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Dark matter could be a thermal relic comprised of strongly interacting massive particles (SIMPs), where
3 → 2 interactions set the relic abundance. Such interactions generically arise in theories of chiral
symmetry breaking via the Wess-Zumino-Witten term. In this work, we show that an axionlike particle can
successfully maintain kinetic equilibrium between the dark matter and the visible sector, allowing the
requisite entropy transfer that is crucial for SIMPs to be a cold dark matter candidate. Constraints on this
scenario arise from beam dump and collider experiments, from the cosmic microwave background, and
from supernovae. We find a viable parameter space when the axionlike particle is close in mass to the SIMP
dark matter, with strong-scale masses of order a few hundred MeV. Many planned experiments are set to
probe the parameter space in the near future.
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I. INTRODUCTION

Dark matter (DM) comprises the majority of the matter
budget of the Universe, but its microphysical properties and
origin remain unknown. One possibility is that DM is a
thermal relic from the early Universe. The most well-
studied thermal scenario is that DM is comprised of weakly
interacting massive particles (WIMPs). The number density
of WIMPs is set by 2 → 2 annihilations of the DM into
standard model (SM) particles, and the observed DM relic
abundance is achieved when both the DM mass and
coupling to SM particles are near the scales relevant for
electroweak processes.
An alternative thermal setup was proposed in Ref. [1]

where 3 → 2 DM self-interactions set its abundance. In this
scenario, the observed relic density indicates that the DM
mass and self-coupling should be near the strong scale.
This mechanism of strongly interacting massive particles

(SIMPs) was shown to be generic in strongly coupled
theories of chiral symmetry breaking, where the pions play
the role of DM [2]. The 3 → 2 interactions are then sourced
by the well known Wess-Zumino-Witten (WZW) action
[3–5]. This provides a simple and calculable realization of
the SIMP mechanism, although by no means the only one
[6–16].

In addition to providing a novel thermal mechanism for
explaining the dark matter abundance, SIMPs also offer a
possible explanation for issues related to small-scale
structure formation. In particular, observed dark matter
subhalos tend to be less dense than in simulations (see
Ref. [17] for a recent review). While many of these issues
may be resolved with better understanding of astrophysical
processes (for instance, in Ref. [18]), it is also possible to
mitigate these issues if the dark matter can self-scatter (see
Ref. [19] for a recent review). The strong self-annihilations
of SIMP dark matter imply that their self-scatterings are
also large, such that they naturally address these small-scale
puzzles [1,2].
The 3 → 2 DM annihilations would raise the temper-

ature of the residual DM due to conservation of comoving
entropy. Therefore, the DM must be in thermal equilibrium
with a heat sink, such as the SM bath, until after freeze-out
[1]. Otherwise, the 3 → 2 DM annihilations would cause
the steady depletion of DM particles and heating of the
remaining DM, a scenario referred to as cannibalization.
While cannibalization was originally proposed to provide a
class of DM models intermediate between hot and cold

*yonit.hochberg@mail.huji.ac.il
†eric.kuflik@mail.huji.ac.il
‡robertmcgehee@berkeley.edu
§hitoshi@berkeley.edu; hitoshi.murayama@ipmu.jp∥kschutz@berkeley.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 115031 (2018)

2470-0010=2018=98(11)=115031(13) 115031-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.115031&domain=pdf&date_stamp=2018-12-26
https://doi.org/10.1103/PhysRevD.98.115031
https://doi.org/10.1103/PhysRevD.98.115031
https://doi.org/10.1103/PhysRevD.98.115031
https://doi.org/10.1103/PhysRevD.98.115031
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


DM, such models are not observationally-viable [20,21].
Obtaining the observed DM abundance inevitably leads to
an unacceptable washout of small-scale structure.
To allow for adequate thermalization between the DM

and the SM, Refs. [8,9] explored the kinetically mixed
hidden photon portal. Here, we explore the possibility of a
pseudoscalar portal using axionlike particles to accomplish
the entropy transfer to photons. For brevity, we refer to
axionlike particles simply as “axions” throughout the paper.
We note that Ref. [22] also considered an axion portal, but
focused on the regime where semiannihilations set the relic
abundance. In contrast, we focus on the SIMP regime
where 3 → 2 annihilations determine the relic density. For
concreteness, we will use the SIMPlest pion realization of
the DM based on an Spð2NcÞ gauge theory with four
doublet Weyl fermions following Ref. [2]. Spð2NcÞ gauge
groups with a larger number of flavors or SUðNcÞ and
SOðNcÞ gauge groups allow for semiannihilations which
can control the relic abundance, although there may still be
parameter space where 3 → 2 annihilations determine the
dark matter density.
This article is organized as follows. In Sec. II, we

describe the framework and identify the interactions
responsible for setting the correct DM relic abundance
and cooling the DM via the axion portal. In order to cool
the DM effectively, the axion must be in thermal equilib-
rium with both the DM and the SM. In Sec. III, we illustrate
the theoretical and empirical requirements of axion-pion
thermal equilibrium, while in Sec. IV we do the same for
axion-SM thermal equilibrium. Concluding remarks and
discussions follow in Sec. V.

II. THE FRAMEWORK

Our starting point is an Spð2NcÞ gauge theory with 2Nf

Weyl fermions that couple to an axionlike field a as

Laq ¼ −
1

2
m2

aa2 −
�
1

2
mQeia=faπJijqiqj þ H:c:

�
ð1Þ

where ma is the axion mass, mQ is the quark mass matrix,
qi are the confining quarks and J is the Spð2NfÞ group
invariant.1 Upon dynamical chiral symmetry breaking, the
ground state is expected to be given by

hqiqji ¼ μ3Jij: ð2Þ

Any transformation by the flavor symmetry V ∈ SUðNfÞ
would also be a ground state, and in general

hqiqji ¼ μ3ðVJVTÞij: ð3Þ

Switching the description to the chiral Lagrangian, a
spacetime-dependent flavor rotation gives the low-energy
excitations,

hqqi → μ3Σ; Σ≡ VJVT; V ¼ expðiπ=fπÞ; ð4Þ

where π ≡ πbTb,Tb are the Spð2NfÞ generators and fπ is the
pion decay constant. We use the normalization TrTbTc ¼
2δbc for the generators. In terms of the pion fields,

−
i
2
mQJijqiqj þ H:c: ⇒

m2
π

6fπ
Trπ3 þOðπ5Þ;

−
1

2
mQJijqiqj þ H:c: ⇒ −

m2
π

4
Trπ2 þOðπ4Þ: ð5Þ

The theory has an SUð2NfÞ=Spð2NfÞ flavor structure, where
the residual Spð2NfÞ is exact due to the quark masses’
proportionality to J. For Nf ≥ 2, the fifth homotopy group
of the coset space is nonvanishing and the WZW term exists
[3–5],

SWZW ¼ −iNc

240π2

Z
TrðΣ†dΣÞ5: ð6Þ

Generally, both aTrðπ3Þ and a2Trðπ2Þ terms can appear
in the interaction Lagrangian. However, the former intro-
duces semiannihilations of pions into a pion and an axion
which might contribute to determining the relic abundance
of the dark matter. Here, we are interested in exploring the
role of an axion mediator in the SIMP mechanism of 3 → 2
self-annihilations of pions. Consequently, we focus on an
Spð2NcÞ gauge theory with Nf ¼ 2 fermions, where the
flavor symmetry is SUð4Þ=Spð4Þ and Nπ ¼ ðNf − 1Þ×
ð2Nf þ 1Þ ¼ 5 pions emerge. In this theory, the semi-
annihilation process is absent since Trðπ3Þ ¼ 0, and pure
3 → 2 annihilations of pions via the WZW term are
guaranteed to control the relic abundance of DM. For
more flavors, or for other gauge groups, 3 → 2 annihilation
may still control the relic abundance, though in a smaller
region of parameter space. To leading order in pion fields,
the WZW term for our choice of gauge group takes the
form

LWZW ¼ 2Nc

15π2f5π
ϵμνρσTr½π∂μπ∂νπ∂ρπ∂σπ�

¼ 8Nc

15π2f5π
ϵμνρσϵabcdeπ

a∂μπ
b∂νπ

c∂ρπ
d∂σπ

e: ð7Þ

The excess kinetic energy generated in the dark sector
from 3 → 2 annihilations needs to be transferred out, which
can be obtained through kinetic coupling of the pions to the
axions and the axions to the SM bath. Since the semi-
annihilation term is absent for our flavor group of choice,
the interaction Lagrangian between pions and axions is

1Note that in terms of a 4-component spinor ψT ¼ ðqq†Þ, the
identities iψ̄γ5ψ ¼ −iqqþ iq†q† and ψ̄ψ ¼ qqþ q†q† hold.
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Laπ ⊃
κ

4
a2πbπcδbc: ð8Þ

If the axion coupling to the pions arises in a similar manner
to what occurs in QCD, as in Eq. (1), the mass term for the
hidden quarks q in the Spð2NcÞ gauge theory gives rise to
an axion potential:

Laπ ¼ −
1

2
m2

aa2 −
1

2
mQμ

3eia=faπTrJΣþ H:c:

¼ −
1

2

�
m2

aa2 þ
2m2

πf2π
f2aπ

�
a2 þ m2

π

8f2aπ
a2Trπ2 þ � � � ð9Þ

where mπ is the pion mass. Using the normalization of
Trπ2 ¼ 2πbπcδbc, we identify the Feynman rule for the
aaπbπc vertex in Eq. (8) as

iκδbc ¼ i
m2

π

f2aπ
δbc: ð10Þ

Meanwhile, the interaction Lagrangian between the axions
and SM photons is

Laγ ¼
1

4faγ
aFμνF̃μν: ð11Þ

As long as the kinetic equilibrium between the pions and
the SM is maintained through the interactions of Eqs. (9)
and (11), the preferred mass for the dark matter is mπ ≈
300 MeV [2] with mπ ∼ 2πfπ to set the observed relic
abundance. We find below that viable ALP masses are
around the same scale, 10 MeV≲ma ≲ 1 GeV. Couplings
that satisfy mπ ∼ 2πfπ correspond to the strongly interact-
ing regime of the theory, where self-interactions are
important on astrophysical scales. In this regime, Oð1Þ
corrections to perturbative results are expected, and there-
fore should be thought of as a proxy for the scales involved.
Phenomenologically interesting pion masses lie at the edge
of perturbativity, where higher order corrections and vector
meson effects can impact the range of observationally-
viable pion masses [16,23].

III. AXIONS AND PIONS IN EQUILIBRIUM

A. Theoretical requirements

The interaction Lagrangian in Eq. (9) leads to annihi-
lations of pions into axions and to elastic scattering of
axions off of pions. The SIMP mechanism requires the
former process to be suppressed at the time of 3 → 2 freeze-
out while the latter is active.
The requirement in order for the 3 → 2 pion self-

annihilations to dominate the 2 → 2 annihilations of pions
into axions at the time of freeze-out is

nπhσviann ≲HjTF
; ð12Þ

where hσviann is the thermally averaged cross section for
the annihilation process ππ → aa. The Hubble parameter at
freeze-out is given by

HjTF
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
g�;Fπ2

90

s
T2
F

MPl
; ð13Þ

where TF is the freeze-out temperature of 3 → 2 inter-
actions (typically TF ∼mπ=20 in the SIMP setup), MPl is
the Planck mass, and g�;F is the effective number of
relativistic degrees of freedom at the time of freeze-out.
We have verified numerically that this requirement on the
annihilation rate does maintain the correct relic abundance
as set by the 3 → 2 SIMP mechanism.
The thermally averaged annihilation cross section that

appears in Eq. (12) can be readily calculated. For a trivial
matrix element,M, of a process 12 → 34 [as is relevant for
the Lagrangian of Eq. (9)] in which all states obey
Maxwell-Boltzmann statistics, the thermally averaged
cross section entering the Boltzmann equations [24] is
expressed in terms of

γ12→34 ¼
g1g2g3g4TjMj2

29π5

Z
∞

smin

ds
ffiffiffi
s

p
λ1=2ð ffiffiffi

s
p

; m1; m2Þ

× λ1=2ð ffiffiffi
s

p
; m3; m4ÞK1ð

ffiffiffi
s

p
=TÞ; ð14Þ

where gi counts degrees of freedom for particle i,

smin ¼ maxfðm1 þm2Þ2; ðm3 þm4Þ2g; ð15Þ

λðx; y; zÞ≡ ð1 − ðyþ zÞ2=x2Þð1 − ðy − zÞ2=x2Þ; ð16Þ

and K1 is the first order modified Bessel function of the
second kind. The amplitude jMj2 which appears is
averaged over all degrees of freedom. For pion-axion
scattering and pion annihilation to axions, the relevant
amplitude is therefore

jMj2 ≡ 1

gπ

1

gπ

X
b;c

κ2δbc ¼ m4
π

gπf4aπ
ð17Þ

since the trace requires that the pions be the same. The
thermally averaged cross section for the annihilation
process ππ → aa is

hσviann ¼
1

2

γann
ðneqπ Þ2 ; ð18Þ

where neqi denotes the number density of particle i in
equilibrium,

neqi ¼ gi
2π2

Tim2
i K2ðmi=TiÞ; ð19Þ
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where K2 is the second order modified Bessel function of
the second kind. In Eq. (18), the phase-space factor of 1=2
for identical initial particles is cancelled because the
number density changes by two particles per annihilation.
For ma ≪ mπ, Eq. (18) simplifies to

hσviann ≈
g2am2

π

64gππf4aπ
: ð20Þ

In addition to the suppression of the 2 → 2 annihilations,
the SIMP mechanism requires that the rate of energy
transfer in the scattering process aπ → aπ is fast enough
to successfully cool the DM. We require that thermal
decoupling occurs after freeze-out, TD < TF, so that the
energy transfer is efficient for the entirety of the freeze-out
process. In the limit of small ma (using Bose-Einstein
statistics), we follow the analytic derivation of Ref. [25]
which obtains the thermal decoupling temperature TD of
the πa → πa elastic scattering process

TD ∼mπ

�
πg2am5

π

120f4aπHjT¼mπ

�−1=4
; ma ≪ TF: ð21Þ

The details of this derivation, including a normalization
factor of 4−1=4Γð3=4Þ, can be found in Ref. [25]. We have
checked numerically that this requirement on thermal-
ization between the axions and pions does keep the DM
cool.
In the regime where TF < ma ≲mπ , we generalize the

approach laid out in Ref. [26] for particles scattering in
the limit of low momentum transfer. We estimate that in the
viable parameter space, this approximation is valid to
within 10% even though the pion mass is larger than the
axion mass by only order unity factors. Working to second
order in the momentum transfer and using Maxwell-
Boltzmann statistics for the axion, we find that decoupling
occurs when

3g2amπm2
aT2

De
−ma=TD

ð2πÞ3f4aπHjT¼mπ

∼ 1; TF < ma ≲mπ: ð22Þ

We find that the low- and high-mass axion decoupling
temperatures match onto each other when numerical
differences between Bose-Einstein and Maxwell-
Boltzmann statistics are taken into account in the inter-
mediate regime. The details of the derivation can be found
in Appendix B.
In addition to the above requirements, the decay constant

faπ must be greater than the cutoff scale of chiral symmetry
breaking. Otherwise, the description in Eq. (1) breaks
down. We require that faπ ≳ 2πfπ , where fπ is determined
for a givenmπ from the solution to the Boltzmann equation.
Since the Spð2NcÞ gauge theory with Nf ¼ 2 we discuss
here points to the strongly interacting regime where
mπ ∼ 2πfπ , we require that faπ ≳mπ . In practice, however,

suppressing 2 → 2 annihilations at freeze-out is always a
stronger requirement.
An additional preference, though not a requirement,

comes from considering how chiral symmetry breaking
contributes to the axion mass in Eq. (9),

Δm2
a ¼

2m2
πf2π

f2aπ
: ð23Þ

The natural range for the axion mass-squared is therefore
where Δm2

a ≲m2
a, such that no fine tuning is present

against an unspecified negative contribution, possibly from
another confining gauge theory with θ ≈ π.
Satisfying the above requirements on faπ as a function of

ma for a variety of dark matter masses mπ yields the viable
SIMP regions depicted in Fig. 1. We take g�;F ¼ 10.75 at
freeze-out since for the DM masses we consider, freeze-out
happens below the temperature of muon-antimuon annihi-
lation. We learn that viable SIMP-axion thermalization is
achieved over a broad range of axion masses and cou-
plings faπ .
We note that elastically decoupling relic (ELDER) dark

matter [25,27] is obtained along the thermalization curve in

FIG. 1. The parameter space for axions coupling to pions. The
shaded regions correspond to the regions where the SIMP
mechanism is theoretically viable for a given dark matter mass
mπ . The boundaries of this region are set by requiring that the
3 → 2 rather than the 2 → 2 process sets the relic abundance
(labeled as “WIMP regime”) and that the pions can transfer their
excess heat to the axions and hence the SM sector (labeled as
“Thermalization”). Note that the parameter space along the
“Thermalization” curve corresponds to the scenario where dark
matter is an elastically decoupled relic (ELDER). We also
indicate the natural mass range where the axion mass is at least
as large as its contribution from chiral symmetry breaking
(labeled as “Naturalness”). Also shown are the empirical upper
limits on pion annihilation from energy injection into the CMB
(thick solid lines labeled as “CMB limits on annihilation”).
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Fig. 1. For ELDER DM, the kinetic decoupling between
the DM and SM baths occurs before 3 → 2 pion self-
annihilations freeze out. This causes the relic abundance
to be exponentially sensitive to this elastic scattering while
being relatively insensitive to the strength of the 3 → 2 pion
process. On the thermalization curve in Fig. 1, the elastic
scattering of pions off of axions dominates over the 3 → 2
pion self-annihilation process in setting the relic abundance.

B. Empirical requirements

Having established the theoretical requirements on the
axion-SIMP parameter space, we now move to the obser-
vational constraints coming from the cosmic microwave
background (CMB). In standard cold dark matter cosmol-
ogy, the intergalactic medium (IGM) is almost entirely
neutral after recombination and CMB photons free stream.
If some fraction of the DM annihilates to SM particles
and partially ionizes the IGM, this will cause some CMB
photons to re-scatter which modifies CMB anisotropies in a
characteristic way. For the scenario we consider in this
work, the process of interest is ππ → aa → 4γ. In the
parameter space where there is sufficient thermalization
between axions and the SM (see Sec. IV), the decay of the
intermediate-state axions happens immediately. Thus, the
use of the narrow-width approximation is appropriate and
the cross section for this process is set by the cross section
for the annihilation process ππ → aa. We use limits derived
in Ref. [28], which are not very sensitive to whether there
are two final-state photons or four [29]. The resulting upper
limits are shown in Fig. 1 as a set of thick, solid lines
corresponding to the different depicted pion masses. We
thus find a viable SIMP-axion parameter space below the
CMB curve and above the thermalization curve.

IV. AXIONS AND PHOTONS IN EQUILIBRIUM

A. Theoretical requirements

Fig. 1 presents the viable region where the SIMP and
axion maintain thermal equilibrium. If the axion and SM
also maintain thermal equilibrium via the axion-photon
coupling in Eq. (11), then the pions will share a temperature
with the SM. For most of the axion masses we consider,
decays and inverse decays into SM photons are the most
efficient processes for kinetic equilibrium with the SM at
freeze-out. The rate for these decays at rest is

Γa ¼
m3

a

64πf2aγ
: ð24Þ

For the axions to thermalize with the SM during freeze-out,
two conditions must be satisfied. First, axion decays and
inverse decays must be fast enough to thermalize the axions
with the SM,

Γamae−ma=2TF

4TFHjTF

≳ 1: ð25Þ

This is the strongest condition in the regime where the
axion is relatively light and abundant. In the regime where
the axion mass is comparable to or larger than that of the
pion, a second condition on their decay becomes stronger
than just pure thermalization between the axions and SM:

ΓaT2
Fna

ma
≳HjTF

m2
πnπ

TF
: ð26Þ

This second condition requires that the axions decay
quickly enough to transfer entropy that has accumulated
from the pion sector to the SM. This matters more for
higher axion masses ma ≳mπ since the axion number
density is lower than the pion number density, so that each
axion decay must transfer several pions’ entropy. The
detailed derivations of these conditions can be found in
Appendix C.
Decays and inverse decays come into equilibrium at late

times. A priori, this could suggest the need for Eqs. (25)
and (26) to hold prior to freeze-out in order to sufficiently
transfer entropy from the annihilating pions into the SM
particles. However, we verified numerically that this is not
the case: the SIMP relic abundance is unaffected if decays
and inverse decays into SM particles only come into
equilibrium close to the time of freeze-out.
For axions with masses below the freeze-out temper-

ature, the scattering process ae → γe is more efficient than
the decays considered above. This arises because the rate of
scattering is enhanced relative to decays like ∼ðT=maÞ3 for
axions that are relativistic at the time of freeze-out, while
the rate of decays is suppressed due to the boost factor of
∼ðma=TÞ. We find that the parameter space with ma < TF
is tightly constrained for the pion masses we consider and
therefore do not include the scattering process ae → γe in
our analytics or numerics, since it is expected to be
subdominant for axion masses with ma ≳ TF. Note that
by including decays as the only channel to transfer entropy,
we are being conservative since adding the ae → γe
channel would only lower the required coupling strength
between axions and the SM.
In Fig. 2, we depict the requirement on faγ such that

decays and inverse decays sufficiently transfer entropy
between the sectors. Each solid curve corresponds to the
lower bound on f−1aγ to maintain thermal contact for a fixed
pion mass. We use the full Boltzmann equations and full
energy transfer rates. A crossover between two regimes
occurs at ma ∼mπ, where the lower axion number density
starts to matter and Eq. (26) becomes a stronger condition
than Eq. (25). In the regime where ma ≳mπ , kinetic
equilibrium is maintained by axions in the exponential tail
of the distribution, which causes the precipitous increase in
f−1aγ . As is evident, kinetic equilibrium between the axion

STRONGLY INTERACTING MASSIVE PARTICLES … PHYS. REV. D 98, 115031 (2018)

115031-5



and the SM through decays and inverse decays is possible
over a range of axion masses.
The conditions outlined above amount to requiring that

the axions and SM have the same temperature at freeze-out;
however, there is another possibility which we outline here.

For the DM to cool, it only needs to transfer entropy to the
axions throughout the freeze-out process. Then, instead of
keeping the axions and SM at the same temperature, axions
can decay out of equilibrium into the SM at some later time.
Relative to the scenario where the axions are thermalized

FIG. 2. The parameter space for axions coupling to photons through Uð1ÞY (top left), SUð2ÞW (top right), and both in equal amounts
(bottom). Solid curves correspond to the lower bound on the decay rate for thermalization between the axions and SM for various pion
masses. Vertical, dashed lines correspond to the largest axion mass allowed by CMB constraints for a given pion mass (see Fig. 1).
Below the thermalization curves, the SIMP mechanism may still be viable down to the black solid line if the axion decays out of
equilibrium and reheats above the neutrino decoupling temperature. Solid, filled regions correspond to existing constraints from
supernova 1987a [30,31], LEP and CDF [30,32,33], BABAR [30], beam dump experiments SLAC 137, SLAC 141, CHARM, and NuCal
[30,34–38], and kaon decay experiments E949, NA62, NA48=2, and KTeV [39–42]. Regions enclosed by dotted, black lines correspond
to projected reach by SHiP [37,43], NA62 [37], Belle II 3γ [30,42] (noting that the projected Belle II constraint from γ þ invisible falls
between NuCal and NA62 [30]), BABAR [42], SeaQuest [44] and FASER [45]. See the main text for more details.
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with the SM, the pion–axion sector will be slightly hotter
than the SM and the relic abundance will be slighter larger
for the same value of 3 → 2 rate. Therefore if the axions
and SM are not thermalized at freeze-out, the value of fπ
must be increased slightly to give the right relic abundance.
For sufficiently large ma, the universe undergoes a brief
matter-dominated phase where the axions dominate the
energy density of the universe. When the axions decay, they
reheat the SM components, the universe becomes radiation-
dominated again, and the pion abundance is diluted. This
happens when

HðTRHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�;RHπ2

90

s
T2
RH

MPl
∼ Γa: ð27Þ

We require that the reheat temperature be larger than the
temperature of neutrino decoupling: if the reheat temper-
ature is lower, then the photons get preferentially heated
and the effective number of relativistic neutrinos (Neff )
becomes smaller than allowed by observations of the CMB
[46]. We take the neutrino decoupling temperature to be
∼3 MeV [47], at which point g� ¼ 10.75. Having such a
high reheat temperature also enforces that the decay
products do not affect Big Bang Nucleosynthesis (BBN).
Therefore, the region in Fig. 2 between the solid curves and
straight line labeled “Reheat before neutrino decoupling”
may be viable with a slightly different 3 → 2 cross section
than in the standard SIMP scenario. More dedicated
numerical studies are necessary in this case and will be
explored in future work.

B. Empirical requirements

Having established a theoretically-viable parameter
space, we must check whether it is allowed by current
experiments and observations. Constraints arise from early
universe cosmology, astrophysical bodies, and terrestrial
experiments.

1. Light Degrees of Freedom

If light axions are in thermal equilibrium with the SM
bath, a bound on their mass arises from their effect on the
temperature ratio Tν=Tγ after neutrinos have decoupled.
This difference alters the effective number of neutrino
species contributing to the radiation density, Neff , which
can be measured in the CMB by comparing the photon
diffusion scale to the sound horizon scale [46,48]. Such
constraints are relevant for light particles in equilibrium
with the photon or electron plasma beneath the temperature
of neutrino decoupling unless the particle couples to
neutrinos as well. When applicable, this bound is stronger
than the BBN bound of ∼MeV, which comes from the fact
that changes to Neff change the expansion history and
hence modify the abundance of the light elements. Because

of this bound, only values of ma > 2.6 MeV are shown
Fig. 2.

2. Supernova 1987a

The direct coupling of the axion to photons can lead to
excess emission from supernovae (SN) via the Primakoff
scattering process [49]. When the coupling between axions
and the SM is sufficiently strong, the scattering of eγ → ea
produces axions in the stellar medium which leads to
excess cooling if the axions escape the SN. However, if the
coupling is too strong, then trapping occurs via the inverse
ea → eγ process along with axion decays, in which case
the axion does not carry any energy out of the star. SN
cooling primarily proceeds through neutrino emission; due
to the observed neutrino signal from SN 1987A, any new
SN cooling process must carry away less energy than the
neutrinos, ∼3 × 1053 ergs. The region of parameter space
excluded by the excess cooling of SN 1987A [30] is shown
in Fig. 2. For photon couplings that are too weak to produce
significant energy loss in the supernova, there are still
constraints from escaping axions decaying into an observ-
able burst of photons [31], which we also show in Fig. 2.

3. Terrestrial

The couplings between axions and SM particles are
constrained by terrestrial experiments. However, these
constraints often come with assumptions about how the
axions interact with the SM. We classify constraints on the
axion-photon coupling based on different assumptions
about its fundamental origin, namely that the photon
coupling arises from:
(1) solely coupling to Uð1ÞY ;
(2) solely coupling to SUð2ÞW ;
(3) equal couplings to Uð1ÞY and SUð2ÞW , in which

case, the aZγ coupling vanishes.
Measurements from the LEP collider and CDF constrain

the decay Z → γγðγÞ [30,32,33] as shown in Fig. 2. BABAR
also constrains the decay Z → γ þ invisible [30]. In the third
case above, in which the aZγ coupling vanishes due to equal
couplings to Uð1ÞY and SUð2ÞW , both of these Z decay
constraints are alleviated. In their place, there is a LEP bound
on eþe− → γγ [33] and a BABAR bound on eþe− → γ þ inv
[30]. Constraints from electron beam dump experiments
SLAC 137, SLAC 141 [30,34,35,38], and proton beam
dump experiments CHARM and NuCal [36,37] apply for
axions coupled to photons regardless of how the coupling
arises. Constraints from KL → π0a and K� → π�a with
a → γγ assume the axion couples to SUð2ÞW . These kaon
results were obtained in Ref. [42] from analyses of fixed-
target kaon rare decay experiments by the E949 [39], NA62
and NA48=2 [40], and KTeV [41] collaborations.
In addition to existing constraints, we show the projected

reach of several future experiments and analyses on the
photon coupling to an axion, indicated by the dashed black
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curves in Fig. 2. We include the projected reach of SHiP
[37,43], NA62 [37], BABAR [42], Belle II [30,42],
SeaQuest [44] and FASER [45]. In principle there could
be a constraint from a process involving the aZZ coupling
for all three scenarios, though we expect it would be
weaker than the constraints we present and at this time
we are not aware of any existing or projected limits from
such a process.

V. DISCUSSION

In this paper, we have considered the pion realization of
SIMP dark matter in strongly coupled gauge theories, and
have shown that it can be realized with axions as the
thermalization portal between the dark matter and SM.
Throughout this work, we have required that all three
sectors—the SIMPs, axions, and SM—share the same
temperature as the 3 → 2 annihilations freeze out. This
requirement sets a target range of masses and couplings for
this mechanism to be theoretically viable.
In examining the couplings between the SIMPs and

axions, we have required that the coupling is strong enough
to thermalize the two sectors via 2 → 2 scattering. At the
same time,we require that the coupling not be strong enough
for 2 → 2 annihilations to overwhelm the 3 → 2 process that
is the hallmark of the SIMP mechanism. Combined, these
requirements lead to a well-defined range of couplings
between the pion dark matter and the axions such that the
SIMP mechanism can work. Constraints on annihilation
coming from the CMB narrow the allowed range of
couplings, though a broad parameter space remains. It is
possible that a future CMB spectral distortions experiment
can probe this parameter space further, though exploring this
possibility is beyond the scope of this work.
Considering the couplings between the axions and the

SM, we focused on the coupling to photons. For a given
pion mass, there is a range of axion masses allowed for
maintaining SIMP-axion equilibrium. Within this axion
mass range, the main requirement for axion-SM thermal-
ization is that the axions decay quickly enough to success-
fully transfer the entropy from the pions to the SM, which
can easily be achieved. The relevant couplings to photons
can be probed in a multitude of ways. The range of axion
masses considered here are at an energy scale that is
relevant for supernovae, which constrains part of the
parameter space. Additionally, terrestrial beam dump and
collider experiments have probed complementary param-
eter space. We find that the SIMP mechanism can be
realized in a broad region of parameter space that is not
excluded by current constraints. Several upcoming experi-
ments are forecast to probe much of the viable parameter
space that is currently allowed, providing an excellent
handle for testing the framework.
There are several possible ways to extend the parameter

space for axion-mediated SIMPs. Some of these possibil-
ities are already excluded by existing limits. For instance,

heavy axions which mediate the entropy transfer through
off-shell interactions (both through the interactions we
consider here and through the CP-violating interaction
L ⊃ fCPV

2
aπbπb) are excluded by the LEP constraint shown

in Fig. 2. Another heavily-constrained scenario is that the
axions couple to all fermions through a universal Yukawa
coupling, which is almost entirely ruled out by SLAC 137,
CHARM, kaon decays, B decays, supernova 1987a, BABAR
and the muon anomalous magnetic moment [50–52]. A
more promising possibility is that axions couple only to
electrons or to charged leptons; in this case, there are known
limits from SLAC 137 and the muon anomalous magnetic
moment [50,52]. In addition, the axion-electron parameter
space should be constrained by limits from supernova 1987a
and from loop-induced couplings to photons. However,
such constraints have not been explored in the literature and
will be the subject of future work [53]. Another possibility is
that the axions have a long enough lifetime that they decay
out of equilibrium, dumping entropy to the SM and diluting
the SIMPs—this too will be explored in future work [53].
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APPENDIX A: BOLTZMANN EQUATIONS

The Boltzmann equations govern the evolution of the
phase space fXðp; tÞ for particle X,
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∂fX
∂t −H

p2

E
∂fX
∂E ¼ C½fX�; ðA1Þ

where the left-hand side is the relativistic Liouville operator
in a Friedmann-Robertson-Walker spacetime and C½fX� is
the collision term. In the regime where 2 → 2 annihilations
are negligible, the relevant terms which appear in the
collision term are the 3 → 2 interactions which set the
relic abundance, the DM self-interactions which give it a
thermal distribution, the elastic interactions which transfer
energy between the pions and axions, and decays (and
inverse decays) of axions to SM particles. We neglect
axions converting to photons (and vice versa) via t-channel
scattering off electrons, which is less efficient than decays
(and inverse decays) at thermalizing the axions with the
SM. In the parameter space of interest (with the exception
of axions in the out-of-equilibrium decay scenario), all
particles will be interacting sufficiently frequently so that
they have thermal distributions,

fX ¼ 1

eðE−μÞ=T � 1
; ðA2Þ

where theþsign (−sign) is for Fermi-Dirac (Bose-Einstein)
statistics and μ is the chemical potential. At temperatures
below the mass of a given particle, the effects of quantum
statistics become negligible and the Maxwell-Boltzmann
(MB) distribution is recovered.
To solve the Boltzmann equations, it is most useful to

look at two moments of the phase space distribution, which
correspond to the number density and energy density

nX ¼ gX

Z
đ3pfX ðA3Þ

ρX ¼ gX

Z
đ3pEfX; ðA4Þ

where gX is the number of degrees of freedom and
đ3p≡ d3p=ð2πÞ3. The Boltzmann equations for axion-
mediated SIMPs are

∂nπ
∂t þ 3Hnπ ¼ −hσ3→2v2iðn3π − n2πn

eq;Tπ
π Þ; ðA5Þ

∂ρπ
∂t þ 3Hðρπ þ pπÞ ¼ −hσelvδEinπna; ðA6Þ

∂na
∂t þ 3Hna ¼ −ðhΓiTa

na − hΓiTSM
neq;TSM
a Þ; ðA7Þ

∂ρa
∂t þ 3Hðρa þpaÞ ¼ hσelvΔEinπna −maΓðna − neq;TSM

a Þ;
ðA8Þ

where pX is the pressure densities of species X (which is
related to the energy density through the equation of state
wX), and n

eq;T
X is the thermal equilibrium density for species

X at temperature T. Additionally, hΓiT ¼ Γhma=EaiT is the
thermally averaged decay rate of the axion at temperature
T, hσ3→2v2i is the thermally averaged 3 → 2 cross section
of the pions for this choice of gauge group, labeled
i ¼ 1…5,

hσ3→2v2i ¼
1

3!2!n3π

Z �Y5
i¼1

đ3pi

2Ei

�
f1f2f3jM123→45j2

× ð2πÞ4δ4ðp1 þ p2 þ p3 − p4 − p5Þ; ðA9Þ

¼ 6N2
cffiffiffi

5
p

π5
m3

πT2
F

f10π
ðA10Þ

and nπnahσelvδEi is the energy transfer rate between the
pions and axions (with the initial and final states labeled as
1 and 2),

nπnahσelvΔEi

¼
Z

đ3pπ1

2Eπ1

đ3pa1

2Ea1

đ3pπ2

2Eπ2

đ3pa2

2Ea2

× ðEπ1 − Eπ2Þfπ1fa1 jMπa→πaj2ð2πÞ4δ4
× ðpπ1 þ pa1 − pπ2 − pa2Þ: ðA11Þ

For MB statistics, the equilibrium values for the number,
energy, and pressure densities for a particle of mass m and
temperature T with g degrees of freedom are

neq ¼ g
Z

đ3pfeq ¼ gm2T
2π2

K2

�
m
T

�
ðA12Þ

ρeq ¼ g
Z

đ3pEfeq ¼ gm2T
2π2

�
mK1

�
m
T

�
þ 3TK2

�
m
T

��
ðA13Þ

peq ¼ g
Z

đ3p
p2

3E
feq ¼ gm2T2

2π2
K2

�
m
T

�
ðA14Þ

and the thermally averaged boost factor is

�
m
E

�
T
¼ 1

neq

Z
g
d3p
ð2πÞ3

m
E
feq ¼ K1ðm=TÞ

K2ðm=TÞ : ðA15Þ

APPENDIX B: PION-AXION KINETIC
DECOUPLING

We require that the pions and axions are in kinetic
(thermal) equilibrium during the entire time over which
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the 3 → 2 process is active. This can be recast as a
requirement that the thermal decoupling temperature
between the two sectors is lower than the temperature at
which the 3 → 2 process freezes out. In this range of
temperatures, the pions are guaranteed to be nonrelativistic
since TF ∼mπ=20. Therefore, the energy transfer rate can
be rewritten as

nπnahσelvΔEi ≃ −
Z

đ3pπ1

2Eπ1

p2
π1

2mπ
C½fπ1 �: ðB1Þ

The form of the collision term in the integrand will depend
on whether the axions are relativistic or not at around the
time of freeze-out, as detailed below.

1. Relativistic axions

In the regime where the axions are still relativistic at the
time of freeze-out, there are well-known methods for
computing the collision term [26]. For pion-axion scatter-
ing in this regime, the collision term takes the form

C½fπ1 � ¼
πg2am6

π

360f4aπ

�
Ta

mπ

�
4

ðmπTa∇2
pπ1

þ  pπ1

·  ∇pπ1
þ 3Þfπ1ðTπÞ: ðB2Þ

Integrating over the pion phase space in Eq. (B1) yields

nπnahσelvΔEi ¼
πg2am5

π

120f4aπ

�
Ta

mπ

�
4

ðTπ − TaÞ: ðB3Þ

While the 3 → 2 is actively depleting the number density,
the pions are nonrelativistic and follow MB statistics,
which means that their energy density Boltzmann equation
can then be expressed as

∂Tπ

∂Ta
¼ 3

T2
π

mπTa
þ πg2am5

π

120f4aπHjT¼mπ

TaT2
πðTπ − TaÞ
m4

π
: ðB4Þ

The first term on the right-hand side comes from the 3 → 2
and causes the pion temperature to increase, while the
second term comes from pion-axion elastic scattering and
pushes Tπ → Ta. The second term cannot keep up with the
first as the temperature drops and the pions and axions
decouple. The temperature of decoupling is

TD ≃mπ

�
πg2am5

π

120f4aπHjT¼mπ

�−1=4
: ðB5Þ

2. Nonrelativistic axions

The standard result for the collision term derived in
Ref. [26] applies only when the axion is relativistic.
However, as long as the momentum transfer is still small,
we can still apply the same methods as Ref. [26] in deriving
the collision term.Wewill be interested in the regimewhere
the axion mass is still smaller than the pion mass (which
kinematically enforces that the momentum transferred in a
single collision is relatively small) but where the axion is
sufficiently heavier than the freeze-out temperature TF ∼
mπ=20 such that it becomes Boltzmann suppressed. Most
generally, the collision term for 2 → 2 scattering of pions
and axions can be written as

C ¼ 1

2

Z
đ3pa1

2Ea1

đ3pa2

2Ea2

đ3pπ2

2Eπ2

ð2πÞ4δð4Þðpa1 þ pπ1

− pa2 − pπ2ÞjMj2J ðB6Þ

where J is the relevant combination of phase space factors.
In the regime of interest, everything is MB distributed at
thermal decoupling so

J ¼ e−Eπ1
=Tπe−Ea1

=Ta − e−Eπ2
=Tπe−Ea2

=Ta : ðB7Þ

The collision term can be written as an expansion in the
momentum transfer, C ¼ P

Cj where

Cj ¼ ð2πÞ4
2j!

Z
đ3pa1

2Ea1

đ3pa2

2Ea2

đ3pπ2

2Eπ2

δðEa1 þ Eπ1 − Ea2

− Eπ2ÞjMj2Jðð  pa2 −  pa1Þ ·  ∇pπ2
Þjδð3Þðpπ1 − pπ2Þ:

ðB8Þ

In this expansion,C0 vanishes simply because if the momen-
tum transfer is zero and the number of a species does
not change, the collision term is identically zero. For a
contact interaction which has no angular dependence (as in
the scenario we consider here, jMj2 ∼ const), C1 also
vanishes because the angular integral contains the integrand
ð  pa2 −  pa1Þ ·  pπ ≡  q ·  pπ1 , which is odd over the angular
domain. Therefore, the leading-order term is C2. The
momentum transfer scales like Δpa∼ðmπpa−mapπÞ=
ðmaþmπÞ, and plugging in thermal values for the typical
momentum indicates that when truncated atOððΔpa=pπÞ2Þ,
the expansion in is accurate at the ∼10% level when the
axion mass is ma ≲mπ=3.
Following Ref. [26] and plugging in the matrix element

of Eq. (17), the leading order piece of the collision term
is then
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C2 ¼ πm4
π

8gπð2πÞ3f4aπ

Z
đ3pa1

2Ea1

Z
dΩ2dEa2pa2

��
q2

E2
π1Tπ

−
ð  q ·  pπ1Þ2
E3
π1T

2
π

−
3ð  q ·  pπ1Þ2
E4
π1Tπ

�
J0δðEa1 − Ea2Þ

þ
�
q2

E2
π1

J −
3ð  q ·  pπ1Þ2

E4
π1

J þ 2ð  q ·  pπ1Þ2
E3
π1Tπ

J0
�
∂Ea2

δðEa1 − Ea2Þ þ
2ð  q ·  pπ1Þ2

E3
π1

J∂2
Ea2

δðEa1 − Ea2Þ
�

ðB9Þ

¼ 2m4
πe

−Eπ1
=Tπe−ma=TaðTa − TπÞT3

aðm2
a þ 3maTa þ 3T2

aÞ
gπð2πÞ3f4aπE2

π1TaTπ
ðB10Þ

where J0 ≡ e−Eπ2
=Tπe−Ea2

=Ta . This feeds into the calculation of the energy transfer rate of Eq. (B1) under the assumption that
the pions are nonrelativistic,

nπnahσvΔEi ¼
6e−mπ=Tπe−ma=TaðTπ − TaÞT3

aðm2
a þ 3maTa þ 3T2

aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðmπTπÞ5

p
gπ

ffiffiffi
2

p ð2πÞ5f4aπTaTπ

¼ 3mπe−ma=TaðTπ − TaÞT2
aðm2

a þ 3maTa þ 3T2
aÞ

gπð2πÞ3f4aπ
nπ ðB11Þ

By analogy to Eq. (B4), the term in the Boltzmann
equations that equalizes temperatures between the two
sectors is

3g2am3
πm2

a

ð2πÞ3f4aπHjT¼mπ

�
Ta

mπ

�
−1
�
Tπ

mπ

�
2
�
Tπ − Ta

mπ

�
e−ma=Ta

ðB12Þ

and decoupling happens when this is order unity. The
requirement that thermal decoupling happens after pion
freeze-out can be recast as a requirement on faπ

faπ ≲
�

3g2am3
πm2

a

ð2πÞ3HjT¼mπ

�
TF

mπ

�
2

e−ma=TF

�
1=4

: ðB13Þ

Equations (B13) and (B5) do not match exactly due to a
difference in numerical prefactors for BE vs MB statistics.
When that relative factor π4=90 is taken into account, then
the two match exactly.

APPENDIX C: AXION-SM THERMALIZATION

In order for the pions to maintain thermal equilibrium
with the SM, two conditions must be satisfied: the decays
and inverse decays of the axions need to thermalize the
axions with the SM, and the axions need to lose kinetic
energy via decays faster than they gain energy from the
pion 3 → 2 heating. We have verified numerically that as
long as these conditions are satisfied at the freeze-out
temperature of the pion, the relic abundance of DM is
unaffected and the pions constitute cold DM.

1. Axions in thermal equilibrium with photons

To understand the requirement that axions maintain
thermal contact with the SM, we can ignore the pions
and consider only the relevant Boltzmann equations for the
axions:

∂na
∂t þ 3Hna ¼ −ΓamaðhE−1

a iTa
na − hE−1

a iTSM
neq;TSM
a Þ

ðC1Þ
∂ρa
∂t þ 3Hðρa þ PaÞ ¼ −maΓaðna − neq;TSM

a Þ ðC2Þ

where the average axion energy is hEai ¼ ρa=na. To make
the notation less cumbersome for the remainder of this
Appendix, the label for equilibrium distributions will
denote chemical equilibrium and kinetic equilibrium
between the axions and SM, i.e., Ta ¼ TSM ≡ T. With
this notation, these equations can be re-expressed as

−T
∂na
∂T þ 3na ¼ −

maΓa

H
na

�
hE−1

a i − hE−1
a ieq n

eq
a

na

�

≡ −
maΓa

H
nacn ðC3Þ

− T
∂hEaina

∂T þ 3hEainað1þ waÞ

¼ −
maΓa

H
na

�
1 −

neqa
na

�
≡ −

maΓa

H
nacρ; ðC4Þ

where wa is the equation of state of the axion, which is a
function of time and axion temperature wa ¼ waðTaÞ. In
order to eliminate ∂na=∂T, Eqs. (C3) and (C4) can be
combined to give a differential equation for hEai:
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∂hEai
∂T ¼ 3wa

hEai
T

−
maΓa

TH
ðhEaicn − cρÞ: ðC5Þ

In the first term, the expansion is driving the change in the
average energy, while in the second term, the decay is
driving the average energy. One can check that the first
term matches the expectations for a decoupled particle.
Meanwhile, for further examination of the second term, we
define the variable α ¼ αðTaÞ such that

hE−1
a i≡ α=hEai: ðC6Þ

The value of α changes monotonically α ∈ ½1; π6=
ð360ζð3Þ2Þ� as Ta goes from 0 to ∞. Using this definition,
we find

∂hEai
∂T ¼3wa

hEai
T

þmaΓa

TH

�
ð1−αÞ−neqa

na

�
1−α

hEai
hEaieq

��
:

ðC7Þ

The second term vanishes when the particle is in equilib-
rium, i.e., na ¼ neqa with Ta ¼ T. If the particle is driven out
of equilibrium (for instance by the expansion), this term
will push it back into equilibrium. In order to overcome the
expansion, Γa needs to be large enough so that the second
term is larger than the first.
First we consider the case that ma ≪ T such that wa ¼

1=3 and α ¼ π6=ð360ζð3Þ2Þ. Assuming the axion is near
equilibrium and expanding Eq. (C7) around Ta ¼ T to
leading order gives

∂hEai
∂T ¼ hEai

T
−
maΓa

TH
ð2α − 3Þ ðTa − TÞ

T
: ðC8Þ

If the two temperatures differ, then the second term will
drive the system back into equilibrium if it is comparable to
the first,

maΓa

TH
≳ hEai
ð2α − 3ÞT ≃ 4 ma ≪ T: ðC9Þ

Below, we find the strongest requirement on kinetic
equilibrium when ma ≳mπ . For intermediate masses
T ≲ma ≲mπ , we analytically continue the condition in
Eq. (C9) and require

maΓa

TH
e−ma=2T ≳ 4 ma ≲mπ: ðC10Þ

We have checked numerically that this requirement ensures
thermal equilibrium between the axions and SM for the
entire region ma ≲mπ. This is the condition listed
in Eq. (25).

2. Energy transfer through decays faster
than from cannibalization

The second condition requires that the kinetic energy
transferred to the axions from pion 3 → 2 can be compen-
sated by axion decays. This condition will only be
important when the axion is heavier than the pion and
has a smaller number density. The rate of kinetic energy
density loss through decays for nonrelativistic axions
is ΓanaT2=ma. Meanwhile, for the axions to sufficiently
cool the pions, we require that hσvΔEinanπ ≳mπ _nπ ∼
Hm2

πnπ=T at freeze-out when the pions are still barely in
chemical equilibrium. Therefore, the requirement is

ΓaT2na
ma

≳Hm2
πnπ
T

ðC11Þ

at freeze-out. We have numerically checked that this
condition keeps the pion, axion, and SM at the same
temperature in the regime ma ≳mπ .
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