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Abstract

We show that a choice of Pauli-Villars regulators allows the cancellation of all the conformal and chiral
anomalies in an effective field theory from Z3 compactification of the heterotic string with two Wilson lines
and an anomalous U (1).
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1. Introduction

Starting with the determination of the full anomaly structure of Pauli-Villars (PV) regularized
supergravity [1], we recently showed [2] that an appropriate choice of PV regulator fields allows
for cancellation of all the T-duality (hereafter referred to as “modular”) anomalies by the four-
dimensional version of the Green-Schwarz term in Z3 and Z7 compactifications of the heterotic
string without Wilson lines.! We further matched our results to a string calculation [3] of the
chiral anomaly in those theories. Here we extend our results to a specific Z3 compactification [4]
(hereafter referred to as FIQS) with two Wilson lines and therefore an anomalous U (1), here-
after referred to as U (1)x. In the following section we briefly describe the orbifold model we
are studying. In Section 3 we outline the four-dimensional Green-Schwarz mechanism and the
structure of the anomaly when an anomalous U (1) is present. In Section 4 we discuss some as-
pects of the cancellation of ultra-violet (UV) divergences and anomaly matching that are specific
to the case with an anomalous U (1), as well as some simplifications with respect to the Z; case
studied in [2]. We summarize our results in Section 5. The full set of conditions for cancellation
of UV divergences and anomaly matching are given in Appendix A, a sample solution to these
constraints is presented in Appendix B, and the full spectrum for the FIQS model is displayed in
Appendix C. The determination of the correct Pauli-Villars (PV) masses can have implications
for soft supersymmetry breaking terms [5].

2. The FIQS model

Here we will give a brief review of the orbifold model we will consider for the rest of the
paper. The FIQS model [4] is a Z3 orbifold compactification of the 10d Eg ® Eg heterotic string
compactified to 7'¢ with two Wilson lines and a nonstandard embedding for the shift vector. The
embeddings of the shift vector and Wilson lines are given by

1

V=2(1.1.1.1,2,0.0.0)(2.0.0,0,0.0,0,0 2.
1

a1=3(0.0,0.0,0,0,0.2)(0. 1.1,0.0.0.0,0) 22)
1

a3 =3(1,1,1,2,1,0,0,1,1)(1,1,0,0,0,0,0,0)’ 23)

Where the prime indicates that the last 8 elements of the above vectors correspond to the second
factor of Eg. With these specifications, the massless spectrum of the FIQS model can be worked
out following the standard recipes [6]. The 4D gauge group is SU(3) ® SU(2) ® SO(10) ®
U(1)3. The generators of the eight U (1) factors can be written as linear combinations of the
Eg ® Eg Cartan subalgebra generators H' as

16
Qu=Y qiH' 2.4)
=1

The constants q(f are determined by requiring that g, - g, = 0 and ¢, - ap; = 0, where the a;
are the sixteen dimensional simple root vectors of the nonabelian gauge group factors. Thus the

1 Corrections to this paper are given in Appendix D.
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index b corresponds to SU (3), SU(2), or SO (10) and j runs over the rank of each group. One
choice of g,’s is [7]:

G1=6(1,1,1,0,0,0,0,0)(0,0,0,0,0,0,0,0) 2.5)
G» =6(0,0,0,1,—1,0,0,0)(0,0,0,0,0,0,0,0)’ (2.6)
43 =6(0,0,0,0,0,1,0,0)(0,0,0,0,0,0,0,0) 2.7)
G+ =6(0,0,0,0,0,0, 1,0)(0,0,0,0,0,0,0,0) 2.8)
Gs = 6(0,0,0,0,0,0,0,1)(0,0,0,0,0,0,0,0) (2.9)
Go = 6(0,0,0,0,0,0,0,0)(1,0,0,0,0,0,0,0) (2.10)
47 =6(0,0,0,0,0,0,0,0)(0,1,0,0,0,0,0,0) @2.11)
Gs = 6(0,0,0,0,0,0,0,0)(0,0, 1,0,0,0,0,0) 2.12)

To get the charges of the matter fields, one normalizes the U (1), generators as
Q 1 Q (2.13)
a7 7= Ya .
V2144l

where the /2 is inserted to adhere to the standard phenomenological normalization. For this
choice, one finds that the traces of Qg, Q7, and Qg are all nonzero. One can perform a re-
definition of the generators so that only one factor of U(1) has a nonzero trace. In [4], the
following re-definition was made:

FIQS

6 7Y =q+ar (2.14)
710V =47 + g5 (2.15)

gx =46 —q71+qs (2.16)

q
q

While Tr [Q(()F[QS)] =Tr [QgFIQS)] = 0 in this basis, one also has Tr [QéFIQS) QgFIQS) QX] #*
0, which is rather undesirable. Therefore, we will use a different choice such that the above mixed
anomaly does not appear. In particular, we define
N FIQS FIQS

a5 =as—as=q5 > —qy""Y (2.17)

0 = g0+ 207 +05 = 9710 447109 @19
In what follows, we will simply drop the superscript N and use these as the definition of the U (1)g
and U (1)7 generators. As a final note, the charges defined above are generally not orthogonal to
one another, i.e. Tr[Q, Q] # 0 for some a # b. It is possible to define a new set of charges that
are mostly orthogonal to one another, but we will not need to do so for our purposes.

We close this section with some relations among the gauge charges ¢/ and modular weights

gl of the chiral superfields ®” of the model. These will be useful in the analysis that follows.
These include the universality conditions

1 ,
87r2b=c,lJrzpj(zqyf—1)c5=ﬂ <22p:qf—N+Ng—21) V oia,

1 1
— 2725y = ﬁTrTX = §TrT,% =Te(T?Tx) Y a#X. (2.19)
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Here C, is the quadratic Casimir in the adjoint representation of the gauge group factor G, and
C! is the Casimir for the representation of the chiral supermultiplet ®”, T, is a generator of G,
and N, Ng are the number of chiral and gauge supermultiplets respectively, with, in the FIQS
model,

N =415, Ng = 64, 872b =6, —4x2sy = 34/6. (2.20)

In addition we will use the sum rules

ZQV[::AD ZQVZQI‘;’:A2+B25mm
p p

quq;'r,tqg =A3+ B3 ((Slm + 8mn + 5nl) + C381mbmn,
p

quqs = Qla, ququ:,qs: 024 + P2adimn, (2.21)
b b
with, in particular,
B, =42, Pox =5+/6. (2.22)
3. Anomalies and anomaly cancellation with an anomalous U (1)

The effective supergravity theory from generic orbifold compactifications with Wilson lines
is anomalous under both U (1) x and T-duality:

X . ‘b.Ti
/lz%v albl_cldl:1$ ai»bi»cisdiezs i=19273a
l 1
D= Lid P M ga  plrhy ZInic; T + dy), (3.1)

where ®¢ is any chiral supermultiplet other than a diagonal Kihler modulus 77, and gf are its
modular weights.

We are working in the covariant superspace formalism of ref. [8] in which the chiral multiplets
ZP =TI, S, %, with S the dilaton superfield, are covariantly chiral:

pPzP —0, (3.2)

with Dy, A = a, a a fully covariant superspace derivative. In particular, under a U (1) gauge
transformation

7P — g(]apzp’ 7P — gfqé’zp, Af =A% — ¢ 'Dyg, (3.3)

where g is a hermitian superfield, and A 4 is the gauge potential in superspace. Gauge invariance
assures that holomorphy of the superpotential is maintained under (3.3). If gauge invariance
is unbroken, the gauge potential A4 does not appear explicitly in the superspace Lagrangian.
Instead the usual Yang-Mills superfield strength W, is obtained as a component of the two-form
superfield strength F4 . One can still introduce [8] a superfield superpotential V,, such that

Wy =—é(2‘>2—8R)DaVa, V! =V,+ Ay + Ag, (3.4)

but V, never appears in the Lagrangian and the chiral superfield A, is independent of g in (3.3).
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However in the presence of an anomalous U (1), gauge invariance is broken. It is easy to see
that the UV divergences cannot be regulated by PV fields that all have U (1) y invariant masses.
There is a quadratically divergent term proportional to DxTrTy, where Dy is the auxiliary field
of the U (1) x supermultiplet, which must be canceled by the analogous term from the PV sector.
Invariant masses require the coupling of PV fields with equal and opposite charges that do not
contribute to (Tr7x) py. Noninvariant masses arise from the superpotential for PV fields @C:

W(dC, &' C) = pucdC @' c, (3.5)

with pce constant (in the absence of threshold corrections, as for the cases considered here). If
Qg + Q’XC # 0, holomorphy of (3.5) is not respected under (3.3) for a = X. For this reason we
do not include the U (1) x connection in the covariant derivative (3.2). Instead of (3.3) we require

d'C=e 0ApC,  C =, 05%AgC (3.6)

under a U(1)x transformation, and the Kihler potential depends on U (1)x-charged fields
through the invariant operators ®e2xVx &,

It was shown in [1] that modular noninvariant masses can be restricted to a subset of PV chiral
supermultiplets &€ with diagonal Kihler metric:

K (@€, %) =explf€(Z, 2)1|1C|? (3.7)

and superpotential (3.5).
As in [2], we define a superfield

Mz =ML =exp(K — € — f'C)=exp(K —2fC),  fC= %(fc +1'9, (38

whose lowest component m2C = M2C| is the ®C, &' € squared mass. Then the anomalous part of
the one-loop corrected supergravity Lagrangian takes the form [1]

Lanom = Lo+ L1+ Ly =/d49E(Lo+L1 +Lr)5fd49EQ, (3.9

where E is the superdeterminant of the supervielbein, and

]
Lo=5> [TrnlanQo—i—K(QGB +QD)], (3.10)

with n = %1 the PV signature. The operators in (3.10) are given explicitly in [1,2], except that
now

Qo = Q% + 9, (3.11)

where €2, contains the Gauss-Bonnet Chern-Simons superfield and operators composed of aux-
iliary superfields of the gravity supermultiplet, and
QM= Qm =2ym — Ay, (3.12)
a#X
is the Yang-Mills Chern-Simons superfield without the U (1) x term, and Q) is defined by its
chiral projection:

(D> — 8R)Q%y = WEWY, (3.13)
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Q, is composed of terms linear and higher order in In M, and Qp represents a “D-term”
anomaly [1,2] that, together with a contribution to the Gauss-Bonnet term Qgg, arises from un-
canceled total derivatives with logarithmically divergent coefficients, requiring the introduction
of a field-dependent cut-off:

1
Ouh = Z0uK. (3.14)
L is defined by its variation:
L al MEQ) = L1y nH, +h.c., (3.15)
I n .
1= 822192 872 192

where under (3.1) and (3.6) In M? transforms as
AlnM?=H+H, (3.16)
with H holomorphic. Defining
(D> —8R)Qp=[f"fur (D’ =8R)Q;=f"fo. (D’ —8R)Qjy = f"Xa,
1 - _ 1 - _
fo=—5(D*=8R)Duf,  fu=—g(D*=8RD.], (3.17)
we have
Q) = 1929 — 128Q; — 64Q 7y,
1 2 1
AL[:@TI‘T]H Qf—gﬂff—ngfX + h.c. (3.18)

In the presence of an anomalous U (1) x the form of f € is taken to be

fC=aK(Z.2)+ (T T) +6k(S.8) + Y _qSg"(T". T™) + Q§ Vx.
n
fE=aK +p%%+5%+) a5s" + 0% Vx.
n

HE = (1 - 2;7(7) F(T) =23 gCFr @y —205A, 7€ =aC + pC, (3.19)

where k is the dilaton Kéhler potential, and g is defined in (3.31) below. The traces in ALanom
can be evaluated using only PV fields with noninvariant masses or using the full set of PV fields,
since those with invariant masses, H¢ = 0, drop out. The contribution ALg to the anomaly is
linear in the parameters af, ﬂC, qf s Q)C(, and the trace of the coefficient of 96 is completely
determined by the sum rules [9]

N’:ZnC:—N—29, Ng=Y _n) =-12-Ng,

Zn fC——10K ang —ZqS’(Vx, (3.20)

that are required to assure the cancellation of quadratic and logarithmic divergences. In (3.20)
the index C denotes any chiral PV field, the index y runs over the Abelian gauge PV superfields
that are needed to cancel some gravitational and dilaton-gauge couplings, and the sum over p
includes all the light chiral multiplet modular weights with ¢° =0, ¢!" = 28. All PV fields
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with noninvariant masses have § = 0, and most” with § #0 havea = =¢, =0 = Q)C(. For the
purposes of the present analysis we can largely ignore the latter. Similarly, the cancellation of
linear divergences that give rise to the chiral anomaly proportional to

~ 1 ~
ImTr$G -G > Im ; {F(t)Ca — Zp: |:F(t) — 22n2q,fF"(t") - 2q,’;x} (Tap)2} F°.F,
(3.21)

fixes the coefficient of Q?, y- Here Gy 3 —iT, F /‘jv is the field strength associated with the
fermion connection, t' = T'|, A = A| are the lowest components of the chiral supermultiplets
T!, A, and a left-handed fermion f transforms as

f>etf (3.22)
under modular and U (1) x transformations; ¢ = —%ImF for gauginos, and
_i p p
¢ =ImF — zn:qn F"(t") — ) (3.23)

for chiral fermions x?. The compensating PV contribution

Im (Try¢G - G) pyy 5Im Y 5 (¢C +¢’C) (TC)2F, F* = —ImTrpG - G (3.24)
C

that cancels (3.21) determines the anomaly coefficient of Q(} > since for each pair &€, &€ the
sum of fermion phases ¢p€ + ¢'C€ = HC is just the holomorphic part of the variation (3.16),
(3.19) of the PV mass term A ln MZ.

In the chiral formulation for the dilaton, the anomaly is canceled by the variation of the su-
perspace Lagrangian

L= / d*0E (S+S) <. (3.25)
where €2 is the real superfield introduced in (3.9). The quantum Lagrangian varies according to

ALanom = / d*o {b [F(T)+ F(D)] - %X (A+ [\)} Q, (3.26)
so the full Lagrangian is invariant provided

Sx :
AS=—bF(T)+ A, F=ZF’. (3.27)
1

However the classical Kéhler potential for the dilaton is no longer invariant and must be modified:

kelass (S, 8) = —In(S + S) = k(S, §) = —In(S + S + Vgs), (3.28)

2 There is a set of chiral multiplets in the adjoint representation of the gauge group that has f = K — k; these get mod-
ular invariant masses though their coupling in the superpotential to a second set with f = k. These cancel renormalizable
gauge interactions and gauge-gravity interactions, respectively. Together with a third set, that has f = 0 and contributes
to the anomaly, they cancel the Yang-Mills contribution to the beta-function..
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where Vg is a real function of Vy and of the chiral supermultiplets; it transforms under (3.1)
and (3.4), (3.6) as

AVngb(F~|—F)—67X(A+]\). (3.29)
A simple solution consistent with string calculation results [10,11] is
Vos =bg(T, T) — (%XVX, (3.30)
where
g(T.T)=) g (T T), g =-In(T"+T" (3.31)
i

is the Kihler potential for the moduli. The modification (3.28) is the 4d Green-Schwarz (GS)
term in the chiral formulation. As discussed in [2], the 4d GS mechanism is more simply formu-
lated in the linear multiplet formalism [8] for the dilaton. In this case the linear dilaton superfield
L remains invariant, its Kéhler potential is unchanged, and instead one adds a term to the La-
grangian:

Lgs=— / d*0ELVgs, ALGs =—ALanom (3.32)
Only terms in the anomaly that are linear in the combination H, where
- )
H=bF(T)— TXA, (3.33)

can be canceled by the Green-Schwarz term. The values of b and §x are fixed by the conditions
(3.20), (3.24) for the cancellation of divergences, together with the universality conditions (2.19),
that hold for all Z3 and Z7 orbifold compactifications.

In contrast to Lo, the contributions to the anomaly from £; and £, are nonlinear in the pa-
rameters «, 8, g,, Qx, and depend on the details of the PV sector. In particular £, has no terms
linear in In M and must vanish. To ensure that the anomaly coefficient depends on the T-moduli
only through F(T) we impose [2]

g5 =0 (3.34)

for (almost’) all PV fields with noninvariant masses.
4. The anomaly and cancellation of UV divergences in the FIQS model

The full set of conditions for cancellation of the divergences and for obtaining an anomaly
linear in H, Eq. (3.33), that matches the string result [3] is given in the Appendix A. In this
section we outline some features of the case of Z3 with an anomalous U (1)x. We will be pri-
marily concerned with the contribution of ALy, Eq. (3.18), to the anomaly. This expression is
nonlinear in the parameters qnc , Q>C( of the PV fields, and therefore model dependent, as noted
above. This was illustrated in [2] where it was shown that cancellation of the modular anomaly
requires (3.34). However, the contribution cubic in Q)C( is model independent. It is given by

3 The exception is for some PV fields, introduced in Appendix B.6, needed to cancel divergences from light fields with
Abelian gauge charges.
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2(A +)
247

2(A +A)

30X
2ax? QxS

4.1

where the sum is over all PV fields, and we used the definition (3.6), (3.19) of Q¥ and the fact
that

ALI(Q}) =~ T Ox (30% —20%) @y =—

> 0P Q)" —ZnC(QX>" (DL (4.2)
c
for any powers p, p’. Cancellation of the term in Tr¢G - G that is cubic in Q; requires
2(A+A) 2(A+A)
—Wﬁ(n@) Qfy = =5 Tr r(a) Q’Y‘M_——(A+A)QYM, 4.3)

from (2.19), so the anomaly (4.1) is consistent with the requirement for anomaly cancellation.
In contrast, anomaly terms quadratic in Q2 are model dependent. For example, in [1] it was
assumed that f€ = £C for all PV fields with noninvariant masses, giving a contribution

F+F i _
AL\(FQ3%) = S Tm (1 -27) (3Q§( —2Q§(> Q¥ (4.4)
_F+F F+F

——Trn (1 -27) 03f,, = Tr, XQYM——(F+F)QYM,

(4.5)

from (3.21) and (3.24) with a = X, and (2.19). Here we instead assume, in addition to (3.34), that
0< ¥ =0if 1 —y #0, that is PV masses can be noninvariant under either T-duality or U (1) x, but
not both. In this case the last term in (4.4) drops out and we recover a factor three, in agreement
with the requirement for anomaly cancellation.

The full set of PV fields sufficient to regulate light field couplings is described in Section
3 of [1]. These include a set ZF = Z!, ZA, with negative signature, nZ = —1, that regulates
most of the couplings, including all renormalizable couplings, of the light chiral supermultiplets
ZP =T, &% The Z get invariant masses through a superpotential coupling to PV fields ¥p with
the same signature, opposite gauge charges and the inverse Kéhler metric:

(T)y =—(T]), =—(T])z. (4.6)

It remains to cancel the divergences introduced by the fields Y. To this end we take the following
set:

T 24x 2472

yr P =ag K+ Be+aps" + 0V, ay+ By =vy, a4, =0,
Poff=afK+Bfg+08Vx.,  of +BF =vf,
C
¢ ¥ =aK. 4.7)

In the solution to the constraints given in Appendix B, the ¥€ and TC are further subdivided,
together with additional fields, into sets S, a =1, ..., 12, some of which are charged under the
nonanomalous gauge group. The ¢€ regulate certain gravity supermultiplet loops and nonrenor-
malizable coupling of chiral multiplets. These must be included together with the other PV fields
introduced above in implementing the sum rules (3.20). Their contributions will be included in
all the finiteness and anomaly conditions that involve only the parameters « in (4.7); otherwise
they play no role in the analysis below. In the expressions given in the remainder of this section,
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we drop terms that contain only X, or X, since their contributions are included in the sums
(3.20) and the additional sum rule [9]

Z n€ak = —4. (4.8)
C

In [2] we also introduced pairs ®F, @' P with modular invariant masses that did not contribute
to the anomaly, but played an important role in canceling certain divergences. However, because
the Z3 sum rules (2.21) are much simpler than the analogous sum rules for the Z7 case studied
in [2], here we need only the set in (4.7).

The quadratic and logarithmic divergences we are concerned with here involve the superfield
strengths —i (T,) WS,

1 -
re, = —g(DZ - 8R)’DaZPng, (4.9)

and

1 -
Xo = —g(DZ —8R)DyK, (4.10)

associated with the Yang-Mills, reparameterization and Kéhler connections, i(Ta)gA o
0 Z? FgD and 8SFM, respectively, where
I, = % (Duz' Ki = DuZ"Kin) @4.11)
Cancellation of quadratic divergences requires
Trply = TrnTx =0, (4.12)
and cancellation of logarithmic divergences requires
TrnlyTg = Trnly T* = Trn(T%)* = 0, (4.13)

where n = +1 for light fields. Cancellation of all contributions linear and quadratic in X, is
assured by the conditions in (3.20) and (4.8). The Yang-Mills contribution to the term quadratic
in Wy is canceled by chiral fields in the adjoint (see footnote on page 7) that we need not consider
here. Finally, cancellation of linear divergences requires cancellation of the imaginary part of

~ ~ 1
T X, =Tme¢G - G, GH = EG“UPUGW, 4.14)

where G, is the field strength associated with the fermion connection®; for left-handed
fermions:
, 1
Guv=—TG,, +iF (TS + Ex,w(sg, (4.15)
where

X = (pﬂzipvz"” - szipﬂzm) Kis — i F2,(Tyz)K;
=2i (8,0 —0,Ty).  i=p.s, 4.16)

4 Here we neglect the spin connection whose contribution was discussed in [2].
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is the field strength associated with the Kéhler connection (4.11). For a generic PV superfield
&€ with diagonal metric, its fermion component XC transforms under (3.1) and (3.6) as

1 o
5/ C =€, o€ = (5 —af —,BC) F—ZF’(I’)qu — AQx. (4.17)

In evaluating (4.14) we will use the fact that the expression’
"ol ghy =0, (4.18)
vanishes identically, and the expressions

XU = et ImFl gl g121 = 46 ImF' 9, 810,8] =40, (¢ ImF 3,88 )

X' = S ImF gl X o = 4id (6“”"”ImF’ 8Mgi,l"(,) ,

X0 = I Fl gl P, =40, (€4 ImF d,,8,A% ) (4.19)

are total derivatives, where A} is an Abelian gauge field, and

At — 31"

T R i
g - ln(t +t)$ gu_ tl+t—l‘

C 8l =048, — 0ugl,. (4.20)

The full Kdhler potential for Y , with no anomalous U(1)y, is given in [1,2]; here it takes the
form

K(¥)=eC <Ze‘g““’“VX|YA|2 + Y e = +Z|?N|2> +..
A 1 N
g'=) qig". G=aK+pg. a+p=1, @21
n

where YN=1,2’3 (and their counterparts ZN ) are gauge singlet PV fields needed [9] to make the
Kihler potential and superpotential terms for Z, Y fully invariant, and the ellipsis represents
terms that make no contribution to the expressions given below. Using the sum rules in (2.21)
and (3.20) we obtain:

Toily =—[(N+2B - Ai]g,  TriTy =TrTx,
Tl  Th = —2& [A(N +2) — Ar] Xagp — [,BZ(N +2)— BA + Az] 2580
—B2) gigh
n

Trﬁrg T, = 5aXTrT§Ga — Qla8as Ga =aXy+ ,B'gov (4.22)

5 It was noted in [2] that the expression (4.18), which is in fact the 7 -dependent part of the chiral anomaly found in [3],
vanishes. The authors of [3] attribute [12] this to their approximation that neglects higher order corrections. However
if these corrections take the form gi (Ti, fi) — gi(Ti, fi) + Ai(Ti, Ti), our results our unchanged. Note that the
functional form of A is severely restricted by the fact that it has to be invariant under T-duality.
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Using (4.19) and (2.21), the part of X ¥ that is independent of gauge charges takes the form:

- 1 .o .
Xy> SIN+2) =241 FG -G — (4 —2A)FG -3 —A3Fg-§
+ total derivative, Gy =& X, + B (4.23)
The modular weights for the i satisfy

P, .
D d"arm=gqy. Y _njaariqr=0.
P

m,n

D g antar =(a;)* ) ¢"e" (4.24)
n

I,m,n

Like X)’;, X;(” depends only on F, g, and X, and (4.22) and (4.23) can be canceled by some
combination of the fields in (4.7), with the condition

> nj(q))* =Ba. (4.25)

P
The pure T-moduli anomaly is given by

F _ _
AL (Fg%) = 87T—2Trn¢, (1—=27y) a5 9. (D* —8R)Q, =Zgggg. (4.26)
n

Consistency with string results [13] requires

Trny (1 - 27y) g = —87%b 4.27)

Finally, we require
5 2A - 1

AL{(Qxg )=—8n—2TT77QXQf=§A5XQg~ (4.28)
Using (4.24), the condition (4.28) requires

> nh 0F g = —an?sx. (4.29)

P

All other contributions to AL are required to vanish.

We conclude this section by noting that cancellation of divergences linear in the U (1), field
strengths is much simpler than for the Z7 case considered in [2], as outlined below.

The gauge charges for the FIQS [4] model are listed® in Appendix C. The universality of
the anomaly term quadratic in Yang-Mills fields strengths is guaranteed by the universality con-
dition (2.19), as discussed in Section 3. Since gauge transformations commute with modular
transformations, a set of chiral multiplets ®? that transform according to a nontrivial irreducible
representation R of a nonabelian gauge group factor G, have the same modular weights q,f such
that

> al(Ta)} =g K (TrT,) g =0. (4.30)
beR

6 We have made some corrections to the U (1) charges given in (2).
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Therefore terms linear in Yang-Mills field strengths occur only for Abelian gauge group factors.
We need to cancel the Y-loop contribution to logarithmic divergences

(Trannngu> =-Y 4,008h=—01aga: (4.31)
n b,n

Y
and, dropping terms proportional to the last expression in (4.19), the relevant ¥ contributions to
linear divergences:

. - . 1
XYs Y OhF“. [g"qj; (F—zzq,’;F’”) +2g2 ™ (G— Exﬂ
m

a,b,n
—ZF“{ (1+28)+ X 2a — D] Q1aF — ZZg F”an}, (4.32)

where we used (2.21). The last term in (4.32) is canceled by

XY2-2 ) nyQiaa FUF-g"==2 nj0iq P F )y g F". (433)

a,P,l,m,n a,P n

provided
D oy 0L G") = =0 (4.34)
P

The remaining terms in (4.32), as well as (4.31) can be canceled by a combination of the fields
in (4.7). For a = X there are additional terms proportional to (TrnTx) py = —TrTy.

5. The final anomaly in the FIQS model

_ In Appendix A we show that is possible to cancel all the ultraviolet divergences from the
Y fields with a choice of the set (4.7) such that the fields with noninvariant masses have the
properties

Trp(In M) = ATrp(In M) = Trp(AIn M) ()0 = 0. (5.1)
Then, including the results of [2], the anomaly due to the variation of (3.9) takes the form

1
8 Lanom = / d*0E <bF - E(SXA) Q+ f d*0EbFQ, (5.2)

where

Q= Qym — Q6B + 2,
r_ _ bspin 1 0
48b 8m2b
where €2 is defined in (4.26), and bgpin governs the contributions from PV masses, as opposed
to those arising from uncanceled divergences:

(4G4,G** —16RR+ DR+ D*R) - D, (5.3)

872 bspin = 87%b + 1, (5.4)

with 8772b = 6 in the FIQS model. In the absence of an anomalous U (1), A = 0, the anomaly can
be canceled by the four dimensional GS mechanism as described in [2]. However with A # 0, the
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anomaly as written in (5.3) is no longer universal and cannot be canceled by the GS term alone.
However all of the “D-terms”, in other words the full expression €/, can be removed [14] by
adding counterterms to the Lagrangian, giving a universal anomaly which can now be canceled
by the GS term.’

The results for the Gauss-Bonnet and Yang-Mills terms are well-established [10] and result
from the universality conditions (2.19).

6. Conclusions

We have shown that a suitable choice of Pauli-Villars regulator fields allows for a full can-
cellation of the chiral and conformal anomalies associated, respectively, with the linear and
logarithmic divergences in the effective supergravity theory from a Z3 orbifold compactifica-
tion with Wilson lines and an anomalous U (1).

A future work [13] will compare this result with that obtained directly from string theory.
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Appendix A. Conditions for the cancellation of ultraviolet divergences and the evaluation
of the anomaly

A.l. Notation

We pair PV fields according to their mass terms. A pair of PV fields (&%, ®'F) has a super-
potential coupling

vazZ/,qu>/Pq)P (Al)
P

and a Kihler potential

Kpv=Y e 0ol 13 o/ ol P (A2)
J3 J3
where
fP=aPK+ 8P+ qfe" (A3)
n

with an identical definition holding for f’” but with primes on the constants {«”, 87, ¢/'}. While
we will not use it often, summing over the index C means summing over PV fields and then their

7 The elimination of p further obviates the need for a modification of the linear-chiral duality transformation, a
possibility considered in Appendix B of [2] and Appendix E of [1].



M.K. Gaillard, J.M. Leedom / Nuclear Physics B 949 (2019) 114785 15

primed partners whereas summing over P means summing over only the unprimed or primed
fields, depending on the quantity being summed. For example,

Z nCat = Z npa’ + Z npa'". (A4)
c P P

However, to reduce clutter, we will abbreviate the above. When summing over primed and un-
primed fields, we will use “Tr”. When summing over only primed or unprimed ones, we will use
“Sum”. Thus the above would be written as

Tr[na] = Sum[na] + Sum[na’]. (A.5)

We will also encounter sums over various combinations of U(1) charges, U(1)x charges, and
modular weights. To abbreviate these, especially when dealing with the quantum numbers of the
light fields, we will define

Q14 = Sum[nQ4qn] (A.6)

Q24 + P2aSpm = Sum[nQugngm] (A7)
Ry =Sum[nQaQxqnl (A.8)

Rap = Sum[n Q4 Qpgn] (A9)

Sq¢ =Sum[nQ,Ox] (A.10)

Sap = Sum[nQq Op]. (A.11)

A.2. Conditions for regularization

The terms we must cancel come from linear, logarithmic, and quadratic divergences. It is
helpful to organize these terms by forming subsets based on whether terms depend on non-
abelian gauge interactions, nonanomalous Abelian gauge interactions, anomalous Abelian gauge
interactions, or none of the above. We will refer to these groupings as nonabelian divergences,
U(1), divergences, U(1)x divergences, and modular divergences, respectively. As an overview,
the divergences come from the terms

Tr{nTy] (A.12)
T[Ty Tg] (A.13)
Tr{nTe T, (A.14)
Tr(nT, Tp] (A.15)
Tr{n Qal, (A.16)

where

C 1 N2 irC
[ha =3 (D* - 8R) D 2T, (A.17)
1 ,
¢C=(§—ac—,3c>F—ZF’qu—q§A (A.18)
i
1 _ ,
Guw=Tg,, — EX,w(sg —iF! (TG —iF(0X)5 (A.19)

for our PV fields defined above.
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The PV fields involved in this procedure are numerous. We take all of the PV fields described
in sections 3 and 4 of [1] and supplement them with further fields. However, to satisfy the diver-
gences above, we need only focus on the ¥ and  fields of [1]. We now group all the terms in the
above expressions with our organizational scheme.

Modular Divergences
To cancel all the modular divergences, we require

0

0

0

1 2 1 2
=i () |-n (3 |
= —%Tr[n(l —2e)B(1 — 2y>} +Tr[nﬁqn(1 - 2a)]
—%Tr[n(l —2a)(1 — ZV)qn] + Tr[nqnqm(l - 206)}

1
= §Tr[nﬁ2(l - 2)/)] - Tr[nﬂzqn] + Tr[nﬁ(l - 2y)qn] - 2Tr[nﬁqnqm}

1
+§Tr|:n(l — 2V)¢]n‘]mj| - Tr|:’7anIkaj|-

U(1)x Divergences
To cancel all the U(1)x divergences, we need

0
0
0

0

0

0

0

0

0

0

0

=Tr[nQ0x]
=Tr[nQxBl+ Tr[(n O xqm]
=Tr[nQx«a]

e (n0e (a1 )
=—Tr (anﬂ <a - %)) +Tr (nQXq" (“ - %>>

=Tr (1Qx ) + 2Tr (10 x4uB) + Tr (10 Gain)

=1r (103%)

=Tr<nQ§( (01—%

YO ) R e )

= —2Tr (0% B) - 2Tr (10} 4

1 1
—2Tr (anﬂ (5 - y)) — 2Tt (70xguf) + 2Tr (anqn (5 - y>>
—2Tr (M Qxqngm) -

(A.20)

(A21)

(A.22)

(A.23)
(A.24)
(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A31)

(A.32)

(A.33)

(A.34)
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Note that only fields that have Qx # 0 will contribute to Eq. (A.29).

Nonabelian Divergences
To cancel the nonabelian divergences, we need

0="TrlnT,Ty]
0="Ti[nQxTuT}]

1
OZTrI:r/TaTb ()/ - §>i|,

where T is a generator of a nonabelian gauge group factor.

U(1), Divergences
Finally, the conditions for canceling the abelian divergences are

0="Tr[nQq]

0="Tr[nQqx]

0="Tr[nQuBl+ Trlngn Oal
0=Tr[nQOxQa 0l

0=Tr[nOx QaBl+ Tr[nOxgn Qul

et
0= —T—r[anQa (% - y) ] +Tr[1 Ox Qut]
o=tro.(«-3) ((3-7) )]
ofsas(r) )] n(2-7) o)
sl o)

17

(A.35)
(A.36)

(A.37)

(A.38)
(A.39)
(A.40)
(A.41)
(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

In all of the above sets, we have assumed that the modular weights of all PV fields satisfy sum
rules reminiscent of those satisfied by the light sector, (2.21). Indeed, this will be baked directly
into our choice of PV fields. We have also used the total derivative identities (4.19). In addition

to the above conditions, we must enforce the sum rules of [1]:

—N —29 =Tr[n]
—10 = Tr[na]
—4 =Tr[na?]
0="Tr 77,3]
0=Tr nﬁ2]
0="Tr r;,Bai|.

(A.48)
(A.49)
(A.50)

(A51)

(A.52)

(A.53)
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A.3. Conditions for anomaly matching

By drawing an analogy with the calculation of [3], we infer that in four dimensions the
anomaly polynomial for the FIQS model has the form [13]

3
b SX 2 SU(3)\2 SU(2)5\2 SO(10)42
I6=<_E,51Gi+8_ﬂFX><tr(R)_En (Fn ) _En (Fn ) _zn:(Fn )
=

7
=Y (F)* = (Fx) +2) G,.2> (A.54)
a=1 i
where
Gi=dZ, (A.55)
1 d(T' =T
1@’ —T) (A.56)
20 Ti + Tt
and
tr(R*) = R“, R”, (A.57)
1
= ZRTGWRGTdex“dx”dxpdxa (A.58)
1
(Fp)? = ZFAWFApadx“dx”dxpdx" (A.59)

In the above, we have implicitly assumed wedge products in the multiplication of differential
forms. To get the 4D anomaly from the 6-form anomaly polynomial, one goes through the usual
descent equations:

2nlg=dls (A.60)
8ls=dly (A.61)

For example, under a modular transformation, Z; — Z; + dIm(F") so that the modular-gravity-
gravity anomaly has the form

3
3 .
/143/_ﬁ<§ Im(Fl)>waMva,pUe“”P“@d4x (A.62)
i=1

which is precisely what one would expect if one considers the modular-gravity anomaly to have
the same form as a U(1)-gravity anomaly. To match this anomaly, we look at the anomalous
contributions of PV fields with masses that are noninvariant under modular and U(1)x transfor-
mations. The general form of their contribution is

Lanom = / d*0E(Lo+Li +L,) (A.63)

with
1

Lo=— (Tr[nln(/\/lz)]Qo +K(Qcp + QD)) (A.64)
812

1
L, = —WTr[n/dln(M)Qr]. (A.65)
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Focusing on the second term of Eq. (A.63), we again break up terms based on whether they
contribute to the U(1)x related anomalies or the pure modular anomaly.

U(1)x Anomaly Conditions
To match the anomalies involving U(1)x, we require

O—%Tr_ x| 2a* + & — 3 A.66
=3 n0x\|2a” +a—3a (A.66)
0= %Tr_n Ox (B +4ap — 604,3)} (A.67)
2T - /-
0= 3T n0x (2/32 _ 3,62) } (A.68)
0=—4Tr|n(xQ an)] (A.69)
0=—4Tr|n (B qun)} (A.70)
8728 x Sy = —2Tr_n<qunqm)] (A.71)
0= %Tr[n(Qx (—4a + 60 — 1) (1 —2;7))} (A.72)
2 _
0= §Tr[n Ox (1-2y)(380x — ZﬁQx))] (A.73)
0=2Tr[n(qun (1 —217))] (A.74)
872b = %Tr _n (1—27) (3Q§( _ 2Q§() } (A.75)
2T - - _
0=3Tr|n0x (46:QX+QX—6aQX)] (A.76)
LT - - i}
0=3Tr n(SﬂQX—IZ,BQXQX)} (A7)
0= —4Tr[17 (0x qun)} (A.78)
A3
428y :Tr|:r] (4% - 2Q§(Qx> } = —%Tr[an(]. (A.79)

Note that the last term is fixed by cancellation of the linear divergence term Eq. (A.29).

Pure Modular Anomaly Conditions
To match the pure modular anomaly, we require

1
0= 5Tr[n (1-27) (—2&2 —a+ 3a2) } (A.80)

_1 - 2 _ 52 —
0= 5Tr[n (1-27) (3,6 —28 )} + 2Tr[n,3 (1— Zy)qn:| (A.81)
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0= %Tr[n (1-=2y) (6af — (4a+1) 5)} + 2Tr|:17a (1-29) q,,i| (A.82)

—872b8 = Tr|:17qmqn (1-27) } (A.83)

As for the third term of Eq. (A.63), we need it to vanish identically. This can be achieved so long
as the following are satisfied

0= Tr—nx(l - 2;7)2] (A.84)
0=Tr_nqu(1 - 2)7)] (A.85)
0= Tr_nxq,%} (A.86)
0=Tr_n65;§(1 - 2;7)} (A.87)
0= Tr—n&Béx)} (A.88)
0=Tr_n,5k(1 — 2;7)} (A.89)
0= Tr—nﬁkq'x}Tr[nBSCix}, (A.90)

where x = 1, &, B, gx, &>, B, 4%, aB,agx, fgx and k =1,2,3.
Appendix B. Solution to the Pauli-Villars regularization conditions

We will now elucidate a solution to the system described above. The solution consists of sets
Sqs,a=1,2,...of PV fields that address each of the divergence and anomaly sets of conditions
more or less separately. For example, it is possible to introduce PV fields that cancel only the
nonabelian divergences and contribute to no other conditions. We will try to follow the same
strategy for all the sets of conditions described above. It is not entirely possible to do so — for
example, fields that solve the modular anomaly conditions will generically contribute to modular
divergences. Of course, this is far from the only way to tackle the system, but it is a straightfor-
ward method to illustrate that a solution can be found. To this end, we define the notion of clone
fields for PV fields. For a given pair of PV fields (CDP, @’P), we define clone fields (@5, CI>£,1[D)
that have almost the same parameters (¢, 8, ¢, . . .) and quantum numbers as the original pair but
with negative signature. We say almost here because this notion is only useful if the ((bP , P )
have quantum numbers different from the clones so that the two sets cancel each other’s contri-
butions to some subset of the conditions, but not all conditions. As a concrete example, which
will be described below, one can introduce PV fields with nonabelian gauge interactions to elimi-
nate divergences associated with those same interactions. One can then introduce clone PV fields
without gauge interactions that exactly cancel the contributions of the gauge charged PV fields
to all other terms. The primary advantage of this technique is tidiness.
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B.1. PV Fields for U(1)x anomaly matching

The fields described here will satisfy Egs. (A.66)-(A.79) and will contribute to some of the
U(1)x divergence conditions (A.24)—(A.34). In particular, only PV fields with Q x # O contribute
to Eq. (A.29), so this condition will be satisfied by this sector only. The sets of PV fields we need
are

e Si: A set of PV fields with modular invariant masses, a; = o] = 7 = 1/2, and q(l) 0 and
modular weights of the form (q(l)),% = q(l) " and clone fields with no U(1)y.

o S55: A set of PV fields with ap = 52 =y = Q( ) (q(z))c = 0 and clone fields with no
U(1)x charge.

We then place the following conditions on the parameters of these fields:

Sum[Q(L)] Sum[nQ(“] (B.1)
Sum[(Qﬁﬁ] Tr[m(Q(l)) ] (B.2)
0= Tr[mQ(”< 3af)] (B.3)

[m 0y a1g"] (B.4)

0=Tr malgg(” gp] (B.5)

0="Tr n(Q(l))z_ (B.6)

0="Tr n(Q(l))3: (B.7)

0="Tr n(Q“>>4: (B.8)

0="Tr nQ(Xl)q,(ll)] (B.9)
O=Tr_;7Q(1)Q(]) (1)} (B.10)

— 472858 = Tr nggg)q;wq,gp] (B.11)
2n25x——§Sum[(Q(L))} Tr[nQ(l)(Q(l))} (B.12)

Once again, the first condition is a linear divergence term that can only be canceled by fields with
masses that are noninvariant under U(1)y. This in turn forces the correct coefficient for the pure
U(1)x anomaly in the last condition. The second set must satisfy

0 = Tr[n2] (B.13)
0= Tr[ngang(z)} (B.14)
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0= Tr[nzﬂngf)] (B.15)
872b =Tr[n2(Q§§>)2}. (B.16)

The first condition here comes from Eq. (A.84) and can be relaxed.
B.2. PV fields for modular anomaly matching

The fields described here will satisfy conditions (A.80)—(A.83) and contribute to the modular
divergence conditions (A.20)—(A.22). The sets are

e S3: A set of pairs of PV fields with 83 = 85 =0, g =g\ =0.
e Si: A set of pairs of PV fields with oy = o} = 4 = B, =G} =0, ()5 = (¢*¥)"87, and
clone fields with no modular weights.

These fields will contribute to the modular divergence conditions, as outlined below. We also
have to consider the ¢ fields of [1] here since they have noninvariant masses under modular
transformations. These fields have no 8 or modular weight parameters, but do have f 5= ak.

Then the conditions the S3, S4, and (;3 fields must satisfy are

0=Tr—ﬁ(1 —2&)2} +Tr[n3(1 —2&3)2] (B.17)
0= Tr-ﬁ&(l - 2&)2] + Tr|:r;3&3(l — 2&3)2] (B.18)
0=Tr_ﬁ5¢2(1 —2&)2] +Tr[n3&§(1 —2&3)2} (B.19)
0=Tt| j (1 - 2&) (—2&2 &+ 3&2) } + Tr|:n3 (1 —2as3) (—2&§ —a3+ 3a§) }

(B.20)

and

—87%h = Tr[mqf ai ] = ZSum[mqi’ ai ] (B.21)

B.3. PV fields for the regulation of modular divergences

Here we introduce fields that can cancel the contributions to Egs. (A.20)—(A.22) from the Y,
S3, and S4 and contribute to the sum rules in Egs. (3.37), (3.38) and (A.16) of [1]. The only new
set we introduce here is

e Ss: A set of pairs of PV fields with 5 = £ and (¢©)§ = 0 with (¢®)§, = (¢)s7.

Then the conditions we must satisfy are

1N\ 1 \2 1 2
0=(N+2),3<§—/3> — A <5—,3) —Sum[n5ﬁ5<§—0€5> }
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2 2 2
/ ! ! P 1 P 1 /
— Sum| 1585 5 o5 — Sum| nsq5 37 o5 + Sum| nsg5 3™ o5

(B.22)
1 . 1 .
0=(N+2)8 (— —ﬁ) (5 —ﬂ) 2458 (— —ﬂ) +24, (5 —ﬁ)

1
) (Sum[nsﬂs(l — 2a5)(1 - 2)/5)} + Sum[n5ﬂ§(1 —205)(1 - 27/5/)D

+ Sum| nsqs Bs(1 — 2055)} - Sum[’?sqspﬁéﬂ - 2a§):|

1 P 1 P / 1
—ESum n5qs (1 —2as)(1 —2ys) | — ESum n5q5 (1 —2a5)(1 —2y5)

+ Sum| nsqf ¢ (1 - 2a5):| + Sum|:175q5pq5p(l - 201;)} + 23um|:n4qqui| (B.23)
}32
0=(N+2)— —A1ﬁ+— —A1BP 42428 — Az

1
+3 (Sum[nsﬂ§<1 - 2)/5)} + Sum[nsﬁ?(l — 2yg>D
- (Sum[ﬁsqsp 552] - Sum[ﬂsqsp ﬁ?D + (Sum[nsﬂsqsp (1— 27/5)]
—~ Sum[nsﬁsqs 2yg>D ) (Sum[nsﬂsqs”qsp ] + Sum[nsﬂéqsp af D

1
+5 (Sum[ns(l - 2V5)q5’)q§’} + Sum[ns(l —~ 2)/5/)615615]) - Sum[mqqu]

(B.24)

We include an explicit P in the modular weights simply to remind ourselves that we sum over the
“P” index and not the “n” index since C = (P,n).

B.4. PV fields for the regulation of U(1)x divergences

Here we introduce fields that cancel the contributions to Egs. (A.24)—(A.34) from the Y, S,
and S,. Note that we will omit Eq. (A.29) since has been taken care of above. We introduce the
following set:

e Se: A set of pairs of PV fields with QE?) = —Q;(f) and q(6) = 0 and clone fields without

U(1)x charge.

Then the conditions we must satisfy are

0=12CLf + 2sum[n2 0% ,32] + Sum|:176 %) ﬁﬁ] — Sum|:n6 % ﬂg} (B.25)

0=12C54(1 - B) + 28um|:772 Qé)az} + Sum[n6 Qfg)aﬁ] — Sum|:77(, Qé)ag} (B.26)
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1 .\? 1 1
0=12Cgq (5 — ,3) + sum[nﬁgg‘é) (a6 — 5) ] - sum[%Qgg) <o/6 - 5)} (B.27)
0=12C¢f < /3) + oY (% — B) + Sum[ané)qu]
X 1 X p/ / 1
+ Sum|:776 Q(G)ﬂ(x (Olﬁ - 5 — Sum| n¢ Q((,),B6 Qg — 5
1 1
— Sum|:176Qgg)qéD <a6 — §>i| — Sum|:776 Qgg)qéD (aé — 5):| (B.28)

0=1282Cy5 — 2808 + 057 + Sum[m o84l q{’} + Sum[m onal al }

- Sum[%Qig)ﬂé] - Sum[nsgi‘@ﬂgz] + 2Sum[n6Q(X®ﬁ6q£ ]

+ 2Sum[n6 Q% Bede } (B.29)
0= %Tr[(Qf‘L))z] S Sum[m(in))zq{’ ] + Sum[m(Qﬁ‘))zqf” ]

1 1
+ Sum[UZ(Qé)) i| + Sum|:716(Q(6)) < V6> ] + Sum|:776(Q(6)) ( Vﬁ) i|

(B.30)
1 . 1
0= Tr[(QifLQ2 (5 - ﬂ) } - Sum[nz(Qé))Z} - Sum[%(gé)f (o% - 5) }
1
+ Sum[ns(Q’(’é))2 (oza — 5) } (B.31)

1 . 1 R
=—= Q(L) (5 - ﬁ) +RY (5 - ﬁ) + sum[ané) (@2 + m} + sum[ané)qu ]

X 1 1 X ;1 1 /
+ Sum 776Q(6) o — 5 5 Y6 — Sum 776Q(6) o — 3 3 Yo
1 1
- Sum|:n6Qgg)qé) <a6 — 5)} - Sum|:n6 0% a¢ (ag - 5)} (B.32)

0= —5Tr[<Q§‘L))2] +RY + Sum[m o8 )af ] — Sum[m &) af ]
+ Sum[mQ(’g))zﬁﬁ] + Sum[ns(Qfé))zﬁg] (B.33)
=—6BC;s+BOY + 5 Q(L) 05 — Sum[m Qg(])QIPQIPi| - Sum[m Q/()l()‘hp‘hp}
+ Sum[ﬂzQé)ﬂz} + Sum[anéﬂf} + Sum[% Q6B <% - V6> }

1
_ Sum|:776 06 B (5 — Vé) } — Sum[ns 0%, Boae } — Sum[% 0% Beas ]
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1 1
+ sum[%Qfg)qg’ (5 - y6> ] + sum[%Qgg)qg (5 — yﬁ’> } (B.34)
B.5. PV fields for the regulation of nonabelian divergences

Here we introduce fields to cancel Eqs. (A.35)-(A.37). We consider a separate PV set for each
of the nonabelian factors of the FIQS gauge group as follows

e S7: A set of pairs of PV fields in the fundamental of SU(3) (anti-fundamental for the
primed fields) with no modular weights, uniform coefficients, and clone fields with no gauge
charges. By uniform coefficients, we mean that «¢ and € are independent of index within
the set: ¢ = o and B¢ = B.

e Sg: A set of pairs of PV fields in the fundamental of SU(2) with no modular weights, uniform
constants, and clone fields with no gauge charges.

e So: A set of pairs of PV fields in the 16 (and 16 for primed fields) of SO(10) and a set of
pairs of PV fields in the 10 of SO(10), all with no modular weights, uniform coefficients,
and clone fields with no gauge charges.

e Sio: A set of PV fields with y =y’ = 1/2, zero modular weights, a nonzero trace U(1)y
charge matrix, and charged under the nonabelian gauge groups in the same reps as the light
fields and clone fields without nonabelian gauge charges.

Let us discuss this choice briefly. First we need to check the number of fields in a given repre-
sentation. This is because we care about the quantity

Ci, = CleyN)» (B.35)

which comes from the first term in the list above. The technique in [2] relies on having an even
number of light fields in a given representation for all the gauge factors. Let us check if this is
the case for the FIQS model. See Appendix C for a detailed breakdown of the FIQS spectrum.
For the SU(3) of FIQS, the total number of triplets charged under this gauge group is

2 4 2
SU@M) SU@M) SU@3) SU®B) SU@G) SU@®)
NQL TNy T N, +2Ndi +ZND_/' +ZNDj
i=1 j=l j=1
=6+3+12+15=36. (B.36)

For the SU(2) of FIQS, there are

4 5 4
SUQ) SUQ) SUQ) SUQ)
No, "+ Ng @+ NG, W+ ) Ny,
i=1 i=1 i=1

=9+3+33+3=48 (B.37)

doublets. Note that we have used the fact that each state in the table of Appendix C has a degen-
eracy of 3, with the exception of the states Yy, Y», and Y3. The number of states charged under
the SU(3) and SU(2) groups are indeed even, but this is not the case for SO(10), since there are
only 3 16’s charged under this gauge factor. To resolve this, we begin by listing the Casimirs of
the first few SO(10) representations:
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Fundamental 10 : Cip =1 (B.38)
Spinor 16 : C16 =2 (B.39)
Adjoint45: Cy5 =38 (B.40)

Note that these satisfy the sum rule (5.12) of [1] when considering the fields charged under
SO(10):

C45—3C16+2C16Z(Sf,=8—6+4=6 (B.41)
i

The first divergence we cancel is Tr(nT,T,). The ¥ give the negative of the contribution of the
light fields, so in the case of SO(10) this trace is simply —3C6 = —6. Since PV fields come in
pairs, we cancel this with at least 2 fields and so we need

3Cis=2» n"cC” (B.42)
P

Thus, we have two options. We can have a PV pair in the 16 (and 16) plus a PV pair in the 10 or
we can have 3 pairs of PV fields in the 10. The other divergence from gauge interactions we have
to get rid of is the linear divergence proportional to the Casimir. We note that the Y’s here give

(=1 (g - F+ qupn) Ci, = (-%) (Cgs — Cg) (B.43)
n
since & + = 1. The overall sign is the sum of the signatures. Cancellation then requires
Ccs—Cg chcgc (__y ) (B.44)
=Z'7PCQP (1-27") (B.45)
P

provided that the PV fields have no modular weights. The first sum is over all PV fields whereas
the second is over PV pairs. Both of our potential solutions can work since we have either one or
two free parameters in the y’s. In the list of sets of PV fields above, we opted for the combination
of PV fields in the 10 and 16 of SO(10). For the last nonabelian divergence, Eq. (A.36), we
explicitly write out the contribution from the ¥ so that is takes the form

0="Tr(Q%)Cy +Tr[nQ§VTaTb], (B.46)

where C g‘ is the Casimir of the representation of the matter fields. If we consider fields from the
set S1g, this becomes

~Tr(Q%) =Tr(Q%") =2$um|:nQ§V:| (B.47)

The fields in Sjo contribute to Eq. (A.35) but not to Eq. (A.37) since we have restricted their y
parameters to be y = 4. Their contribution to Eq. (A.35) is not an issue since we can simply
include more fields in the other sets described in this section to cancel their contribution. Finally,
the clone fields ensure that none of the sets described in this section contribute to other conditions.
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B.6. PV fields for the regulation of abelian divergences

Here we satisfy the conditions Egs. (A.40)—(A.47). The Y contribute here, and to cancel them
we will need to introduce fields with g,, # 0, which is different from all other fields considered
thus far. This would alter some of the expressions we have used above, but we will not con-
sider these alterations since we will employ clone fields that cancel contributions to previously
considered terms from the fields introduced here. Specifically, we consider

e S11: A set of pairs of PV fields such that the unprimed fields have the same abelian gauge
charges as the light fields (including U(1)x), Ot” =dq, ,311 —B q(“) q,(lL) Olﬁ) = 5,
,311 = Q11 = ,/,(1 D =0, and positive signature and clone fields with no U(1), charges.

° Slz A set of pairs of PV fields with no  parameters or modular weights and with ozﬁ =
o =1/2, Q(m 0, Qf(u) = 4Q§‘L), and U(1), charges Qf}, = 0, /+/2 and negative
signature and clone fields with no U(1), charges.

These satisty

0=-S" 4 zsllm[m] oy 1)} + ZSum|:1712 Q{12 Q’(’lz)] (B.48)
0=—271%6x + Sum|:n11 Q8124 ngm} + sum[n12Qg§2) 01 ng]z)} (B.49)

0= —,BOSéL) + RéL) + Sum|:7711 Q?]])Qﬁ])ﬂll} + Suml:’?ll‘],ﬁll)Q((ln) Qg(u)j| (B.50)

1 . 1
0=-— <§ - ,3) SLEL) + Sum|:7711 ngu)Q?U) <0611 - 5) ] (B.51)
1
0= 2S‘§L) + R + Sum|:7111 Qﬁl)Q?u) (]/11 - 5) } + Sum[ml Qﬁl)Q?M)CIﬁ“)]
(B.52)
1 1
0=— 251%) + R(L) + Sum|:7711Q(11)Q(11) (J/ll ) +61(11)):| (B.53)

where again a subscript or superscript (L) implies a trace over the corresponding values of the
light fields. Note that we have omitted some conditions that are automatically zero. There are
also terms in the above that vanish for the choice of U(1) charges defined in this paper but do not
vanish for other choices. If one substitutes the parameters of Sy; and Sj7 as per the discussion
above, one sees that all the remaining conditions above are satisfied.

Appendix C. The FIQS spectrum

The FIQS model was described in [15,16,4,17,18]. The modular weights in this model are
simple: the fields in the ith untwisted sector have g’ = 8!, and the twisted sector fields have
qn = %, except for the Y’ which have ¢/ = 8! + % Here we will focus in particular on the U(1)
charges of the low-energy matter spectrum. The U(1) charge generators arising from the Cartan
subalgebra of the Eg x Eg and the corresponding charges were worked out in [17,18]. Table 2 of
[16] lists the charges of the massless spectrum. However, the linear combinations of generators
given in [4] have a mixed anomaly:
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Tr(Qc070x) = 1296.

To avoid this, one should re-define Qg and Q7. The fix is very simple:

Q¢ = 06 — 07,
05 =06+ 07.

Below we produce a table of the new charge designations.

(n1.,n3)  Field Rep. Q7 QO 03 04 0s oY oFf «x
Untwisted or 3,2) —6 -6 0 0 0 0 0 0
ur, 3.1 6 0 0 -6 0 0 0 0
Gy 1,2) 0 6 0 6 0 0 0 0
16/ 1 0 0 0 0 0 0 0 9
(0,0) D 3, 1) 0 4 0 0 0 4 4 4
Gy 1,2) 6 -2 0 0 0 4 4 4
Ay 1 -3 -2 -3 -3 -3 4 4 4
Ay 1 -3 2 3 -3 3 4 4 4
Aq 1 -3 2 =3 3 3 4 4 4
As 1 -3 =2 3 3 -3 4 4 4
1,0 Sy 1 6 4 0 0 -2 2 10 4
Ss 1 6 4 0 0 -2 -4 -8 4
Se 1 6 4 0 0 -2 2 -2 -8
A3z 1 -3 2 -3 =3 1 2 10 4
Ay 1 -3 2 -3 -3 1 —4 -8 4
As 1 -3 -2 -3 -3 1 2 -2 -8
Az 1 -3 -2 3 3 1 2 10 4
Ay 1 -] 3 3 1 -4 -8 4
As 1 ) 3 3 1 2 S
(~1,0) Sy 1 6 4 0 0 2 6 -2 4
Sg 1 6 4 0 0 2 0 4 -8
So 1 6 4 0 0 2 -6 -2 4
Ag 1 -3 -2 3 -3 -1 6 -2 4
Aq 1 -3 -2 3 -3 -1 0 4 -8
Ag 1 B —) 3 -3 -1 —6 -2 4
Ag 1 -3 2 =3 3 -1 6 -2 4
A7 1 -3 2 =3 3 —1 0 4 -8
Ag 1 -3 2 -3 3 -1 -6 =2 4
0, 1) d 3.1 0 0 0 2 2 0 -8 4
F 1,2) 3 0 -3 -1 -1 0 -8 4
Ag 1 3 6 3 -1 -1 0 -8 4
Ag 1 3 -6 3 -1 -1 0 -8 4
I 1 -6 0 0 —4 2 0 -8 4
S1o 1 -6 0 0 2 —4 0 -8 4
1,1 D> 3.1 6 0 0 2 0 ) 4
uy 3.D 0 0 0 —4 0 -2 -2 4
P (1,2) 3 0 3 -1 -3 =2 -2 4
F3 1,2) 3 0 I 3 ) 4
Sy 1 -6 0 0 2 0 4 4 -8
Y 1 -6 0 0 2 0 -2 =2 4
A1 1 3 6 -3 -1 =3 -2 -2 4
A 1 3 6 3 —1 3 -2 -2 4
Alg 1 3 -6 3 -1 3 -2 -2 4
Ay 1 3 -6 -3 -1 -3 =2 =2 4

(C.1)

(C.2)
(C.3)
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(nj.n3)  Field Rep. Q Q2 03 Q4 0s 0 oFf «x
(-1,1) dp 3B, D 0 0 0 2 -2 —4 4 4
F4 1,2) 3 0 3 -1 1 —4 4 4

Ay 1 3 6 -3 -1 1 —4 4 4

Al 1 3 -6 -3 -1 1 —4 4 4

I 1 -6 0 0 -4 -2 -4 4 4

S 1 -6 0 0 2 4 —4 4 4

0, —1) Dy 3, 1) -3 2 -3 1 1 2 -2 4
D;3 @3, D 3 2 3 1 1 2 -2 4

Gs 1,2) 0 2 0 4 -2 2 -2 4

G 1,2) 0 2 0 -2 4 2 -2 4

S 1 0 —4 0 -2 -2 -4 4 -8

Y 1 0 —4 0 - 2 -2 4

I 1 0 —4 0 4 4 2 -2 4

I3 1 0 8 0 -2 =2 2 -2 4

A3 1 -9 2 3 1 1 2 -2 4

A3 1 9 2 -3 1 1 2 -2 4

1,-1) Dy G, =3 2 3 1 —1 0 4 4
Dy @3, 1 3 2 -3 1 -1 0 4 4

Gy 1,2) 0 2 0 4 2 0 4 4

Gy 1,2) 0 2 0 -2 4 0 4 4

S3 1 0 —4 0 -2 2 0 -8 -8

Y3 1 0 —4 0 -2 2 0 4 4

I 1 0 —4 0 4 —4 0 4 4

Iy 1 0 8 0 -2 2 0 4 4

Ay 1 -9 2 -3 1 -1 0 4 4

Ala 1 9 2 3 1 -1 0 4 4

(=1,-1) G3 1,2) 0 2 0 -2 0 4 -8 4
Gy 1,2) 0 2 0 -2 0 -2 10 4

Gs 1,2) 0 2 0 -2 0 -2 -2 -8

I3 1 0 —4 0 4 0 -2 10 4

Iy 1 0 —4 0 4 0 4 -8 4

Is 1 0 —4 0 4 0 -2 -2 -8

Appendix D. Corrections to [2]

Equation (3.11) should read:
(D> —8R)Qw = WP Wyp,, (D> —8R)Qx =X"Xy, (D*—8R)Qym = WoWS

In Egs. (3.6) and (5.2) the factor 1/24 in front of Qgp should be removed.
Equation (5.3) and the remainder of section 5 should read

872bgpin =872b+1=31,  Q;=TrinAln M>Q;. (5.3)

The results for the Gauss-Bonnet and Yang-Mills terms are well-established [ 10] and result from
the universality conditions (2.3) and (B.7), as illustrated in the appendices. The only other term
in (5.2) that contains a chiral anomaly is €2 7, which, using the set (4.11) of PV fields, is a priori
a product of the chiral superfields X, g, and gj;. We show in Appendix A that we may choose
the PV parameters such that

(D* —8R)Q; =30 g¥gn. (5.4)
n
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in agreement with the string calculation of [4].

The anomaly is canceled provided the Lagrangian for the dilaton S, S is specified by the
coupling (2.5) and the Kéhler potential (2.9), or, equivalently, the linear superfield L satisfies
(1.3) and the GS term (1.3) is added to the Lagrangian.
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