lnM)n>1 = Trη(� lnM)(f̄α)n>0 = 0. (5.1)

Then, including the results of [2], the anomaly due to the variation of (3.9) takes the form

δLanom =
∫

d4θE

(
bF − 1

2
δX�

)
	 +

∫
d4θEbF	′, (5.2)

where

	 = 	YM − 	GB + 	g,

	′ = −bspin

48b

(
4Gβ̇αGαβ̇ − 16RR̄ +D2R + D̄2R̄

)
− 1

8π2b
	D, (5.3)

where 	g is defined in (4.26), and bspin governs the contributions from PV masses, as opposed 
to those arising from uncanceled divergences:

8π2bspin = 8π2b + 1, (5.4)

with 8π2b = 6 in the FIQS model. In the absence of an anomalous U(1), � = 0, the anomaly can 
be canceled by the four dimensional GS mechanism as described in [2]. However with � �= 0, the 
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anomaly as written in (5.3) is no longer universal and cannot be canceled by the GS term alone. 
However all of the “D-terms”, in other words the full expression 	′, can be removed [14] by 
adding counterterms to the Lagrangian, giving a universal anomaly which can now be canceled
by the GS term.7

The results for the Gauss-Bonnet and Yang-Mills terms are well-established [10] and result 
from the universality conditions (2.19).

6. Conclusions

We have shown that a suitable choice of Pauli-Villars regulator fields allows for a full can-
cellation of the chiral and conformal anomalies associated, respectively, with the linear and 
logarithmic divergences in the effective supergravity theory from a Z3 orbifold compactifica-
tion with Wilson lines and an anomalous U(1).

A future work [13] will compare this result with that obtained directly from string theory.
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Appendix A. Conditions for the cancellation of ultraviolet divergences and the evaluation 
of the anomaly

A.1. Notation

We pair PV fields according to their mass terms. A pair of PV fields (�P , �′P ) has a super-
potential coupling

WPV =
∑
P

μP �′P �P (A.1)

and a Kähler potential

KPV =
∑
P

ef P

�∗P �P +
∑
P

ef ′P
�′∗P �′P , (A.2)

where

f P = αP K + βP g +
∑
n

qP
n gn (A.3)

with an identical definition holding for f ′P but with primes on the constants {αP , βP , qP
n }. While 

we will not use it often, summing over the index C means summing over PV fields and then their 

7 The elimination of 	D further obviates the need for a modification of the linear-chiral duality transformation, a 
possibility considered in Appendix B of [2] and Appendix E of [1].
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primed partners whereas summing over P means summing over only the unprimed or primed 
fields, depending on the quantity being summed. For example,∑

C

ηCαC =
∑
P

ηP αP +
∑
P

ηP α′P . (A.4)

However, to reduce clutter, we will abbreviate the above. When summing over primed and un-
primed fields, we will use “Tr”. When summing over only primed or unprimed ones, we will use 
“Sum”. Thus the above would be written as

Tr[ηα] = Sum[ηα] + Sum[ηα′]. (A.5)

We will also encounter sums over various combinations of U(1) charges, U(1)X charges, and 
modular weights. To abbreviate these, especially when dealing with the quantum numbers of the 
light fields, we will define

Q1a = Sum[ηQaqn] (A.6)

Q2a + P2aδnm = Sum[ηQaqnqm] (A.7)

Ra = Sum[ηQaQXqn] (A.8)

Rab = Sum[ηQaQbqn] (A.9)

Sa = Sum[ηQaQX] (A.10)

Sab = Sum[ηQaQb]. (A.11)

A.2. Conditions for regularization

The terms we must cancel come from linear, logarithmic, and quadratic divergences. It is 
helpful to organize these terms by forming subsets based on whether terms depend on non-
abelian gauge interactions, nonanomalous Abelian gauge interactions, anomalous Abelian gauge 
interactions, or none of the above. We will refer to these groupings as nonabelian divergences, 
U(1)a divergences, U(1)X divergences, and modular divergences, respectively. As an overview, 
the divergences come from the terms

Tr[η�α] (A.12)

Tr[η�α�β ] (A.13)

Tr[η�αTa] (A.14)

Tr[ηTaTb] (A.15)

Tr[ηQa], (A.16)

where

�C
Dα = −1

8

(
D̄2 − 8R

)
DαZi�C

Di (A.17)

φC =
(
1

2
− αC − βC

)
F −

∑
i

F iqC
i − qC

X� (A.18)

Gμν = �C
Cμν − 1

2
Xμνδ

C
D − iF a

μν(Ta)
C
D − iFX

μν(QX)CD (A.19)

for our PV fields defined above.
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The PV fields involved in this procedure are numerous. We take all of the PV fields described 
in sections 3 and 4 of [1] and supplement them with further fields. However, to satisfy the diver-
gences above, we need only focus on the Ẏ and φ̂ fields of [1]. We now group all the terms in the 
above expressions with our organizational scheme.

Modular Divergences
To cancel all the modular divergences, we require

0= −Tr

[
ηβ

(
1

2
− α

)2 ]
− Tr

[
ηqn

(
1

2
− α

)2 ]
(A.20)

0= −1

2
Tr

[
η(1− 2α)β(1− 2γ )

]
+ Tr

[
ηβqn(1− 2α)

]
−1

2
Tr

[
η(1− 2α)(1− 2γ )qn

]
+ Tr

[
ηqnqm(1− 2α)

]
(A.21)

0= 1

2
Tr

[
ηβ2(1− 2γ )

]
− Tr

[
ηβ2qn

]
+ Tr

[
ηβ(1− 2γ )qn

]
− 2Tr

[
ηβqnqm

]
+1

2
Tr

[
η(1− 2γ )qnqm

]
− Tr

[
ηqnqmqk

]
. (A.22)

U(1)X Divergences
To cancel all the U(1)X divergences, we need

0= Tr[ηQX] (A.23)

0= Tr[ηQXβ] + Tr[ηQXqm] (A.24)

0= Tr[ηQXα] (A.25)

0= Tr

(
ηQX

(
α − 1

2

)2
)

(A.26)

0= −Tr

(
ηQXβ

(
α − 1

2

))
+ Tr

(
ηQXqn

(
α − 1

2

))
(A.27)

0= Tr
(
ηQXβ2

)
+ 2Tr (ηQXqnβ) + Tr (ηQXqnqm) (A.28)

0= Tr
(
ηQ3

X

)
(A.29)

0= Tr

(
ηQ2

X

(
1

2
− γ

))
− Tr

(
ηQ2

Xqn

)
(A.30)

0= Tr

(
ηQ2

X

(
α − 1

2

))
(A.31)

0= 2Tr

(
ηQX

(
α − 1

2

)(
1

2
− γ

))
− 2Tr

(
ηQXqn

(
α − 1

2

))
(A.32)

0= −2Tr
(
ηQ2

Xβ
)

− 2Tr
(
ηQ2

Xqn

)
(A.33)

0= 2Tr

(
ηQXβ

(
1

2
− γ

))
− 2Tr (ηQXqnβ) + 2Tr

(
ηQXqn

(
1

2
− γ

))
− 2Tr (ηQXqnqm) . (A.34)



M.K. Gaillard, J.M. Leedom / Nuclear Physics B 949 (2019) 114785 17
Note that only fields that have Q̄X �= 0 will contribute to Eq. (A.29).

Nonabelian Divergences
To cancel the nonabelian divergences, we need

0 = Tr[ηTaTb] (A.35)

0 = Tr[ηQXTaTb] (A.36)

0 = Tr

[
ηTaTb

(
γ − 1

2

)]
, (A.37)

where T a is a generator of a nonabelian gauge group factor.

U(1)a Divergences
Finally, the conditions for canceling the abelian divergences are

0 = Tr[ηQa] (A.38)

0 = Tr[ηQaα] (A.39)

0 = Tr[ηQaβ] + Tr[ηqnQa] (A.40)

0 = Tr[ηQXQaQb] (A.41)

0 = Tr[ηQXQaβ] + Tr[ηQXqnQa] (A.42)

0 = Tr

[
ηQXQa

(
α − 1

2

)]
(A.43)

0 = −Tr

[
ηQXQa

(
1

2
− γ

)]
+ Tr[ηQXQaqn] (A.44)

0 = Tr

[
ηQa

(
α − 1

2

)((
1

2
− γ

)
− qn

)]
(A.45)

0 = Tr

[
ηQaβ

((
1

2
− γ

)
− qn

)]
+ Tr

[
ηQaqn

((
1

2
− γ

)
− qn

)]
(A.46)

0 = Tr

[
ηQaQb

((
γ − 1

2

)
+ qn

)]
. (A.47)

In all of the above sets, we have assumed that the modular weights of all PV fields satisfy sum 
rules reminiscent of those satisfied by the light sector, (2.21). Indeed, this will be baked directly 
into our choice of PV fields. We have also used the total derivative identities (4.19). In addition 
to the above conditions, we must enforce the sum rules of [1]:

−N − 29 = Tr[η] (A.48)

−10 = Tr[ηα] (A.49)

−4 = Tr[ηα2] (A.50)

0= Tr

[
ηβ

]
(A.51)

0= Tr

[
ηβ2

]
(A.52)

0= Tr

[
ηβα

]
. (A.53)
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A.3. Conditions for anomaly matching

By drawing an analogy with the calculation of [3], we infer that in four dimensions the 
anomaly polynomial for the FIQS model has the form [13]

I6 =
(

− b

4π

3∑
i=1

Gi + δX

8π
FX

)(
tr(R2) −

∑
n

(F SU(3)
n )2 −

∑
n

(F SU(2)
n )2 −

∑
n

(F SO(10)
n )2

−
7∑

a=1

(Fa)
2 − (FX)2 + 2

∑
i

G2
i

)
(A.54)

where

Gi = dZi (A.55)

Zi = 1

2i

d(T i − T̄ i )

T i + T̄ i
(A.56)

and

tr(R2) = Ra
bR

b
a (A.57)

= 1

4
Rτ

εμνR
ε
τρσ dxμdxνdxρdxσ (A.58)

(FA)2 = 1

4
FAμνFAρσ dxμdxνdxρdxσ (A.59)

In the above, we have implicitly assumed wedge products in the multiplication of differential 
forms. To get the 4D anomaly from the 6-form anomaly polynomial, one goes through the usual 
descent equations:

2πI6 = dI5 (A.60)

δI5 = dI4 (A.61)

For example, under a modular transformation, Zi → Zi + dIm(F i) so that the modular-gravity-
gravity anomaly has the form∫

I4 ⊃
∫

− 3

32π2

( 3∑
i=1

Im(F i)

)
Rτ

ωμνR
ω
τρσ εμνρσ √

gd4x (A.62)

which is precisely what one would expect if one considers the modular-gravity anomaly to have 
the same form as a U(1)-gravity anomaly. To match this anomaly, we look at the anomalous 
contributions of PV fields with masses that are noninvariant under modular and U(1)X transfor-
mations. The general form of their contribution is

Lanom =
∫

d4θE(L0 + L1 + Lr) (A.63)

with

L0 = 1

8π2

(
Tr[η ln(M2)]	0 + K(	GB + 	D)

)
(A.64)

Lr = − 1
2 Tr

[
η

∫
d ln(M)	r

]
. (A.65)
192π
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Focusing on the second term of Eq. (A.63), we again break up terms based on whether they 
contribute to the U(1)X related anomalies or the pure modular anomaly.

U(1)X Anomaly Conditions
To match the anomalies involving U(1)X, we require

0= 2

3
Tr

[
ηQ̄X

(
2ᾱ2 + ᾱ − 3α2

)]
(A.66)

0= 2

3
Tr

[
ηQ̄X

(
β̄ + 4ᾱβ̄ − 6αβ

)]
(A.67)

0= 2

3
Tr

[
ηQ̄X

(
2β̄2 − 3β2

)]
(A.68)

0= −4Tr

[
η

(
αQ̄Xqn

)]
(A.69)

0= −4Tr

[
η

(
βQ̄Xqn

)]
(A.70)

8π2δXδmn = −2Tr

[
η

(
Q̄Xqnqm

)]
(A.71)

0= 1

3
Tr

[
η

(
QX (−4ᾱ + 6α − 1) (1− 2γ̄ )

)]
(A.72)

0= 2

3
Tr

[
ηQX (1− 2γ̄ )

(
3βQX − 2β̄Q̄X

)
)

]
(A.73)

0= 2Tr

[
η (QXqn (1− 2γ̄ ))

]
(A.74)

8π2b = 1

3
Tr

[
η (1− 2γ̄ )

(
3Q2

X − 2Q̄2
X

)]
(A.75)

0= 2

3
Tr

[
ηQ̄X

(
4ᾱQ̄X + Q̄X − 6αQX

)]
(A.76)

0= 1

3
Tr

[
η

(
8β̄Q̄2

X − 12βQXQ̄X

)]
(A.77)

0= −4Tr

[
η

(
QXQ̄Xqn

)]
(A.78)

−4π2δX = Tr

[
η

(
4Q̄3

X

3
− 2Q2

XQ̄X

)]
= −2

3
Tr

[
ηQ3

X

]
. (A.79)

Note that the last term is fixed by cancellation of the linear divergence term Eq. (A.29).

Pure Modular Anomaly Conditions
To match the pure modular anomaly, we require

0= 1

3
Tr

[
η (1− 2γ̄ )

(
−2ᾱ2 − ᾱ + 3α2

)]
(A.80)

0= 1
Tr

[
η (1− 2γ̄ )

(
3β2 − 2β̄2

)]
+ 2Tr

[
ηβ (1− 2γ̄ ) qn

]
(A.81)
3
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0= 1

3
Tr

[
η (1− 2γ̄ )

(
6αβ − (4ᾱ + 1) β̄

)]
+ 2Tr

[
ηα (1− 2γ̄ ) qn

]
(A.82)

−8π2bδmn = Tr

[
ηqmqn (1− 2γ̄ )

]
. (A.83)

As for the third term of Eq. (A.63), we need it to vanish identically. This can be achieved so long 
as the following are satisfied

0= Tr

[
ηx(1− 2γ̄ )2

]
(A.84)

0= Tr

[
ηxq̄X(1− 2γ̄ )

]
(A.85)

0= Tr

[
ηxq̄2

X

]
(A.86)

0= Tr

[
ηᾱβ̄(1− 2γ̄ )

]
(A.87)

0= Tr

[
ηᾱβ̄q̄X)

]
(A.88)

0= Tr

[
ηβ̄k(1− 2γ̄ )

]
(A.89)

0= Tr

[
ηβ̄kq̄X

]
Tr

[
ηβ̄3q̄X

]
, (A.90)

where x = 1, ᾱ, β̄, q̄X, ᾱ2, β̄2, q̄2
X, ᾱβ̄, ᾱq̄X, β̄q̄X and k = 1, 2, 3.

Appendix B. Solution to the Pauli-Villars regularization conditions

We will now elucidate a solution to the system described above. The solution consists of sets 
Sa , a = 1, 2, . . . of PV fields that address each of the divergence and anomaly sets of conditions 
more or less separately. For example, it is possible to introduce PV fields that cancel only the 
nonabelian divergences and contribute to no other conditions. We will try to follow the same 
strategy for all the sets of conditions described above. It is not entirely possible to do so – for 
example, fields that solve the modular anomaly conditions will generically contribute to modular 
divergences. Of course, this is far from the only way to tackle the system, but it is a straightfor-
ward method to illustrate that a solution can be found. To this end, we define the notion of clone 
fields for PV fields. For a given pair of PV fields 

(
�P ,�′P )

, we define clone fields 
(
�P

cl,�
′P
cl

)
that have almost the same parameters (α, β , qn, . . .) and quantum numbers as the original pair but 
with negative signature. We say almost here because this notion is only useful if the 

(
�P ,�′P )

have quantum numbers different from the clones so that the two sets cancel each other’s contri-
butions to some subset of the conditions, but not all conditions. As a concrete example, which 
will be described below, one can introduce PV fields with nonabelian gauge interactions to elimi-
nate divergences associated with those same interactions. One can then introduce clone PV fields 
without gauge interactions that exactly cancel the contributions of the gauge charged PV fields 
to all other terms. The primary advantage of this technique is tidiness.
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B.1. PV Fields for U(1)X anomaly matching

The fields described here will satisfy Eqs. (A.66)–(A.79) and will contribute to some of the 
U(1)X divergence conditions (A.24)–(A.34). In particular, only PV fields with Q̄X �= 0 contribute 
to Eq. (A.29), so this condition will be satisfied by this sector only. The sets of PV fields we need 
are

• S1: A set of PV fields with modular invariant masses, α1 = α′
1 = γ̄1 = 1/2, and q̄(1)

n = 0 and 
modular weights of the form (q(1))Cm = qP

(1)δ
n
m and clone fields with no U(1)X.

• S2: A set of PV fields with ᾱ2 = β̄2 = γ̄2 = Q̄
(2)
X = (q(2))Cn = 0 and clone fields with no 

U(1)X charge.

We then place the following conditions on the parameters of these fields:

Sum
[
Q

(L)
X

]
= −Sum

[
ηQ

(1)
X

]
(B.1)

Sum

[
(QL

X)3
]

= −Tr

[
η1(Q

(1)
X )3

]
(B.2)

0= Tr
[
η1Q̄

(1)
X

(
1− 3α2

1

)]
(B.3)

0=
[
η1Q̄

(1)
X α1q

(1)
n

]
(B.4)

0= Tr

[
η1α1Q̄

(1)
X Q

(1)
X

]
(B.5)

0= Tr

[
η(Q̄

(1)
X )2

]
(B.6)

0= Tr

[
η(Q̄

(1)
X )3

]
(B.7)

0= Tr

[
η(Q̄

(1)
X )4

]
(B.8)

0= Tr

[
ηQ̄

(1)
X q(1)

n

]
(B.9)

0= Tr

[
ηQ̄

(1)
X Q

(1)
X q(1)

n

]
(B.10)

−4π2δXδnm = Tr

[
ηQ̄

(1)
X q(1)

n q(1)
m

]
(B.11)

2π2δX = −1

3
Sum

[
(Q

(L)
X )3

]
= Tr

[
ηQ̄

(1)
X (Q

(1)
X )2

]
. (B.12)

Once again, the first condition is a linear divergence term that can only be canceled by fields with 
masses that are noninvariant under U(1)X . This in turn forces the correct coefficient for the pure 
U(1)X anomaly in the last condition. The second set must satisfy

0= Tr[η2] (B.13)

0= Tr

[
η2α2Q

(2)
X

]
(B.14)
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0= Tr

[
η2β2Q

(2)
X

]
(B.15)

8π2b = Tr

[
η2(Q

(2)
X )2

]
. (B.16)

The first condition here comes from Eq. (A.84) and can be relaxed.

B.2. PV fields for modular anomaly matching

The fields described here will satisfy conditions (A.80)–(A.83) and contribute to the modular 
divergence conditions (A.20)–(A.22). The sets are

• S3: A set of pairs of PV fields with β3 = β ′
3 = 0, q(3)

n = q
′(3)
n = 0.

• S4: A set of pairs of PV fields with α4 = α′
4 = β4 = β ′

4 = q̄n
4 = 0, (q(4))Cm = (q(4))P δn

m, and 
clone fields with no modular weights.

These fields will contribute to the modular divergence conditions, as outlined below. We also 
have to consider the φ̂ fields of [1] here since they have noninvariant masses under modular 
transformations. These fields have no β or modular weight parameters, but do have f

φ̂
= α̂K . 

Then the conditions the S3, S4, and φ̂ fields must satisfy are

0= Tr

[
η̂(1− 2 ¯̂α)2

]
+ Tr

[
η3(1− 2ᾱ3)

2
]

(B.17)

0= Tr

[
η̂ ¯̂α(1− 2 ¯̂α)2

]
+ Tr

[
η3ᾱ3(1− 2ᾱ3)

2
]

(B.18)

0= Tr

[
η̂ ¯̂α2(1− 2 ¯̂α)2

]
+ Tr

[
η3ᾱ

2
3(1− 2ᾱ3)

2
]

(B.19)

0= Tr

[
η̂

(
1− 2 ¯̂α

)(
−2 ¯̂α2 − ¯̂α + 3α̂2

)]
+ Tr

[
η3 (1− 2ᾱ3)

(
−2ᾱ2

3 − ᾱ3 + 3α2
3

)]
(B.20)

and

−8π2b = Tr

[
η4q

P
4 qP

4

]
= 2Sum

[
η4q

P
4 qP

4

]
. (B.21)

B.3. PV fields for the regulation of modular divergences

Here we introduce fields that can cancel the contributions to Eqs. (A.20)–(A.22) from the Ẏ , 
S3, and S4 and contribute to the sum rules in Eqs. (3.37), (3.38) and (A.16) of [1]. The only new 
set we introduce here is

• S5: A set of pairs of PV fields with γ̄5 = 1
2 and (q̄(5))Cn = 0 with (q(5))Cm = (q(5))P δn

m.

Then the conditions we must satisfy are

0= (N + 2)β̇

(
1 − β̇

)2

− A1

(
1 − β̇

)2

− Sum

[
η5β5

(
1 − α5

)2 ]

2 2 2
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− Sum

[
η5β

′
5

(
1

2
− α′

5

)2 ]
− Sum

[
η5q

P
5

(
1

2
− α5

)2 ]
+ Sum

[
η5q

P
5

(
1

2
− α′

5

)2 ]
(B.22)

0 = (N + 2)β̇

(
1

2
− β̇

)
− A1

(
1

2
− β̇

)
− 2A2β̇

(
1

2
− β̇

)
+ 2A2

(
1

2
− β̇

)
−1

2

(
Sum

[
η5β5(1− 2α5)(1− 2γ5)

]
+ Sum

[
η5β

′
5(1− 2α′

5)(1− 2γ ′
5)

])
+ Sum

[
η5q

P
5 β5(1− 2α5)

]
− Sum

[
η5q

P
5 β ′

5(1− 2α′
5)

]
−1

2
Sum

[
η5q

P
5 (1− 2α5)(1− 2γ5)

]
− 1

2
Sum

[
η5q

P
5 (1− 2α′

5)(1− 2γ ′
5)

]
+ Sum

[
η5q

P
5 qP

5 (1− 2α5)

]
+ Sum

[
η5q

P
5 qP

5 (1− 2α′
5)

]
+ 2Sum

[
η4q

P
4 qP

4

]
(B.23)

0 = (N + 2)
β̇2

2
− A1β̇ + A2

2
− A1β̇

2 + 2A2β̇ − A3

+1

2

(
Sum

[
η5β

2
5 (1− 2γ5)

]
+ Sum

[
η5β

′2
5 (1− 2γ ′

5)

])
−

(
Sum

[
η5q

P
5 β2

5

]
− Sum

[
η5q

P
5 β ′2

5

])
+

(
Sum

[
η5β5q

P
5 (1− 2γ5)

]
− Sum

[
η5β

′
5q

P
5 (1− 2γ ′

5)

])
− 2

(
Sum

[
η5β5q

P
5 qP

5

]
+ Sum

[
η5β

′
5q

P
5 qP

5

])
+1

2

(
Sum

[
η5(1− 2γ5)q

P
5 qP

5

]
+ Sum

[
η5(1− 2γ ′

5)q
P
5 qP

5

])
+ Sum

[
η4q

P
4 qP

4

]
.

(B.24)

We include an explicit P in the modular weights simply to remind ourselves that we sum over the 
“P” index and not the “n” index since C = (P,n).

B.4. PV fields for the regulation of U(1)X divergences

Here we introduce fields that cancel the contributions to Eqs. (A.24)–(A.34) from the Ẏ , S1, 
and S2. Note that we will omit Eq. (A.29) since has been taken care of above. We introduce the 
following set:

• S6: A set of pairs of PV fields with Q(6)
X = −Q

′(6)
X and q̄(6)

n = 0 and clone fields without 
U(1)X charge.

Then the conditions we must satisfy are

0 = 12C′
GSβ̇ + 2Sum

[
η2Q

X
(2)β2

]
+ Sum

[
η6Q

X
(6)β6

]
− Sum

[
η6Q

X
(6)β

′
6

]
(B.25)

0 = 12C′
GS(1− β̇) + 2Sum

[
η2Q

X
(2)α2

]
+ Sum

[
η6Q

X
(6)α6

]
− Sum

[
η6Q

X
(6)α

′
6

]
(B.26)
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0= 12C′
GS

(
1

2
− β̇

)2

+ Sum

[
η6Q

X
(6)

(
α6 − 1

2

)]
− Sum

[
η6Q

X
(6)

(
α′
6 − 1

2

)]
(B.27)

0= 12C′
GSβ̇

(
1

2
− β̇

)
+ Q

(L)
1X

(
1

2
− β̇

)
+ Sum

[
η2Q

X
(2)q

P
2

]
+ Sum

[
η6Q

X
(6)β6

(
α6 − 1

2

)]
− Sum

[
η6Q

X
(6)β

′
6

(
α′
6 − 1

2

)]
− Sum

[
η6Q

X
(6)q

P
6

(
α6 − 1

2

)]
− Sum

[
η6Q

X
(6)q

P
6

(
α′
6 − 1

2

)]
(B.28)

0= 12β̇2C′
GS − 2β̇Q

(L)
1X + Q

(L)
2X + Sum

[
η1Q

X
(1)q

P
1 qP

1

]
+ Sum

[
η1Q

′X
(1)q

P
1 qP

1

]
+ Sum

[
η6Q

X
(6)β

2
6

]
− Sum

[
η6Q

X
(6)β

′2
6

]
+ 2Sum

[
η6Q

X
(6)β6q

P
6

]
+ 2Sum

[
η6Q

X
(6)β

′
6q

P
6

]
(B.29)

0= 1

2
Tr

[
(QX

(L))
2
]

− R
(L)
X − Sum

[
η1(Q

X
(1))

2qP
1

]
+ Sum

[
η1(Q

′X
(1))

2qP
1

]
+ Sum

[
η2(Q

X
(2))

2
]

+ Sum

[
η6(Q

X
(6))

2
(
1

2
− γ6

)]
+ Sum

[
η6(Q

X
(6))

2
(
1

2
− γ ′

6

)]
(B.30)

0= Tr

[
(QX

(L))
2
(
1

2
− β̇

)]
− Sum

[
η2(Q

X
(2))

2
]

+ Sum

[
η6(Q

X
(6))

2
(

α6 − 1

2

)]
+ Sum

[
η6(Q

′X
(6))

2
(

α6 − 1

2

)]
(B.31)

0= −1

2
Q

(L)
1X

(
1

2
− β̇

)
+ R

(L)
X

(
1

2
− β̇

)
+ Sum

[
η2Q

X
(2)(α2 + γ2)

]
+ Sum

[
η2Q

X
(2)q

P
2

]
+ Sum

[
η6Q

X
(6)

(
α6 − 1

2

)(
1

2
− γ6

)]
− Sum

[
η6Q

X
(6)

(
α′
6 − 1

2

)(
1

2
− γ ′

6

)]
− Sum

[
η6Q

X
(6)q

P
6

(
α6 − 1

2

)]
− Sum

[
η6Q

X
(6)q

P
6

(
α′
6 − 1

2

)]
(B.32)

0= −β̇Tr

[
(QX

(L))
2
]

+ R
(L)
X + Sum

[
η1(Q

X
(1))

2qP
1

]
− Sum

[
η1(Q

′X
(1))

2qP
1

]
+ Sum

[
η6(Q

X
(6))

2β6

]
+ Sum

[
η6(Q

X
(6))

2β ′
6

]
(B.33)

0= −6β̇C′
GS + βQ

(L)
1X + 1

2
Q

(L)
1X − Q

(L)
2X − Sum

[
η1Q

X
(1)q

P
1 qP

1

]
− Sum

[
η1Q

′X
(1)q

P
1 qP

1

]
+ Sum

[
η2Q

X
(2)β2

]
+ Sum

[
η2Q

X
(2)q

P
2

]
+ Sum

[
η6Q

X
(6)β6

(
1

2
− γ6

)]
− Sum

[
η6Q

X
(6)β

′
6

(
1 − γ ′

6

)]
− Sum

[
η6Q

X
(6)β6q

P
6

]
− Sum

[
η6Q

X
(6)β

′
6q

P
6

]

2
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+ Sum

[
η6Q

X
(6)q

P
6

(
1

2
− γ6

)]
+ Sum

[
η6Q

X
(6)q

P
6

(
1

2
− γ ′

6

)]
. (B.34)

B.5. PV fields for the regulation of nonabelian divergences

Here we introduce fields to cancel Eqs. (A.35)-(A.37). We consider a separate PV set for each 
of the nonabelian factors of the FIQS gauge group as follows

• S7: A set of pairs of PV fields in the fundamental of SU(3) (anti-fundamental for the 
primed fields) with no modular weights, uniform coefficients, and clone fields with no gauge 
charges. By uniform coefficients, we mean that αC and βC are independent of index within 
the set: αC = α and βC = β .

• S8: A set of pairs of PV fields in the fundamental of SU(2) with no modular weights, uniform 
constants, and clone fields with no gauge charges.

• S9: A set of pairs of PV fields in the 16 (and 16 for primed fields) of SO(10) and a set of 
pairs of PV fields in the 10 of SO(10), all with no modular weights, uniform coefficients, 
and clone fields with no gauge charges.

• S10: A set of PV fields with γ = γ ′ = 1/2, zero modular weights, a nonzero trace U(1)X
charge matrix, and charged under the nonabelian gauge groups in the same reps as the light 
fields and clone fields without nonabelian gauge charges.

Let us discuss this choice briefly. First we need to check the number of fields in a given repre-
sentation. This is because we care about the quantity

CM
(G) = Cm

(G)N(G), (B.35)

which comes from the first term in the list above. The technique in [2] relies on having an even 
number of light fields in a given representation for all the gauge factors. Let us check if this is 
the case for the FIQS model. See Appendix C for a detailed breakdown of the FIQS spectrum. 
For the SU(3) of FIQS, the total number of triplets charged under this gauge group is

N
SU(3)
QL

+ NSU(3)
uL

+ NSU(3)
u2

+
2∑

i=1

N
SU(3)
di

+
4∑

j=1

N
SU(3)
Dj

+
2∑

j=1

N
SU(3)
D̄j

= 6+ 3+ 12+ 15= 36. (B.36)

For the SU(2) of FIQS, there are

N
SU(2)
QL

+
4∑

i=1

N
SU(2)
Ḡi

+
5∑

i=1

N
SU(2)
Gi

+
4∑

i=1

N
SU(2)
Fi

= 9+ 3+ 33+ 3= 48 (B.37)

doublets. Note that we have used the fact that each state in the table of Appendix C has a degen-
eracy of 3, with the exception of the states Y1, Y2, and Y3. The number of states charged under 
the SU(3) and SU(2) groups are indeed even, but this is not the case for SO(10), since there are 
only 3 16’s charged under this gauge factor. To resolve this, we begin by listing the Casimirs of 
the first few SO(10) representations:
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Fundamental 10 : C10 = 1 (B.38)

Spinor 16 : C16 = 2 (B.39)

Adjoint 45 : C45 = 8 (B.40)

Note that these satisfy the sum rule (5.12) of [1] when considering the fields charged under 
SO(10):

C45 − 3C16 + 2C16

∑
i

δi
n = 8− 6+ 4= 6 (B.41)

The first divergence we cancel is Tr(ηTaTb). The Ẏ give the negative of the contribution of the 
light fields, so in the case of SO(10) this trace is simply −3C16 = −6. Since PV fields come in 
pairs, we cancel this with at least 2 fields and so we need

3C16 = 2
∑
P

ηP CP (B.42)

Thus, we have two options. We can have a PV pair in the 16 (and 16) plus a PV pair in the 10 or 
we can have 3 pairs of PV fields in the 10. The other divergence from gauge interactions we have 
to get rid of is the linear divergence proportional to the Casimir. We note that the Ẏ ’s here give

(−1)

(
F

2
− F +

∑
n

qa
nFn

)
C(Ga) =

(
−1

2

)
(CGS − CG) (B.43)

since α̇ + β̇ = 1. The overall sign is the sum of the signatures. Cancellation then requires

CGS − CG
2

=
∑
C

ηCCGC

(
1

2
− γ C

)
(B.44)

=
∑
P

ηP CGP

(
1− 2γ̄ P

)
(B.45)

provided that the PV fields have no modular weights. The first sum is over all PV fields whereas 
the second is over PV pairs. Both of our potential solutions can work since we have either one or 
two free parameters in the γ ’s. In the list of sets of PV fields above, we opted for the combination 
of PV fields in the 10 and 16 of SO(10). For the last nonabelian divergence, Eq. (A.36), we 
explicitly write out the contribution from the Ẏ so that is takes the form

0= Tr(QL
X)Cm

G + Tr

[
ηQPV

X TaTb

]
, (B.46)

where Cm
G is the Casimir of the representation of the matter fields. If we consider fields from the 

set S10, this becomes

−Tr(QL
X) = Tr(QPV

X ) = 2Sum

[
ηQ̄PV

X

]
(B.47)

The fields in S10 contribute to Eq. (A.35) but not to Eq. (A.37) since we have restricted their γ
parameters to be γ = 1

2 . Their contribution to Eq. (A.35) is not an issue since we can simply 
include more fields in the other sets described in this section to cancel their contribution. Finally, 
the clone fields ensure that none of the sets described in this section contribute to other conditions.



M.K. Gaillard, J.M. Leedom / Nuclear Physics B 949 (2019) 114785 27
B.6. PV fields for the regulation of abelian divergences

Here we satisfy the conditions Eqs. (A.40)–(A.47). The Ẏ contribute here, and to cancel them 
we will need to introduce fields with q̄n �= 0, which is different from all other fields considered 
thus far. This would alter some of the expressions we have used above, but we will not con-
sider these alterations since we will employ clone fields that cancel contributions to previously 
considered terms from the fields introduced here. Specifically, we consider

• S11: A set of pairs of PV fields such that the unprimed fields have the same abelian gauge 
charges as the light fields (including U(1)X), αP

11 = α̇, βP
11 = β̇ , q(11)

n = −q
(L)
n , α′P

11 = 1
2 , 

β ′P
11 = Q′X

11 = q
′(11)
n = 0, and positive signature and clone fields with no U(1)a charges.

• S12: A set of pairs of PV fields with no β parameters or modular weights and with αP
12 =

α′P
12 = 1/2, Q′X

(12) = 0, QX
(12) = 4QX

(L), and U(1)a charges Qa
(12) = Qa

(L)
/
√
2 and negative 

signature and clone fields with no U(1)a charges.

These satisfy

0 = −S
(L)
ab + 2Sum

[
η11Q

a
(11)Q

b
(11)

]
+ 2Sum

[
η12Q

a
(12)Q

b
(12)

]
(B.48)

0 = −2π2δX + Sum

[
η11Q

X
(11)Q

a
(11)Q

b
(11)

]
+ Sum

[
η12Q

X
(12)Q

a
(12)Q

b
(12)

]
(B.49)

0 = −β̇S(L)
a + R(L)

a + Sum

[
η11Q

a
(11)Q

X
(11)β11

]
+ Sum

[
η11q

(11)
n Qa

(11)Q
X
(11)

]
(B.50)

0 = −
(
1

2
− β̇

)
S(L)

a + Sum

[
η11Q

X
(11)Q

a
(11)

(
α11 − 1

2

)]
(B.51)

0 = −1

2
S(L)

a + R(L)
a + Sum

[
η11Q

X
(11)Q

a
(11)

(
γ11 − 1

2

)]
+ Sum

[
η11Q

X
(11)Q

a
(11)q

(11)
n

]
(B.52)

0 = −1

2
S

(L)
ab + R

(L)
ab + Sum

[
η11Q

a
(11)Q

b
(11)

(
γ11 − 1

2
+ q(11)

n

)]
, (B.53)

where again a subscript or superscript (L) implies a trace over the corresponding values of the 
light fields. Note that we have omitted some conditions that are automatically zero. There are 
also terms in the above that vanish for the choice of U(1) charges defined in this paper but do not 
vanish for other choices. If one substitutes the parameters of S11 and S12 as per the discussion 
above, one sees that all the remaining conditions above are satisfied.

Appendix C. The FIQS spectrum

The FIQS model was described in [15,16,4,17,18]. The modular weights in this model are 
simple: the fields in the ith untwisted sector have qi

n = δi
n, and the twisted sector fields have 

qn = 2
3 , except for the Y

i which have qi
n = δi

n + 2
3 . Here we will focus in particular on the U(1) 

charges of the low-energy matter spectrum. The U(1) charge generators arising from the Cartan 
subalgebra of the E8 ×E8 and the corresponding charges were worked out in [17,18]. Table 2 of 
[16] lists the charges of the massless spectrum. However, the linear combinations of generators 
given in [4] have a mixed anomaly:
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Tr(Q6Q7QX) = 1296. (C.1)

To avoid this, one should re-define Q6 and Q7. The fix is very simple:

Q′
6 = Q6 − Q7, (C.2)

Q′
7 = Q6 + Q7. (C.3)

Below we produce a table of the new charge designations.

(n1, n3) Field Rep. Q1 Q2 Q3 Q4 Q5 QN
6 QN

7 X

Untwisted QL (3,2) −6 −6 0 0 0 0 0 0
uL (3̄,1) 6 0 0 −6 0 0 0 0
Ḡ1 (1,2) 0 6 0 6 0 0 0 0
16′ 1 0 0 0 0 0 0 0 9

(0,0) D1 (3,1) 0 4 0 0 0 4 4 4
Ḡ2 (1,2) 6 −2 0 0 0 4 4 4
Ā1 1 −3 −2 −3 −3 −3 4 4 4
Ā2 1 −3 −2 3 −3 3 4 4 4
A1 1 −3 −2 −3 3 3 4 4 4
A2 1 −3 −2 3 3 −3 4 4 4

(1,0) S4 1 6 4 0 0 −2 2 10 4
S5 1 6 4 0 0 −2 −4 −8 4
S6 1 6 4 0 0 −2 2 −2 −8
Ā3 1 −3 −2 −3 −3 1 2 10 4
Ā4 1 −3 −2 −3 −3 1 −4 −8 4
Ā5 1 −3 −2 −3 −3 1 2 −2 −8
A3 1 −3 −2 3 3 1 2 10 4
A4 1 −3 −2 3 3 1 −4 −8 4
A5 1 −3 −2 3 3 1 2 −2 −8

(−1,0) S7 1 6 4 0 0 2 6 −2 4
S8 1 6 4 0 0 2 0 4 −8
S9 1 6 4 0 0 2 −6 −2 4
Ā6 1 −3 −2 3 −3 −1 6 −2 4
Ā7 1 −3 −2 3 −3 −1 0 4 −8
Ā8 1 −3 −2 3 −3 −1 −6 −2 4
A6 1 −3 −2 −3 3 −1 6 −2 4
A7 1 −3 −2 −3 3 −1 0 4 −8
A8 1 −3 −2 −3 3 −1 −6 −2 4

(0,1) d1 (3̄,1) 0 0 0 2 2 0 −8 4
F1 (1,2) 3 0 −3 −1 −1 0 −8 4
Ā9 1 3 6 3 −1 −1 0 −8 4
A9 1 3 −6 3 −1 −1 0 −8 4
l̄1 1 −6 0 0 −4 2 0 −8 4

S10 1 −6 0 0 2 −4 0 −8 4

(1,1) D2 (3,1) 6 0 0 2 0 −2 −2 4
u2 (3̄,1) 0 0 0 −4 0 −2 −2 4
F2 (1,2) 3 0 3 −1 −3 −2 −2 4
F3 (1,2) 3 0 −3 −1 3 −2 −2 4
S1 1 −6 0 0 2 0 4 4 −8
Y1 1 −6 0 0 2 0 −2 −2 4
Ā10 1 3 6 −3 −1 −3 −2 −2 4
Ā11 1 3 6 3 −1 3 −2 −2 4
A10 1 3 −6 3 −1 3 −2 −2 4
A11 1 3 −6 −3 −1 −3 −2 −2 4
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(n1, n3) Field Rep. Q1 Q2 Q3 Q4 Q5 QN
6 QN

7 X

(−1,1) d2 (3̄,1) 0 0 0 2 −2 −4 4 4
F4 (1,2) 3 0 3 −1 1 −4 4 4
Ā12 1 3 6 −3 −1 1 −4 4 4
A12 1 3 −6 −3 −1 1 −4 4 4
l̄2 1 −6 0 0 −4 −2 −4 4 4

S11 1 −6 0 0 2 4 −4 4 4

(0,−1) D̄1 (3̄,1) −3 2 −3 1 1 2 −2 4
D3 (3,1) 3 2 3 1 1 2 −2 4
Ḡ3 (1,2) 0 2 0 4 −2 2 −2 4
G1 (1,2) 0 2 0 −2 4 2 −2 4
S2 1 0 −4 0 −2 −2 −4 4 −8
Y2 1 0 −4 0 −2 −2 2 −2 4
l1 1 0 −4 0 4 4 2 −2 4
l̄3 1 0 8 0 −2 −2 2 −2 4

Ā13 1 −9 2 3 1 1 2 −2 4
A13 1 9 2 −3 1 1 2 −2 4

(1,−1) D̄2 (3̄,1) −3 2 3 1 −1 0 4 4
D4 (3,1) 3 2 −3 1 −1 0 4 4
Ḡ4 (1,2) 0 2 0 4 2 0 4 4
G2 (1,2) 0 2 0 −2 −4 0 4 4
S3 1 0 −4 0 −2 2 0 −8 −8
Y3 1 0 −4 0 −2 2 0 4 4
l2 1 0 −4 0 4 −4 0 4 4
l̄4 1 0 8 0 −2 2 0 4 4

Ā14 1 −9 2 −3 1 −1 0 4 4
A14 1 9 2 3 1 −1 0 4 4

(−1,−1) G3 (1,2) 0 2 0 −2 0 4 −8 4
G4 (1,2) 0 2 0 −2 0 −2 10 4
G5 (1,2) 0 2 0 −2 0 −2 −2 −8
l3 1 0 −4 0 4 0 −2 10 4
l4 1 0 −4 0 4 0 4 −8 4
l5 1 0 −4 0 4 0 −2 −2 −8

Appendix D. Corrections to [2]

Equation (3.11) should read:

(D̄2 − 8R)	W = Wαβγ Wαβγ , (D̄2 − 8R)	X = XαXα, (D̄2 − 8R)	YM = Wα
a Wa

α

In Eqs. (3.6) and (5.2) the factor 1/24 in front of 	GB should be removed.
Equation (5.3) and the remainder of section 5 should read

8π2bspin = 8π2b + 1= 31, 	̃f = Trη� lnM2	f . (5.3)

The results for the Gauss-Bonnet and Yang-Mills terms are well-established [10] and result from 
the universality conditions (2.3) and (B.7), as illustrated in the appendices. The only other term 
in (5.2) that contains a chiral anomaly is 	f , which, using the set (4.11) of PV fields, is a priori 
a product of the chiral superfields Xα, gα and gn

α . We show in Appendix A that we may choose 
the PV parameters such that

(D̄2 − 8R)	̃f = 30
∑

gα
ngn

α, (5.4)

n
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in agreement with the string calculation of [4].
The anomaly is canceled provided the Lagrangian for the dilaton S, S̄ is specified by the 

coupling (2.5) and the Kähler potential (2.9), or, equivalently, the linear superfield L satisfies 
(1.3) and the GS term (1.3) is added to the Lagrangian.
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