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Abstract

Understanding the mechanical behavior of solids at extremely high strain rates is of great scientific and technical
interest. Current dislocation-based model of plasticity are typically implemented as quasi-static method. Their ap-
plicability to high strain rate condition is limited, because the influence of the elastodynamic stress field at extreme
strain rates on the collective behavior of 3-dimensional (3D) dislocations is not clear, and the time-dependent nature
is very important when the strain rate is higher than 106s−1 (e.g. laser shock loading). To overcome this limitation,
we present here the first computational procedure for 3D discrete dislocation elastodynamics (DDE). A novel com-
putational method is developed for calculations of the fully-resolved elastodynamic field of non-uniformly moving
dislocation loops. The developed method here extends the technique of retarded potentials, which was originally used
to describe the electrodynamics of charged particles moving near the speed of light. Comparison with independent
2D calculations establish the accuracy and convergence of the numerical scheme. It is shown that dislocation loop
motion near the sound speed results in significant restructuring of the emitted elastodynamic fields. New insights
on short-time dislocation interactions during shock loading are also revealed through a study of the forces between
rapidly-moving shear dislocation loops.

Keywords: Dislocation dynamics, elastodynamics, shock loading, high strain rate.
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1. Introduction

The elastic field of dislocations in materials under shock loading is of general interest, both from a fundamental
perspective and in many applications. These encompass a wide range from small scale laser, electron or ion interac-
tion with materials, to the large scale of earthquakes (Gurrutxaga-Lerma et al., 2015a; Luscher et al., 2017; Ni and
Markenscoff, 2016; Yanilkin et al., 2014). Several interesting observations, for example, have been made during the
past few decades, where the elastic field of high-speed dislocations plays a decisive role. In extreme compression
experiments, the launched shock wave nucleates dislocations at its front, with the elastic wave preceding the disloca-
tion nucleation zone. The interaction between the elastic wave and the elasto-dynamic field of dislocations has been
shown to explain the decay of the elastic wave precursor (Gurrutxaga-Lerma et al., 2015a). Superposition of solutions
for dislocations activated by an incident plane wave was used to determine the decay of the wave amplitude (Clifton
and Markenscoff, 1981; Markenscoff and Clifton, 1981).

A fundamental understanding of dynamic plasticity in materials under shock loading is yet to emerge, despite
the many decades of experimental observations and more recent modeling (Shehadeh and Zbib, 2016; Xiong et al.,
2016). One of the main reasons is the difficulty in the precise determination of the elastodynamic stress field of 3D
dislocations. Without this basic ingredient, it is difficult, if not impossible, to explain many observed phenomena of
materials loaded at extreme strain rates. The experimentally observed microstructure is clearly distinguished from
what is seen in materials loaded at low strain rates. For example, copious concentrations of dislocation debris is
often observed at high strain rates (Bringa et al., 2005; Lu et al., 2005), and the exact mechanism is not understood.
Moreover, competition between dislocation-dominated plasticity and a twinning mode of deformation is shown to
lead to a transition at high strain rates (Meyers, 1994; Pang et al., 2018). In addition, micro-shear bands are known to
be favored at high strain rates as a result of dislocation channeling and plastic flow localization (Longère and Dragon,
2015; Meyers, 1994). The intense heating in these zones can lead to premature recrystallization as the strain rate is
increased (Cao et al., 2005). Among all these features, the contribution of the elastodynamic field induced by high
speed dislocations is not clear.

Generally, stress waves emanating from a moving dislocation travel at the transverse/longitudinal sound speed, in
the order of 1 km/s. If the dislocation velocity is also in the order of sound speed, the spatial and temporal structure of
stress waves, to a stationary observer in the material, are expected to be strongly influenced by the moving dislocation
source speed. Consider, for example, the case of laser shock loading where the plastic strain rate ε̇P is well above
106s−1. According to Orowan’s equation ε̇P = ρbv, where ρ is the mobile dislocation density, assumed to be in
the order of 1013m−2, b is the magnitude of Burger’s vector (≈ 0.25 nm), and v is the average dislocation velocity.
Thus, for a strain rate above 2.5 × 106s−1, the dislocation speed is expected to be above 1 km/s. Thus, for such high
strain rates induced by lasers, ions or electrons, the elastodynamic stress field of the dislocation is expected to be
significantly different from its quasi-static counterpart.

Nevertheless, as a result of the complicated equations for fully-resolved elastodynamics, the stress field of high
speed dislocations is generally approximated by their static solution. For such an approximation, the stress field of
a moving dislocation is assumed to instantaneously span the entire domain, regardless of its extent. Dislocations
moving behind a shock front will artificially change the stress field ahead of the front (Pillon and Denoual, 2009).
This is found to trigger spurious dislocation nucleation ahead of the shock front (Gurrutxaga-Lerma et al., 2013),
which is obviously unphysical. This is not surprising since the elastodynamic stress field has been recognized to be
significantly different from the static stress field of dislocations since the mid twentieth century (Eshelby, 1949; Frank,
1949; Lazar, 2013b; Markenscoff and Clifton, 1981; Mura, 1963; Pellegrini and Lazar, 2015). The simplest example
is the field of an infinitely-long screw dislocation with uniform velocity, which exhibits the so called “relativistic”
effect. When the velocity approaches the transverse wave speed, the field behavior is similar to Einstein's theory of
relativity for particles approaching the speed of light (Hirth and Lothe, 1982). The displacement field expression
of the uniformly moving screw dislocation is found to be the same as the static solution, apart from a “Lorentz
contraction”. With the increase of its velocity, the corresponding isostress contours are gradually compressed along
the moving direction. We note here that while the speed of light is an upper limit in the theory of relativity, a supersonic
dislocation can move faster than the transverse wave speed (cT) (Eshelby, 1956; Gumbsch and Gao, 1999; Nosenko
et al., 2007). Lazar et al. derived expressions for the nonsingular subsonic and supersonic solutions of the elastic
fields and the dislocation density tensor for a screw dislocation. Both the dislocation density tensor and the stress
field exhibits a Mach cone for supersonic motion (Lazar, 2009; Lazar and Pellegrini, 2016). As a natural outcome
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of the strongly different stress field map induced by this purely elastodynamic effect, the fundamental dislocation
interaction and their self force under shock loading are expected to behave differently from conventional static case
(Pellegrini, 2014). For example, the interaction force between two coplanar moving screw dislocations decreases with
the increase in their uniform velocity. Recent molecular dynamics simulations demonstrate that when two oppositely
signed, coplanar edge dislocations glide towards one another at speeds close to or exceeding the transverse wave speed,
they may “overshoot” one another, or “rebound” etc, instead of annihilation, because the contribution of the kinetic
energy associated with the high speed dislocation overcomes the effect of the stationary potential energy described by
conventional Frank’s rule (Chu et al., 2012; Li et al., 2016). Obviously, using a static field solution will not be able to
capture these abnormal dynamic effects.

The vast majority of information concerning elastodynamic effects on fundamental dislocation behavior has been
obtained either from experiments (Meyers, 1994; Nosenko et al., 2007), theoretical analysis (Callias et al., 1990; Lazar
and Pellegrini, 2016; Markenscoff, 2010; Meyers, 1994; Pellegrini and Lazar, 2015), or molecular dynamics simula-
tions (Bringa et al., 2006; Chu et al., 2012; Colorado et al., 2013; Gumbsch and Gao, 1999; Jiang et al., 2012; Li et al.,
2016; Seif et al., 2014; Wang and Beyerlein, 2008; Youssef et al., 2013). These pioneering efforts lead to numerous
new insights. However, theoretical studies are mainly limited to simple configurations, while MD calculations are
restricted by the simulation time and spatial scales. Only recently, a concurrent atomistic-continuum methodology
(Xiong et al., 2016) was developed, which quantifies the elastodynamic effects by coarse-graining two dimensional
(2D) atomistic calculations. On the other hand, the elastodynamic stress field has been recently considered in 2D dis-
crete dislocation dynamics (DDD) simulations (Gurrutxaga-Lerma et al., 2013, 2015a; Pellegrini and Lazar, 2015),
which captures the full time- and history-dependent nature of the behavior of pure edge dislocations. However, the
key approximations inherent in 2D techniques do not allow a clear insight into the influence of elastodynamics on
3D-dislocations. This is particularly true when one is interested in the outcome of short-range and long-range in-
teractions between 3D dislocations. Till now, in all the available 3D-DDD methods, the elastodynamic solution is
never directly considered. One main pioneering development is introducing an inertia term in the kinetic equation to
consider energy radiation from an accelerating dislocation (Hu et al., 2017; Liu et al., 2008; Shehadeh et al., 2005;
Shehadeh and Zbib, 2016). Nonetheless, the static dislocation stress solution is widely used. 3D-DDD simulations
based on the full elastodynamics framework have not yet been attempted, which considerably restricts a complete
fundamental understanding of the elastodynamics effects on micro-scale plasticity.

To fill this gap, we develop a new computational method that enables full 3D discrete dislocation elastodynamics
(DDE) computer simulations. The technique we pursue here is based on the retarded-time method, developed within
the framework of classical electrodynamics with the Liénard-Wiechert retarded potentials (Lazar, 2013b). One im-
portant advantage of this approach is that the computational method is consistent with current 3D DDD simulation
codes, and will thus enable their extension to studies of shock physics. To achieve this challenging goal, several issues
must be resolved. First, the elastodynamics solution for the nonuniform motion of 3D dislocations is not complete,
although several important contributions have been made (Lazar and Pellegrini, 2016; Markenscoff and Clifton, 1981;
Mura, 1963) and their elastic distortion solution is given (Lazar, 2013b). Till now, there is no explicit compact for-
mula of the elastodynamics stress field of high speed 3D dislocations with non-uniform motion, which can be directly
used for numerical implementation. Second, the numerical implementation of the fully elastodynamic solution is an
unexplored problem to date in 3D-DDE simulations. For example, an effective method must be proposed to record
and deal with the full history of dislocation motion. The singularity related with the dislocation core and the wave
front must be correctly treated. Finally, one needs to understand computer simulation results, going beyond compli-
cated equations, so as to extract physical insight. To shed light on these questions, we present details of the numerical
method in sections 2-4. Then, in section 5, we aim to apply the developed numerical scheme to several unexplored
interesting problems. A shear dislocation loop is taken as an example to reveal the specific nature and influence of
the temporal evolution of the elastic field on the outcome of subsequent interactions. Concluding remarks are given
in section 6, together with a discussion on potential future efforts that will be enabled by the current development.

2. Elastodynamic Field of Non-uniformly Moving Dislocation Loop

2.1. The 3D Elastodynamic Problem
We derive here the fundamental equations of 3D elastodynamics, with the main objective being the ability to

calculate the elastic field of a non-uniformly moving dislocation loop as a result of its eigendistortion. The derivation
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is an extension of earlier work by Mura (1963), Callias et al. (1990); Markenscoff and Clifton (1981), and Lazar
(2013b). We wish here to obtain a compact formula and establish a numerical way to calculate the elastodyanamic
field. The equilibrium equation is given by:

σi j, j + fi = ρüi (1)

where σ is the stress tensor, f is body force density vector, ρ is material density, and u is displacement vector. (),i
denotes differentiation with respect to xi, and a superposed dot means a time derivative. Assuming that displacement
gradient is split into an elastic distortion βE

i j and a plastic distortion part βP
i j,

ui, j = βE
i j + βP

i j. (2)

Thus, the constitutive relation can be expressed as

σi j = Ci jklβ
E
kl. (3)

where Ci jkl is elastic modulus tensor.
Upon substituting Eq. (2) and Eq. (3) into Eq. (1), we have

Ci jkl(uk,l j − β
P
kl, j) + fi = ρüi, (4a)

(Ci jkl∂l∂ j − ρδik∂t∂t)uk = Ci jklβ
P
kl, j − fi, (4b)

where ∂t means differentiation with respect to time t. We define the differential operator Lik as follows 1:

Lik = Ci jkl∂l∂ j − ρδki∂t∂t. (5)

The dynamic Green tensor Gkm corresponding to Lik meets the following condition:

LikGkm = δimδ(t)δ(x), (6)

where δ() is the Dirac delta function, and δim is the Kronecker delta. x is a position vector of the source point. Thus,
the displacement vector field can be obtained by the spatio-temporal convolution between Gkm and the source term in
Eq. (4b). If one ignores body force f ,

uk = Gkm ∗Cmnpqβ
P
pq,n, (7)

where ∗ represents a convolution integral. Note that Eq. (7) is applicable to unbounded media, and is based on the
assumption of zero initial velocity, which means that βE

i j and βP
i j and their first time derivatives are zero for t0 → −∞

(Anderson, 1992). This zero initial velocity condition assumption includes the case of a dislocation at rest, which
may have started moving at time t0 , −∞, so the initial static field is part of the solution (Callias et al., 1990). Initial
conditions are discussed in section 2.2 in (Lazar and Pellegrini, 2016). Following the Mura-Wills procedure, the
displacement gradient tensor uk,l is therefore,

uk,l = Gkm ∗Cmnpqβ
P
pq,nl = CmnpqGkm,n ∗ (βP

pl,q + εrqlαpr) = CmnpqGkm,nq ∗ β
P
pl + CmnpqGkm,n ∗ (εrqlαpr)

= (Lmp + ρδmp∂t∂t)Gkm ∗ β
P
pl + CmnpqεrqlGkm,n ∗ αpr = βP

kl + ρĠkp ∗ β̇
P
pl + CmnpqεrqlGkm,n ∗ αpr,

(8)

where αpr = εrhsβ
P
ph,s. According to Eq. (8) and Eq. (2), it is easy to find an expression for the elastic distortion,

βE
kl = ρĠkp ∗ β̇

P
pl + CmnpqεrqlGkm,n ∗ αpr. (9)

1Expressions in previous work mainly contain a negative sign. Here, we write the expression to be directly consistent with the static case. Note
that this treatment also leads to a different sign of the Green tensor, compared with previous work.
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Combining Eq. (9) and Eq. (3),

σi j = ρCi jklĠkp ∗ β̇
P
pl + Ci jklCmnpqεrqlGkm,n ∗ αpr. (10)

The derivations above apply to both anisotropic and isotropic materials. Considering that it is easier to obtain the
Green’s function in isotropic crystals, only the isotropic case is considered from this point forward. Here, the elastic
modulus tensor has the special form: Ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk), where λ and µ are Lamé’s first parameter and
shear modulus, respectively. The elastodynamic Green’s function in an isotropic crystal is derived in (Achenbach,
2003; Eringen et al., 1977)

Gi j(x, t) =
−1

4πρx

 1
c2

T

(
δi j −

xix j

x2

)
δ

(
t −

x
cT

)
+

1
c2

L

xix j

x2 δ

(
t −

x
cL

)
+

(
3xix j

x2 − δi j

)
1
x2

∫ x/cT

x/cL

τδ (t − τ) dτ
 , (11)

where cT =
√
µ/ρ, and cL =

√
(2µ + λ)/ρ are the velocities of the transverse and longitudinal elastic waves, respec-

tively. x and xi is the magnitude and the ith component of position vector x, respectively. The three main terms in
the big bracket of Eq. (11) represent a far-field transverse wave components, a far-field longitudinal wave component,
and a near-field mixed wave component, respectively. The reader interested into more detailed discussions on the
properties of Eq. (11) is referred to chapter 9 of reference (Pujol, 2003).

The spatial and time derivatives of the elastodynamic Green’s function, needed to determine the stress field in
Eq. (10), are given by (see Appendix A for derivation details),

Gi j,k(x, t) =
−1
4πρ

 1
c2

T

(
−

2δi jxk + δik x j + δ jk xi

x3 +
6xix jxk

x5

)
δ

(
t −

x
cT

)
−

xk

c3
Tx2

(
δi j −

xix j

x2

)
∂t

(
δ

(
t −

x
cT

))
+

1
c2

L

(
δik x j + δ jk xi + δi jxk

x3 −
6xix jxk

x5

)
δ(t −

x
cL

) −
1
c3

L

xix jxk

x4 ∂t

(
δ(t −

x
cL

)
)

+

(
3δi jxk + 3δ jk xi + 3δik x j

x5 −
15xix jxk

x7

) ∫ x/cT

x/cL

τδ (t − τ) dτ
}
, (12)

Ġi j(x, t) =
−1

4πρx

 1
c2

T

(
δi j −

xix j

x2

)
∂t

(
δ

(
t −

x
cT

))
+

1
c2

L

xix j

x2 ∂t

(
δ

(
t −

x
cL

))
+(

3xix j

x2 − δi j

)
1
x2

(∫ x/cT

x/cL

δ (t − τ) dτ +
x

cL
δ

(
t −

x
cL

)
−

x
cT
δ

(
t −

x
cT

))}
. (13)

Derivatives of the Green’s function developed above can be readily used to obtain the stress field induced by an
arbitrary eigendistorsion βP. In addition, it is easy to obtain the static stress field σi j = Ci jklCmnpqεrqlGkm,n ∗ αpr, if we
omit the time derivative terms in Eq. (10). The resulting static solution is consistent with Eq. (18) in reference (Po
et al., 2018).

2.2. The Elastodynamic Field of a Non-uniformly Moving Dislocation Loop
In this section, the eigendistorsion induced by a non-uniformly moving dislocation loop will be considered as

a specific example, to derive the corresponding elastodynamics stress field. Assuming that a dislocation loop with
Burger’s vector b expands over a surface S with slip area A, the corresponding plastic distortion is expressed as
follows (Lazar, 2013b; Mura, 1963; Po et al., 2018):

βP
ph(x, t) = −

∫
S (t)

δ(x − s′)bpdA′h, (14)

where s′ is the integration point position at time t and b is Burger’s vector. According to stokes’ theorem, the dislo-
cation density tensor α turns out to be concentrated on the dislocation line, which is L = ∂S , bounding the surface
S .

αpr(x, t) = εrhsβ
P
ph,s =

∮
L(t)

δ(x − s′)bpξrdL′, (15)
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where ξ is the unit tangent direction vector of dislocation line. The plastic distortion rate induced by the moving
dislocation can be obtained according to Orowan’s relation,

β̇P
pl(x, t) = −

∮
L(t)

δ(x − s′)bpεlsrVsξrdL′, (16)

where V = ṡ′ is the dislocation velocity vector at any integration point s′ on the dislocation loop.
Substituting Eq. (15), and Eq. (16) into Eq. (9), the elastodynamic elastic distortion induced by the dislocation

loop is (see also (Markenscoff, 1983)),

βE
kl(x, t) =

∫ t

t0
dt′

∮
L(t′)

εrqlCmnpqGkm,n(x − s′, t − t′)bpξr(s′, t′)dL′

−

∫ t

t0
dt′

∮
L(t′)

ρĠkp(x − s′, t − t′)bpεlsrVs(s′, t′)ξr(s′, t′)dL′.
(17)

Upon substitution of Eqs. (12) and (13) into Eq. (17), the retarded solution is obtained by firstly performing
temporal integration with δ(t − t′ − x−x′

c ) terms in the Green’s function,

βE(x, t) = −
1

4π

{∮
L(t−R/cT)

1
R2(R − R · V/cT)

(
3b ⊗ (R × ξ) + 3(b · R)Ξ + 2R ⊗ (b × ξ) − 12

R ⊗ (R × ξ)(b · R)
R2

)
dL′

+∂t

∮
L(t−R/cT)

1
cTR(R − R · V/cT)

(
b ⊗ (R × ξ) + (b · R)Ξ − 2

R ⊗ (R × ξ)(b · R)
R2

)
dL′

+

∮
L(t−R/cL)

(1 − 2ν)/(1 − ν)
R2(R − R · V/cL)

(
3ν − 1
1 − 2ν

R ⊗ (b × ξ) − b ⊗ (R × ξ) − (b · R)Ξ + 6
R ⊗ (R × ξ)(b · R)

R2

)
dL′

+∂t

∮
L(t−R/cL)

(1 − 2ν)/(1 − ν)
cLR(R − R · V/cL)

(
ν

1 − 2ν
R ⊗ (b × ξ) +

R ⊗ (R × ξ)(b · R)
R2

)
dL′

+

∫ 1/cT

1/cL

∮
L(t−κR)

6c2
Tκ

R2(R − κR · V)

(
−b ⊗ (R × ξ) − (b · R)Ξ − R ⊗ (b × ξ) + 5

R ⊗ (R × ξ)(b · R)
R2

)
dL′ dκ

+∂t

∮
L(t−R/cT)

1
c2

T(R − R · V/cT)

(
−b ⊗ (V × ξ) +

R ⊗ (V × ξ)(b · R)
R2

)
dL′

−∂t

∮
L(t−R/cL)

1
c2

L(R − R · V/cL)
R ⊗ (V × ξ)(b · R)

R2 dL′

+

∫ 1/cT

1/cL

∮
L(t−κR)

1
R(R − κR · V)

(
b ⊗ (V × ξ) − 3

R ⊗ (V × ξ)(b · R)
R2

)
dL′ dκ

−

∮
L(t−R/cT)

1
cTR(R − R · V/cT)

(
b ⊗ (V × ξ) − 3

R ⊗ (V × ξ)(b · R)
R2

)
dL′

+

∮
L(t−R/cL)

1
cLR(R − R · V/cL)

(
b ⊗ (V × ξ) − 3

R ⊗ (V × ξ)(b · R)
R2

)
dL′

}
.

(18)

Here Ξkl is defined as εkrlξr. R is the magnitude of R, which is the vector connecting the source point to the observer
point, namely, R = x − x′. Here, x′ is a source position on the retarded dislocation loop and L(t − R/c) represents the
collection of retarded points x′ on the loop such that,

L(t − R/c) =
{
x′ such that ‖x − x′(tret)‖ = c(t − tret)

}
(19)

is the retarded loop seen at the observer point x. tret is retarded time corresponding to a specific elastic wave velocity c,
which may be cT, cL, or 1/κ. 1/κ represents the elastic wave speed between cT and cL. It can be seen that all integrands
in Eq. (18) are evaluated at the retarded time tret. This technique of using retarded potentials simplifies the calculation
of coupled spatial and temporal integration to a spatial integral over retarded dislocation positions. This retarded
potential method is standard in electrodynamics (Jackson, 2012; Landau and Lifshitz, 1971). In electrodynamics, if
one uses the retarded Green’s function, the corresponding solution for the potentials are the retarded potentials. For
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a non-uniformly moving point charge, the retarded potentials become the Lienard-Wiechert potentials. The retarded
functions are the consequence of the finite speed of the wave and respect the effect of retardation. This idea is
applicable to any dynamical theory with retardation, including elastodynamics (Lazar, 2013b). The simplest example
is the well-known Doppler effect in acoustics.

By virtue of
∫
δ ( f (t)) g(t)dt =

g(t)
|d f /dt| | f (t)=0, terms like 1/(R − R · V/cT) in Eq. (18) are obtained from∫
δ (t − t′ − |r − r′|/cT)

R
dt =

1
|R − R · V/cT|

|t=tT . (20)

According to Eq. (18) and Eq. (3), the elastodynamic stress field induced by a non-uniformly moving dislocation
loop is obtained as

σ(x, t) =
µ

4π

(
s(x, t) + sT(x, t)

)
, (21)

where the auxiliary tensor s(r, t) is given by,

s(x, t) =

∮
L(t−R/cT )

1
R2 (R − R · V/cT )

(
−2R ⊗ (b × ξ) +

−ν

1 − 2ν
b · (R × ξ)I − 3

(
b − 4

R · b
R2 R

)
⊗ (R × ξ)

)
dL′

−∂t

∮
L(t−R/cT )

1
cT R (R − R · V/cT )

(
ν

1 − 2ν
b · (R × ξ)I +

(
b −

2R · b
R2 R

)
⊗ (R × ξ)

)
dL′

+

∮
L(t−R/cL)

1 − 2ν
(1 − ν)R2 (R − R · V/cL)

(
1 − 3ν
1 − 2ν

R ⊗ (b × ξ) +
ν2

(1 − 2ν)2 b · (R × ξ)I +

(
b −

6R · b
R2 R

)
⊗ (R × ξ)

)
dL′

−∂t

∮
L(t−R/cL)

1 − 2ν
(1 − ν)cLR (R − R · V/cL)

(
ν

1 − 2ν
R ⊗ (b × ξ) −

ν2

(1 − 2ν)2 b · (R × ξ)I +

(
R · b
R2 R

)
⊗ (R × ξ)

)
dL′

+

∫ 1/cT

1/cL

∮
L(t−Rκ)

6c2
T κ

R2 (R − R · Vκ)

(
R ⊗ (b × ξ) +

(
b −

5R · b
R2 R

)
⊗ (R × ξ)

)
dL′dκ

+∂t

∮
L(t−R/cT )

1
c2

T (R − R · V/cT )

(
ν

1 − 2ν

(
b −

R · b
R2 R

)
· (V × ξ)I +

(
b −

R · b
R2 R

)
⊗ (V × ξ)

)
dL′

+∂t

∮
L(t−R/cL)

1
c2

L (R − R · V/cL)

(
ν

1 − 2ν

(
R · b
R2 R

)
· (V × ξ)I +

(
R · b
R2 R

)
⊗ (V × ξ)

)
dL′

−

∫ 1/cT

1/cL

∮
L(t−Rκ)

1
R (R − R · Vκ)

(
ν

1 − 2ν

(
b −

3R · b
R2 R

)
· (V × ξ)I +

(
b −

3R · b
R2 R

)
⊗ (V × ξ)

)
dL′dκ

+

∮
L(t−R/cT )

1
cT R (R − R · V/cT )

(
ν

1 − 2ν

(
b −

3R · b
R2 R

)
· (V × ξ)I +

(
b −

3R · b
R2 R

)
⊗ (V × ξ)

)
dL′

−

∮
L(t−R/cL)

1
cLR (R − R · V/cL)

(
ν

1 − 2ν

(
b −

3R · b
R2 R

)
· (V × ξ)I +

(
b −

3R · b
R2 R

)
⊗ (V × ξ)

)
dL′

(22)

and sT(x, t) is its transpose.
It is useful to verify the static limit of the above expression. To do so, we drop all the terms containing the velocity

(|V|/c→ 0), and let time go infinity, the retarded positions coincide with the current position L. Thus, we obtain

σi j(x) =
−µbl

4π(1 − ν)

∮
L

{
1 − 2ν

2R3

(
δilRkε jks + δ jlRkεiks − Riε jls − R jεils

)
+

3RnRl

(
Riε jns + R jεins

)
2R5 +

2νδi jRnεlns

R3

 ξsdL′.
(23)

Upon substitution of position vector derivatives into Eq. (23), one obtains

σi j(x) =
µbl

4π

∮
L

{
1
2

(
ε jnlξi + εinlξ j

)
R,npp +

1
1 − ν

εsnlξs

(
R,i jn − δi jR,npp

)}
dL′. (24)
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This is the same as the widely-used formula of the stress field of a stationary dislocation derived by de Wit’ (1960)
2.

3. Numerical Implementation in 3D-DDE

Due to the complexity of the elastodynamic field equations (such as Eq. (22)), the three-dimensional numerical
implementation has never been carried out. For a 2D dislocation system, each dislocation line is simplified as a point
such that a dislocation is considered similar to a charged particle. The proposed method is based on the elastodynamics
induced by point sources, which is relatively well-developed. However, in the 3D-DDE methodology, a dislocation
segment is the basic element describing a dislocation network. To the best of our knowledge, there are no reports
detailing how to effectively and accurately treat moving line sources in elastodynamics. In the following, a numerical
implementation procedure will be for the first time presented. It will be useful not only for dislocation systems, but
also will shed light on treating other types of line sources in elastodynamics.

The 3D-DDE employed here is one part of the MoDELib (Mechanics Of Defect Evolution Library) computer
code (Po and Ghoniem, 2015), which is described in detail in our previous papers (Cui et al., 2018; Po and Ghoniem,
2014a; Po et al., 2014b). In this 3D-DDE approach, curved dislocation lines are discretized into a succession of
parametrized segments. Configurational Peach-Koehler forces are computed, and a system of equations for the motion
of nodes connecting these segments is solved in a way similar to the traditional finite element method (FEM), as
described in detail in (Po et al., 2014c). In the following, we will present an extension of the parametric method,
previously developed for quasi-static dislocation ensembles, to the elastodynamic field emitted by moving dislocations
of arbitrary shape. Note that the current method mainly focuses on subsonic motion of dislocations. The extension of
the method to include dislocations moving at transonic or supersonic speeds is left for future work. In addition, the
following results do not consider finite boundary effects. The boundary conditions and image forces can be included
by coupling with an FEM solution of an elasticity problem using the superposition principle, following the method
described in detail in our previous work (Po et al., 2014c).

3.1. Dislocation Motion History

Fundamental computational difficulties arise from the fact that the elastodynamic field is strongly history depen-
dent, as shown in Eq. (22). This means that the entire history of dislocation motion must be recorded. In 3D-DDE,
a dislocation network is composed of dislocation segments. As schematically shown in Fig. 1, one dislocation loop
is discretized into several segments. To ensure a high level of spatial accuracy, each segment is further represented
by a number of quadrature points, with a parameter u between 0 and 1 to specify the position along the segment.
Generally, the spacing between quadrature points is on the order of the Burger’s vector magnitude. More details about
the quadrature point implementation in 3D-DDE are given in (Ghoniem et al., 2000; Po et al., 2014c). The dislocation
position is updated according to the movement of many dislocation nodes at the beginning and end points of seg-
ments. Therefore, one natural choice is to record the motion history of dislocation nodes only, and enslave all points
in-between the nodes by virtue of the parametrized geometry. In this fashion, the dynamics of the entire dislocation
loop can be recovered from the motion of nodes at the beginning and end of each segment.

To keep the amount of data storage at a minimum, we introduce two key concepts. (i) Master-slave: in addition
to recording the Burger’s vector and slip plane normal information for a dislocation loop, we chose to only record the
motion history of dislocation nodes, and utilize geometric parametrization to obtain the positions of all intervening
points between nodes. (ii) Causality: to avoid the continuous increase of the motion history information, we consider
a specific part of the temporal history of a dislocation loop, where the elastic field signals sent from far away distances
are not tracked. To ensure causality, the following simple condition is carried out. At time t, if cT(t − t′) is larger than
the maximum linear distance between dislocation loop and all possible observer points, we delete all motion history
information before time t′.

2In this derivation, the relation εi jkεmnk = δimδ jn − δinδ jm is frequently used. In addition, we note that
∮
L

blξs(ε jnlR,ins + εinlR, jns)dL = 0
according to Stoke’s theorem. This implies that Eq. (23) is equivalent to Eq. (24) only for closed dislocation loops, whereas for an open dislocation
line, the difference induced by the

∫
L

blξs(ε jnlR,ins + εinlR, jns)dL term must be considered.
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Arbitrary dislocation loop at time t=ti+3
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O

Figure 1: A dislocation loop at four times t, which are indicated by different colors. The loop is discretized in segments, which are further
discretized into quadrature points. u is a parameter between 0 and 1 to specify the position along a dislocation segment. The solid arrows are called
streamlines, which describe the elementary motion vector of an infinitely small part of a dislocation segment along the dislocation loop. The arrow
head size is proportional to the velocity magnitude.

In the following, we will present a method for obtaining all required information, as long as the dislocation node
position and connectivity information are recorded. The quantities of interest include the position, the local tangent
direction, and the instantaneous velocity of an elementary dislocation segment. First, given the dislocation node
position and connectivity information, the corresponding dislocation loop can be regenerated at each time according
to a specific parametric form of splines (see section II in (Ghoniem and Sun, 1999) for more details). As an example, in
Fig. 1, cubic Catmull-Rom splines are generated to connect discrete dislocation nodes. Meanwhile, the corresponding
local tangent or normal direction of elementary dislocation segments are obtained. Secondly, one needs to accurately
calculate the velocity of a line source, which different from a point source that has a well-defined velocity. The
complexity of the line source resides in the possibility of length change as it moves. Therefore, for an arbitrarily
infinite small line, its motion direction should be perpendicular to its local tangent direction, which we will assume
for all points on the dislocation. If one only considers the glide motion of a dislocation, its driving force is the Peach-
Koehler (PK) force fPK = σ · b × ξ. For a Volterra dislocation, the force is given by the PK expression in dynamics,
in the same way as in statics (Stroh, 1962). This means that the driving force of dislocation motion, as well as the
velocity direction are both perpendicular to the dislocation segment direction. However, the velocity of a dislocation
node is not always perpendicular to the local tangent direction of a dislocation segment, because it actually reflects
the contribution coming from both the segment velocity and the elongation or contraction of the segment itself. One
example is shown in Fig. 2. For a straight dislocation, there is no difference between nodal velocity and segment
velocity. However, we need to accurately calculate the segment velocity, which is suitable for the general case.

To circumvent this difficulty, we propose the streamline method. After knowing the dislocation loop information,
we calculate the streamlines between each time increment. For example, starting from node A on a dislocation loop
at time ti in Fig. 1, according to the local tangent direction, it is easy to calculate its intersection point with the
dislocation loop at time ti+1 (see point B in Fig. 1), where i represents the time step index. Since the time interval is
very small, linear interpolation is used, so the corresponding velocity from time ti to ti+1 is |AB|/(ti+1 − ti). Similarly,
one can calculate the intersection points C and D and their corresponding velocities. The line ABCD is called the
streamline, which describes the motion history of an infinitely-small dislocation segment around node A. The number
of streamlines depends on the required spatial resolution, and can be changed with the expansion or contraction of
the dislocation loop. In Fig. 1, the red streamlines are generated from time ti to ti+2, while the black streamlines
are generated since time ti+3 due to the significant expansion of the dislocation loop. For each dislocation loop,
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Figure 2: Schematic showing the difference between node velocity and segment velocity

their streamlines can be labeled by l(p), here p is a number from 0 to 1. Assuming that ti is the initial time for
this dislocation loop, we chose a point O on the initial dislocation loop as shown in Fig. 1. Then, the number p of
streamline ABCD is calculated by dividing the arc length of OA by the perimeter of the whole loop. The arc length
orientation (clockwise or counterclockwise) is determined according to the slip plane normal direction and right hand
rule. This makes it easier to add new streamlines between original ones. Therefore, in addition to the advantage of
accurately calculating the segment velocity, another advantage of using the streamline method is that re-meshing or
topology treatment will be facilitated, since we can easily use more streamlines to get better spatial resolution. This is
particularly important, because in 3D-DDE, the dislocation node may disappear or appear due to the length change of
the segment, or the dislocation interaction. The robustness with respect to such topology treatment is highly required.

For the glide motion of a straight dislocation line, the streamline may be consistent with the trajectory of a dis-
location node. However, as shown in Fig. 1, sometimes, the streamline may not be consistent with the trajectory of
a dislocation node. This is similar to the possible difference between a streamline and a pathline in fluid mechanics.
When the discrete dislocation segment is small enough, the trajectory of a dislocation node is a good approximation
of the streamline. Therefore, for a 3D-DDE code using straight dislocation segments, one may use the trajectory of
a dislocation node to approximate the dislocation streamline if more nodes are used, and the presented method in the
following sections is also applicable. Special care is then needed to deal with topology changes.

3.2. Determination of Retarded Times & Positions
If one sees a star that is a few million light years away, that would be observing its retarded position, since it has

moved to a different current position! We consider here a similar computational problem. One of the key issues is the
determination of three retarded times, namely, tT, tL, and tκ, corresponding to cT, cL, 1/κ, and appearing in Eq. (22).
This requires a numerical solution of Eq. (19). For subsonic dislocation motion, there is one and only one retarded
time solution for each dislocation streamline, corresponding to a specific observer point, recipient time t and wave
velocity c in Eq. (19). As shown in Fig. 3 (a), it is assumed that the retarded position of a dislocation streamline l(p) is
D, when the recipient time is t and the observer point is P. According to Eq. (19), |PD| = c(t − tret). Let us assume that
there is another point C that also meets Eq. (19), such that |PC| = c(t − tret − ∆tDC), where ∆tDC is the time difference
corresponding to point D and point C. It is easy to prove that this is impossible, since |PD| + |CD| < |PC| as long as
the dislocation velocity is subsonic (V < cT).

Even though many efforts have been carried out to determine the retarded time for a moving source (Carley, 2003;
Casalino, 2003), tret cannot generally be calculated analytically nor easily (Lazar, 2013b). Here, we propose a root-
finding algorithm to evaluate tret according to the trajectory information of dislocation nodes. Before estimating tret, a
simple calculation is carried out to check whether this dislocation streamline may influence the observer P. Taking the
dislocation streamline l(p) in Fig. 3(a) as an example, without loss of generality, one can say that the corresponding
infinitely-small dislocation segment moves from point A to point B, corresponding to time tA and tB, respectively. If
|PA|> c(t− tA) or |PB| < c(t− tB), the elastodynamic perturbations induced by dislocation streamline l(p) cannot reach
the observer P at time t. Therefore, further calculation is only carried out if the following conditions are met,

|PA|≤ c(t − tA) and |PB| ≥ c(t − tB) (25)
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Figure 3: (a) Schematic showing the dislocation streamline l(p) and observer point P; (b) Determination of the retarded time for quadrature point
Q after the closest time interval is found.

If Eq. (25) is met, an iterative bisection method is used to find the closest time interval. Namely, one repeatedly
bisects the time interval and then selects a subinterval in which Eq. (25) is met for the ending points of that subinterval,
until the interval corresponds to two consecutive time steps, such as [ti, ti+1], is found. Considering that the retarded
times of neighboring dislocation nodes are close, the calculated retarded time information will be used as a starting
point for the calculation of its neighboring dislocation nodes, for more rapid convergence. Afterwards, between
continuous time incremental steps [ti, ti+1], the velocity V is assumed to be constant because of the very small time
interval. Then, an analytical solution is used to determine its retarded time tret, as shown in Fig. 3(b),

|Q − P| = |M + V(tret − ti) − P| = c(t − tret)

tret =
c2t − (V · V)ti + (M − P) · V ±

√
[c2(t − ti) + (M − P) · V]2 − (c2 − V · V)[c2(t − ti)2 − (M − P) · (M − P)]

c2 − V · V
,

(26)
where Q, P, M represent their position vectors. Along each dislocation streamline, one may find zero or one retarded
position. Therefore, for each neighboring dislocation streamline pair, one may obtain two retarded positions (see
Fig. 4(a)), one retarded position (see Fig. 4(b)), or no retarded position (see Fig. 4(c-d)). In the following, each of
these cases will be discussed in detail. The reason why we care about the retarded position number corresponding
to neighboring streamline pairs is because line integrations in Eq. 22 are along the segment connecting neighboring
retarded positions. This will be further discussed in the next section.

• Case 1: If two retarded positions are found, as shown in Fig. 4(a), all nodes between A and B will influence the
observer point.

• Case 2: If the retarded position is only found for one dislocation streamline, such as shown in Fig. 4(b), this
means that only part of the dislocation nodes between A and B affects the observer point P. Assuming that a
dislocation segment AB appears since time t0, its position at time t0 is expressed as A0B0 in Fig. 4(b). Obvi-
ously, A0B0 corresponds to the earliest and farthest radiated elastic perturbation. Therefore, the critical retarded
points Cr along dislocation spline that can reach receiver P must belong to A0B0. The position of Cr can be
analytically calculated based on the relation |PCr | = c(t − t0), where |PCr | represents the distance between the
receiver P and Cr.

• Case 3: if the retarded position is not found for either dislocation streamline, there is still a possibility that
elastodynamic perturbations induced by this dislocation spline AB reach the observer P at time t. As shown
in Fig. 4(c), point Cr and Dr happen to reach observer point P at time t, which means |PCr | = c(t − t0) and
|PDr | = c(t − t0). Therefore, one needs to calculate the minimum distance between the initial dislocation spline
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Figure 4: Schematic showing the method of generating retarded quadrature points. (a) when the retarded position is only found for one dislocation
node, a new retarded position needs to be determined. (b) Retarded segments are generated according to the end retarded positions Ar and Br .

A0B0 and observer point P, if this distance is smaller than c(t− t0), two retarded points can be found along A0B0,
as shown in Fig. 4(c). If the distance is equal to c(t − t0), only one retarded point reaches observer point P. It is
reasonable to ignore this case, because a single point source does not influence the calculation of a line integral.
On the other hand, if this distance is larger than c(t− t0), no retarded points can be found, as shown in Fig. 4(d).
This means that elastodynamic perturbations induced by this dislocation segment cannot reach the observer P
at recipient time t. Thus, no further calculations are required. A parallel architecture can be used to accelerate
the calculation process of retarded times. Therefore, for each neighboring dislocation streamline pair, further
calculations are required only when two retarded positions are found.

3.3. Fast Sum Implementation of Line Integrals
The line integral over retarded dislocation loops in Eq. (22) can be converted into a fast numerical sum (Ghoniem

and Sun, 1999) over the retarded quadrature points. If two retarded positions are found for neighboring dislocation
streamline pair, such as Ar and Br in Fig. 4(a), Cr and Br in Fig. 4(b), and Cr and Dr in Fig. 4(c). A virtual retarded
dislocation spline is generated between these two retarded positions. Then, quadrature points are generated along
these retarded dislocation segments with a spacing on the order of b.

Note that each quadrature point uses the dislocation spline information at its retarded time (tret(u)), including the
position (Q(u)), tangent direction (ξ(u)), motion velocity (V(u)), and weight factor (w(u)). Here, u is a parameter
between 0 and 1 to specify the position along the dislocation segment, as shown in Fig. 4(a). Special care should
be made if one simply uses an interpolation method to obtain tret(u), Q(u), and V(u) according to the end point
information, since this cannot meet the retarded condition described by Eq. (19). Therefore, we propose a quick and
effective approximation method to calculate the retarded position for each quadrature point. The basic idea is that
if two neighboring retarded positions are very close, their retarded time should also be very close. Therefore, one
can firstly use the interpolation method corresponding to the spline type to obtain an estimated retarded position, for
example point Qguess in Fig. 4(a). Its corresponding time tguess, and velocity Vguess is easy to be obtained. Since tguess
should be close to the actual retarded time tret(u) , it is reasonable to assume that from tguess to tret(u), the velocity
Vguess keeps constant. Then, the analytical solution presented in Eq. (26) can be used to calculate the tret(u). After
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the retarded time is determined, all other information can be easily obtained. Then, the line integral becomes a fast
numerical sum over quadrature points (1 6 α 6 Qmax) associated with loop segments (1 6 β 6 Ns) and number of
ensemble loops (1 6 γ 6 Nloop) ,∮

L(t′)
f (R,b,V)dLk |t′=tret =

Nloop∑
γ=1

Ns∑
β=1

Qmax∑
α=1

f (R,b,V)wα x̂k,u|t′=tret (27)

The form of the parametric description of dislocation segments is discussed in detail in (Ghoniem and Sun, 1999).
Here, the cubic spline parametric representation is used to describe the dislocation segment. The integration over κ in
the fifth and eighth line of Eq.(22) is calculated by performing a Riemann sum with respect to a tagged partition of
the integration range [1/cT, 1/cL],∫ 1/cT

1/cL

f (R,b,V)dκ|t′=tκ =

Nκ∑
η=1

∆η

(
f (R,b,V)|t′=tη

)
(28)

where the interval [1/cT, 1/cL] is partitioned into Nκ sub-intervals [κη−1, κη] indexed by η. ∆η is the width of the
subinterval η, ∆η = κη − κη−1. Here, Nκ = 8 is used.

Alternatively, Simpson’s rule is also a good choice due to its higher precision,∫ 1/cT

1/cL

f (R,b,V)dκ|t′=tκ =

Nκ∑
η=1

∆η

6

(
f (R,b,V)|t′=tη−1 + 4 f (R,b,V)|t′=tη−0.5 + f (R,b,V)|t′=tη

)
(29)

where tη−1, tη−0.5, and tη represent the retarded time corresponding to wave speed 1/κη−1, 2/(κη−1 + κη), and 1/κη,
respectively.

3.4. Computation of Time Derivatives

Special care should be taken when calculating the time derivative terms in Eq. (22) (such as those on the second and
fourth lines). Firstly, the line integral range is a function of time, which means that a moving boundary is involved.
Secondly, the integrand is possible to be singular at the integration range boundary. The transport theorem of line
integrals (Scovazzi and Hughes, 2007) is usually used to deal with the moving boundary integration problem. The
time derivative can be calculated as follows:

∂t

∮
L(t′)

f (R,b,V)dL|t′=tret =

∮
L(t′)

∂ f (R,b,V)
∂t

dL|t′=tret +

∮
L(t′)

f (R,b,V)(OxV)dL|t′=tret . (30)

Note that Eq. (30) is more suitable for a total time derivative. However, since f (R,b,V) has no explicit time
dependence,3 the total or partial derivative for that function should be the same. The difficulty of using Eq. (30) lies
in two aspects. (1) The interchange of the order of differentiation and the integration can only be done when the
differentiation of the integrand does not introduce non-integrable singularities (Markenscoff and Clifton, 1981). For
the case considered here, ∂ f /∂t in the first term on the right hand side may have a stronger singularity. (2) when
calculating the second term on the right hand-side, one needs to consider not only the motion of the dislocation line,
but also the change of the influenced region, because sometimes only part of the dislocation line influences the field
point.

On the other hand, it is more straightforward to calculate the time derivative term by evaluating the integral twice
at two intervals t′ and t′ − dt′ and taking the difference. By analyzing the time derivative terms in Eq. (22), we design

3One can express f (R(t),b,V(t)), but not f (R(t),b,V(t), t)
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a very simple, yet effective benchmark case to validate the time derivative calculation. Assuming that we consider an
infinitely-long straight dislocation line along x3 at rest, i.e its velocity is zero. For a field point at (x1, x2, 0),

∂t

∮
L(t−R/cT)

1
R (R − R · V/cT)

dL′ = ∂t

∫ √c2
Tt2−l2

−
√

c2
Tt2−l2

1
R2 dx3 = ∂t

2
l

arctan


√

c2
Tt2 − l2

l


 =

2

t
√

c2
Tt2 − l2

H(cTt − l),

(31)
where l2 = x2

1 + x2
2. H(x) is Heaviside step function. Eq. (31) implies that there is a square root singularity at the wave

front.
In the following, several numerical results will be presented and compared with the analytical solution of Eq. (31)

to validate the time derivative term calculation and guide the accurate choice of the time interval dt′. In the benchmark
case, the integral

∫
L(t−R/cT) 1/R2dL′ is first calculated twice at times t′ and t′ − dt′ using the fast sum implementation

presented in section 3.3. The calculation results are presented in Fig. 5 when the current time t is set to 200b/cT.
The field point has the same x2 = 0.2b, while the x1 varies as shown in the abscissa in Fig. 5. dl in Fig. 5 is the
characteristic distance between quadrature points when one discretizes the retarded dislocation segments. It is very
interesting that good results can only be observed when dl/cT < dt′ < min(t/10, 100 dl/cT). For example, in Fig.
5 (a), dl is fixed at 10−3b, good results are obtained when 10−3b/cT < dt′ < 0.1b/cT. In contrast, if dt′ is taken at
smaller values, spurious singularities at arbitrary positions are observed when dt′ = 0.1(dl/cT) (see dt′ = 10−4b/cT in
Fig. 5 (a) or dt′ = 10−2b/cT in Fig. 5 (b)), or bad results with no singularity are observed when dt′ = 10−2dl/cT (see
dt′ = 10−3b/cT in Fig. 5 (b)). If dt′ is taken as a larger value, greater errors are observed near the wave front region.
This is to say that the magnitude of dt′ determines the width of the region where the singularity is observed near the
wave front. The value of dt′ needs to be compatible with the magnitude of dl.

The strong correlation between dt′ and dl can be understood as follows. Firstly, all terms in the Green’s tensor
contain delta functions δ

(
t − x

c

)
, hence the temporal and spatial variables are strongly coupled in nature. In Eq. (31),

such temporal and spatial coupling is manifest in the integration range, which is a function of both time and position.
Therefore, it is reasonable that the time interval dt′ is strongly correlated with the value of dl. When dt′ is taken as a
much smaller value, the resolution of the integral using the fast sum method is not good enough due to the relatively
large dl. Thus, good results cannot be obtained. On the other hand, when dt′ is larger, the near wave front region,
whose distance to the wave front is smaller than cdt′, cannot be accurately calculated because the integral will be zero
at such region at t − dt′, but not at t. Therefore, to obtain good results, one can use the same dt′ everywhere, as long
as dl/cT < dt′ < min(t/10, 100 dl/cT). From Fig. 5 (a-b), one can also chose to use a relatively large dt′ (as along as
dl/cT < dt′ < t/10) far from the wave front region, but small dt (as long as dl/cT < dt′) near the wave front region,
depending on the required resolution. On the other hand, if one wants to use small dt′, dl can also be changed to be
small, as shown in Fig. 5 (c). This obviously implies more computational cost.

3.5. Singularity Treatment
There are two kinds of stress field singularities induced by a non-uniformly moving dislocation. The singularity

at the wave front is found to be dominated by the time derivative terms in Eq. (22), which can be understood from the
simple benchmark case of Eq. (31). As discussed in section 3.4, the reasonable choose of dt′ is important to correctly
capture and regularize the singularity at the wave front. On the other hand, Eq. (22) clearly shows that when the field
point is located at the retarded position, R = 0, there is a strong singularity due to the existence of 1/Rn, where n is an
integer. A similar singularity is also widely observed for stationary dislocations. Cai et al. (2006) proposed replacing
R and its derivatives with Ra =

√
R2 + a2 and its derivative, where a is the dislocation core size to regularize the field

solution. The underlying physical reason of such treatment is that the Burger’s vector is expressed as a distributed
function. On the other hand, Lazar (2013a, 2014) proposed the regularization function A(R) = R + 2l2/R(1 − e−R/l)
based on gradient elasticity theory. Here, l is a characteristic length in gradient elasticity, which is a material parameter
that can be determined based on atomistic calculation results. For example, l = 0.61al for W, l = 0.49al for Al (Po
et al., 2014b, 2018), and al is the lattice parameter of cubic crystals.

The strong coupling between time and space in the elastodynamic stress field renders the problem much more
complicated. For the 2D infinitely-long dislocation, Pellegrini (2012); Pellegrini and Lazar (2015) proposed an effec-
tive regularization method by convolution of the 2D Green’s tensor with a nonsingular Dirac distribution function (see
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Figure 5: Numerical calculations compared to analytical results of Eq. (31) (a) for fixed spatial discretization distance between quadrature points
dl = 10−3b , (b) for fixed dl = 0.1b, (c) for fixed time interval dt′ = 10−2b/cT. The field point is located at (x1, 0.2b, 0) and the dislocation line is
located at (0, 0, x3).

Eq. (33) in (Pellegrini and Lazar, 2015)). This allows the equations to be amenable to a further extension to the super-
sonic regime. However, for the 3D-case, it is difficult to directly apply this technique. The reason is that in 3D, when
calculating the stress field, one first makes a convolution of the Green’s tensor with time, so the Dirac-delta function
δ
(
t − t′ − x(t′)

c

)
is convoluted in time. Then, one only needs to calculate the results corresponding to one retarded time

tret, which meets t− tret−
x(tret)

c = 0. If the singular Dirac-delta function is convoluted with a distribution, then, multiple
retarded times need to be considered, rendering the problem computationally intractable with the present method. In
contrast, in 2D, the assumption of the infinitely-long straight dislocation line simplifies the problem. The stress field
is not calculated by integrating along the retarded segments, but is evaluated by integrating with respect to time (such
as Eq. (44) in (Lazar and Pellegrini, 2016)). Thus, the introduction of a distribution function does not induce extra
computational efforts. More discussion about the comparison between 3D and 2D elastodynamic Green’s function
and dislocation stress field will be discussed in a separate subsequent paper. In the current work, we simply replace
the spatial derivatives with Cai et al.’s nonsingular counterparts as shown in Appendix B. More strict non-singular
formulation of the stress field equation requires further dedicated future efforts.

Note that it is not easy to strictly deal with the dislocation core singularity based on the retarded potential method,
since one needs to consider the retarded interactions within the core for any piece of dislocation interacting with
itself, at least within continuum mechanics. Therefore, this problem cannot be addressed rigorously by starting from
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formulas valid for a Volterra dislocation, and afterwards carrying out a phenomenological regularization. One needs to
start from a consistent expression for an extended (i.e., Somigliana) dislocation. As a consequence, the true rigorous
retarded fields are more complicated. Thus for an extended (Somigliana, or regularized) dislocation, the retarded-time
approach used in the current work is only an approximation.

4. Validation tests

In this section, several simple tests are presented to benchmark the 3D-DDE method. The straight dislocation
line shown in Fig. 6 (a) is taken as an example, so as to compare with corresponding 2D solutions published in the
literature.
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Figure 6: (a) Schematic showing the simulation case of a straight dislocation, (b) σ12 distribution along the line EF (x2=0.01b, x3=0) in (a) induced
by a static straight edge dislocation at various times

4.1. Determination of the Retarded Dislocation Segment

Consider that a straight dislocation in Fig. 6 (a) has an initial zero velocity, then suddenly moves with high speed V
from t = 0. The shapes of the retarded positions corresponding to points on the dislocation (we will denote this as the
retarded dislocation segment) at two different speeds (V = 0.3cT and V = 0.8cT) are shown in Fig. 7, for a observer
point P [0.26 µm, 0, 0] at time t=0.1 ns and t=0.2 ns. From Fig. 7, the numerical solution (circle and triangular
hollow points) is consistent with the analytical solution (red and green thick lines) given by Eq. (26). There are two
features to note from Fig. 7. Firstly, even though the considered dislocation line is straight, the retarded dislocation
segment that the observer point P experiences is not straight. Comparing Fig. 7(a) and (b), the higher the velocity of
the straight dislocation, the more curved the retarded dislocation. Secondly, because the elastodynamic perturbations
induced by the moving dislocation have not completely reached the observer point, only the curved part of the retarded
dislocation in Fig.7 correspond to the history of moving with V , while the straight part with x1 = 0 corresponds to the
history of initial zero velocity. The curved part of the retarded dislocation is of finite length, which expands as time
increases. Thus, to a stationary observer at P, the infinitely-long and straight dislocation is “experienced” as a curved
dislocation, where higher apparent curvatures are associated with higher speeds!

4.2. The Injected Static Edge Dislocation

In the following, we will also discuss the case of a suddenly injected dislocation, where a hypothetical dislocation
is assumed to suddenly appear at t = 0. If the injected dislocation suddenly moves at high-speed V from t = 0, its
corresponding retarded dislocation only contains the curved part in Fig. 7. Since there is no history before t = 0, no
straight retarded dislocations corresponding to zero velocity would exist.
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Figure 7: Examples showing the retarded dislocation for a moving straight dislocation with velocity V along the x1-direction, (a) V = 0.3cT and (b)
V = 0.8cT. The circle and triangle hollow points designate retarded dislocation positions corresponding to t = 0.1 ns and t = 0.2 ns, respectively,
while the red and green thick solid lines are the corresponding analytical solutions given by Eq. (26).

Table 1: Simulation parameters

Shear modulus µ Poisson’s ratio ν Density ρ Burger’s vector magnitude b

26 GPa 0.3698 2700 kg/m3 0.2851 nm

In order to verify the implementation of the elastic field in full-blown 3D DDE, the stress field induced by a static
edge dislocation is first studied. The material parameters are listed in Table 1 for Al. The calculated dislocation stress
component σ12 along the line EF in Fig. 6 (a) is shown at various times in Fig. 6 (b), where the steady-state result
obtained by Eq. (23) is also given for comparison. Fig. 6 (b) illustrates that when the time t is 7.71b/cT, the dislocation
stress field is almost the same as the static solution in the considered spatial range. However, from Fig. 6 (b), when t
is shorter than 1.56b/cT, two singularities around the wave front are observed. This actually reflects the characteristic
two-wave structure of the solution, where a precursor wave precedes the motion. Namely, one wave propagates at
the longitudinal wave speed cL, while the other propagates at the slower transverse wave speed cT, and both of them
radiate outward from the dislocation core. Taking t=0.39 b/cT and the part of x < 0 as an example, the distances
between the dislocation core and the two stress peaks correspond to cLt and cTt, respectively, as indicated by points
N and M in Fig.6 (b). These describe the elastodynamic perturbation range of the dislocation for the specific time.
Outside the cLt region, the shear stress is zero for the injected edge dislocation. In addition, the comparison between
the stress values at the wave front shows that the singularity gradually decreases with time. In Fig.6 (b), the curved
arrow line shows the trend for the stress value at the transverse wave front.

Color plots of σ12 in x1x2 plane are further given in Fig. 8 (a-d). The characteristic two-wave structure at small
t is manifested by two rings with radius cLt and cTt. Fig. 8 (e-h) further presents the corresponding 2D nonsingular
elastodynamics solutions, which are independently calculated by Eqs. (70a) and (70b) in (Lazar and Pellegrini, 2016)
4. Note that the first term in Eqs. (70a) and (70b) in (Lazar and Pellegrini, 2016) is dropped when only considering
the injection contribution. Here,“injection” means that the dislocation is assumed to suddenly nucleate without any
previous history. On the other hand, the first term needs to be added when one considers that the dislocation starts from
a steady state of constant initial velocity V0, such as initially static dislocation with zero velocity. Fig. 8 demonstrates
very good agreement between the 3D-DDE and the 2D solutions of σ12 for all considered times. Moreover, Fig . D1
in Appendix D shows very good agreement between 3D and 2D calculations for different stress components at the

4 The benchmark cases are designed to compare with the results of Gurrutxaga-Lerma et al. (2013). Since we observed some differences from
their results, we carry out multiple independent dedicated 2D calculations to verify our current 3D-DDE results.
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same time. In order to further clearly check the difference between 2D and 3D calculations, we investigated the stress
field map of the 2D results minus the 3D results. Only small observable differences were found around the wave front
and the dislocation core region, which are associated with different regularization methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

t=0.39b/cT t=0.78b/cT t=1.56b/cT t=7.71b/cT

Figure 8: σ12 of an injected static edge dislocations on the plane GHIJ in Fig. 6 (a) (unit: µ), here L1 = L2 = 2.5b. (a-d) are obtained by our
3D-DDE, (e-h) are obtained by the 2D solution. The corresponding time t is marked above the figures.

In the following, the wave front singularity will be further analyzed to clarify its behavior. As discussed in section
5, the time-derivative terms play the dominant role for the singularity around the wave front. With respect to a static
dislocation with V = 0, the second line sline2(x, t) and fourth line sline4(x, t) in Eq. (22) are the key terms. For a static
straight edge dislocation with tangent direction along the x3-direction and Burger’s vector along the x1-direction, these
terms can be simplified as follows (see Appendix C for the derivation),

sline2(x, t) + sT
line2(x, t)

= − ∂t

∮
L(t−R/cT)

1
cTR (R − R · V/cT)

(
2ν

1 − 2ν
b · (R × ξ)I +

(
b −

2R · b
R2 R

)
⊗ (R × ξ) + (R × ξ) ⊗

(
b −

2R · b
R2 R

))
dL′

= −
2bH(cTt − l)

cTt
√

c2
Tt2 − l2

(
2R2

(
1 − ν
1 − 2ν

−
2R2

1

c2
Tt2

)
e1e1 + 2R2

(
ν

1 − 2ν
+

2R2
1

c2
Tt2

)
e2e2

+
2νR2

1 − 2ν
e3e3 − R1

(
1 +

2(R2
2 − R2

1)
c2

Tt2

)
(e1e2 + e2e1)

)
(32)

sline4(x, t) + sT
line4(x, t)

= − ∂t

∮
L(t−R/cL)

1 − 2ν
(1 − ν)cLR (R − R · V/cL)

(
ν

1 − 2ν
(R ⊗ (b × ξ) + (b × ξ) ⊗ R) −

2ν2

(1 − 2ν)2 b · (R × ξ)I

+
R · b
R2 (R ⊗ (R × ξ) + (R × ξ) ⊗ R)

)
dL′

= −
2b(1 − 2ν)H(cLt − l)

(1 − ν)cLt
√

c2
Lt2 − l2

(
2R2

(
−ν2
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R2

1

c2
Lt2

)
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(
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)
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Figure 9: Stress field structure at the wave front for an injected static edge dislocations at t = 1.136b/cT, (a-b) ν = 0.3698 (a) σ12 , (b) σ11, (c-d)
ν = 0.2 (c) σ12 , (d) σ11. Note that the stress threshold in this figure is different from Fig. D1 in order to clearly show the stress sign at the wave
front.
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where e1, e2, e3 are the base vectors of the coordinate system. The quantities Ri (i=1,2,3) are the components of R
in the considered coordinate system. Eqs. (32) and (33) are useful in predicting the angular dependence of the wave
front singularity for a static straight edge dislocation. The basic idea is that the singularity around the transverse and
longitudinal wave fronts disappears, when the corresponding coefficients in Eq. (32) and Eq. (33) are zero, respec-

tively. For instance, taking σ12 at transverse wave front, this means that R1

(
1 +

2(R2
2−R2

1)
c2

Tt2

)
= 0 according to Eq. (32).

If the field point is on a plane with x3 = 0, at the wave front, R2 = cTt sinθ, R1 = cTt cosθ, so R1

(
1 +

2(R2
2−R2

1)
c2

Tt2

)
= 0

means that R1 = 0 or sin2θ = 1/4. Here, θ is the angle from the direction connecting field point and dislocation and
the x1 direction on the x1x2 plane, as indicated in Fig. 9. Therefore, in Fig. 9(a), at the transverse wave front, the
singularity disappears when R1 = 0, or θ = ±π/6,±5π/6. Similarly, for σ12 at the longitudinal wave front, one can
find that the singularity disappears when R1 = 0 or cos2θ = 1−3ν

2(1−2ν) . Only when ν < 1/3, there is a solution for θ. For
the considered material parameters, there is no solution for θ. Therefore, only when R1 = 0, the singularity disappears
at the longitudinal wave front, as clearly shown in Fig. 9(a). To demonstrate the effect of Poisson’s ration ν, we
recalculate the same problem but use ν = 0.2. Then, according to the condition: cos2θ = 1−3ν

2(1−2ν) , when θ = 0.9553,
the singularity of σ12 at the longitudinal wave front circle disappears, which is exactly reflected in Fig. 9(c).

(c)(b)(a)

(f)(e)(d)

V=0.3cT V=0.77 cT V=0.93 cT

x1

x2

Figure 10: σ12 of a uniformly moving edge dislocations on plane GHIJ in Fig. 6(a) (unit: µ), here L1 = L3 = 2.5b, t = 1.136b/cT. (a-c) 3D DDE
results, (d-f) are 2D solution. The corresponding dislocation velocity is marked on the top.

In addition, one notices that decreasing ν leads to lower cL, and therefore to a smaller longitudinal wave front
circle. Similarly, we can also discuss the singularity of σ11 at the longitudinal wave front according to Eq.(33). One
can find that the singularity disappears when R2 = 0 or cos2θ = ν2

(1−2ν)2 . Therefore, θ only exists when ν < 1/3.
When ν=0.3698, there is no solution, which is consistent with the observation in Fig. 9 (b) that the longitudinal wave
front singularity only disappears when R2 = 0. In contrast, when ν=0.2, the longitudinal wave front singularity also
disappears for θ = 1.23, as shown in Fig. 9 (d). The discussion above demonstrates that the value of ν has a strong
influence on the wave front singularity.

4.3. Uniform Motion of a Straight Edge Dislocation
In this section, the stress field induced by a moving straight edge dislocation line is studied. Here, the dislocation

line shown in Fig. 6(a) moves along the x1-direction, with a velocity magnitude v. Fig. 10 gives the stress field
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induced by injected uniformly moving dislocation at three different velocities, V = 0.3cT, 0.77cT, and 0.93cT, but at
the same time t = 1.136b/cT. With the increase of the velocity, the stress field map is significantly different around the
dislocation core region. For high velocity, the high shear stress region around x2 direction expands. In contrast, the
positive shear stress stress region along the x1 direction (see the red region indicated by arrow in Fig. 10(a)) gradually
shrinks with increasing velocity. The calculation results are compared with the corresponding 2D solution, and good
consistency is observed. Consistent results are also obtained for the stress field of a uniformly moving dislocation
with velocity 0.8cT from static rest conditions (i.e. the dislocation existed at initial time and not injected as in the
previous case), as shown in Fig. D2 .

4.4. Motion of a Straight Screw Dislocation

V=0

V=0.77cT

𝛔13 𝛔23 𝛔13 𝛔23

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

x1

x2

Figure 11: Stress field (unit: 10−4µ) of screw dislocation in x1 x2 plane, with L1 = L2=2.1 µm, t = 0.15 ns. (a-d) 3D-DDE calculation result, (e-h)
Analytical solution by Eq. (34)

.

After verifying the accuracy of the stress field calculations for the 2D edge dislocation, we further check the results
of a screw dislocation. Consider now an injected infinitely-long screw dislocation, as described by Fig. 6 (a). The
dislocation line and Burger’s vector direction are along x3, and the dislocation line has a constant velocity V along the
x1-direction. The stress field at a field point (x1, x2, 0) has an analytical solution,

σ13 =
µbx2

2π
√

t2 − l2/c2
T

−t + x1v/c2
T

l2 − 2x1tv − x2
2v2/c2

T + v2t2
H(t − l/c),

σ23 =
µb

2π
√

t2 − l2/c2
T

x1t − x2
1v/c2

T − t2v + tx1v2/c2
T

l2 − 2x1tv − x2
2v2/c2

T + v2t2
H(t − l/c),

(34)

where l2 = x2
1 + x2

2. This solution is derived by using the results given in (Gurrutxaga-Lerma et al., 2015b), and is used
for benchmarking the numerical implementation. The calculation results by 3D DDE at t = 0.15 ns are given in Fig.
11 (a-d), which are consistent with the analytical solution given in Fig. 11 (e-h). Comparing Fig.11 (a) and (b), when
the dislocation motion velocity changes from 0 to 0.77cT, the stress field map changes significantly. However, in both
cases, the stress field is only within the region that the transverse wave can reach. This is significantly different from
the results of the edge dislocation, such as shown in Fig. 10 (b), where the two-wave structure is observed.
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We further consider an accelerated screw dislocation and compare its near-field stress field with the singular
asymptotic solutions given in (Callias and Markenscoff, 1988). We aim to demonstrate that our method can capture the
logarithmic singularity with a coefficient proportional to acceleration and (1 − V2/c2

T )−3/2. Fig. 12 (a) gives the stress
field distribution of an accelerated screw dislocation, which has a constant acceleration a = [4 × 10−5c2

T /b 0 0],
and its velocity magnitude increases from 0 to 0.77cT . In order to analyze the near-field singularity, we investigate
the stress value at a small distance ε away from the current dislocation line, as shown in Fig. 12 (a). We considered
a screw dislocation accelerated from 0 to 0.77cT with several different accelerations (a, a/2, a/4), and calculated the
difference of their corresponding stress value along ε. Calculating the stress difference with the same current velocity
and different accelerations separates out the logarithmic singularity, because the 1/ε singularity depends on the current
velocity and not on the acceleration. As shown in Fig. 12 (b), the linear-type curve in the semi-logarithm plot
illustrates that there is a logarithmic singularity. In addition, if the logarithmic singularity has a coefficient proportional
to acceleration, the shear stress difference σ23(a)−σ23(a/2) ∝ (a−a/2)ln(ε) and σ23(a)−σ23(a/4) ∝ (a−a/4)ln(ε), so
σ23(a)−σ23(a/2) should be equal to 2/3(σ23(a)−σ23(a/4)). This is successfully captured in Fig. 12 (b). Furthermore,
if the logarithmic singularity has a coefficient proportional to (1−V2/c2

T )−3/2, (σ23(a)−σ23(a/2))(1−V2/c2
T )3/2 should

have the same slope, when the accelerated screw dislocation reaches different current velocities. This prediction is
reproduced in Fig. 12 (c). Therefore, our calculations are consistent with previous theoretical predictions performed
by Callias and Markenscoff (1988).

𝜖

(a) (b) (c)
𝜎23(10-4𝜇)

x1

x2

Figure 12: (a) Stress field of an accelerated screw dislocation on the x1 x2 plane, with L1 = L2=2.1 µm. (b) Stress difference of screw dislocation
with the same current velocity 0.77ct but different accelerations (a, a/2, and a/4). Here, a = [4 × 10−5c2

T /b 0 0]. ε is defined as shown in (a).
(c) Stress difference of accelerated screw dislocation with various current velocities V .

5. New Insights on Elastodynamic Effects

In this section, we will present new results for 3D dislocations that cannot be fully obtained through 2D calcu-
lations. The moving shear dislocation loop is taken as an example of a prototypical 3D dislocation, which, once
established, can be used in future full-fledged 3D DDE simulations. The elastodynamic stress field of a moving shear
loop and the interaction forces between two shear dislocation loops will be presented and discussed for the first time.

5.1. Stress field of a moving shear dislocation loop
Section 4 clearly demonstrates that the stress field of a straight dislocation strongly depends on its motion history,

and is that it is significantly different from the quasi-static stress field. Therefore, the stress field of a moving dislo-
cation loop is also expected to deviate significantly from its quasi-static counterpart. To reveal such difference, we
design here several cases. All considered dislocation loops move to reach a final radius of 100b. To clearly show the
stress field of the moving shear loop, the results on three cut-planes (x1x3, x1x2, and x2x3) will be presented. All these
cut planes have the size (410 × 410) b.

Case 1- The expanding shear loop: A shear dislocation loop is assumed to have an initial radius of 1b, which may
represent a nucleated embryo, or generated due to irradiation or dislocation interactions. This hypothetical loop lies
on the x1x3-plane, with its center situated at [0 0 0]. Its Burger’s vector is along [100], so the normal direction
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of its glide plane is [010]. The loop expands outwards to reach a final radius of 100b with uniform velocity, varied
at 0.3cT, 0.6cT, and 0.9cT, respectively. Therefore, the total motion duration of the dislocation loops with a higher
velocity is shorter. In the results presented below, it is easier to observe the wave front for the higher-velocity case,
since the shorter time may not be sufficient to make the wave front fully develop in our computational domain.

From Fig. 13 (a-d), one notices that with the increase in the loop expansion velocity, the positive stress region (red
region around the dislocation loop) around the screw part of the shear loop shrinks significantly. This is easy to be
understood, because the stress field of an injected pure edge dislocation can reach the region where the longitudinal
elastic waves can reach, but the stress field of injected pure screw dislocation can only reach the region where the
transverse elastic waves arrive. For the high velocity case, the total motion duration is short, so the difference between
the edge and screw regions is more obvious. From Fig. 13 (e-h), the velocity effect on the stress field map is very
similar to the trend observed in Fig. 10. This is because the intersection part of the shear dislocation loop with the x1x2-
plane is of an edge character, so the stress field map shown in Fig. 13 (e-h) is similar to the superposition of the stress
field σ12 induced by two straight edge dislocations with opposite signs and direction of motion (i.e. an expanding
edge dipole). As an example, the stress field map on the x1x2-plane of a dislocation loop and the corresponding two
straight edge dislocations are compared in Fig. 13 (h) and Fig. 14 (a). Some similarity is observed. However, it can
be seen that the wave-front singularity of this expanding dislocation loop is much weaker as compared to that for two
straight dislocation lines. This can be understood as follows. According to the discussion in section 3.3, the wave front
singularity is mainly dominated by the time derivative terms. The retarded dislocation corresponding to the field point
on the wave front generally corresponds to the initial dislocation position. Since the initial dislocation loop is very
small (with radius 1b), it is natural to expect that the change of the stress field at the wave front induced by such small
loop is also small. Therefore, the wave front singularity for the expanding loop is weaker. In addition, a comparison
between Fig. 13 (h) and Fig. 14 (a) also demonstrates other differences induced by the loop curvature. For example,
a larger negative stress field region is observed inside the loop in Fig. 13 (h). From Fig. 13 (i-l), with the increase
of the velocity, the red positive stress region is significantly compressed. Because the corresponding intersection part
of the loop with the cut plane is of a screw character, the stress field in Fig. 13 (i-l) is similar to the superposition of
the stress field induced by two straight screw dislocations with opposite sign and opposite direction of motion, i.e., an
expanding screw dipole (see Fig. 11 (c) and (d)). However, in Fig. 13 (i-l), the negative stress is less compressed due
to the curvature effect, compared with Fig. 11 (d).

Case 2- The small contracting shear loop:
If the shear loop shrinks instead of expands, its stress field may exhibit different features. To check this possibility,

we first consider the case that the initial dislocation loop is static and has a radius of 200b. The contraction velocity is
varied as −0.3cT, −0.6cT, and −0.9cT. Here, the negative sign represents contracting direction towards the center of
the loop. Therefore, when this loop finally shrinks to reach a radius of 100b, its motion duration is similar to Case 1.
The slip plane and Burger’s vector are the same as in Case 1.

The corresponding stress fields are presented in Fig. 15, where it is clear that the stress field map is different
from the results of the expanding loop in Fig. 13, especially for the high velocity case. This is mainly because the
retarded dislocation configurations are significantly different for the expanding loop in Case 1 and the contracting loop
in Case 2. One example is shown in Fig. 16 (a) and (b). Here, the retarded positions corresponding to the field point
(100b, 0, 0) are plotted. One notices that the higher the velocity, the more significant the difference in the shape of the
retarded dislocation corresponding to the expanding loop and contracting loops. Moreover, for the contracting loop
from 200b to 100b, when the velocity is −0.6cT or −0.9cT, a large part of the retarded dislocation actually corresponds
to the initial static loop. Therefore, the stress field in Fig. 13 is indeed a superposition of the stress field induced by
some part of initial static loop, and some part of moving loop when V is −0.6cT or −0.9cT.

Since the motion duration is not long enough to allow the elastic wave front to move out of the simulation domain,
the wave front singularity is observed from Fig. 15. As discussed earlier, the stress field map in Fig. 15 (d-f) shares
some features with those of two straight edge dislocations in a dipole configuration. The wave front singularity of
the expanding loop in Fig. 13 is found to be weaker than that of the two corresponding edge dislocations, however.
In contrast, it is found that the wave front singularity of the contracting loops observed in Fig. 15 is even stronger,
compared with their edge dislocation dipole counterpart. To illustrate this feature, Fig. 14 (b) shows the corresponding
stress field of two straight edge dislocation lines. They initially have a distance of 400b along x1 direction, and then
move towards each other with velocity magnitude 0.9cT until their distance is 200b. Obviously, the longitudinal wave
front singularity in Fig. 15 (f) is more significant than that in Fig. 14 (b). This can also be easily understood by our
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Figure 13: Stress field σ12 (unit: µ) of a uniformly expanding dislocation loop with initial radius 1b and final radius 100b. The yellow solid line in
(a-d) is added to show the position of the current dislocation loop
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Weaken
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x1

x2

Figure 14: Stress field σ12 on the x1 x2-plane (410 × 410)b (a-d) two straight edge dislocations with opposite line directions along the x3-axis,
and (e) an injected static shear dislocation loop. (a) Two injected straight dislocations, which have an initial distance 2b, then move away from
each other with speed 0.9cT along the x1-direction until their distance becomes 200b. (b) Two static straight dislocations, which have an initial
distance of 400b, move towards each other with the speed 0.9cT along the x1-direction until their distance becomes 200b. (c) Two static straight
dislocations, which have an initial distance 8000b, move towards each other with speed 0.9cT along x1 direction until their distance become 200b.
(d) two injected static straight dislocation with separation distance 200b when the current time is t = 45b/cT. (f) one injected static loop with radius
100b when t = 45b/cT

finding that the wave front singularity is associated with the time derivative terms in the stress field equations. For the
wave front field point with coordinates (x1, x2, 0) in x1x2 plane, if the absolute value of x1 is smaller than the current
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Figure 15: Stress field σ12 of a uniformly-contracting dislocation loop with initial radius of 200b and final radius of 100b. The yellow solid line in
(a-c) is added to show the current position of the loop.
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Figure 16: Retarded dislocation loop shape corresponding to the field point (100b, 0, 0) of (a) an expanding dislocation loop with radius from 1b to
100b, (b) a contracting dislocation loop with radius from 200b to 100b, (c) a contracting dislocation loop with radius from 4000b to 100b
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loop radius, more retarded points can be found for these field points due to the curvature effect, compared with those
for two straight edge dislocation lines, so it is more possible that the corresponding time derivative terms are larger.
For the field points in the other region, if less retarded points are found, the time derivative terms should be weaker.
To verify this hypothesis, we compare the stress field induced by an injected static shear loop and two static straight
edge dislocation lines, at time t = 45b/cT. As expected, the wave front singularity is enhanced in the middle region,
but is weakened in the other region, as shown in Fig. 14 (d-e).

V=-0.3cT V=-0.6cT V=-0.9cT
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x1
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Figure 17: Stress field σ12 of a uniformly contracting dislocation loop with initial radius of 4000b and final radius 100b. The yellow solid line in
(a-c) is added to show the current position of the dislocation loop.

Case 3- The large contracting shear loop: To avoid the influence of wave front on the stress field map of a con-
tracting shear loop, we further consider the contraction process of a large loop with an initial radius of 4000b. All
other conditions are the same as in Case 2. For the computational domain of (410 × 410 × 410)b, the retarded dis-
location loops all correspond to the moving dislocation, instead of partly containing the contribution of the initial
static dislocations as in Case 2. One example of the retarded dislocation corresponding to the field point (100b, 0, 0)
is shown in Fig. 16(c).

Figure 17 shows the corresponding stress field for Case 3. When the contraction velocity is −0.3cT and −0.6cT,
the stress distributions on the three cut planes are similar to those for the expanding loop in Fig. 13. This means that
even though their retarded dislocation shapes are different at low velocity, the influence on the stress field map is not
noticeable. Similar behavior is also observed for the straight edge dislocation. When the wave front is far away from
the field point region, the stress field of the pure edge dislocation with steady velocity of opposite sign is also similar.
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However, at the high velocity of −0.9cT, there is a big difference between the stress field of the expanding loop and
contracting loop. In addition to their significantly different retarded dislocation configurations, the expanding loop in
Fig. 13 (d,h,l) is also strongly influenced by the wave front, but the wave front has a weak effect on the contracting
loop in Fig.17 (c,f,i).

It is found, e.g., by comparing the stress field maps on the x1x2-plane of Figs. 17(f) and 14(c), that as time flows
the difference gets larger between the shear loops and the straight edge dislocation dipole, which is an effect of loop
curvature. Another interesting point relates to the observation that the positive shear stress region along the x1 axis
completely disappears for an infinite straight edge dislocation moving steadily at a velocity V larger than the Rayleigh
wave speed cR (Hirth and Lothe, 1982), which acts as a threshold for this effect. Here, cR = 0.94cT with the material
parameters considered. For a loop, the positive stress zone marked out by an arrow in Fig. 14(c) is absent in Fig.
17(f), which suggests that this threshold is lowered by curvature.

(a) (b) (c)

x1(b) x1(b) x1(b)

x2(b)x2(b)x2(b)

x 3
(b
)

x 3
(b
)

x 3
(b
)

Figure 18: Normal stress isosurface σ11 = 10−3µ in the local loop coordinates. The shear loop expands with velocity (a) V = 0.3cT, (b) V = 0.6cT,
(c) V = 0.9cT. The solid blue line represents the dislocation loop

Case 4- Oblique shear loop: We consider here an oblique loop oriented on the slip plane (111). Its Burger’s vector
is [110]. The loop has an initial radius of 1b, and moves with uniform velocity to a final radius of 100b. Representative
velocities are 0.3cT, 0.6cT, 0.9cT, respectively. Fig. 18 shows an isosurface for the normal stress σ11 = 10−3µ in the
vicinity of the shear loop. The normal stress isosurface is symmetric with respect to the loop center. As the loop
expansion velocity increases, the elastic wave front is more clearly observed in the structure of the stress isosurface.
In addition, the positive normal stress gradually disappears around the screw part of the shear loop, which is consistent
with the discussion presented in Case 1 (see Fig. 13(a-d)). The structure of the isosurface at low speeds (Fig. 18 (a)) is
the same as our earlier calculations for a static loop (Ghoniem and Sun, 1999)-Fig. 4, while it is completely different
at high speeds ( Fig. 18 (c) ).

Case 5- Expanding shear loop with acceleration: We consider an accelerated dislocation loop and compare its
near-field stress around the screw part with the singular asymptotic solutions given in (Markenscoff and Ni, 1990).
The aim here is to demonstrate that in addition to logarithmic singularity with a coefficient proportional to the accel-
eration and (1 − V2/c2

T )−3/2, there is an additional logarithmic singularity for a loop with a coefficient proportional
to 1/rl. Here, rl is the curvature radius of the loop. The set-up is similar to Case 1, except that the loop expands
outwards from zero velocity to reach a final velocity of 0.6cT with a constant acceleration along the radial direction
and magnitude |a| = 1.8 × 10−4c2

T /b. The radius of the loop increases by 1000b. Fig. 19 (a) shows the stress field dis-
tribution around the screw part of the loop. To investigate the effect of the curvature radius, we consider various initial
loop radii (1b,1000b, 2000b). Their corresponding final radius is 1001b, 2000b, and 3000b, which are expressed as
rl, 2rl, and 3rl, respectively in Fig. 19 (b). As demonstrated in Fig. 19 (b), the linear curve in the semi-logarithm
plot illustrates that there is logarithmic singularity. In addition, σ12(rl) − σ12(2rl) is equal to 3/4(σ12(rl) − σ12(3rl)),
which is consistent with the prediction given by (Markenscoff and Ni, 1990) that the coefficient of one logarithmic
singularity is proportional to 1/rl.
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Figure 19: (a) Stress field σ12 of an accelerated expanding dislocation loop with initial radius 1b and final radius 1001b. The cut plane has the
size of 3000 × 3000b. (b) Stress difference of the screw part of the loop with the same acceleration |a| = 1.8−4c2

T /b and current velocity 0.6ct but
different final radius (rl, 2rl, and 3rl). ε is defined as shown in (a).

5.2. Interaction between shear dislocation loops

Section 5.1 demonstrates that the stress field of moving shear dislocation loop deviates from the static pattern
in a rather remarkable way. The spatial structure of the field is strongly dependent on the time of motion and the
dislocation speed. In DDD simulations, the reactions between dislocations (i.e. junction formation/ breakup, cross-
slip, force transfer, etc.) are all driven by the PK configurational force (PK-force for short). Since the PK-force
is dictated by the field of neighboring dislocations and the applied external field, many interesting results may be
expected for dynamically-interacting neighboring dislocations. In this section, we use a simple case to illustrate such
purely elastodynamic effects, which may be useful in future full-fledged DDE simulations. Close to the moving shear
loop, we place another shear dislocation loop #2 on a parallel slip plane with an offset distance of 5b along the x2
direction. The shear loop #2 has the same Burger’s vector and slip plane as the moving shear loop, but has an opposite
tangent direction. We consider different radii of loop #2: 50b, 100b, and 120b, respectively, and calculate the PK-force
along on loop #2 induced by the moving shear loop.

Fig. 20 shows the PK-force along the loop #2 induced by expanding and contracting shear loop #1 with velocity
±0.3cT, ±0.6cT, ±0.9cT, respectively, corresponding to Case 1 and Case 3 in section 5.1. In Fig. 20, the arrows with
color, red or blue, respectively, indicate the expansion or contraction force along the radius direction. The magnitude
of the arrow is proportional to the force magnitude, and hence can be taken as a rough estimate for the deformed
shape of the loop. If the static stress approximation is used, the PK-force on loop #2 is similar to Fig. 20 (a), which
does not depend on the dislocation motion history. However, the actual elastodynamic stress field leads to strong
dependence of the PK-force on the dislocation history. From Fig. 20, when the radius of the loop #2 (50b) is much
smaller than that of the moving shear loop #1, the PK-force is not very sensitive to the velocity of motion. However,
when loop #2 has the same or similar radius (100b or 120b ) compared with the final radius of the moving shear loop,
the PK-force magnitude changes considerably, as the magnitude of the velocity increases. More interestingly, the sign
of the PK force also partly changes with the increase of velocity. Simple calculations indicate that the PK-force on
the slip plane is proportional to −σ12. Therefore, the change of the magnitude and sign of the PK-force along loop
#2 can be easily understood through changes in the corresponding stress field −σ12 on the x1x3-plane, and x2=5b, as
shown in Fig. 21. The position of Loops #2 is plotted as white dotted lines in Fig. 21 for visualization. Fig. 21 share
many common features with Fig. 13(b-d) and Fig. 17(a-c), with respect to the velocity effect on the stress field map.
This example shown in Fig. 20 clearly demonstrates that the elastodynamic stress field of a moving dislocation loop
will significantly change all short-range dislocation interactions. Two neighboring shear loops may be attracted in
the static case to form a tight dipole, but may repel each other if the elastodynamic effect is taken into account, such
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Figure 20: PK force on a shear dislocation loop #2 induced by a neighboring high-speed dislocation loop. In each figure, results of three different
radii of loop #2 (50b, 100b, 120b) are shown. (a-c) The source shear loop expands with velocity 0.3cT, 0.6cT, 0.9cT, respectively. (d-e) The source
shear loop contracts from 4000b radius to 100b radius with velocity −0.3cT, −0.6cT, −0.9cT, respectively. Red arrows are along the direction away
from the center of the loop, while the blue arrows are towards the loop center. The magnitude of the PK-force is proportional to the length of the
arrows.
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Figure 21: Shear stress σ12 distribution induced by a moving shear loop of Case 1 and Case 3, whose velocity is marked on the figures. The white
dotted lines correspond to the field dislocation loop #2 in Fig. 20.
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as Loop#2 with radius 120b in Fig. 20(f). Moreover, expanding loop and contracting loops may also lead to even
different signs of the interaction force, such as shown in Fig. 20 (c) and (f).

6. Conclusions

The significant effects of elastodynamics on dislocation stress field have been recognized for a long time (Eshelby,
1949; Lazar and Pellegrini, 2016; Markenscoff and Clifton, 1981; Mura, 1963). However, till now, understanding
the elastodynamic effects on fundamental dislocation behavior and interactions theoretically or computationally was
strongly hindered by the lack of an effective 3D numerical computational method. A persistent challenge is the fully-
resolved time and history-dependent nature involved and the complicated elastodynamic solution itself. This work
presents the first three dimensional discrete dislocation elastodynamics (DDE) method based on the fully-resolved
elastodynamic framework.

The explicit formulas of the elastodynamic stress and strain fields of 3D non-uniformly moving dislocation loops
are derived here. Several technical challenges are carefully examined and discussed. These include the method of
effectively recording dislocation motion history, calculation of the velocity of a line source, calculation of retarded
dislocation configurations, and treatment of space-time singularities, etc. Several benchmark cases are presented to
carefully verify the method and to understand the features of the elastodynamic stress field. Excellent agreement with
independent two dimensional calculations is shown. Then, for the first time, we present the stress field of a 3D moving
shear dislocation loop. The difference between an expanding and a contracting loop, as well as the extent of the wave
front singularity are discussed. As an application, we present how such elastodynamic effects remarkably influence the
PK-force magnitude and sign on neighboring dislocations. This finding already implies expected remarkable effects
of elastodynamics on most short-range dislocation interactions; a subject left for future investigations.

This work leads to plenty of room to further understand the fundamental mechanisms and physics of dislocations
under shock loading conditions. For example, this investigation demonstrates that at finite time, retarded dislocations
correspond to wave propagation between different straight dislocation positions. In the elastodynamics space, what
the field point sees is generally a curved retarded dislocation, even for a straight dislocation (see Fig. 7). In other
words, the apparent shape of a straight dislocation to a material observer is a curved one, perhaps viewed as space
deformation induced by the high speed of motion! Therefore, the self force along a straight dislocation is no longer
zero if elastodynamic effects are taken into account (Ni and Markenscoff, 2008; Pellegrini, 2012, 2014), except for
the “radiation-free” straight segments moving at constant velocity for an infinitely long time (Weertman, 1969). At
finite time, the self-force of a straight dislocation with constant velocity does not vanish (Pellegrini, 2014). This
phenomenon cannot by captured, if one only considers the well-known inertia effect associated with the acceleration
process in ad-hoc DDD simulations. In the current framework, such self-force and inertia effects are automatically
captured. This will also avoid the artificiality of dealing with the effective mass of 3D mixed dislocations, since most
of the existing effective mass equations are derived only for 2D edge or screw dislocations (Hirth et al., 1998; Ni
and Markenscoff, 2008; Pellegrini, 2014). In addition, since elastodynamic effects are shown to have strong influence
on short-range interactions, the basic evolution process of high-speed dislocations is expected to go beyond textbook
descriptions of conventional dislocation behavior. It will be interesting to check the elastodynamic effects on the
basic operation process of Frank-Read sources, junction formation, cross-slip, etc. Forthcoming investigations will be
dedicated to disclose such intriguing phenomena, based on further efforts on the development of an effective mobility
law of dislocations (Eshelby, 1953; Pellegrini, 2014; Pillon et al., 2007).
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Appendix A. Derivation of Eq. (12) and Eq. (13)

The derivatives of the position vector x are introduced into Eq. (11) to obtain

Gi j,k(x, t) =
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In Eq. (A.1), the following relations are met (Pujol, 2003):
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where H(x) represents Heaviside step function, which is 1 when x ≥ 0, and is 0 when x < 0.
Substituting Eq. (A.2) and Eq. (A.4) into Eq. (A.1), we obtain Eq. (12).
Similarly, we can calculate the time derivative of Green functions
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where according to Eq. (A.3),
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Appendix B. Stress field regularization process

This appendix aims to give a derivation of equations to remove the dislocation core singularity by extending Cai
et al.’s static regularization method (Cai et al., 2006) to 3D elastodynamics case. Note that this is just an approximate
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treatment to remove the spatial singularity. Further work is required to develop a strict mathematical derivation
through convolution of the Green tensor by a regularization function. Using derivatives of the radius vector, we have
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When one replaces displacement vector R by Ra =
√

R2 + a2, where a is the dislocation core size, the following
relations are obtained:
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The relations above suggest that one cannot just replace 1/Rn by 1/Rn
a, because the Laplace operator will induce

additional a2 terms. Therefore, Eq. (B.1) should be replaced by
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Accordingly, in Eq. (22), the key terms are replaced by
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Note that for the fourth equation in Eq. (B.4), one antisymmetric term is ignored because it does not contributes
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to the symmetry stress σ. By substituting Eq. (B.4) into Eq. (22), we obtain
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Appendix C. Derivation of Eq. (32) and Eq. (33)

In order to obtain Eq. (32) and Eq. (33), we used Eq. (31) and the following relations:
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b · (R × ξ)I = bR2(e1e1 + e2e2 + e3e3),
(R × ξ) ⊗ b + b ⊗ (R × ξ) = 2bR2e1e1 − bR1(e1e2 + e2e1),
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(C.2)

Appendix D. More validation test results

Fig. D1 shows very good agreement between 3D and 2D calculations for different stress components at the same
time, for an injected static edge dislocation.

(a) (b) (c)

(d) (e) (f)

Figure D1: Different stress components σ12, σ11, σ22 of an injected static edge dislocations on plane GHIJ in Fig. 6 (a) (unit: µ), here L1 = L2 =

2.5b, t = 1.136b/cT. (a-c) are obtained by our 3D DDE, (d-f) are obtained by 2D solution

Fig. D2 gives the stress field of a uniformly moving dislocation with velocity 0.8cT from static rest conditions (i.e.
the dislocation existed at initial time and not injected as in the previous case). Good consistency with the 2D solution
is also observed, including the stress distribution along x2=0.147b, as shown in Fig. D2(c). One notices that the stress
field at the wave front for an initially static dislocation is much weaker than that for a suddenly injected dislocation (
compare Fig. D2 to Fig. 10). This also demonstrates the strong history dependence of the dislocation stress field.
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Figure D2: σ12 of a preexisting edge dislocation moving at a uniform velocity V = 0.8cT on the plane GHIJ in Fig. 6 (a), here L1 = 12.5b, L2 =

5b, t = 1.8b/cT. (a) 3D DDE simulation results (b) 2D results. (c) Stress distribution along x2=0.147b.

Callias, C. and X. Markenscoff (1988). Singular asymptotics of integrals and the near-field radiated from nonuniformly moving dislocations.
Archive for Rational Mechanics and Analysis 102(3), 273–285.

Callias, C., X. Markenscoff, and L. Q. Ni (1990). A singular asymptotic expansion for the field near a moving dislocation loop. Quarterly of
applied mathematics 48(1), 113–132.

Cao, B. Y., D. H. Lassila, M. S. Schneider, B. K. Kad, C. X. Huang, Y. B. Xu, D. H. Kalantar, B. A. Remington, and M. A. Meyers (2005). Effect
of shock compression method on the defect substructure in monocrystalline copper. Materials Science and Engineering: A 409(1-2), 270–281.

Carley, M. (2003). Retarded-time calculation for moving sources. AIAA journal 41(5), 967–969.
Casalino, D. (2003). An advanced time approach for acoustic analogy predictions. Journal of Sound and Vibration 261(4), 583–612.
Chu, H., J. Wang, and I. Beyerlein (2012). Anomalous reactions of a supersonic coplanar dislocation dipole: Bypass or twinning? Scripta

Materialia 67(1), 69–72.
Clifton, R. and X. Markenscoff (1981). Elastic precursor decay and radiation from nonuniformly moving dislocations. Journal of the Mechanics

and Physics of Solids 29(3), 227 – 251.
Colorado, H., A. Navarro, S. Prikhodko, J. Yang, N. Ghoniem, and V. Gupta (2013). Ultrahigh strain-rate bending of copper nanopillars with

laser-generated shock waves. Journal of Applied Physics 114(23), 233510.
Cui, Y., G. Po, and N. M. Ghoniem (2018). A coupled dislocation dynamics-continuum barrier field model with application to irradiated materials.

International Journal of Plasticity 104, 54–67.
de Wit’, R. (1960). The continuum theory of stationary dislocations. Solid State Physics 10, 249–292.
Eringen, A. C., E. S. Suhubi, and D. R. Bland (1977). Elastodynamics, vols. 1 and 2. Physics Today 30, 65.
Eshelby, J. (1949). Uniformly moving dislocations. Proceedings of the Physical Society. Section A 62(5), 307.
Eshelby, J. (1953). The equation of motion of a dislocation. Physical Review 90(2), 248.
Eshelby, J. (1956). Supersonic dislocations and dislocations in dispersive media. Proceedings of the Physical Society. Section B 69(10), 1013.
Frank, F. (1949). On the equations of motion of crystal dislocations. Proceedings of the Physical Society. Section A 62(2), 131.
Ghoniem, N. M. and L. Sun (1999). Fast-sum method for the elastic field of three-dimensional dislocation ensembles. Physical Review B 60(1),

128.
Ghoniem, N., M, S.-H. Tong, and L. Sun (2000). Parametric dislocation dynamics: a thermodynamics-based approach to investigations of meso-

scopic plastic deformation. Physical Review B 61(2), 913.
Gumbsch, P. and H. Gao (1999). Dislocations faster than the speed of sound. Science 283(5404), 965–968.
Gurrutxaga-Lerma, B., D. S. Balint, D. Dini, D. E. Eakins, and A. P. Sutton (2013). A dynamic discrete dislocation plasticity method for the

simulation of plastic relaxation under shock loading. In Proc. R. Soc. A, Volume 469, pp. 20130141. The Royal Society.
Gurrutxaga-Lerma, B., D. S. Balint, D. Dini, D. E. Eakins, and A. P. Sutton (2015a). Attenuation of the dynamic yield point of shocked aluminum

using elastodynamic simulations of dislocation dynamics. Phys. Rev. Lett. 114, 174301.
Gurrutxaga-Lerma, B., D. S. Balint, D. Dini, and A. P. Sutton (2015b). Elastodynamic image forces on dislocations. In Proc. R. Soc. A, Volume

471, pp. 20150433. The Royal Society.
Hirth, J. P. and J. Lothe (1982). Theory of dislocations. John Wiley & Sons.
Hirth, J., H. Zbib, and J. Lothe (1998). Forces on high velocity dislocations. Modelling and Simulation in Materials Science and Engineering 6(2),

165.
Hu, J., Z. Liu, K. Chen, and Z. Zhuang (2017). Investigations of shock-induced deformation and dislocation mechanism by a multiscale discrete

dislocation plasticity model. Computational Materials Science 131, 78–85.
Jackson, J. D. (2012). Classical electrodynamics. John Wiley & Sons.
Jiang, S., Z. Chen, Y. Gan, S. Y. Oloriegbe, T. D. Sewell, and D. L. Thompson (2012). Size effects on the wave propagation and deformation

pattern in copper nanobars under symmetric longitudinal impact loading. Journal of Physics D: Applied Physics 45(47), 475305.
Landau, L. D. and E. M. Lifshitz (1971). The classical theory of fields.

37



Lazar, M. (2009). The gauge theory of dislocations: a uniformly moving screw dislocation. In Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, Volume 465, pp. 2505–2520. The Royal Society.

Lazar, M. (2013a). The fundamentals of non-singular dislocations in the theory of gradient elasticity: Dislocation loops and straight dislocations.
International Journal of Solids and Structures 50(2), 352–362.

Lazar, M. (2013b). On the non-uniform motion of dislocations: the retarded elastic fields, the retarded dislocation tensor potentials and the
liénard–wiechert tensor potentials. Philosophical Magazine 93(7), 749–776.

Lazar, M. (2014). On gradient field theories: gradient magnetostatics and gradient elasticity. Philosophical Magazine 94(25), 2840–2874.
Lazar, M. and Y.-P. Pellegrini (2016). Distributional and regularized radiation fields of non-uniformly moving straight dislocations, and elastody-

namic tamm problem. Journal of the Mechanics and Physics of Solids 96, 632–659.
Li, Q.-J., J. Li, Z.-W. Shan, and E. Ma (2016). Strongly correlated breeding of high-speed dislocations. Acta Materialia 119, 229–241.
Liu, Z., X. You, and Z. Zhuang (2008). A mesoscale investigation of strain rate effect on dynamic deformation of single-crystal copper. International

Journal of Solids and Structures 45(13), 3674–3687.
Longère, P. and A. Dragon (2015). Dynamic vs. quasi-static shear failure of high strength metallic alloys: Experimental issues. Mechanics of

Materials 80, 203–218.
Lu, L., R. Schwaiger, Z. Shan, M. Dao, K. Lu, and S. Suresh (2005). Nano-sized twins induce high rate sensitivity of flow stress in pure copper.

Acta materialia 53(7), 2169–2179.
Luscher, D. J., F. L. Addessio, M. J. Cawkwell, and K. J. Ramos (2017). A dislocation density-based continuum model of the anisotropic shock

response of single crystal α-cyclotrimethylene trinitramine. Journal of the Mechanics and Physics of Solids 98, 63–86.
Markenscoff, X. and R. Clifton (1981). The nonuniformly moving edge dislocation. Journal of the Mechanics and Physics of Solids 29(3), 253–262.
Markenscoff, X. (1983). On the dislocation fields in terms of the dynamic green’s function. Journal of elasticity 13(3), 237–241.
Markenscoff, X. and L. Ni (1990). The singular nature of the stress field near an arbitrarily moving dislocation loop. Journal of the Mechanics and

Physics of Solids 38(4), 481–490.
Markenscoff, X. (2010). Evolution equation of moving defects: dislocations and inclusions. International journal of fracture 166(1-2), 35–40.
Meyers, M. A. (1994). Dynamic behavior of materials. John Wiley & Sons.
Mura, T. (1963). Continuous distribution of moving dislocations. Philosophical Magazine 8(89), 843–857.
Ni, L. and X. Markenscoff (2008). The self-force and effective mass of a generally accelerating dislocation i: Screw dislocation. Journal of the

Mechanics and Physics of Solids 56(4), 1348–1379.
Ni, L. and X. Markenscoff (2016). The self-similarly expanding eshelby ellipsoidal inclusion: I. field solution. Journal of the Mechanics and

Physics of Solids 96, 683–695.
Nosenko, V., S. Zhdanov, and G. Morfill (2007). Supersonic dislocations observed in a plasma crystal. Physical review letters 99(2), 025002.
Pang, B., S. Case, I. Jones, J. Millett, G. Whiteman, Y. Chiu, and C. Bronkhorst (2018). The defect evolution in shock loaded tantalum single

crystals. Acta Materialia 148, 482–491.
Pellegrini, Y.-P. (2012). Screw and edge dislocations with time-dependent core width: from dynamical core equations to an equation of motion.

Journal of the Mechanics and Physics of Solids 60(2), 227–249.
Pellegrini, Y.-P. (2014). Equation of motion and subsonic-transonic transitions of rectilinear edge dislocations: A collective-variable approach.

Physical Review B 90(5), 054120.
Pellegrini, Y.-P. and M. Lazar (2015). On the gradient of the green tensor in two-dimensional elastodynamic problems, and related integrals:

Distributional approach and regularization, with application to nonuniformly moving sources. Wave Motion 57, 44–63.
Pillon, L. and C. Denoual (2009). Inertial and retardation effects for dislocation interactions. Philosophical Magazine 89(2), 127–141.
Pillon, L., C. Denoual, and Y.-P. Pellegrini (2007). Equation of motion for dislocations with inertial effects. Physical Review B 76(22), 224105.
Po, G. and N. Ghoniem (2014a). A variational formulation of constrained dislocation dynamics coupled with heat and vacancy diffusion. Journal

of the Mechanics and Physics of Solids 66, 103–116.
Po, G., M. Lazar, D. Seif, and N. Ghoniem (2014b). Singularity-free dislocation dynamics with strain gradient elasticity. Journal of the Mechanics

and Physics of Solids 68, 161–178.
Po, G., M. S. Mohamed, T. Crosby, C. Erel, A. El-Azab, and N. Ghoniem (2014c). Recent progress in discrete dislocation dynamics and its

applications to micro plasticity. JOM 66(10), 2108–2120.
Po, G. and N. Ghoniem (2015). Mechanics of defect evolution library, model. 〈https://bitbucket.org/model/model/wiki/home〉.
Po, G., M. Lazar, N. C. Admal, and N. Ghoniem (2018). A non-singular theory of dislocations in anisotropic crystals. International Journal of

Plasticity 103, 1–22.
Pujol, J. (2003). Elastic wave propagation and generation in seismology. Cambridge University Press.
Scovazzi, G. and T. Hughes (2007). Lecture notes on continuum mechanics on arbitrary moving domains. Lecture Notes, November.
Seif, D., G. Po, R. Crum, V. Gupta, and N. M. Ghoniem (2014). Shock-induced plasticity and the Hugoniot elastic limit in copper nano films and

rods. Journal of Applied Physics 115(5), 054301.
Shehadeh, M. A., H. M. Zbib, and T. D. De la Rubia (2005). Multiscale dislocation dynamics simulations of shock compression in copper single

crystal. International journal of plasticity 21(12), 2369–2390.
Shehadeh, M. A. and H. M. Zbib (2016). On the homogeneous nucleation and propagation of dislocations under shock compression. Philosophical

Magazine 96(26), 2752–2778.
Stroh, A. N. (1962). Force on a moving dislocation. Physical Review 128(1), 55.
Wang, Z. and I. Beyerlein (2008). Stress orientation and relativistic effects on the separation of moving screw dislocations. Physical Review

B 77(18), 184112.
Weertman, J. (1969). Dislocations in uniform motion on slip or climb planes having periodic force laws. Mathematical theory of dislocations,

178–202.
Xiong, L., J. Rigelesaiyin, X. Chen, S. Xu, D. L. McDowell, and Y. Chen (2016). Coarse-grained elastodynamics of fast moving dislocations. Acta

Materialia 104, 143 – 155.
Yanilkin, A., V. Krasnikov, A. Y. Kuksin, and A. Mayer (2014). Dynamics and kinetics of dislocations in al and al–cu alloy under dynamic loading.

38



International Journal of Plasticity 55, 94–107.
Youssef, G., R. Crum, S. Prikhodko, D. Seif, G. Po, N. Ghoniem, S. Kodambaka, and V. Gupta (2013). The influence of laser-induced nanosecond

rise-time stress waves on the microstructure and surface chemical activity of single crystal cu nanopillars. Journal of applied physics 113(8),
084309.

39

View publication statsView publication stats

https://www.researchgate.net/publication/331000037

	Introduction 
	Elastodynamic Field of Non-uniformly Moving Dislocation Loop
	The 3D Elastodynamic Problem
	The Elastodynamic Field of a Non-uniformly Moving Dislocation Loop

	Numerical Implementation in 3D-DDE
	Dislocation Motion History
	Determination of Retarded Times & Positions
	Fast Sum Implementation of Line Integrals
	Computation of Time Derivatives
	Singularity Treatment

	Validation tests
	Determination of the Retarded Dislocation Segment
	The Injected Static Edge Dislocation
	Uniform Motion of a Straight Edge Dislocation
	Motion of a Straight Screw Dislocation

	New Insights on Elastodynamic Effects
	Stress field of a moving shear dislocation loop 
	Interaction between shear dislocation loops

	Conclusions

