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The dark matter density distribution in small-scale astrophysical objects may indicate that dark matter is
self-interacting, while observations from clusters of galaxies suggest that the corresponding cross section
depends on the velocity. Using a model-independent approach, we show that resonant self-interacting dark
matter can naturally explain such a behavior. In contrast to what is often assumed, this does not require a
light mediator. We present explicit realizations of this mechanism and discuss the corresponding
astrophysical constraints.
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Dark matter (DM) makes up more than 80% of the matter
in the Universe today and played a crucial role in forming
stars, galaxies, and hence us. Yet its nature is unknown.
Currently, the best pieces of information come from astro-
physical observations. N-body simulations of collisionless
DMpredict astrophysical haloswithDMdensity following a
universal profile that scales as ρ ∝ r−3 in its outskirts but
exhibits a central cusp, ρ ∝ r−β, with β ≃ 1, referred to as the
Navarro-Frenk-White (NFW) profile [1–3]. Nevertheless,
many studies show hints of a DM mass deficit in the inner
regions of certain halos. Notably, observations indicate that
numerous dwarf galaxies [4–6] and some low-surface-
brightness spiral galaxies [7–9] have a shallower central
DM density, better described by a core of constant density,
i.e., by β ≃ 0. This is known as the core-vs-cusp problem.
Although it is more pressing in small-scale objects, shal-
lower DM density profiles—with a slope of β ≃ 0.5—have
been reported for certain galaxy clusters [10,11]. More-
over, the DM mass deficit also manifests itself in halos
that are less dense than what simulations suggest if they host
the galaxies that we observe. This is the too-big-to-fail
problem, observed for the subhalos of the Milky Way [12],
Andromeda [13], and the Local Group [14].
Several explanations for these discrepancies have been

discussed in the literature. The systematic uncertainties
introduced in deriving DM distributions from observations
of luminous objects are one of them. Most importantly, the

motions of HI gas and stars may not be faithful tracers of
the DM circular velocity [15–28]. Baryonic processes are
another conceivable explanation for the discrepancies, since
the aforementioned simulations include only collisionless
DM. Solutions along this line include supernova-driven
baryonic winds [29–32], DM heating due to star formation
[33], and infalling baryonic clumps [34–37] as well as active
galactic nuclei or black holes [38]. Nonetheless, there is no
consensus on why systematic uncertainties or baryonic
processes lead to a seemingly universal mass deficit at
various scales.
A more exciting possibility consists of considering

DM collisions in the inner regions of astrophysical objects
[39]. This is known as self-interacting dark matter (SIDM).
N-body simulations [40–45] confirm that DM scattering
processes indeed reduce the central density of DM halos,
providing a solution to both problems [46]. For a recent
review, see [51].
The observed mass deficit is more appreciable in small-

scale halos, where the DM velocity dispersion is relatively
low. Therefore, a self-scattering cross section that decreases
with the DM velocity can better fit observations [52],
although a constant cross section is certainly not excluded
due to the large uncertainties mentioned above. A long-
range force induced by a light boson interacting with DM
is often invoked to obtain a velocity-dependent cross
section [39,53]. Other possibilities that do not involve a
light mediator include exothermic inelastic scatterings
[54,55] and self-heating DM [56–58].
The essence of this work is to discuss the resonant self-

interaction of DM (RSIDM) as another mechanism for
achieving the desired velocity dependence of SIDM. Such a
resonant behavior was first discussed for DM annihilation
in Refs. [59–69] and applied to DM self-scattering in
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specific scenarios [70–73]. Nevertheless, the velocity
dependence of resonant self-scattering and its general
astrophysical consequences have not been explored in
detail. In this Letter, we do so in a model-independent
way and show that resonant scattering is able to address
the observed DM mass deficit at all astrophysical scales.
Concrete DM scenarios and indirect searches are dis-
cussed later.
Resonant scattering in DM halos.—Numerous studies

claim that the density distribution of certain DM halos does
not follow a NFW profile in the inner region. In the SIDM
hypothesis, this is due to DM collisions that thermalize the
DM particles in such a region, thereby reducing its average
density [39]. Hence, the inner profile is closely related to
the velocity-averaged scattering cross section per unit of
DM mass, hσvi=m, where [74]

hσvi ¼
Z

vmax

0

fðv; v0Þσvdv; fðv; v0Þ ¼
4v2e−v

2=v2
0ffiffiffi

π
p

v30
:

ð1Þ

Here, v is the relative velocity, which we assume to follow a
Maxwell-Boltzmann distribution truncated at the escape
velocity vmax of the corresponding halo. v0 is a parameter
related to the average relative velocity via hvi ≃ 2v0=

ffiffiffi
π

p
.

Notice that in dwarf galaxies hvi ∼ 20 km=s, whereas in
clusters of galaxies hvi ∼ 2000 km=s.
A semianalytical method has been proposed in Ref. [52]

to infer the value of hσvi=m for a given DM halo from
observational data. The method was applied to five clusters
from Ref. [11], seven low-surface-brightness spiral galaxies
in Ref. [75], and six dwarf galaxies of The HI Nearby
Galaxy Survey sample [76] (also see [77,78]). Figure 1
shows their results in green, blue, and red, respectively. The
values presented here are for illustrative purpose and should
be taken with caution due to the large uncertainties in
extracting the cross sections from kinematical data. See,
e.g., [79] for a recent study. Nonetheless, at face value, the

figure demonstrates that a cross section independent of the
velocity—the ones corresponding to the diagonal lines—
can hardly accommodate all points. Notice that the values
of σ=m at cluster scales are in agreement with observations
from the Bullet Cluster giving σ=m≲ 1.3 cm2=g [80,81],
which is one of the strongest constraints on DM self-
interactions.
Barring the uncertainties, the figure suggests that the

cross section depends on hvi. In this Letter, we propose that
this is due to RSIDM. This takes place when there exists
an intermediate particle, denoted as R, so that the total
self-scattering cross section can be cast as a sum of a
constant piece, σ0, plus a Breit-Wigner resonance [82].
More explicitly, for nonrelativistic DM,

σ ¼ σ0 þ
4πS

mEðvÞ
ΓðvÞ2=4

½EðvÞ − EðvRÞ�2 þ ΓðvÞ2=4 ; ð2Þ

where the total kinetic energy and symmetry factor read,
respectively,

EðvÞ ¼ 1

2

m
2
v2 and S ¼ 2JR þ 1

ð2JDM þ 1Þ2 : ð3Þ

Here, JR and JDM are the spins of the resonance and the
DM particles, respectively.m=2 is the reduced mass. If DM
has internal degrees of freedom other than its spin, they
must be accounted for in S. The collision hits the resonance
when v ¼ vR and, hence, EðvRÞ ¼ mR − 2m.
In addition, the width in Eq. (2) can be calculated in

terms of the resonance self-energy by means of ΓðvÞ ¼
ImΣðvÞ=mR. This, as well as the denominator in Eq. (2),
assumes that the total width is dominated by the process
R → DM DM. Besides that, Eq. (2) is completely general,
as it directly follows from unitarity considerations of the
scattering matrix [83]. In perturbative theories, the running
width can be written as

FIG. 1. RSIDM cross section per unit of mass as a function of the velocity. Best-fit curves to the data [52] for S-wave (left) and P-wave
scatterings (right). The latter is also the best-fit curve for L > 1 after rescaling the mass with Eq. (9). Here m̃ ¼ mS−1=3. See the text for
details.
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ΓðvÞ ¼ mRγv2Lþ1: ð4Þ

Here, L is the orbital angular momentum, ΓðvRÞ is the
decay rate, and a constant γ ≲Oð1Þ characterizes the
coupling between the resonance and DM. The factor
v2Lþ1 accounts for the phase space and possible angular
momentum suppression. Then we find hσvi ¼ σ0hviþ
256πSILðγ; vR; v0Þ=m2, where a dimensionless

ILðγ; vR; v0Þ≡
Z

vmax

0

γ2fðv; v0Þv4Lþ1dv

ðv2 − v2RÞ2 þ 16γ2v2ð2Lþ1Þ ð5Þ

determines the nontrivial velocity dependence of the
resonant self-scattering. For S-wave and P-wave scatter-
ings, we calculate the best-fit parameter sets S1, S2, and P1
based on the inferred data from Ref. [52] and show them in
Fig. 1 [84]. σ0=m is fitted with the other parameters for S1
and P1, while for S2 a negligible σ0=m ≪ 0.1 cm2=g is
taken as a prior. They all lead to χ2=d:o:f: ≃ 2, in contrast to
χ2=d:o:f: ≃ 6 for the fit assuming only a constant cross
section (we treat errors as uncorrelated). For S1 and P1,
we show the 95% C.L. contours in Fig. 2. Many comments
are in order.
First, we have numerically checked that a precise knowl-

edge of the escape velocity is not necessary for calculating
IL. This is because Eq. (5) converges quite fast due to the
Boltzmann factor. In fact, exact solutions exist in the limit
vmax ≫ v0, which will be implicitly applied hereafter for
simplicity.
Second, to qualitatively understand Figs. 1 and 2, one

can use the narrow-width approximation (NWA)

1

ðv2 − v2RÞ2 þ 16γ2v2ð2Lþ1Þ →
πδðv − vRÞ
8γv2ðLþ1Þ

R

: ð6Þ

It works very well for L ≥ 1, because γ2v2ð2Lþ1Þ ≪ v4. In
this case, we find that ILðγ; vR; v0Þ scales as γ2v4Lþ1

0 =v4R at
v0 ≪ vR and as γ2v4L−30 at v0 ≫ vR. In both regions, IL

cannot be much larger than one. Therefore, the resonant
effect is negligible except for the intermediate region,
where the NWA captures the velocity dependence as

hσvi
m

����
NWA

¼ σ0hvi
m

þ 128Sπ3=2γv2Lþ1
R

m3v30
e−v

2
R=v

2
0 : ð7Þ

Notice that the peak lies at v0 ∼ vR as illustrated by P1 in
Fig. 1. The corresponding line actually applies to any
L ≥ 1, because the dependence on L can be absorbed
by rescaling m. Using Eq. (7), we find that the best-fit
parameters at 95% C.L. for L ≥ 1 are given by

vR ¼ ½108þ28
−43 � km=s; σ0=m¼ ½0.11þ0.10

−0.05 � cm2=g; ð8Þ

m̃ ¼ ½400þ120
−90 � MeV

�
γ

10−3

�
1=3

�
vR

½3 × 105� km=s

�
2ðL−1Þ=3

:

ð9Þ

Such values for the velocity correspond tomR=m − 2–10−7.
The regions where all this applies are shown in Fig. 2.
For P-wave scattering, demanding γ ≲ 1 leads to
m̃≡mS−1=3 ≲ 5 GeV. Moreover, a perturbative σ0=m
around 0.1 cm2=g requires sub-GeV DM masses unless
S ≫ 1. Interestingly, P1 predicts σ=m ∼ 0.1 cm2=g at
hvi ≪ 100 km=s. In fact, scatterings with L ≥ 1 can realize
small cross sections at very low velocities. Hence, the
recent claim based on Draco observations [28] is consistent
with RSIDM.
As long as vR ≳ 4γ, the NWA also applies for S-wave

scattering. For vR ≪ 4γ, IL is proportional to v0 (to 1=v0)
below (above) vpeak ∼ v2R=ð4γÞ ≪ vR, because such large
values of γ broaden the resonance. S1 and S2 illustrate the
narrow and the broad width cases, respectively.
In conclusion, resonant scattering is able to address the

observed DM mass deficit at all astrophysical scales.
RSIDM models.—Below, we illustrate the previous

model-independent results in concrete RSIDM scenarios.
We first introduce a Lagrangian specifying the coupling
of the DM to the resonance (see Table I) and calculate
the cross section and the self-energy. We subsequently
corroborate that they can be cast as Eqs. (2) and (4) show.
The scenarios are as follows.
(I) Fermionic DM with a pseudoscalar mediator.—The

scattering process is S-wave while σ0 ≃ 0. The correspond-
ing best fit is thus S2. Notice that a light pseudoscalar
mediator does not lead to SIDM, because it induces a

FIG. 2. 95% C.L. contours for S-wave (gray) and P-wave
(purple) scatterings together with the corresponding parameter
sets in Fig. 1. Notice that mR=m − 2 ¼ v2R=4.
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suppressed Yukawa potential (see, e.g., [85]). Because
of this and because it leads to velocity-suppressed direct-
detection rates, this candidate is phenomenologically
interesting.
(II) Dark mesons.—In QCD-like theories, DM can be a

dark pion. Analogous to real pions, it can be a triplet DMi,
with i ¼ 1, 2, 3. If R is a dark σ resonance (IIa), the
scattering takes place via the Swave, where we expect GeV
DM and σ0=m ≪ 100 cm2=g. The best fit is thus S2. If R is
a dark ρ resonance (IIb), the scattering is P-wave sup-
pressed. The constant piece of the cross section is given by
σ0 ∼ πγ2=m2 in the perturbation theory, but it is plausible
that there are other contributions. We therefore leave σ0 as a
free parameter. The corresponding best-fit curve is P1. We
expect m ∼ 400 MeV in this case. In the same fashion,
minimal QCD-like theories can also lead to spin-1 DM
[86]. In all cases, DM can be produced by means of the
strongly interacting massive particle (SIMP) [87–109] and
the freeze-in [110–112] mechanisms.

(III) Tensor resonances.—They also arise in strongly
coupled theories. Despite the potential complications of
such theories, the generality of our approach allows us to
describe the scattering induced by a spin-2 resonance Rμν

[113]. If this couples to the DM energy-momentum tensor
with a cutoff scale Λ, and taking scalar DM as an example,
we find that the corresponding Feynman rules [114] indeed
lead to a D-wave cross section given by Eq. (2). For
m ∼ 10−3Λ, we obtain keV DM with γ ∼ 10−13. The
corresponding best fit is given by P1 in Fig. 1 after
rescaling the mass by means of Eq. (9).
Annihilation vs scattering.—It is not necessary that the

DM annihilates, as, e.g., in models of asymmetric DM.
Nonetheless, if the resonance decays into a pair of standard
model (SM) particles ff̄, in analogy to Eq. (2), the resonant
DM annihilation into ff̄ has a cross section

σanni ≃
4πS

mEðvÞ
ΓðvÞmRγf=4

½EðvÞ − EðvRÞ�2 þ ΓðvÞ2=4 ; ð10Þ

where mRγf is the decay width for R → ff̄. As above, we
assume that the resonance dominantly decays to a pair of
DM particles and, thus, that the contribution of f to the
imaginary part of the resonance self-energy, m2

Rγf, is
subleading. This is different from Ref. [70], in which
the resonance dominantly decays into visible particles.

As expected for annihilations (but not for elastic scatterings),
σanniv ∝ v2L as long as v ≪ vR. Furthermore, for the cases
where NWA applies, hσannivijpeak ∼ 32π2Sγf=ðm2v3RÞ. In
contrast, for broad S-wave resonances such as S2, where
vpeak ≪ vR, hσannivijpeak gets enhanced by another factor
ðvR=vpeakÞ2Lþ1.
The coupling to light charged particles is mostly con-

strained by Fermi-LAT observations of local satellites
[115,116] and the Planck data on the cosmic microwave
background (CMB)[117,118]. For instance, the corre-
sponding Fermi-LAT upper limit on hσvannii for GeV
DM is of the order of 10−26 cm3=s. For S2, this leads to
an upper limit on the branching ratio, γf=ðγvRÞ, of about
10−13–10−12. This bound is much stronger than that of S1
and P1, due to the enhancement factor mentioned above.
Motivated by this, we conservatively fix γf=ðγv2Lþ1

R Þ ¼
10−13 and calculate the annihilation cross section as a
function of hvi for the same parameter sets in Fig. 1. The
result is shown in Fig. 3. Therefore, the resonance can
couple only feebly to light charged particles, which is why
the SIDM candidates with thermal freeze-out from
Ref. [72] are excluded. Of course, this is model dependent.
For instance, if the resonance couples only to neutrinos, the
bound on hσannivi becomes much weaker, and larger γf=γ
are thus allowed.
Furthermore, the strong velocity dependence of hσvannii

suggests that the usual freeze-out can hardly work, as for
SIDM with light mediators decaying into visible particles
[119–122]. Nevertheless, the DM abundance might arise
from other SIDM production mechanisms [112]. Indeed,
for the S-wave case, producing the DM abundance with
small couplings is possible via freeze-in [110,111] or 4-to-2
annihilations [97], where a scalar (vector) resonance can
feebly mix with the Higgs (SM gauge bosons). See
[123,124] for reviews.
Discussion.—We advocate the resonant scattering as a

possible SIDM realization with a velocity-dependent

TABLE I. Benchmark RSIDM models.

Scenario Interaction Lagrangian L JDM JPR S γ

I gRDMγ5DM 0 1
2

0− 1
4

g2=32π
IIa gRDMiDMi 0 0 0þ 1

3
g2=16πm2

R

IIb gϵijkRi
μDMj∂μDMk 1 0 1− 1 g2=384π

III ð1=ΛÞRμνT
μν
DM 2 0 2þ 5 m2

R=30720πΛ2

FIG. 3. Annihilation cross section into a pair of charged
fermions for the parameter sets in Fig. 1, assuming a branching
ratio γf=ðγv2Lþ1

R Þ ¼ 10−13. The horizontal line gives the standard
freeze-out benchmark.
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scattering cross section. Instead of a light mediator, this
RSIDM scenario requires a near-threshold resonance with
mR=m − 2 ranging from ∼10−7 for narrow resonances to
10−2 for S-wave scattering with broad widths. Such
resonances exist in nature. As an example, α particles
resonantly scatter by means of 84Be in exactly the same way
as described above. In fact, these processes were the main
subject of the original article by Breit and Wigner [83], and
they may as well occur in the DM sector. Actually, dark
nucleons as SIDM have been studied in Refs. [73,125].
Furthermore, lattice studies suggest that QCD-like theories
of DM might possess such states [126].

Conclusions.—We find that this RSIDM hypothesis can
certainly address the core-vs-cusp and the too-to-big-fail
problems while still being in agreement with cluster
observations. We have also discussed indirect detection
signatures, which are nevertheless model dependent.
Additionally, we would like to emphasize that usual
SIMPs—which are often said to be disfavored because
their scattering cross section does not vary with velocity—
can easily accommodate the mechanism proposed here.
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