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1 Introduction

The discoveries of a perturbative Higgs boson at the Large Hadron Collider [1, 2] and no

new states beyond the Standard Model (SM) [3, 4] suggest that the SM may be the correct

effective theory of particle physics up to a scale orders of magnitude larger than the weak

scale, a possibility largely ignored before the Large Hadron Collider. In such a scenario,

progress in particle physics will depend on both precision measurements of SM parameters,

as well as searches for rare processes, for example those violating baryon number, lepton

numbers and CP.

Precision measurements can probe particle physics to extremely high energies. In 1974

Georgi, Quinn and Weinberg proposed that measurements of the three gauge couplings

of the SM, g1,2,3, could test whether the three gauge forces of nature are unified into a

single grand unified gauge force with coupling strength, gu, at some very high unified mass

scale Mu [5]. The two fundamental UV parameters lead to a correlation among the three

measured gauge couplings: (αu,Mu)→ {g1,2,3}. After decades of measurements, this cor-

relation is at best a first order approximation, requiring very large threshold corrections

from the unified scale to force the low energy gauge couplings to meet and to make Mu

sufficiently large to be consistent with the experimental limit on the proton lifetime. Sim-

ilarly, the simplest SU(5) [6] prediction for fermion masses, the ratio mb/mτ [7], is also at

best a first order result, requiring large corrections. Nevertheless, unification is a bold and

exciting vision that explains the gauge quantum numbers of the quarks and leptons, includ-

ing charge quantization, and can be probed via precision measurements of SM parameters

at low energy.

Precision measurements of the weak mixing angle at LEP [8] supported supersymmet-

ric unification. Triggering the weak scale from supersymmetry breaking, v ∼ msusy, gave

a successful correlation of the low energy gauge couplings via (gu,Mu,msusy/v ' 1) →
{g1,2,3} [9–14]. While theories with a sufficiently long proton lifetime were easily con-

structed, the absence of superpartners at the Large Hadron Collider now makes it difficult

to identify msusy with the weak scale, weakening the theoretical basis for this correlation.

With a 125 GeV Higgs and the SM valid to sufficiently high energies, the Higgs quartic

coupling of the SM passes through zero at a scale of order (109 − 1012) GeV [15], as shown

in figure 1. This very striking behavior suggests that new physics lies at the scale where

the Higgs quartic coupling vanishes, and that this new physics should explain the vanishing

quartic via a new symmetry. One possibility is that the new symmetry is supersymmetry;

although the vanishing of the quartic is not guaranteed, it does occur in a large portion

of parameter space [16, 17]. We have recently introduced another possibility, “Higgs Par-

ity” [18], that interchanges the weak SU(2) gauge group (and SM Higgs, H) with a partner

gauge group SU(2)′ (and partner Higgs, H ′)

SU(2)↔ SU(2)′ H(2, 1)↔ H ′(1, 2), (1.1)

where the quantum numbers of H and H ′ refer to (SU(2), SU(2)′). Spontaneously breaking

SU(2)′ by 〈H ′〉 = v′ leads to the Higgs being a Nambu-Goldstone boson with λSM(v′) = 0 at
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Figure 1. Precise gauge coupling unification via Higgs Parity. The intermediate scale is the energy

scale where the running Higgs quartic coupling of the Standard Model nearly vanishes.

tree-level. Depending on the implementation, this can also solve the strong CP problem [18]

and lead to interesting dark matter candidates [19].

In this paper we identify SU(2)×SU(2)′ as the SU(2)L×SU(2)R subgroup of the unified

SO(10) gauge group [20, 21], so that v′ is identified as the scale of Left-Right symmetry

breaking. In SO(10) unification, an intermediate scale of symmetry breaking introduces

an extra free parameter so that the correlation of {g1,2,3} from gauge coupling unification

is lost. However, in theories with Higgs Parity, v′ is predicted from the Higgs mass so

that a correlation is recovered, as illustrated in figure 1; three parameters of the unified

theory yield a correlation among four measured observables, (gu,Mu, v
′) → {g1,2,3,mh}.

In fact, the uncertainty in this correlation is dominated by the top quark Yukawa coupling

yt via renormalization of the quartic coupling, so that in Higgs Parity Unification four UV

parameters of the theory yield a correlation among five low energy observables [18]

(gu,Mu, yt, v
′)→ {g1,2,3,mh,mt}. (1.2)

Fixing three of the observables to their central measured values, allows a projection of this

correlation into a two-dimensional subspace, as shown for (mh, αs) and (mt, αs) in the left

and right panels of figure 2. The blue shaded region allows for threshold corrections at the

unification scale with ∆ < 10 (see eq. (4.10)). The black rectangles show the observed SM

values. In figures 1 and 2 the gauge group above v′ is SU(3)×SU(2)L×SU(2)R×U(1)B−L.

The organization of the paper is as follows. Sections 2 and 3 summarize the essence of

Higgs Parity unification. In section 2, we review how Higgs Parity explains the vanishing

of the SM Higgs quartic at a high scale. Section 3 discusses the embedding of Higgs Parity

into SO(10) unified theories and how gauge coupling unification is tied to the vanishing

quartic coupling. Sections 4–7 analyze the framework in more detail. Section 4 examines

the running of gauge couplings between electroweak and unified scales, including threshold

corrections at the unification scale, and derives the Higgs Parity symmetry breaking scale

required for successful precision gauge coupling unification. The generation of the SM

– 3 –
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Figure 2. Correlation of low energy parameters from coupling unification with Higgs Parity,

projected into the (mh, αs) and (mt, αs) planes.

fermion masses is discussed in section 5. We show how the b/τ mass ratio and the structure

of neutrino masses arise from an SO(10) unified theory. In section 6, we derive the threshold

corrections to the SM Higgs quartic coupling at the Higgs Parity symmetry breaking scale,

and show the relation between (mt, αs) and the Higgs Parity symmetry breaking scale.

Finally, the prediction for (mt, αs) from the precise coupling unification is given in section 7.

2 Higgs quartic coupling and Higgs Parity

In this section we review the relation between the nearly vanishing SM Higgs quartic

coupling at high energy scales and the Higgs Parity symmetry breaking scale introduced

in [18]. Consider a Z2 symmetry which exchanges the SM SU(2) gauge symmetry with

a new gauge interaction SU(2)′, as well as the SM Higgs field H(2, 1) with its partner

H ′(1, 2). Here the brackets show the SU(2) × SU(2)′ quantum numbers. We refer to this

Z2 symmetry as Higgs Parity.

Well below the cut off scale, the following renormalizable scalar potential dominates

the dynamics of H and H ′,

V (H,H ′) = −m2(|H2|+ |H ′|2) + λ(|H|2 + |H ′|2)2 + λ′|H|2|H ′|2. (2.1)

We assume m2 > 0 and m� v, the electroweak scale. Higgs Parity is spontaneously broken

by the vacuum expectation value (VEV) 〈H ′〉 ≡ v′, with v′2 = m2/2λ. After integrating

out H ′, the low energy effective potential of H is

VLE(H) = λ′v2|H|2 − λ′
(

1 +
λ′

4λ

)
|H|4. (2.2)

To obtain the hierarchy 〈H〉 � v′, it is necessary to take a very small value of λ′ ∼ −v2/v′2,

leading to a small value of the SM Higgs quartic coupling λSM ' 0. This is the boundary
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q ` (ū, d̄) = q̄ (N, ē) = ¯̀ H H ′

SU(3)c 3 1 3̄ 1 1 1

SU(2)L 2 2 1 1 2 1

SU(2)R 1 1 2 2 1 2

U(1)B−L 1/6 −1/2 −1/6 1/2 −1/2 1/2

422 (4, 2, 1) (4̄, 1, 2) (4, 2, 1) (4̄, 1, 2)

SO(10) 16 16

Table 1. The gauge charges of SM fermions, H and H ′ under 3221 or 422.

condition on λSM at the renormalization scale µc = v′. Renormalization group running

from the top quark yukawa makes λSM ' 0.1 around the electroweak scale. From the IR

perspective, the scale v′ is identified with the energy scale around which the SM Higgs

quartic coupling vanishes. Threshold corrections to λSM(v′) as well as a precise prediction

for v′ are presented in section 6.

In this paper, we identify Higgs Parity with the Left-Right symmetry which can be

embedded into SO(10) grand unification. As we illustrated in the introduction and will

elaborate in section 7, this identification leads to a non-trivial scheme for precise gauge

coupling unification.

3 Grand unification and the strong CP problem

3.1 Left-right symmetry as Higgs Parity

Let us first embed Higgs Parity into the Left-Right symmetry where SU(2)′ is identified with

SU(2)R. The gauge symmetry above the scale v′ is SU(3)c×SU(2)L×SU(2)R×U(1)B−L or

SU(4)×SU(2)L×SU(2)R, which we refer to as 3221 or 422 for short. 422 is the Pati-Salam

gauge group [22], and SU(3)c × U(1)B−L is a subgroup of SU(4). The gauge quantum

numbers of SM fermions, H and H ′ are shown in table 1. The Left-Right symmetry, which

we denote as CLR, is

q ↔ q̄, `↔ ¯̀, H ↔ H ′,

SU(2)L ↔ SU(2)R, charge conjugation on SU(3)c ×U(1)B−L or SU(4), (3.1)

and includes Higgs Parity. This results in the Higgs having gauge quantum numbers

identical to leptons, which is not standard for Left-Right theories [23–28]. The 3221 or 422

gauge groups are broken down to the SU(3)c × SU(2)L ×U(1)Y group by the VEV of H ′.

We may also combine Left-Right symmetry with another discrete Z2 symmetry; the

most interesting option being space-time parity,

q(t, x)↔ iσ2q̄
∗(t,−x), `(t, x)↔ iσ2

¯̀∗(t,−x), H(t, x)↔ H ′
∗
(t,−x),

SU(2)L ↔ SU(2)R, parity transformation on gauge fields, (3.2)

which we denote as PLR. As we will see, the strong CP problem may then be solved.

– 5 –
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3.2 Yukawa couplings and the strong CP problem

The gauge charges in table 1 forbid renormalizable yukawa couplings. Instead, the SM

fermion masses arise from the mixing of (f ; f̄) = (q, `; q̄, ¯̀) with extra massive fermions

(X; X̄) via yukawa couplings and masses of the form

[fi xij X̄j H
(†) + f̄i x

′
ij Xj H

′(†)] or [fi xij X̄j H
′(†) + f̄i x

′
ij Xj H

(†)]

+mX,ijXiX̄j . (3.3)

Higgs Parity (and space-time parity) requires that xij = x
(∗)
ji and mX,ij = m

(∗)
X,ji. After H ′

obtains a VEV, (f, f̄) mixes with (X, X̄). A linear combination of them remains massless

and has the yukawa coupling fSMi yij f̄SMjH
(†). If the mass of X is much larger than xv′,

we may integrate out X to obtain a dimension-five operator ff̄H(†)H
′(†), which yields

a yukawa coupling y ∼ x2v′/mX . For the top yukawa this is not a good description as

mX ∼ xv′, and diagonalization of the mass matrix is required to extract the top yukawa,

which is done in section 5.

The strong CP problem can be solved by combining Left-Right symmetry with space-

time parity, as the symmetry forbids the θ term and constrains the determinant of the

quark mass matrix [23, 24]. See refs. [29–38] for studies on Left-Right symmetric solutions

to the strong CP problem. Refs. [39, 40] propose a model with a structure for yukawa

couplings similar to ours and show that the strong CP problem is actually solved since

x′ij = x∗ij and mX,ij is Hermitian. They obtain the hierarchy v � v′ by softly breaking the

Left-Right symmetry with space-time parity. In out setup the symmetry, which we call

Higgs Parity, is spontaneously broken without soft breaking, predicting a vanishing λSM(v′).

Spontaneous breaking of Higgs Parity generates a phase in the determinant of the quark

mass matrix via two-loop quantum corrections [18]. Assuming that the couplings x are

O(1), the corrections are safely below the current limit from the neutron electric dipole

moment, but in the range that can be probed by planned experiments. The model of flavor

presented in section 5 does not obey this assumption, and the corrections may be larger.

3.3 SO(10) unification

The 3221 and 422 theories can both be embedded into SO(10) grand unified theories. The

SO(10) gauge charges of the SM fermions, H and H ′ are shown in table 1. The SM fermions

are unified into three 16s, and the Higgs fields H and H ′ are also embedded into a 16.

The symmetry breaking pattern is

SO(10)→
{

SU(3)× SU(2)L × SU(2)R ×U(1)B−L

SU(4)× SU(2)L × SU(2)R

H′−→ SU(3)× SU(2)L ×U(1)Y .

The theory has three UV parameters relevant for gauge coupling unification: the SO(10)

gauge coupling, the SO(10) symmetry breaking scale, and the LR symmetry breaking scale

v′. As there are also three SM gauge coupling constants, it is not surprising that one can

typically find a set of the three UV parameters that allow coupling unification. However, as

we have shown, the LR symmetry breaking scale is not a free parameter when it is linked to

– 6 –
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Higgs Parity breaking, but is determined by the running of the SM Higgs quartic coupling.

In this case, it would be significant if coupling unification were successful. In figure 1, we fix

the scale v′ using the central values of the Higgs mass, top quark mass and QCD coupling

shown in the figure, and solve the RGE equations assuming the 3221 theory. Remarkably,

gauge coupling unification occurs, and at a scale consistent with the proton lifetime.

In section 7, we analyze the precision of this coupling unification, including threshold

corrections to gauge coupling constants at the unification scale, as well as the threshold

corrections to the SM quartic coupling at the scale v′. The unification of the yukawa

couplings is discussed in section 5.

3.4 Degree of fine-tuning

We comment on the fine-tuning of parameters in the Higgs potential (2.1) required for

symmetry breaking. First, m2 must be fine-tuned by an amount ∆m2 , so that the Higgs

Parity breaking scale v′ is much less than the cutoff scale Λ, which must be larger than

the unified scale Mu. Secondly, λ′ must be fine-tuned by an amount ∆λ′ to obtain the

electroweak scale v from the scale v′. The total fine-tuning with Higgs Parity is the product

∆HP = ∆m2 ∆λ′ =
v′2

Λ2
× v2

v′2
=
v2

Λ2
, (3.4)

which is independent of v′. This is because a smaller v′ requires more fine-tuning in ∆m2 ,

but this is compensated by less fine-tuning in ∆λ′ to obtain the electroweak scale from

the scale v′. It is important to note that Higgs Parity, H ↔ H ′, ensures that the mass

terms for H and H ′ in (2.1) are identical, so that the single fine-tune by ∆m2 protects

both scalars to the scale v′. Given that the SM Higgs must be protected for electroweak

symmetry breaking, there is no additional cost to protect H ′: the smallness of the scale

v′ � Λ requires no unnaturalness beyond that already needed for the weak scale. The total

fine-tuning of the theory ∆HP = v2/Λ2 is nothing but the electroweak fine-tuning, which

may be explained by environmental selection [41, 42].

This is in contrast to the usual SO(10) unification with an intermediate scale vI . A

smaller intermediate scale does not reduce the fine-tuning to obtain the electroweak scale,

and hence the total fine-tuning is

∆SO(10) =
v2
I

Λ2
× v2

Λ2
. (3.5)

This extra fine-tuning v2
I/Λ

2 cannot be explained by environmental selection of the elec-

troweak scale, and requires an additional explanation.

4 Gauge coupling unification and parity breaking scale

We assume an SO(10) gauge symmetry at a high energy scale, broken to 3221 or 422 at the

unification scale. These are then broken to the SM gauge group by the VEV of H ′. One

possibility is that Higgs Parity is CLR, a Z2 subgroup of SO(10) that interchanges SU(2)L

– 7 –
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and SU(2)R. In this case, the symmetry breaking chain and the required Higgs fields are

SO(10)
φ210−→ 3221× CLR H′−→ SU(3)× SU(2)L ×U(1)Y , (4.1)

SO(10)
φ54−→ 422× CLR H′−→ SU(3)× SU(2)L ×U(1)Y . (4.2)

To solve the strong CP problem, the symmetry to begin with is SO(10) × CP . This

symmetry is broken by the VEV of a field that is odd under both CLR and CP, so that the

residual Z2 symmetry for Higgs Parity is CLR ∗ CP = PLR and includes spacetime parity.

In this case

SO(10)× CP φ−45−→ 3221× PLR H′−→ SU(3)× SU(2)L ×U(1)Y , (4.3)

SO(10)× CP φ−210−→ 422× PLR H′−→ SU(3)× SU(2)L ×U(1)Y . (4.4)

In this section we compute the running of the gauge coupling constants from IR to

UV, treating the Higgs Parity symmetry breaking scale v′ as a free parameter.

Values of the SM gauge couplings derived from experiment are

g1(mt) = 0.4626, g2(mt) = 0.64779, g3(mt) = 1.1666 (4.5)

in the MS scheme at a renormalization scale of mt. Here the hypercharge coupling is given

in the normalization appropriate for grand unification and is called g1, or occasionally gY
to avoid confusion with the B − L gauge coupling. Between the electroweak scale and the

scale v′, the RGE equation at the two-loop level is given by [43]

d

dlnµ


2π
α1
2π
α2
2π
α3

 =

−41
10

19
6

7

+

−199
100 −27

20 −22
5

− 9
20 −35

12 −6

−11
20 −9

4 13


α1

2π
α2
2π
α3
2π

 . (4.6)

4.1 SU(3)× SU(2)× SU(2)×U(1)

We match the SU(3)× SU(2)×U(1) gauge coupling constants to those of 3221 at the W ′

mass fixed by Higgs Parity,

2π

αY (mW ′)
=

(
2

5

)
2π

αB−L(mW ′)
+

(
3

5

)
2π

α2(mW ′)
− 1

10
, mW ′ =

g2√
2
v′, (4.7)

Since W ′ is the only heavy charged gauge boson at this scale, no mass-dependent threshold

corrections are introduced from the gauge bosons. The RGE equation in the 3221 theory

is [43]

d

dlnµ


2π
α1
2π
α2
2π
α3

 =

−9
2

19
6

7

+

−23
8 −27

4 −2

−9
8 −35

12 −6

−1
4 −9

2 13


α1

2π
α2
2π
α3
2π

 . (4.8)

Here we only show the contributions from gauge bosons, SM fermions, H and H ′; contri-

butions from X states are shown in appendix A.

– 8 –
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We match the 3221 gauge couplings to that of SO(10) at the mass, MXY , of the XY

gauge boson of charge (3, 2, 2,−1/3). The only heavy gauge boson, other than the XY

gauge boson, has 3221 quantum numbers (3, 1, 1, 2/3). Taking this gauge boson to have

mass rXYMXY , gives threshold corrections

2π

α1(MXY )
=

2π

α10(MXY )
+ 14 ln rXY −

4

3
+ ∆1 ≡ 2π

α10(MXY )
+ ∆1,G + ∆1,

2π

α2(MXY )
=

2π

α10(MXY )
− 1 + ∆2 ≡ 2π

α10(MXY )
+ ∆2,G + ∆2,

2π

α3(MXY )
=

2π

α10(MXY )
+

7

2
ln rXY −

5

6
+ ∆3 ≡ 2π

α10(MXY )
+ ∆3,G + ∆3, (4.9)

where ∆i denote possible threshold corrections from scalars and fermions. If the SO(10)

symmetry is broken by a VEV of 45, rXY = 2. If it is broken by the VEV of the SU(4)

adjoint part of 210, rXY =
√

2. The VEV of 54 or the SU(4) singlet part of 210 gives a

mass only to the XY gauge bosons, and makes rXY smaller.

For each MXY , the threshold correction from scalars and fermions required for unifi-

cation is

∆ ≡ maxi,j

∣∣∣∣(2π

αi
−∆i,G

)
−
(

2π

αj
−∆j,G

)∣∣∣∣ = maxi,j |∆i −∆j | . (4.10)

In figure 3, we show contours of ∆ in the (v′,MXY ) plane, assuming rXY = 2 (left) and 1/2

(right). The dot indicates the point where ∆ = 0. In the upper/lower panel, we assume

that the X multiplet generating the up yukawa couplings is 45/54. We fix the X masses

so that the quark yukawa couplings are reproduced for x = 1. In the gray-shaded region,

the Landau pole of the SO(10) gauge coupling is less than 10MXY , so that the precision of

gauge coupling unification is spoiled. The blue-shaded region predicts too rapid a proton

decay rate and is excluded by Super Kamiokande [44]. The blue dotted line shows the

sensitivity of Hyper Kamiokande [45].

As x is varied so the required value of MX changes. However, in the case that the

entire SO(10) multiplet is degenerate, an order of magnitude change in MX only changes

∆ by ∼ 1, as this is a two loop effect. The different 3221 irreducible representations, Xa,

within a single SO(10) multiplet receive non-degeneracies of only few 10% or less from

gauge radiative corrections below MXY . However, for successful flavor physics we allow

order unity tree-level splittings between these masses leading to contributions to ∆ of

(4/3)C ln(Ma/Mb), where C is a quadratic Casimir, normalized to 1/2 for a fundamental

representation. Order unity splittings can give ∆ ∼ 1 − 3, depending on the size and

number of the X multiplets.

In appendix B we compute contributions to ∆ from scalar multiplets that break SO(10).

∆ is typically smaller than 1 if 45 is the only such multiplet, while 54 and 210 multiplets

allow for ∆ of a few and 10, respectively.

Higher dimensional interactions between the SO(10) symmetry breaking field and two

field strengths of SO(10) gauge fields in general split the gauge coupling constants at the

unification scale. Assuming a suppression scale of the reduced Planck mass, splittings from
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Figure 3. Determination of v′ and MXY in the 3221 theory from gauge coupling unification alone.

The left (right) panels are for differing values of the unified gauge threshold corrections, and the

contours show the effects of unified threshold corrections from scalars and fermions. The upper

(lower) panels have the top yukawa coupling generated from the exchange of a 45 (54) X state.

a dimension five operator typically give ∆ ' 10 for a unification scale of 1017 GeV. In

theories with CP symmetry at the unification scale, which solve the strong CP problem,

the dimension five operator is forbidden, and the splittings from a dimension six operator

typically give ∆ ' 1. At lower values of the unification scale these values of ∆ are reduced.

4.2 SU(4)× SU(2)× SU(2)

We match the SM gauge coupling constants to those of the 422 theory at the W ′ mass,

2π

α3(mW ′)
=

2π

α4(mW ′)
+

7

2
ln
g4

g2
− 1

6
, mW ′ =

g2√
2
v′,

2π

α1(mW ′)
=

(
2

5

)
2π

α4(mW ′)
+

(
3

5

)
2π

α2(mW ′)
+

28

5
ln
g4

g2
− 7

15
. (4.11)
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Figure 4. Determination of v′ and MXY in the 422 theory from gauge coupling unification alone.

Contours of threshold corrections from scalars and fermions at the scale v′ (∆422) and at the scale

MXY (∆10) are shown in red and black.

Since the values of α4 and α2 are known, the successful embedding of U(1)Y into the Pati-

Salam gauge group fixes the scale v′. To take into account a possible threshold correction,

we define

∆422 ≡
2π

α1(mW ′)
− 2

5

2π

α3(mW ′)
− 3

5

2π

α2(mW ′)
− 21

5
ln
g4

g2
+

2

5
. (4.12)

The RGE equation of the SU(4) × SU(2)× SU(2) gauge coupling constants is [43]

d

dlnµ

(
2π
α2
2π
α4

)
=

(
8
3

10

)
+

(
−37

6 −75
4

−15
2

117
4

)(
α2
2π
α4
2π

)
. (4.13)

Here we only show the contribution from the gauge bosons, the SM fermions, H and H ′.

The contribution from the X states is shown in appendix A.

We match the 422 gauge couplings at the mass, MXY , of the XY gauge boson, which

is the only heavy gauge boson. The threshold corrections at MXY are

2π

α2(MXY )
=

2π

α10(MXY )
− 1 + ∆2 ≡ 2π

α10(MXY )
+ ∆2,G + ∆2,

2π

α4(MXY )
=

2π

α10(MXY )
− 2

3
+ ∆4 ≡ 2π

α10(MXY )
+ ∆4,G + ∆4, (4.14)

where ∆4,2 denote possible threshold corrections from scalars and fermions. For each MXY ,

we quantify the required value of the threshold correction by

∆10 ≡
(

2π

α4
−∆4,G

)
−
(

2π

α2
−∆2,G

)
= ∆4 −∆2 . (4.15)

In figure 4, we show the contours of ∆422 and ∆10. The parameter point where no threshold

correction is required is already excluded by Super Kamiokande. A threshold correction
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of ∆10 ∼ 10 is necessary to evade the bound from proton decay. We estimate the typical

magnitude of the threshold corrections from the unified scalar multiplets that break SO(10)

belonging to 54 or 210 in appendix B, and show that ∆10 is typically O(1). This is because

of the smallness of the contribution of scalar particles to the renormalization of gauge

couplings. Threshold correction can be large if the theory near the unification scale is non-

minimal; if the unified scale arises from the supersymmetry breaking scale, the threshold

correction can be easily as large as 10.

5 Yukawa couplings

The predictions from Higgs Parity coupling unification are affected by threshold corrections

to λSM(v′). The SM yukawa couplings are generated from the mixing of (q, q̄, `, ¯̀) with the

X states when parity is broken by H ′ = v′. The leading correction to λSM(v′) is expected

to arise from the generation of the top quark yukawa coupling. In this section we discuss

how the SM yukawa couplings arise from the SO(10) unified theory via interactions of (3.3).

We also show that there is a simple understanding of why the b/τ mass ratio deviates from

the simplest expectation from grand unification, as well as why the neutrino masses and

the mixings are not as hierarchical as those of quarks. We also comment on a possible

impact on leptogenesis [46].

The X states arise from 45,54 or 10 representations of SO(10), whose decomposition

into 3221 is shown in table 2. 45 and 54 give up-type yukawa couplings and neutrino

masses, while 10 gives down-type quark and charged lepton yukawa couplings. We do not

consider larger representations as they lead to the gauge couplings blowing-up below the

unification scale. For complex 3221 representations, Q,U and D, we omit their complex

conjugates, Q̄, Ū and D̄ from the table. Non-singlet SU(2)R multiplets are decomposed

into SM multiplets by giving the U(1)Y charge as a subscript; thus Q, which is an SU(2)R
doublet, contains SM multiplets (Q1/6, Q−5/6).

Terms in the Lagrangian of the SO(10) theory that lead to quark and lepton masses are

LSO(10) = (ψ x45,54X45,54)φ†OG +
m45,54

2
X2

45,54OG + (ψ x10X10)φOG +
m10

2
X2

10OG
(5.1)

where ψ(q, `, q̄, ¯̀) and φ ⊃ H,H ′ are both in 16, and OG denotes possible insertions of

fields with SO(10) symmetry breaking vevs. Note ψX54φ
† is not an SO(10) invariant, and

hence requires a non-trivial OG. In the following we analyze the yukawa couplings in the

3221 theory. The discussion for the 422 theory is almost the same, as the 422 symmetry

does not impose relations between the parameters in the 3221 theory except for one case

that we mention below. We study the generation of yukawa couplings in the up, down,

charged lepton and neutrino sectors by integrating out the X states.

5.1 Up-type quark yukawa couplings

The X states for the up-type yukawas couplings are in 45 or 54. For 54, the up yukawa

couplings arise from the interaction and mass term

L54Q = q̄ xQQH
† + q xQQ̄H

′† +mQQQ̄+ h.c. (5.2)
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SO(10) 54

Q S

SU(3) 3 6 8 1 1

SU(2) 2 1 1 3 1

SU(2) 2 1 1 3 1

U(1) −1/3 −2/3 0 0 0

SO(10) 45

Q U TL TR S

SU(3) 3 3 8 1 1 1

SU(2) 2 1 1 3 1 1

SU(2) 2 1 1 1 3 1

U(1) −1/3 2/3 0 0 0 0

SO(10) 10

D ∆

SU(3) 3 1

SU(2) 1 2

SU(2) 1 2

U(1) −1/3 0

Table 2. Decomposition of X states into representations of 3221. For complex representations,

complex conjugations of them are understood.

Note that below the SO(10) breaking scale, the ψ(Q,U, . . .)φ couplings xX and masses mX

are given for each 3221 component of X : (Q,U,D, . . .). We allow these couplings and

masses to deviate from strict SO(10) relations by order unity amounts via OG.

Here and below we neglect flavor mixing, which can be straightforwardly taken into

account, so that xQ and mQ are real parameters referring to a single generation. We show

how the SM up-type yukawa coupling arises in the upper most panel of figure 5. Because

of the non-zero 〈H ′〉, Q1/6 and q mix with each other. The mixings in figure 5 are given by

sX ≡ sin θX =
xXv

′√
m2
X + x2

Xv
′2
. (5.3)

A linear combination of Q1/6 and q obtains a mass
√
m2
Q + x2

Qv
′2, paired with Q̄−1/6. The

orthogonal linear combination of Q1/6 and q becomes a doublet quark of the SM acquiring

a yukawa coupling to q̄−2/3, a right-handed up-type quark, of

yu = xQsQ =
x2
Qv
′√

m2
Q + x2

Qv
′2
. (5.4)

Except for the top yukawa coupling, we expect mQ � xQv
′ to be a good approximation, so

that yu ' x2
Qv
′/mQ for the up and charm quarks. The O(1) top yukawa coupling requires

mQ . xQv
′. Q−5/6 and Q̄5/6 obtain a mass mQ.

When the X states arise from 45, we have

L45QU = q̄ xQQH
† + q xQQ̄H

′† +mQQQ̄+ q xU Ū H
† + q̄ xUU H

′† +mUUŪ + h.c. (5.5)

The fate of QQ̄ and q are the same as for 54. A linear combination of q̄−2/3 and Ū pairs

with U and obtains a mass
√
m2
U + x2

Uv
′2. The orthogonal combination becomes a ū of

the SM, so that the corresponding up-type yukawa coupling is

yu = xQsQcU + xUcQsU =
(x2
QmU + x2

UmQ)v′√
m2
U + x2

Uv
′2
√
m2
Q + x2

Qv
′2
. (5.6)

Small up and charm yukawa couplings are explained by mQ,U � xQ,Uv
′ or mQ,U � xQ,Uv

′.
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Figure 5. The generation of SM fermion masses. The mixing angles are defined so that they vanish

in the limit mX � xXv
′, sX = xXv

′/
√
m2
X + x2Xv

′2.

5.2 Down-type quark yukawa coupling

The X states for down-type quark yukawa couplings are in 10 of SO(10), as larger repre-

sentations result in non-perturbative gauge couplings. Yukawa couplings arise from

L10D = q xDD̄ H + q̄ xDDH
′ +mDDD̄ + h.c. (5.7)

A linear combination of q̄1/3 and D̄ obtains a mass
√
m2
D + x2

Dv
′2, paired with D. The

orthogonal linear combination is the SM right-handed down quark. The SM down-type

yukawa coupling is

yd = xDcQsD =
x2
Dv
′√

m2
D + x2

Dv
′2

mQ√
m2
Q + x2

Qv
′2
. (5.8)

5.3 Charged lepton yukawa couplings

The X states for charged lepton yukawa couplings are also in 10 of SO(10), and the yukawa

couplings arise from

L10∆ = ¯̀x∆∆H + ` x∆∆H ′ +
1

2
m∆∆2 + h.c. (5.9)

A linear combination of ∆−1/2 and ` obtains a mass
√
m2

∆ + x2
∆v
′2, paired with ∆1/2. The

orthogonal linear combination is the SM lepton doublet.
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The SM charged lepton yukawa couplings depend on whether the X states for the

up-type quark is 54 or 45. If it is 54, ¯̀
1 is the SM right-handed charged lepton. If it is

45, we need to take into account the following interaction,

L45T = ` xTTLH
† + ¯̀xTTRH

′† +
1

2
mTT

2
L +

1

2
mTT

2
R + h.c. (5.10)

A linear combination of ¯̀
1 and TR,1 obtains a mass

√
m2
T + x2

T v
′2, paired with TR,−1. The

orthogonal linear combination is the SM right-handed charged lepton. The SM charged

lepton yukawa coupling is

ye = x∆s∆ ×
{

1

cT
=

x2
∆v
′√

m2
∆ + x2

∆v
′2
×

1 : X54

mT√
m2

T +x2
T v
′2

: X45
. (5.11)

5.4 Neutrino masses and mixing

If the X states of up-type quarks are 54, neutrino masses may arise from the interactions

and mass term,

L54S = ` xSS H
† + ¯̀xSS H

′† +
1

2
mSS

2 + h.c. (5.12)

In the 422 theory mS = mU and xS =
√

3/2xU . At tree-level, only one linear combination

of ν and N , which is predominantly N , obtains a mass, and the SM neutrino remains

massless. However, since lepton and chiral symmetries are broken by mS , there is no

symmetry forbidding the seesaw operator (`H†)2 at the bottom of figure 5 which should

arise from quantum corrections. Taking into account mixing between ` and ∆−1/2, the

neutrino mass is

mν ∼
1

16π2

x2
Sv

2

mS
c2

∆ =
1

16π2

x2
Sv

2

mS

m2
∆

m2
∆ + x2

∆v
′2 . (5.13)

If the X states of up-type quarks are 45, the neutrino mass arises from eq. (5.10), where

the exchange of TL generates the operators (`H†)2,

mν =
x2
T v

2

mT

m2
∆

m2
∆ + x2

∆v
′2 . (5.14)

Next we consider aspects of flavor mixing. Although the same SO(10) states, X45,54,

contribute to both up-type quark and neutrino masses, the lack of mass hierarchies and

large mixing angles of neutrinos compared with up-type quarks can be understood. As-

suming m∆ � x∆v
′ only for the third generation, the neutrino mass matrix is given by

mν ∼
(

1

16π2

)
54

v2

v′

1
1
c∆3

 yu

1
1
c∆3

 , c∆3 =
m∆3√

m2
∆3

+ x2
∆3
v′2
� 1 (5.15)
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where the factor of 1/16π2 applies only for X54. With c∆3 = O(10−2), the neutrino mass

matrix is not near-diagonal nor hierarchical, except for the (1, 1) component. Thus, in

Higgs Parity Unification we are able to derive an order-of-magnitude mass relation

mν2,3 ∼
(

1

16π2

)
54

v

v′
mc (5.16)

which is successful since the Higgs mass and coupling unification require v′ = 1010−12 GeV.

The small up quark mass arises from the (1, 1) component of (5.15), so that the lightest

neutrino is much lighter than the other two neutrinos, giving a normal hierarchy with

mν1

mν2,3

∼ mu

mc
. (5.17)

Because of the suppression of the neutrino mass by c∆3 , for a given mass mS,T the

couplings xS,T are larger than expected from the usual see-saw relation mν ∼ x2
S,T v

2/mS,T .

We expect that the lepton asymmetry produced by decays of S and T is enhanced, reducing

the minimal reheating temperature for successful leptogenesis, whether thermal [47, 48] or

non-thermal [49].

5.5 A simple SO(10) theory of flavor

The following renormalizable SO(10) model can economically describe all quark and lepton

masses

L = ψ16 x45X45 φ
†
16 +

1

2
X45(m45 + h45Σ)X45

+ ψ16 x10X10 φ16 +
1

2
X10(m10 + h10Σ)X10 + h.c. . (5.18)

Here we introduce three generations of fermions, ψ16, X45 and X10, with generation indices

understood. The Higgs H and H ′ are embedded into φ16. Σ is an SO(10) symmetry

breaking field, and x, m and h are constants. Since Σ does not appear in the above

yukawa interactions, this model predicts xQ = xU = xT = 2/
√

3xS and xD = x∆ at

the SO(10) scale. However, while mass parameters mX are not necessarily unified, we

assume that differing 3221 multiplets in the same X representation have masses that are

not hierarchically different from each other (e.g. mD ≈ m∆).

Despite the unification of xX , and departures from unification of mX by only O(1)

amounts, the neutrino masses and mixings can be obtained via c∆3 = O(10−2), as explained

in the previous sub-section. This requires that both s∆3 and sD3 are very close to unity,

and hence yb = xDcQ and yτ = x∆cT . Thus mb/mτ differs from that predicted in minimal

SU(5) unification schemes by cQ/cT , which arises from an O(1) difference between mQ and

mT . The ratios md/me and ms/mµ can also be explained by mD/m∆ ratios at the SO(10)

scale that are not far from unity.

The strong CP problem is solved by Left-Right symmetry including space-time parity.

Above the SO(10) breaking scale, the symmetry of the theory is SO(10) × CP . This

symmetry is broken down to Left-Right symmetry with space-time parity by the VEV of a

field that is both Left-Right and CP odd. The CP symmetry requires that x10,45 and m10,45
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are real in a certain field basis. When Σ is made from an odd number of the Left-Right

and CP odd fields, the couplings h10,45 are pure-imaginary, explaining the CKM phase.

In fact, one can check that the imaginary part can appear in any components of the SM

yukawa couplings by expanding them in h around the diagonal components of x and mX .

Ref. [18] shows that the quantum corrections to the strong CP phase arise at two-loop

level. The corrections are shown to be below the current limit from the neutron electric

dipole moment under the assumption that the couplings x are O(1) and mX are above v′.

This assumption is not valid for the (3, 3) components of xD ∼ yb and mD ∼ 10−2ybv
′.

As a result, the suppression of the corrections found in [18] is not guaranteed, and the

corrections may be as large as 10−6. We expect that the corrections are suppressed by an

appropriate flavor structure of x and mX , which we leave to future work.

5.6 The bottom-tau mass ratio and xQ

If the top quark mass is generated by X54, then the bottom quark but not the tau, receives

a suppression from the up-type quark yukawa sector; thus from eqs. (5.8) and (5.11) yb =

cQxDsD while yτ = x∆s∆. Assuming xD = x∆ at the unification scale, as well as c∆,D � 1

to obtain the neutrino masses and mixing, we find yb/yτ = cQ at the unified scale, which

is renormalized to
yb
yτ

(mZ) = 2.1
mQ√

m2
Q + x2

Qv
′2
. (5.19)

To obtain the observed ratio of 1.6, we need

xQ ' 1.5 yt. (5.20)

If the top quark mass is generated by X45, the tau yukawa coupling may be also

suppressed by cT < 1. To obtain the bottom/tau ratio, mT > mQ is required. Unless

mT ' mQ, we may neglect the suppression of the tau yukawa coupling. Assuming xD = x∆

at the unification scale as well as c∆,D � 1, the observed value of mb/mτ then requires

xQ ' 1.01 yt (5.21)

where we assume xQ ' xU and mQ ' mU .

The values of xQ from (5.20) and (5.21) are used to evaluate the top quark threshold

correction to λSM(v′) in section 6.

6 Prediction for the scale of parity breaking

In section 2, we showed that the SM Higgs quartic coupling essentially vanishes at tree level

at the Higgs Parity symmetry breaking scale, v′. In this section, we compute threshold

corrections to the Higgs quartic coupling and derive v′ in terms of SM parameters.

6.1 Threshold corrections to the SM quartic coupling

The tree-level scalar potential is

Vtree =λ
(
|H|2 + |H ′|2

)2
+ λ′|H|2|H ′|2 −m2(|H|2 + |H ′|2). (6.1)

After taking into account quantum corrections, the coupling λ′(v′) becomes non-zero.
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6.1.1 Threshold correction from charged gauge bosons

The one-loop Coleman-Weinberg (CW) potential [50] from W and W ′ bosons is

V1−loop = c|H|4 ln
|H|
M

+ c|H ′|4 ln
|H ′|
M

, c ≡ 3

64π2
g4, (6.2)

where M is an arbitrary scale. A change of M can be absorbed by a change of λ. The vev

of H ′ satisfies

m2 = 2λv′
2

(
1 +

c

4λ
+

c

2λ
ln
v′2

M2

)
(6.3)

After integrating out H ′, the potential for H, to leading order in c and λ′, is given by

V (H) ' v′2
(
λ′ − c

2
− c ln

v′2

M2

)
|H|2 +

(
−λ′ + 3

4
c+ c ln

v′2

M2
+ c ln

|H|
v′

)
|H|4. (6.4)

To obtain the electroweak scale much smaller than v′ requires λ′ ' c/2+2c ln(v′/M), giving

V (H)/|H|4 ' c

4
(1 + 4 ln

|H|
v′

). (6.5)

We match this potential to the one-loop CW potential of the SM from the W boson,

VSM(H)/|H|4 =λSM(µ) +
3

128π2
g4

(
ln
g2|H|2/2

µ2
− 3

2

)
,

where we take the MS scheme. By matching VSM(H) to V (H) with µ = v′, we obtain

λSM,W (v′) ' 3

64π2
g4 ln

e

g/
√

2
. (6.6)

To suppress higher order corrections, the coupling g should be evaluated around v′.

6.1.2 Threshold correction from neutral gauge bosons

The threshold correction from Z and Z ′ bosons can be estimated in a similar manner.

After integrating out H ′ and fine-tuning for the electroweak scale, the Higgs potential is

V (H)/|H|4 ' 3(g2 + g′2)2

512π2

(
1 + 4 ln

|H|
v′
− 2ln

g4

g4 − g′4
)
. (6.7)

The one-loop CW potential of the SM from the Z boson is

VSM(H)/|H|4 =λSM(µ) +
3

256π2
(g2 + g′

2
)2

(
ln

(g2 + g′2)|H|2/2
µ2

− 3

2

)
. (6.8)

Matching these results at v′ gives the threshold correction

λSM,Z(v′) ' 3

256π2
(g2 + g′

2
)2

(
ln

e2

(g2 + g′2)/2
− ln

g4

g4 − g′4
)
. (6.9)

– 18 –



J
H
E
P
1
1
(
2
0
1
9
)
0
3
3

6.1.3 Threshold correction from top quarks

The threshold correction from top quarks is model-dependent. Let us first consider the

case where the X state for the top quark is 54, where the relevant interaction is shown in

eq. (5.2). The mass squareds of the six mass eigenstates are

0,m2
Q,m

2
Q + x2

Q|H|2,m2
Q + x2

Q|H ′|2,
1

2

(
m2
Q + x2

Q|H|2 + x2
Q|H ′|2 ±

√(
m2
Q + x2

Q|H|2 + x2
Q|H ′|2

)2
+ 4x4

Q|H|2|H ′|2
)
. (6.10)

With a similar computation to the gauge contribution, we find that

V (H)/|H|4 ' − 3

32π2
y4
t

(
1 + 4 ln

|H|
v′

+ 4f54

(
xQ
yt

))
, (6.11)

f54(r) = r4 − ln r2 +

(
r6 − r4

2

)
ln

(
1− 1

r2

)
. (6.12)

The one-loop CW potential of the SM from the top quark is

VSM(H)/|H|4 =λSM(µ)− 3

16π2
y4
t

(
ln
y2
t |H|2
µ2

− 3

2

)
, (6.13)

and matching these potentials yields the threshold correction

λSM,t54(v′) ' − 3

8π2
y4
t

(
ln
e

yt
+ f54

(
xQ
yt

))
. (6.14)

Note that the threshold correction logarithmically diverges as xQ → yt i.e. mQ � xQv
′

because, for mQ � xQv
′, there is an additional particle below the scale v′ coupling to the

SM Higgs.

We next consider the case where the X state for the top quark is 45, where the relevant

interactions are shown in eq. (5.5). We only consider the case xU ' xQ and mU ' mQ,

giving the top yukawa coupling

yt =
2x2

QmQv
′

m2
Q + x2

Qv
′2 (6.15)

which can be solved for

mQ '
x2
Qv
′

yt

(
1±

√
1− y2

t

x2
Q

)
. (6.16)

We find the threshold correction

λSM,t45±(v′) ' − 3

8π2
y4
t

(
ln
e

yt
+ f45±

(
xQ
yt

))
, (6.17)

where the functions f45± are given by

f45±(r) =
5

12
+ r4 + r4

(
−1

2
+ 2r2 ± 2r

√
r2−1

)
ln
r ±
√
r2−1

2r
− 1

2
ln
(

2r3(r ±
√
r2−1)

)
.

(6.18)

Here ± correspond to ± in eq. (6.16). The function f45(r) nearly vanishes around r = 1.
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6.1.4 Threshold correction from other fermions

The threshold correction from other charged fermions are expected to be negligibly small

because the corresponding mX � v′ or x� 1. An exceptional case arises if the up/charm

yukawas, arise from X45, and yu,c � 1 follows from mX � xv′ while x = O(1). We do not

consider such a case.

The threshold correction from the neutrino that is in the same 16 as the top quark

can be large since x ∼ 1 and mX ∼ v′. If the X state for the top quark is 54, the yukawa

coupling of H and H ′ to ` and ¯̀ are of the form (5.12), which is SU(4) symmetric. The

threshold correction to λSM(v′) vanishes at one-loop level. If the X state for the top quark

is 45, the yukawa coupling is of the form

xTH
†`TL +

1

2
mTT

2
L + xTH

′† ¯̀TR +
1

2
mTT

2
R (6.19)

giving the threshold correction

λSM,ν45(v′) =
x4
T

128π2
f45ν

(
mT

xT v′

)
,

f45ν(r) =− 4
(
6r2 + 11

)
r2 + 2

− 2
(
4r2 + 1

)
ln 2− 2

(
12r2 + 5

)
ln r2

+ 8
(
2r2 + 1

)
ln
(
r2 + 1

)
+
r
(
r2 + 1

) (
4r2 + 9

)
ln r

2+
√
r2+2r+1

r2−
√
r2+2r+1

(r2 + 2)3/2
. (6.20)

We find this correction to be negligible unless mT � xT v
′, which requires mT � mQ,U

and is disfavored from the bottom-tau ratio.

6.1.5 Threshold correction from colored Higgses in the 422 theory

In the 422 theory, colored Higgs have masses around the scale v′, and contribute to the

threshold correction to λSM(v′). We denote the (4,2,1) and (4̄,1,2) Higgses, in which

the SM Higgs and its partner are embedded, as Φa
α and Φ′a,α′ , respectively. Here a, α, α′

are the SU(4), SU(2)L, SU(2)R indices, respectively. The SU(4)× SU(2)L× SU(2)R×PLR
invariant potential is given in general by

V =−m2
(
|Φ|2 + |Φ′|2

)
+
λ

2

(
|Φ|4 + |Φ′|4

)
+ y|Φ|2|Φ′|2

+
k

2

(
Φa
αΦbαΦ∗aβΦ∗βb + Φ

′a
α′Φ

′bα′Φ
′∗
aβ′Φ

′∗β′
b

)
+

(
l

2
Φa
αΦbαΦ

′β′
a Φ′bβ′ + h.c.

)
+ gΦa

αΦ∗αb Φ′aβ′Φ
′∗β′ , (6.21)

where |Φ|2 ≡ ΦaαΦ∗aα. The threshold correction is given by [18]

λSM(v′) =
1

64π2
|l|2 fc

(
g

|l| ,
k

|l|

)
, (6.22)

fc(x, y) =
(1− (x− y)2)2

6(x− y)3

(
2 (x− y) + (x+ y) ln

y

x

)
. (6.23)

– 20 –



J
H
E
P
1
1
(
2
0
1
9
)
0
3
3

The function fc is always negative and is typically O(1). As long as |`|, g, k are less than 1,

this contribution is subdominant. If |`|, g, k are larger than unity, which leads to strongly

coupled Higgses at higher energy scales, this contribution can be large and predicts larger

top quark masses. We assume weakly coupled Higgs bosons and neglect the threshold

correction from the colored Higgses.

6.2 Top quark mass, QCD coupling and the Higgs Parity breaking scale

Let us first clarify the top quark mass we use in this paper. We use the pole top quark

mass mt, from which we compute the MS top yukawa coupling via [15]

yt(mt) = 0.93690 + 0.00556
( mt

GeV
− 173.34

)
− 0.00042

αs(mZ)− 0.1184

0.0007
, (6.24)

where the NNNLO QCD quantum correction is included. The conversion necessarily in-

volves an uncertainty due to the non-perturbative nature of QCD [51–53]. To go beyond

the precision limited by this uncertainty, which is expected to be as large as the QCD

scale, the top quark mass shown in this paper should be understood as a quantity defined

by eq. (6.24). Also, the pole mass measured using hadronic final states suffers from the

uncertainty of soft QCD processes including hadronization [54]. We nevertheless show the

value suggested in [55], mt = 173.0± 0.4 GeV, as a guide.

We compute the running of the SM Higgs quartic coupling following [15]. In figure 6

we show the prediction for the Higgs Parity breaking scale v′ as a function of the top quark

mass for various values of the QCD coupling constant and choices of the X states. In the

left panels, we take xQ = 1. Here f = 0 is a reference point where the contribution to

the threshold correction shown by f45,54 is suppressed. For a given top quark mass, the

prediction for v′ is smaller than the one for f = 0, since f45,54 . 0. We find that this is

also the case for X45 with generic (xQ, xU ,mU ,mQ). Thus, for a given v′, which is fixed

by successful unification, we obtain an upper bound on the top quark mass.

We can make a sharper prediction by assuming bottom-tau unification discussed in

section 5.6. In the right panels, we take the value of xQ to reproduce the bottom/tau ratio.

The predictions for X45 are indistinguishable from the one for f = 0. Here it is assumed

that mQ = mU . We find that this is still the case for mU . mQ, while for mU > mQ the

result approaches that of X54. The prediction for X54 differs from f = 0, but not by as

much as when xQ = 1. For this case of the simplest successful b/τ result, for a given v′ we

have two predictions for the top quark mass, which differ from each other by 0.6-1 GeV.

7 Precise unification and SM parameters

In section 4 we used gauge coupling unification to predict the unified mass scale MXY

and the Higgs Parity breaking scale v′ in terms of unified threshold corrections from gauge

particles, rXY , and from scalars and fermions, ∆, as shown in figures 3 and 4. In section 6,

v′ was predicted by evolution of the SM quartic, including threshold corrections from this

Higgs Parity breaking scale that are sensitive to the top quark coupling xQ, as shown in

figure 6. By combining these results from sections 4 and 6, which both depend on whether
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Figure 6. The prediction of v′, from running of the SM quartic, as a function of mt with the three

rows showing different values of αs. Dotted lines assume λSM(v′) = 0. Solid lines show that the

dependence of v′ on the X states of the top quark is large for xQ = 1 (left panels), but is reduced

when mb/mτ is imposed (right panels), which also significantly raises the v′ prediction.

the X state for the top quark mass is a 45 or 54, we are finally ready to discuss the

correlation among SM parameters discussed in the introduction.

7.1 SU(3)× SU(2)× SU(2)×U(1)

In figure 7, the predicted correlation between mt and αs(mZ) is shown, for xQ chosen to

fix mb/mτ . In the left panel, regions with ∆ < 1 or 3 are shaded, which is reasonable if the

SO(10) Higgses are 45 or 54. For a given theory, (mt, αs) is predicted with uncertainties of

δmt = 0.1 GeV ×∆,

δαs ' 0.0003×∆. (7.1)

The 2σ range of mt and αs(mZ) [55] is shown by a dotted box.
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Figure 7. Predicted correlation between the top quark mass mt and the QCD coupling αs(mZ) in

three 3221 models (left panel); with MXY constrained (right panel). The dot and the dotted box

show the central value and the 2σ range of the observed values, respectively.
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αs (mZ)=0.1181

Figure 8. The dependence of the predicted top quark mass mt on xQ in the 3221 theory.

Note that, with xQ fixed by mb/mτ , a top mass from X45 gives f ' 0. Since f < 0 for

X54 and rXY ≤ 2 for any breaking to 3221 via SO(10) Higgs of 45,54,210, the prediction

labelled as X45, rXY = 2 can be understood as a model-independent upper bound on the

top quark mass. For example, if αs(mZ) = 0.1181, assuming ∆ < 3, the top quark mass

must be below 173.6 GeV. The sensitivity of the prediction on mt to the value of xQ is

shown in figure 8 for X45 and rXY = 2. The prediction on mt decreases by 0.3 GeV if xQ
is larger than the one to fix mb/mτ by more than few 10%.

The running of the gauge and quartic couplings for the experimental central value of

(αs,mt) is shown in figure 1, assuming X45, rXY = 2 and xQ fixing mb/mτ . The global

picture of the correlation shown in figure 2 also assumes the same setup, although the

picture looks similar for other choices of the X states, rXY and xQ.

In the right panel of figure 7, we fix the XY gauge boson mass to be 1016 GeV, which

would be suggested if proton decay is observed by Hyper-K. A large value for ∆ is then

needed for unification, and the widths of the shaded bands result from requiring ∆ < 10.

The top quark mass must be below 172.8 GeV for αs(mZ) = 0.1181. If proton decay is

observed by Hyper-K and the top quark mass is found to be near this bound, we can infer

that the bottom-tau ratio is fixed by xQ and SO(10) symmetry is broken by a 45 VEV.
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Figure 9. Predicted correlation between the top quark mass mt and the QCD coupling αs(mZ)

in the 422 theory. The dot and the dotted box show the central value and the 2σ range of the

observed values, respectively.

7.2 SU(4)× SU(2)× SU(2)

In the 422 theory, the embedding of the U(1)Y coupling into the SU(4)×SU(2)R couplings

is non-trivial. In the minimal theory, the threshold correction ∆422 only arises from the

colored Higgs,

∆422 =
2

5
ln
mhQ

mW ′
, (7.2)

where mhQ is the mass of the colored Higgs whose gauge quantum number is the same as

that of the SM quark doublet. The magnitude of this correction is less than 1, unless the

parameters of the Higgs potential are fine-tuned to make the colored Higgs much lighter

than W ′. A contribution to ∆422 may also arise from the mass splitting of X states. As

long as x and mX preserve approximate grand unified relations, this contribution is also

small. One may wonder whether the hierarchy of mX � xv′ leads to a large threshold

correction. This is not the case since the VEV of H ′ breaks SO(10) only to SU(5).

For ∆422 = 0, v′ ' 1.3 × 1014 GeV is required. In figure 9, the predicted correlation

between mt and αs(mZ) is shown, for xQ chosen to fix mb/mτ . Note that, for this choice

of xQ, a top mass from X45 gives f ' 0. Since f . 0, the prediction labelled as X45

can be understood as a model-independent upper bound on the top quark mass. The top

quark mass/QCD coupling constant is predicted to be significantly smaller/larger than the

central value.

8 Discussion

Higgs Parity accounts for a remarkable coincidence: the scale at which the SM quartic

coupling vanishes is close to the scale of Left-Right symmetry breaking required for gauge

coupling unification in SO(10), as illustrated in figure 1. In this paper we have explored

in detail the precision of this coincidence, which we frame in terms of a correlation of the

measured values of the top quark mass and the QCD coupling.

Taking the intermediate gauge symmetry to be 3221, the global picture of this corre-

lation is shown in the right panel of figure 2, and the fine detail close to the experimental
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values is shown in the left panel of figure 7. This correlation is indeed remarkable, and

appears at least as precise as the correlation of the QCD coupling with the weak mix-

ing angle in supersymmetric unification. The constraint on the 3221 breaking scale from

gauge coupling unification alone is shown in figure 3, and is roughly v′ ' (1010-1012) GeV.

This should be compared with the constraint on v′ from running the SM quartic coupling,

shown in figure 6, which is significantly affected by the threshold effect from a coupling xQ
of the top quark sector. If this parameter is the dominant effect reconciling mb/mτ with

unified yukawa couplings, then this constraint on v′ is sharpened. Matching the values of

v′ from gauge coupling unification and SM quartic running, and allowing typical threshold

corrections in simple models of SO(10) breaking, then yields a successful prediction at high

precision: αs to 1%, or mt to 0.2%, as illustrated in the left panel of figure 7.

The precision may be reduced in more complicated models, or if large SO(10) breaking

effects enter the spectrum or couplings of the X states that generate yukawa couplings.

However, as experimental uncertainties on αs and mt are reduced, evidence may accu-

mulate for a particular simple version of Higgs Parity unification. For example, future

measurements leading to the blue region of the left panel of figure 7 would provide evi-

dence for a simple model with: SO(10) broken via a 45 to 3221, small unified corrections

from scalars and fermions, X45 exchange generating the top yukawa coupling, and mb/mτ

resulting from mixing of states between this X45 and the third generation matter 16.

The dominant sensitivity to αs in this correlation arises from the determination of v′

from the running of the quartic, not from the determination of v′ from gauge coupling

unification. This implies that the sensitivity of the prediction for αs to the grand unified

thresholds, ∆i, as shown by the widths of the shadings in the left panel of figure 7, is

about an order of magnitude less in Higgs Parity unification than in conventional grand

unification.

Taking the intermediate gauge symmetry to be 422 leads to a much larger value for

v′ from gauge coupling unification: v′>∼ 4 × 1013 GeV, even allowing quite large unified

threshold corrections, as shown in figure 4. To match the value of v′ from running of the

SM quartic coupling then favors xQ values that successfully determine mb/mτ , but only

for large values of αs and small values of mt, as shown in figure 9.

In the 3221 theory with minimal content for the SO(10) breaking Higgs, the unifica-

tion scale is above 1016 GeV and the proton lifetime is predicted to be above the current

constraint, as shown in the left panels of figure 3. An observation of proton decay at fu-

ture experiments would require large threshold corrections at the unification scale, ∆>∼ 10,

and/or non-minimal SO(10) breaking. In both cases, a larger v′ and hence a smaller top

quark mass is favored, as illustrated in the right panel of figure 7.

In the 422 theory, threshold corrections at the unification scale from SO(10) breaking

Higgses give ∆ ∼ O(1). As figure 4 shows, the theory predicts the unification scale around

1015 GeV and hence too short a proton lifetime. The unification scale can be raised to

1016 GeV by large threshold corrections, ∆ > 10, which requires a rich structure around the

unification scale such as SO(10) symmetry breaking induced by supersymmetry breaking.

The observed flavor structure of the SM may arise from an SO(10) unified theory, as

suggested in eq. (5.18). Although we have not performed precise fits to the SM fermion
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masses, it would be interesting to do so and to investigate relations between the flavor

observables. The model appears to predict a neutrino mass matrix proportional to the up

quark mass matrix. However, this is avoided because of mixing between the third generation

16 and 45/54 fermions at the scale v′. The theory of eq. (5.18) predicts mν1.2 ∼ (v/v′)mu,c,

while the prediction is smaller by a factor of (1/16π2) if X45 is replaced by X54; both cases

give a normal neutrino mass hierarchy. To obtain realistic neutrino masses requires v′ =

(1010-1013) GeV, which coincides with the scale required from gauge coupling unification

and the vanishing SM quartic coupling. Because of the suppression, the yukawa coupling

of the right-handed neutrinos responsible for the see-saw mechanism is larger than naively

expected from the see-saw relation, increasing the efficiency of leptogenesis and allowing

lower reheat temperatures than usual.

In conventional SO(10) theories, the amount of fine tuning for symmetry breaking in-

creases as the intermediate scale is reduced below the unification scale. However, with Higgs

Parity the amount of fine tuning is independent of the intermediate scale, and corresponds

to the usual cost of keeping the weak scale below the cutoff.
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A Contributions of X states to beta functions

In this appendix we give the contributions of the X states to the beta functions of the

gauge couplings at two-loop level. We define the coefficient of the beta function by

d

dlnµ


2π
α1
2π
α2
2π
α3

 =

b1b2
b3

 ,
d

dlnµ

(
2π
α2
2π
α4

)
=

(
b2
b4

)
. (A.1)

The contributions of each X multiplet to the coefficients bi of the 3221 theory are

X10 :

b1b2
b3

 =

−2
3

−2
3

−2
3

+

−1
9 0 −8

9

0 −29
6 0

−1
6 0 −19

3


α1

2π
α2
2π
α3
2π

 , (A.2)

X45 :

b1b2
b3

 =

−16
3

−16
3

−16
3

+

−10
3 −3 −32

3

−1 −119
3 −8

−4
3 −6 −167

3


α1

2π
α2
2π
α3
2π

 , (A.3)

X54 :

b1b2
b3

 =

−8

−8

−8

+

−38
9 −3 −208

9

−1 −131
3 −8

−4 −6 −91


α1

2π
α2
2π
α3
2π

 , (A.4)
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and for the coefficients b2,4 of the 422 theory are

X10 :

(
b2
b4

)
=

(
−2

3

−2
3

)
+

(
−29

6 0

0 −55
6

)(
α2
2π
α4
2π

)
, (A.5)

X45 :

(
b2
b4

)
=

(
−16

3

−16
3

)
+

(
−119

3 −15

−6 −238
3

)(
α2
2π
α4
2π

)
, (A.6)

X54 :

(
b2
b4

)
=

(
−8

−8

)
+

(
−73 −15

−6 −221
2

)(
α2
2π
α4
2π

)
. (A.7)

B Threshold corrections from SO(10) breaking scalars

In this appendix we derive the threshold corrections to the gauge coupling unification from

scalar multiplets that spontaneously break SO(10).

B.1 SU(3)× SU(2)× SU(2)×U(1)

The smallest representation which can break SO(10) down to 3221 is 45. This case is partic-

ularly interesting as the strong CP problem is solved by assigning an odd CP parity to 45.

The decomposition of 45 into non-trivial 3221 representations, and the contribution of each

of these to the beta functions, is summarized in table 3. The representations (3, 2, 2,−1/3)

and (3, 1, 1, 2/3) are would-be Nambu-Goldstone bosons. The threshold corrections to the

gauge couplings are

2π

α3(MXY )
=

2π

α10(MXY )
− 1

2
ln
m(8,1,1)

MXY
+ ∆3,G (B.1)

2π

α2(MXY )
=

2π

α10(MXY )
− 1

3
ln
m(1,3,1)

MXY
+ ∆2,G (B.2)

2π

α1(MXY )
=

2π

α10(MXY )
+ ∆1,G. (B.3)

The contributions of 45 to ∆ij = ∆i −∆j are

∆32 = −1

2
ln
m(8,1,1)

MXY
+

1

3
ln
m(1,3,1)

MXY
, ∆31 = −1

2
ln
m(8,1,1)

MXY
, ∆21 = −1

3
ln
m(1,3,1)

MXY
. (B.4)

As shown in [56–59], after choosing the parameters of the potential to avoid tachyonic

directions, m8,1,1 = m1,3,1 = 0. Their masses are given by quantum corrections, taking

natural values of about MXY /10. Even with this hierarchy, ∆ij are only ≈ 1.

We also consider 54 whose decomposition is shown in table 3. Although 54 can break

SO(10) down only to 422, its presence allows all components of 45 to have positive mass

squared at tree-level [60]. There are two (8, 1, 1) representations, from 45 and 54, which mix

with each other, and we call the mass eigenstates as (8, 1, 1)1,2. The threshold corrections
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SO(10) 45

SU(3) 3 3 8 1 1

SU(2) 2 1 1 3 1

SU(2) 2 1 1 1 3

U(1) −1/3 2/3 0 0 0

−b3 2/3 1/6 1/2 0

−b2 1 0 0 1/3

−b1 2/3 2/3 0 0

SO(10) 54

SU(3) 3 6 8 1

SU(2) 2 1 1 3

SU(2) 2 1 1 3

U(1) −1/3 −2/3 0 0

−b3 2/3 5/6 1/2 0

−b2 1 0 0 1

−b1 2/3 4/3 0 0

SO(10) 210

SU(3) 3 3 8 1 1 3 3 8 8 6 3 1

SU(2) 2 1 1 3 1 3 1 3 1 2 2 2

SU(2) 2 1 1 1 3 1 3 1 3 2 2 2

U(1) −1/3 2/3 0 0 0 2/3 2/3 0 0 1/3 −1/3 -1

−b3 2/3 1/6 1/2 0 1 3 10/3 2/3 0

−b2 1 0 0 1/3 2 8/3 2 1 1/3

−b1 2/3 2/3 0 0 4 0 4/3 2/3 2

Table 3. Decomposition of 45, 54 and 210 into representations of 3221. For complex representa-

tions, complex conjugations of them are understood.

from 45 and 54 are

∆32

∆31

∆21

 =

−1
2 −1

2
1
3

1
3 −5

6 1

−1
2 −1

2 0 0 1
2 0

0 0 −1
3 −1

3
4
3 −1




ln
m(8,1,1)1
MXY

ln
m(8,1,1)2
MXY

ln
m(1,3,1)

MXY

ln
m(3,2,2)

MXY

ln
m(6,1,1)

MXY

ln
m(1,3,3)

MXY


. (B.5)

Here (3, 2, 2) is in general a linear combination of those from 45 and 54 which is physical,

while the other linear combination is a would-be Nambu-Goldstone boson.

With O(1) mass splittings, these threshold corrections can be O(1). With mass split-

tings of O(10), ∆ can be O(10); however such scalar mass hierarchies require fine-tuning

of parameters.

We conclude that, in a theory with the strong CP problem solved by Higgs Parity,

unified threshold corrections to gauge couplings are typically O(1). However, threshold

corrections can be large if the theory is non-minimal or the mass spectrum is fine-tuned,

or if significant SO(10) breaking feeds into the spectrum of X states.

The next smallest representation is 210, whose decomposition is shown in table 3.

This representation breaks SO(10) down to 3221 without breaking the LR symmetry CLR,

which is required to maintain Higgs Parity if CP symmetry is not imposed on the theory;

see eq. (4.1). One of two (3, 2, 2,−1/3) representations as well as (3, 1, 1, 2/3) representation
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SO(10) 54

SU(4) 6 20′ 1

SU(2) 2 1 3

SU(2) 2 1 3

−b4 2/3 4/3 0

−b2 1 0 1

SO(10) 210

SU(4) 6 15 15 15 10

SU(2) 2 1 3 1 2

SU(2) 2 1 1 3 2

−b4 2/3 2/3 4 4

−b2 1 0 5 10/3

Table 4. Decomposition of 54 and 210 into representations of 422. For complex representations,

complex conjugations of them are understood.

are would-be Nambu-Goldstone bosons. The contribution of 210 to ∆ij is

∆32

∆31

∆21

 =

−1
2

1
3 1 −1

3 −4
3

1
3

1
3

−1
2 0 3 −3 −2 0 2

0 −1
3 2 −8

3 −2
3 −1

3
5
3





ln
m(8,1,1)

MXY

ln
m(1,3,1)

MXY

ln
m(3,3,1)

MXY

ln
m(8,3,1)

MXY

ln
m(6,2,2)

MXY

ln
m(3,2,2)

MXY

ln
m(1,2,2)

MXY


. (B.6)

Depending on the mass spectrum, ∆ may be as large as 10 even if the mass splittings are

of O(1).

B.2 SU(4)× SU(2)× SU(2)

The smallest representation which can break SO(10) down to 422 is 54. The decomposition

of 54 into the 422 representations and the contribution of each to the beta functions are

summarized in table 4. The threshold corrections to the gauge couplings are

2π

α2(MXY )
=

2π

α10(MXY )
− ln

m(1,3,3)

MXY
+ ∆2,G

2π

α4(MXY )
=

2π

α10(MXY )
− 4

3
ln
m(20′,1,1)

MXY
+ ∆4,G. (B.7)

Hence, the contribution of 54 to ∆10 is

∆10,54 =
2

3
ln
m(1,3,3)

MXY
− 4

3
ln
m(20′,1,1)

MXY
, (B.8)

which is a few at most, even if the mass splitting is O(10).

The next smallest representation for breaking to 422 is 210, whose decomposition is

shown in table 4. The strong CP problem is solved by assigning an odd CP parity to 210.

The contribution of 210 to ∆10 is

∆10,210 =
1

3
ln

m3
(15,3,1)MXY

m2
(15,1,1)m

2
(10,2,2)

= ln
m(15,3,1)

MXY
− 2

3
ln
m(15,1,1)

MXY
− 2

3
ln
m(10,2,2)

MXY
(B.9)

which is at most a few, even if the mass splitting is O(10).
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