
 

What does inflation say about dark energy given
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We discuss the relations between swampland conjectures and observational constraints on both inflation
and dark energy. Using the requirement j∇Vj ≥ cV, with c as a universal constant whose value can be
derived from inflation, there may be no observable distinction between constant and nonconstant models of
dark energy. However, the latest modification of the above conjecture, which utilizes the second derivative
of the potential, opens up the opportunity for observations to determine if the dark energy equation of state
deviates from that of a cosmological constant. We also comment on the observability of tensor fluctuations
despite the conjecture that field excursions are smaller than the Planck scale.
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I. INTRODUCTION

The discovery of the accelerating expansion of the
Universe [1,2] was a huge surprise to the community.
Because gravity only pulls, it should hinder the expansion
of the Universe after the big bang, and hence the expansion
should decelerate. Acceleration implies that there is a
substance in the Universe that pushes the expansion. It
was dubbed dark energy. The most discussed candidate for
dark energy is the cosmological constant Λ, a finite energy
density of the vacuum, due to the simple way it can be
implemented into cosmological models based on general
relativity. However, despite being consistent with data [3],
the 120 orders of magnitude difference between the
observed vacuum energy density (ρ ≈ ðmeVÞ4) and the
naive theoretical expectation (ρ ≈M4

Pl) still remains
the most challenging problem in modern physics [4].

Since dark energy and the cosmological constant prob-
lem inevitably involve quantum gravity, string theory, as a
theory of quantum gravity, should address these topics. The
attempts to construct de Sitter solutions (spacetime sol-
utions to general relativity with a positive Λ) in string
theory [5–7] have led to the notion of the string landscape.

The landscape consists of an enormous number of vacua,
each described by different low-energy effective field
theories (EFTs) of different fields and parameters. String
theory therefore supports the anthropic argument [8],
namely, that the value of the observed dark energy density
is what it is because otherwise human civilization could not
exist. If we really live in a (meta)stable vacuum in the string
landscape where a constant vacuum energy explains
dark energy, then there is no point in measuring the dark
energy equation-of-state parameter w ¼ p=ρ, where p and
ρ are the pressure and energy density of the dark energy,
respectively.
String theory seems to lead to many possible low-energy

EFTs, so conversely one can ask what criteria a given
low-energy EFT should satisfy in order to be contained in
the string landscape. For the last decade, several criteria of
this kind, dubbed swampland conjectures, have been
proposed [9–11]. These can have important cosmological
implications. For instance, one of the relatively well-
established conjectures is the distance swampland conjec-
ture [10,12–24], which implies that scalar fields in a
low-energy EFT of a consistent theory of quantum gravity
cannot have field excursions much larger than the Planck
scale since otherwise an infinite tower of states becomes
exponentially light and the validity of the EFT breaks
down. In other words, one has the constraint [25]

Δϕ≲ αMPl; α ≈Oð1Þ: ð1Þ

In the context of inflation, field excursions are related to
the tensor-to-scalar ratio r by the Lyth bound [26],
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Δϕ
MPl

≃
ffiffiffi
r
8

r
N ð2Þ

whereN is the number of e-folds of inflationary expansion.
Clearly the distance conjecture, Eq. (1), limits the possibility
of measuring tensor modes and hence primordial B-modes
in the cosmic microwave background (CMB). Naively, with
N ≳ 50, we find r≲ 0.003, which is on the edge of
observability for future experiments [27,28].
The attempts to construct de Sitter solutions or infla-

tionary models in string theory [7,29–39] have sparked
discussions on various issues with such constructions, as
well as no-go theorems [40–65]. Motivated by the obstruc-
tions encountered in various attempts, the de Sitter swamp-
land conjecture was proposed [66], which states that the
scalar potential of a low-energy limit of quantum gravity
must satisfy

MPlj∇Vj ≥ cV; c ≈Oð1Þ > 0 ð3Þ

where ∇ denotes the gradient with respect to the field
space, and the norm of the gradient is defined by the metric
on field space. Whether the conjecture holds true is still an
open debate [67–87]. Yet, even before the debate is settled,
it is interesting and important to investigate both its
consequences in cosmology and potential modifications
or extensions [88–124]. The primary implication of this
condition is that the observed positive energy density of our
Universe should correspond to the potential of a rolling
quintessence field rather than a positive Λ [125]. The fact
that one can easily embed any quintessence model into
supergravity [126,127] in a rather simple fashion, despite
the fact that supersymmetry breaking generically spoils the
flatness of the quintessence potential, is also encouraging.
This raises the hope that w ≠ −1 might be detected.
The de Sitter conjecture forbids (meta)stable vacua

with positive energy density, so it is not surprising that
the inflationary paradigm has apparent conflicts with the
conjecture and one may call for a paradigm shift. None-
theless, one can also adopt a conservative approach and
regard the conjecture as a parametric constraint where the
inequality holds but the number c may not be strictly Oð1Þ
[99]. From this perspective, constraints on inflation can
then be used to constrain c.
However, if we follow this route, the optimism that one

can observe w ≠ −1 is greatly diminished. To see this,
recall that in single-field slow-roll inflation, the slow-roll
parameters of the potential are defined as

ϵV ≡M2
Pl

2

�
V 0

V

�
2

; ηV ≡M2
Pl
V 00

V
; ð4Þ

where the primes denote derivatives with respect to
the inflaton. The distance conjecture limits the inflaton
field excursion Δϕ ≈

ffiffiffiffiffiffiffiffi
2ϵV

p
N ≲Oð1Þ, and therefore the

necessary number of e-folds N ≈ 50 forces c≲ ffiffiffiffiffiffiffiffi
2ϵV

p ≲
N −1 ∼ 0.02. On the other hand, the number c in Eq. (3) is
meant to be universal in a given EFT. Therefore, the current
accelerating expansion must involve a quintessence field Q
whose potential VQ must satisfy

1þ w ¼ 2ðV 0
QÞ2

ðV 0
QÞ2 þ 6V2

Q
>

2c2

6þ c2
≡ Δ≳ 1.33 × 10−4: ð5Þ

Although this does not exclude observable quintessence,
given the fact that so far almost all observations are
consistent with a cosmological constant, such a small
lower bound on a possible deviation of w from −1 makes
it questionable if it is worthwhile to push the sensitivity of
the observations further. We may never know whether the
Universe is de Sitter or quintessence.
However, the original de Sitter conjecture, Eq. (3), was

so strong that even the Higgs potential was in tension with
it [98]. The conjecture was also in tension with the well-
understood supersymmetric AdS solutions [81]. Recently
the refined de Sitter swampland conjecture was proposed
[101,128], which states that the scalar potential of a low-
energy theory that can be consistently coupled to quantum
gravity should satisfy either

MPlj∇Vj ≥ cV; c ≈Oð1Þ > 0; ð6Þ

or

M2
Pl minð∇i∇jVÞ ≤ −c0V; c0 ≈Oð1Þ > 0; ð7Þ

where min(…) denotes the minimum eigenvalue of the
Hessian ∇i∇jV in an orthonormal frame of the scalar field
space. With this refinement, the aforementioned conflicts
with the Higgs potential and the SUSY AdS solutions are
resolved. The refined conjecture also raises new possibil-
ities for inflation. In particular, one can evade the strict
bound on c arising from the distance conjecture by having
the scalar potential satisfy the second condition, Eq. (7), of
the new conjecture during part (or all) of inflation. As such,
one may regain the hope that observable time-varying
dark energy with w ≠ −1 can be obtained. See also [129]
for a recent discussion on w considering the refined dS
conjecture.

II. SINGLE-FIELD SLOW-ROLL
INFLATION MODELS

Due to the above tension between the de Sitter conjecture
and the requirements of inflation, we assume that the
inflaton potential switches from one de Sitter condition
to another as the inflaton rolls, an idea also utilized in [117].
To be specific, we take the following step-function
approach to keep the discussion general and simple: we
apply the first condition, Eq. (6), for the initial N 1 e-folds
and apply the second condition, Eq. (7), for the remaining
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N 2 ¼ N tot −N 1 e-folds. In our analysis we setN tot ¼ 50.
We assume ϵV and ηV are approximately constant for each
interval so that we have

ffiffiffiffiffiffiffiffiffi
2ϵð1ÞV

q
≥ c and ηð2ÞV ≤ −c0: ð8Þ

Additionally, Eq. (1) requires that

ffiffiffiffiffiffiffiffiffi
2ϵð1ÞV

q
N 1 þ

ffiffiffiffiffiffiffiffiffi
2ϵð2ÞV

q
N 2 ≤ α ∼Oð1Þ: ð9Þ

To maximize c, we assume ϵð2ÞV < 10−4 so that the con-
tribution of the second era to Eq. (1) is negligible.
Combining Eqs. (8) and (9), we have

c <
α −

ffiffiffiffiffiffiffiffiffi
2ϵð2ÞV

q
N 2

N 1

: ð10Þ

We can also obtain a bound for c0 from the spectral tilt
ns ¼ 1–2ϵ − η, where the Hubble slow-roll parameters are

ϵ ¼ −
_H
H2

; η ¼ _ϵ

Hϵ
: ð11Þ

For single-field inflation models, these are related to the
slow-roll parameters of the potential as ϵV ¼ ϵ and
ηV ¼ 2ϵ − 1

2
η. Therefore, we can constrain ηV and hence

the second parameter of the refined de Sitter conjecture as

c0 <
1

2
ð1 − nsðkÞ − 6ϵð2ÞV Þ; ð12Þ

where we allow for a k-dependent spectral tilt. Since we

assume ϵð2ÞV is small, our bounds simplify to

ðc0; cÞ <
�
1 − nsðkÞ

2
;
α

N 1

�
: ð13Þ

Equation (13) is valid until N 1 ¼ N tot, at which point the
derivation on the bound of c0 above no longer applies, and
the only constraint one finds is that c < α=N tot. To
proceed, we utilize the Planck analysis based on TT, TE,
EE, lowE, lensing and BAO [3], which gives

dns=d ln k ¼ −0.0041� 0.0067; ð14Þ

ns ¼ 0.9659� 0.0040; ð15Þ

at k� ¼ 0.05 Mpc−1. We add errors in quadrature, ignoring
correlations, and use

nsðkÞ ¼ 0.9659 − 0.0041 ln
k
k�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0.0040Þ2 þ

�
0.0067 ln

k
k�

�
2

s
: ð16Þ

A smaller ns allows for larger c0 in Eq. (13), so we take
the 1σ allowed lower end in order to place our bounds. The
weak correlation between ns and dns=d ln k we see in
Fig. 26 of [3] actually works in our favor, and ignoring the
correlation is therefore the more conservative approach
(i.e., it gives a smaller allowed range) [130]. Using the
simple relationship N 1 ¼ ln ðk=a0H0Þ, where a0 is the
present scale factor and H0 is the present Hubble scale, we
can constrain the swampland parameters in single-field
inflation as shown in Fig. 1. The current CMB constraints
on the spectral index and its running are limited to
N 1 ≲ 10. This range is denoted by the solid lines in
Fig. 1. Beyond this there are no strong observational
constraints, and we extend our analysis by extrapolating
Eq. (16) to N 1 ≥ 10 shown by the dashed lines in Fig. 1.
The unshaded regions indicate values of ðc0; cÞ that satisfy
the above inequalities. The vertical asymptotes correspond
to satisfying Eq. (7) for the entirety of the inflationary
epoch, N 1 ¼ 0, so that c is left completely arbitrary but c0
has a strict upper bound that is much less than the Oð1Þ
expectation. The horizontal dotted lines correspond to

FIG. 1. Bounds on swampland parameters for generic single-
field inflation models at the 1σ level assuming the running of ns
can be extended toN tot ¼ 50 e-folds. The unshaded region is the
allowed parameter space. The solid lines are for N 1 ≤ 10, the
dashed lines are for 10 < N 1 < 50, and the horizontal dotted
lines correspond to N 1 ¼ 50; i.e. the first constraint, Eq. (6),
applies to the whole inflationary period. The values of c excluded
by [131] are shaded in grey. We use the distance conjecture with
Δϕ ≤ αMPl and display the minimum values for 1þ w ≥ Δ with
black dashed lines. With the original de Sitter conjecture, c has to
be below the dotted horizontal lines, but there are no constraints
on c0.
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satisfying the first constraint, Eq. (6), for all of inflation,
N 2 ¼ 0, which leaves c0 arbitrary but severely limits c. The
horizontal black dashed lines indicate the lowest values of c
that yield the given Δ defined in Eq. (5) as the lower bound
on 1þ w from the constraint, Eq. (6). Finally, the grey
region excludes values of c that may satisfy Eq. (13),
depending on the value of α, but conflicts with the
constraint r0.002 < 0.064 [131], as r ¼ 16ϵ ≥ 8c2. The grey
excluded region has a left vertical boundary since the
constraint applies only to k > 0.002 Mpc−1.
We also comment on the observability of the tensor

mode r. The swampland distance conjecture, Eq. (1),
combined with the Lyth bound, Eq. (2), is normally
believed to disfavor observably large r, assuming α ≈ 1.
The best sensitivity anticipated in the future is r ∼ 10−3

[27,28]. There is a parameter region in Fig. 1 where r ≥
rmin ≡ 8c2 is close to the current observational bound.
Physically this is because, in our spirit of a step function
approximation, we can allow for a brief initial period, say
N 0 ∼ 4, where the upper bound on ϵ from the distance
conjecture, ϵ≲N −2

0 =2 ∼ 0.03, is relaxed. Thus, it is
possible to have r large enough to saturate the observational
bound at low l. This is encouraging, especially for space-
borne CMB B-mode experiments such as LiteBIRD [28].

III. MULTIFIELD SLOW-ROLL
INFLATION MODELS

The constraints discussed above are due to the tight
relations between ns, ϵV , ηV , and r in single-field slow-roll
inflation models. It is natural to ask whether the constraints
can be relaxed in multifield models. In our analysis below,
we take the conservative assumption that the swampland
distance conjecture applies to the proper length of the
trajectory, instead of the geodesic distance between the
starting and ending points in the field space.
We discuss here a class of multifield models where

directions orthogonal to the slow-roll direction are massive,
M ≳H. The inflaton therefore rolls near the bottom of the
valley, which has “bends” in the multidimensional field
space. The main difference here is that the local angular
velocities of the inflaton around the bends can modify the
effective sound speed cs of fluctuations. As a result, we
have the modified relation [132]

12ηV ¼ ðc−2s −1ÞM
2

H2
þ2

M2

H2
þ3ð4ϵ−ηÞ

−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M2

H2
−
3

2
ð4ϵ−ηÞ

�
2

þ9ðc−2s −1ÞM
2

H2

s
: ð17Þ

Here, ηV is the minimum eigenvalue of the Hessian, M is
the effective mass of the field orthogonal to the slow-roll
direction, and cs is given by

c−2s ¼ 1þ 4Ω2

M2
; ð18Þ

whereΩ is the local angular velocity describing the bend of
the inflaton trajectory in the potential. Note that in the limit
Ω → 0, the sound speed reduces to unity and ηV to the
expression of the single-field models. Allowing for a
significant deviation of cs from unity relaxes the constraints
on ðc; c0Þ, as shown in Fig. 2, where we set M ¼ H. This
allows for larger values of c and c0 compared to the single-
field case, which are preferred by the swampland con-
jecture. Note that lowering the sound speed further will not
achieve Oð1Þ values for c0 because our scenario relies on
having negative ηV . As cs is reduced from unity, ηV initially
becomes more negative and widens the allowed parameter
space. Beyond some critical value cs ≈ 0.3, further reduc-
tion of cs makes ηV less negative, thereby narrowing the
allowed parameter space. For cs ≲ 0.2, ηV becomes positive
and our analysis no longer holds. Empirically, we find that
cs ∼ 0.24 maximizes the allowed parameter region in the
ðc0; cÞ plane. The grey shaded regions again correspond to
experimental constraints on r ¼ 16ϵcs, but their area is
greatly reduced as cs decreases.
It is also interesting to note that we expect primordial

equilateral and orthogonal non-Gaussianities once cs ≠ 1
in this class of models [132],

fequilNL ¼ −ðc−2s − 1Þð0.275þ 0.078c2sÞ; ð19Þ

FIG. 2. Bounds on swampland parameters for generic multi-
field inflation models. We take α ¼ 1 andM ¼ H. Here, cs is the
sound speed for fluctuations, and the rest is the same as in Fig. 1.
With the original de Sitter conjecture, Eq. (3), and single-field
slow-roll models, c has to be below the red dot-dashed
horizontal line.
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forthoNL ¼ ðc−2s − 1Þð0.0159 − 0.0167c2sÞ: ð20Þ

Here we have ignored the third order parameter. The current
observational constraint on the sound speed is cs ≥ 0.024
[see Eq. (89) of [133] ], which is an order of magnitude
below the limit we can reach in our setup, as shown in
Fig. 2. Future observations combining CMB lensing,
galaxy and 21 cm surveys, Lyman α forest, etc., have
the potential to improve the constraint on fNL by an order
of magnitude or more [134].

IV. IMPLICATIONS FOR DARK ENERGY

The de Sitter conjecture states that constants c and c0 are
universal and should apply to all sectors in a given EFT.
Therefore, we can use inflationary physics to get a handle
on the values of c and c0 and apply this knowledge to the
quintessence potential VQ. When this argument is applied
to single-field inflation models with conjectures Eqs. (3)
and (1), one deduces that there may be little hope in finding
w ≠ −1 due to the small lower bound seen in Eq. (5). This
depressing outlook is drastically changed in light of
Eqs. (6) and (7), as Fig. 1 illustrates. We see that the
refined de Sitter conjecture has allowed for the possibility
of having Δ bounded from below such that it must be larger
than a few percent and should be observable to experi-
ments. Current and future experiments, such as DES [135],
HSC [136], DESI [137], PFS [138], LSST [139], Euclid
[140], and WFIRST [141], are aiming for an accuracy of
about a percent in w. The cost for this is that c0 must be
much lower than the Oð1Þ expectation of [101,128] in the
single-field case. This seems to indicate that single-field
inflation falls more in line with the modified de Sitter
conjecture discussed in [92], where the smallest Hessian
eigenvalue needs to only be negative when j∇Vj < cV.
This state of affairs is altered by considering multifield

inflation models. Not only could Δ be forced to be as large

as several percent, it is also possible to have both c and c0
approximately Oð1Þ as long as the sound speed is low
enough, as seen in Fig. 2. In either the single-field or
multifield scenario, a better theoretical understanding of the
magnitude of c0 is essential to understand the consistency of
the swampland conjectures and inflation.

V. CONCLUSIONS

In this paper, we studied the consequences of the latest
swampland conjecture on inflation and dark energy. The
original de Sitter conjecture raised the hope that measuring
the dark energy equation of state wwould be promising but
simultaneously dashed that hope since the consistency with
single-field inflation suggests that the deviation from
w ¼ −1 would likely be unobservable. As we have shown,
this situation is much more encouraging with the refined de
Sitter conjecture. Not only could w ≠ −1 be observable
even with a single-field inflationary scenario, but tensor
modes could be as well. If one considers multifield infla-
tionary scenarios, then the prospect for observing
w ≠ −1 is better, and one gains improved agreement with
the swampland conjectures.
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