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Abstract— This papers studies multi-agent (convex and non-
convex) optimization over static digraphs. We propose a general
distributed asynchronous algorithmic framework whereby i)
agents can update their local variables as well as communicate
with their neighbors at any time, without any form of coor-
dination; and ii) they can perform their local computations
using (possibly) delayed, out-of-sync information from their
neighbors. Delays need not be known to the agents or obey any
specific profile, and can also be time-varying (but bounded). The
algorithm builds on a tracking mechanism that is robust against
asynchrony (in the above sense), whose goal is to estimate
locally the sum of agents’ gradients. When applied to strongly
convex functions, we prove that it converges at an R-linear
(geometric) rate as long as the step-size is sufficiently small. A
sublinear convergence rate is proved, when nonconvex problems
and/or diminishing, uncoordinated step-sizes are employed. To
the best of our knowledge, this is the first distributed algorithm
with provable geometric convergence rate in such a general
asynchonous setting.

I. INTRODUCTION

In this paper, we study (convex and nonconvex) distributed
optimization over a network of agents, modeled as a directed,
fixed, graph. Agents aim at cooperatively solving the follow-
ing optimization problem:

min
x∈Rn

F (x) ,
I∑
i=1

fi
(
x
)

(P)

where fi : Rn → R is the cost function of agent i, assumed
to be smooth (nonconvex) and known only to agent i. In this
setting, optimization has to be performed in a distributed,
collaborative manner: agents can only receive/send informa-
tion from/to its immediate neighbors. Instances of (P) that
require distributed computing have found a wide range of
applications in different areas, including network information
processing, resource allocation in communication networks,
swarm robotic, and machine learning, just to name a few.

Many of the aforementioned applications give rise to ex-
tremely large-scale problems and networks, which naturally
call for asynchronous, parallel solution methods. In fact,
asynchronous methods reduce the idle times of workers,
mitigate communication and/or memory-access congestion,
save power (as agents need not perform computations and
communications at every iteration), and make algorithms
more fault-tolerant. In this paper, we consider the following
very general, abstract, asynchronous model [1]:
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(i) Agents can perform their local computations as
well as communicate (possibly in parallel) with
their immediate neighbors at any time, without any
form of coordination or centralized scheduling; and

(ii) when solving their local subproblems, agents can
use outdated information from their neighbors.

In (ii) no constraint is imposed on the delay profiles: delays
can be arbitrary (but bounded), time-varying, and (possibly)
dependent on the specific activation rules adopted to wakeup
the agents in the network. This model captures in a unified
fashion several forms of asynchrony: some agents execute
more iterations than others; some agents communicate more
frequently than others; and inter-agent communications can
be unreliable and/or subject to unpredictable, unknown,
(possibly) time-varying delays.

Several forms of asynchrony have been studied in the
literature–see Sec. I-A for an overview of related works.
However, we are not aware of any distributed algorithm that
is compliant to the asynchrony model (i)-(ii) and distributed
(nonconvex) setting above. Furthermore, when considering
the special case of strongly convex function F , it is not
clear how to design a (first-order) distributed asynchronous
algorithm (as specified above) that achieves linear convergent
rate over digraphs. This paper provides a positive answer
to these questions–see Sec. I-B and Table 1 for a summary
of our contributions.

A. Literature Review
Since the seminal work [9], asynchronous parallelism

has been applied to several centralized optimization algo-
rithms, including block coordinate descent (e.g., [9]–[11])
and stochastic gradient (e.g., [12]–[14]) methods. However,
these schemes are not applicable to the networked, dis-
tributed setup considered in this paper, because they would
require the knowledge of the entire function F from each
agent. Some of these schemes were extended to hierarchical
networks (e.g., master-slave architectures and star networks),
see [15], [16], and references therein. However, they remain
centralized, due to the use of a master (or cluster-head) node.

Distributed methods exploring (some form of) asynchrony
over networks with no centralized node have been studied in
[2]–[8], [17]–[27]. We group next these works based upon
the features (i)-(ii) above.
(a) Random activations and no delays [17]–[21]: These
schemes considered distributed convex unconstrained opti-
mization over undirected graphs. While substantially differ-
ent in the form of the updates performed by the agents– [17],
[19], [21] are instances of primal-dual (proximal-based) algo-
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Algorithm Nonconvex
Cost Function

No Idle
Time

Arbitrary
Delays Parallel

Step Sizes
Digraph Global Convergence to Exact Solutions

Rate Analysis

Fixed Uncoordinated
Diminishing

Linear Rate for
Strongly Convex Nonconvex

Asyn. Broadcast [2] X X X In expectation (w. diminishing step)
Asyn. Diffusion [3] X
Asyn. ADMM [4] X X Deterministic
Dual Ascent in [5] X Restricted Restricted X

ra-NRC [6] X X
ARock [7] X Restricted X Almost surely In expectation

ASY-PrimalDual [8] X Restricted X Almost surely
ASY-SONATA X X X X X X X Deterministic Deterministic Deterministic

TABLE 1: Comparison with state-of-art distributed algorithms considering asynchrony and (some forms of) delays. The
proposed algorithmic framework–ASY-SONATA–enjoys all the desirable features listed in the table.

rithms, [20] is an ADMM-type algorithm, while [18] is based
on the distributed gradient tracking mechanism introduced
in [28]–[30]–all these algorithms are asynchronous in the
sense of feature (i) [but not (ii)]: at each iteration, a subset
of agents [17], [19], [21] (or edge-connected agents [18],
[20]), chosen at random, is activated, performing then their
updates and communications with their immediate neighbors;
between two activations, agents are assumed to be in idle
mode (i.e., able to continuously receive information from
their neighbors). However, no form of delays is allowed:
every agent must perform its local computations/updates
using the most updated information from its neighbors. This
means that all the actions performed by the agent(s) in an
activation must be completed before a new activation (agent)
can take place (wakes-up), which calls for some coordination
among the agents. Finally, no convergence rate was provided
for the aforementioned schemes but [18], [20].
(b) Synchronous activations and delays [22]–[27]: These
schemes considered distributed constrained convex optimiza-
tion over undirected graphs. They study the impact of
delayed gradient information [22], [23] or communication
delays (fixed [24], uniform [23], [27] or time-varying [25],
[26]) on the convergence rate of distributed gradient (proxi-
mal [22], [23] or projection-based [26], [27]) algorithms or
dual-averaging distributed-based schemes [24], [25]. While
these schemes are all synchronous [thus lacking of feature
(i)], they can tolerate communication delays [an instantiation
of feature (ii)], still converging at a sublinear rate to an
optimal solution of the problem. Delay profiles cannot be
arbitrary, but such that no losses occur–every agent’s message
will eventually reach its destination within a finite time.
(c) Random/cyclic activations and some form of delays
[2]–[8]: The class of optimization problems along with the
key features of the algorithms proposed in these papers
are summarized in Table 1 and briefly discussed next. The
majority of these works studied distributed (strongly) convex
optimization over undirected graphs, with [3] assuming that
all the functions fi have the same minimizer, [4] considering
also nonconvex objectives, and [6] being implementable also
over digraphs. The algorithms in [2], [3] are gradient-based
schemes; [4] is a decentralized instance of ADMM; [7] ap-
plies an asynchronous parallel ADMM scheme to distributed
optimization; and [8] builds on a primal-dual method. The
schemes in [5], [6] instead build on (approximate) second-
order information. All these algorithms are asynchronous
in the sense of feature (i): [2]–[4], [7], [8] considered

random activations of the agents (or edges-connected agents)
while [5], [6] studied deterministic, uncoordinated activation
rules. As far as feature (ii) is concerned, some form of
delays is allowed. More specifically, [2]–[4], [6] can deal
with packet losses: the information sent by an agent to its
neighbors either gets lost or received with no delay. They
also assume that agents are always in idle mode between two
activations. Closer to the proposed asynchronous framework
are the schemes in [7], [8] wherein a probabilist model
is employed to describe the activation of the agents and
the aged information used in their updates. The model
requires that the random variables triggering the activation
of the agents are i.i.d and independent of the delay vector
used by the agent to performs its update. As observed by
the authors themselves, while this assumption makes the
convergence analysis possible, in reality, there is a strong
dependence of the delays on the activation index; see [11]
for a detailed discussion on this issue and several examples.
Other consequences of this model are: the schemes [7], [8]
are not parallel–only one agent per time can perform the
update–and a random self-delay is injected in the update of
each agent (even if agents have access to their most recent
information). Finally, referring to the convergence rate, [7]
is the only scheme with provably convergence rate: when F
is strongly convex, [7] achieves linear convergence rate in
expectation (only). No convergence rate is available in any
of the aforementioned papers, when F is nonconvex.

B. Summary of Contributions
This paper proposes a general distributed, asynchronous

algorithmic framework for convex and nonconvex instances
of Problem (P), over directed graphs. The algorithm lever-
ages a perturbed “sum-push” mechanism that is robust
against asynchrony, whose goal is to track locally the average
of agents’ gradients; this sum-push scheme builds on the idea
first introduced in [31] and further developed in [6], [32],
with some important differences (cf. Remark 3.3, Sec. III-A).
To the best of our knowledge, the proposed framework is the
first scheme combining the following attractive features (see
also Table 1): (a) it is parallel and asynchronous [in the sense
(i) and (ii)]–multiple agents can be activated at the same
time (with no coordination) and/or outdated information can
be used in the agents’ updates; our asynchronous setting
(i) and (ii) is less restrictive than the one in [7], [8];
furthermore, in contrast with [7], our scheme avoids solving
possibly complicated subproblems; (b) it is applicable to
nonconvex problems; (c) it is implementable over digraph;
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(d) it employs either a constant step-size or uncoordinated di-
minishing ones; (e) it convergences at an R-linear rate (resp.
sublinear) when F is strongly convex (resp. nonconvex) and
a constant (resp. diminishing, uncoordinated) step-size(s) is
employed; and (d) it is “protocol-free”, meaning that agents
need not obey any specific communication protocols or
asynchronous modus operandi (as long as delays are bounded
and agents update/communicate uniformly infinitely often),
which otherwise would impose some form of coordination.

II. PROBLEM SETUP AND PRELIMINARIES

A. Problem Setup

We study Problem (P) under the following assumptions.
Assumption 2.1 (On the optimization problem):

(i) Each fi : Rn → R is proper, closed and Li-Lipschitz
differentiable;

(ii) F is bounded from below. �

Note that fi need not be convex. We also make the blanket
assumption that each agent i knows only its own fi, but
not

∑
j 6=i fj . To state linear convergence, we will use the

following extra condition on the objective function.
Assumption 2.2 (Strongly convexity): Assumption 2.1(i)

holds and, in addition, F is τ -strongly convex. �

On the communication network: The communication net-
work of the agents is modeled as a fixed, directed graph G =
(V, E), where V = {1, . . . , I} is the set of nodes (agents),
and E ⊆ V ×V is the set of edges (communication links). If
(i, j) ∈ E , it means that agent i can send information to agent
j. We assume that the digraph does not have self-loops. We
denote by N in

i the set of in-neighbors of node i, i.e., N in
i ,

{j ∈ V | (j, i) ∈ E} while N out
i , {j ∈ V | (i, j) ∈ E} is

the set of out-neighbors of agent i. We make the following
standard assumption on the graph connectivity.

Assumption 2.3: The graph G is strongly connected. �

B. Preliminaries: The SONATA algorithm [33], [34]

The asynchronous, distributed framework we are going
to introduce builds on the synchronous SONATA algorithm,
proposed in [33], [34] to solve (nonconvex) multi-agent
optimization problems over time-varying digraphs. This is
motivated by the fact that SONATA has the unique property
of being provably applicable to both convex and nonconvex
problems, and it achieves liner convergence when applied
to strongly convex objectives F . We thus begin reviewing a
special instance of SONATA, tailored to (P). In Sec. IV, we
will make such a scheme asynchronous.

Every agent controls and iteratively updates the tuple
(xi,yi, zi, φi): xi is agent i’s copy of the shared variables
x in (P); yi acts as a local proxy of the sum-gradient ∇F ;
and zi and φi are auxiliary variables instrumental to deal
with communications over digraphs (their goal will be clear
shortly). Let xki , z

k
i , φki , and yki denote the value of the

aforementioned variables at iteration k ∈ N+. The update

of each agent i reads:

xk+1
i =

∑
j∈N in

i ∪{i}

wij
(
xkj − αk ykj

)
, (1)

zk+1
i =

∑
j∈N in

i ∪{i}

aij
(
zkj +∇fj(xk+1

j )−∇fj(xkj )
)
, (2)

φk+1
i =

∑
j∈N in

i ∪{i}

aijφ
k
j , (3)

yk+1
i = zk+1

i /φk+1
i , (4)

with z0i = y0
i = ∇fi(x0

i ) and φ0i = 1, for all i ∈
V . In (1), yki is a local estimate of the average-gradient
(1/I)

∑I
i=1∇fi(xki ). Therefore, every agent, first moves

along the estimated gradient direction, generating xki −αk yki
(αk is the step-size); and then performs a consensus step
to force asymptotic agreement among the local variables
xi. Steps (2)-(4) represent a perturbed-push-sum update,
aiming at tracking the gradient (1/I)∇F [29], [30], [34].
The weight-matrices W , (wij)

I
i,j=1 and A , (aij)

I
i,j=1

satisfy the following standard assumptions.
Assumption 2.4: (On the weight-matrices) The weigh-

matrices W , (wij)
I
i,j=1 and A , (aij)

I
i,j=1 satisfy (we

will write M , (mij)
I
i,j=1 to denote either A or W):

(i) ∃ m̄ > 0 such that mii ≥ m̄, for all i ∈ V; and mij ≥
m̄, for all (j, i) ∈ E ; mij = 0, otherwise;

(ii) W is row-stochastic, that is, W1 = 1;
(iii) A is column-stochastic, that is, AT 1 = 1; �

In [35], the authors proved that a special instance of
SONATA, when applied to (P) with strongly convex F , con-
verges at an R-linear rate. This result was further extended
to constraints, nonsmooth, distributed optimization in [36].
How difficult is making SONATA asynchronous? A natu-
ral question is whether one can build on SONATA to design
an asynchronous scheme that still enjoys linear convergence
rate. Note that naive modifications of the updates (1)-(4)
to make them asynchronous–such as using uncoordinated
activations and/or delayed information–may not work, be-
cause they would affect some key properties of the updates
that guarantee convergence. For instance, the tracking (2)-
(4) calls for the invariance of the averages, i.e.,

∑I
i=1 z

k
i =∑I

i=1∇fi(xk), for all k ∈ N+. It is not difficult to check that
any perturbation injected in (2)-e.g., in the form of delays or
packed losses–puts in jeopardy the aforementioned property.

To cope with the above challenges, a first step is ro-
bustifying the gradient tracking scheme. In Sec. III, we
introduce P-ASY-SUM-PUSH–an asynchronous, perturbed,
instance of the push-sum algorithm [37] (written in the “sum-
push” form), which also serves as a novel gradient tracking
mechanism that is robust against asynchronous activations
and delays. Building on this result, in Sec. IV, we present the
proposed distributed asynchronous optimization framework,
termed ASY-SONATA.

III. PERTURBED ASYNCHRONOUS SUM-PUSH

In this section, we build P-ASY-SUM-PUSH. For the sake
of clarity, we first introduce the synchronous push-sum in the
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“sum-push” form; we then break the synchronism.
Preliminaries: the sum-push algorithm. Consider the aver-
age consensus problem in the multi-agent setting introduced
in Sec. II-A. This problem can be solved using the push-sum
algorithm [37]. In view of our asynchronous implementation,
it is convenient to rewrite the push-sum algorithm breaking
the “push” and “sum” steps in two separate actions and
switch their order. While there is no advantage in doing that
in a synchronous setting, this will simplify the presentation
of its asynchronous counterpart as well as lead to a more
flexible asynchronous implementation.

The sum-push reads: given zki , φki , ρkij , and σkij , at iteration
k ∈ N+, each agent i ∈ V performs

Sum:


z
k+ 1

2
i = zki +

∑
j∈N in

i

ρkij ,

φ
k+ 1

2
i = φki +

∑
j∈N in

i

σkij ;
(5)

Push:



zk+1
i = aii z

k+ 1
2

i ,

φk+1
i = aii φ

k+ 1
2

i ,

ρk+1
ji = aji z

k+ 1
2

i , ∀j ∈ N out
i ,

σk+1
ji = aji φ

k+ 1
2

i , ∀j ∈ N out
i ;

(6)

yk+1
i =

zk+1
i

φk+1
i

; (7)

where φ0i = 1, ρkij = 0, and σ0
ij = 0, for all (j, i) ∈ E ,

and the weight-matrix A , (aij)
I
i,j=1 satisfies Assump-

tion 2.4(i),(iii). In words, at iteration k, every agent i first
performs the “sum” step (5) and builds the new mass zk+1/2

i :
it sums its current information zki with the one sent from
its in-neighbors–ρkij is the information sent to i by agent
j ∈ N in

i . Then, the “push” step (6) follows: z
k+1/2
i is

“pushed back” (sent) to the out-neighbors j ∈ N out
i and

agent i itself; out of the total mass z
k+1/2
i , each j ∈ N out

i

receives the fraction ρk+1
ji = aji z

k+1/2
i , with agent i getting

aii z
k+1/2
i , which determines the update zki → zk+1

i . It is not
difficult to check that the overall mass in the system does
not change over the time and equals the initial mass:

I∑
i=1

zk+1
i +

∑
(j,i)∈E

ρk+1
ij =

I∑
i=1

zki +
∑

(j,i)∈E

ρkij = · · · =
I∑
i=1

z0i .

The φ, σ-variables satisfy a similar property.
Finally, consistently with the push-sum, the y-variables in

(7), can be regarded as agent i’s estimate of the average. In
fact, it is not difficult to check that, if a consensus is achieved
on the yi’s, i.e., limk→∞ zk+1

i /φk+1
i = c∞ for all i ∈ V ,

then it must be c∞ = (1/I) ·
∑I
i=1 z

0
i .

Next, we break the synchronism in the sum-push scheme.
Asynchronous sum-push: Consider the following asyn-
chronous setting: i) multiple agents compute and communi-
cate independently without coordination; ii) communication
latency and uncoodinated computations result in (possibly

time-varying) delays. This means that some agents can
execute more iterations than others and, in general they no
longer use the most recent information from its neighbors;
also, some information can get lost. As a consequence, the
key property of the synchronous sum-push–the preservation
of the overall mass–would not be guaranteed.

We robustify the sum-push building on the idea first
introduced in [31] and further developed in [6], [32]: each
ρji (resp. σji) no longer represents the current mass-fraction
aji zi (resp. aji φi), meant for node j ∈ N out

i , but it is
instead the running-sum of the mass aji zi (resp. aji φi)
that has been generated for j up to the current activation
of agent i. In addition, every agent i maintains, for every
j ∈ N in

i , a local buffer ρ̃ij (resp. σ̃ij) storing the value
of ρij (resp. σij) that it has used in its last (past) update.
With this construction, we build next one iteration of the
asynchronous sum-push algorithm. We discuss the updates
of the z, ρ, and ρ̃-variables only; the one of the φ, σ, and
σ̃ follows the same argument.
Suppose agent ik wakes up at iteration k. The state of
agent ik is described by the variables zik , ρjik , and ρ̃ikj .
However, the ρ-variables may no longer contain the current
information from its in-neighbors. More specifically, agent
ik does not have access to the current vector ρkikj from

j ∈ N in
ik , but it will use instead the delayed version ρ

k−dkj
ikj

,
where 0 ≤ dkij ≤ D is the delay (assumed to be bounded).
By definition, the local buffer ρ̃kikj stores the value of ρikj
that agent ik used in its previous update. If the information

in ρ
k−dkj
ikj

is not older than the one in ρ̃kikj , the difference

ρ
k−dkj
ikj

− ρ̃kikj will capture the sum of the aikjzj’s that have
been generated by j ∈ N in

ik for ik up until k − dkj and not

used by agent ik yet; otherwise ρ
k−dkj
ikj

will be discarded,
as no new information has been acquired. For instance, in a
synchronous setting, one would have ρkij−ρ̃kij = aijz

k
j . This

naturally suggests the following modification of the steps (5)-
(7) to preserve the total mass of the system at every iteration:

Sum: z
k+ 1

2

ik
= zkik +

∑
j∈N in

ik

(
ρ
k−dkj
ikj

− ρ̃kikj
)
, (8)

Push:

zk+1
ik

= aikik z
k+ 1

2

ik
,

ρk+1
jik

= ρkjik + ajik z
k+ 1

2

ik
, ∀j ∈ N out

ik
;

(9)

Mass-buffer: ρ̃k+1
ikj

= ρ
k−dkj
ikj

, ∀j ∈ N in
ik (10)

while yk+1
ik

= zk+1
ik

/φk+1
ik

[cf. (7)]; where φ0i = 1, for all
i ∈ V , and ρkij = ρ̃kij = 0, for all k = −D, . . . , 0, and
(j, i) ∈ E . Note that, differently from the synchronous case
[cf. (6)], in (9), ρkji is now updated recursively, to build
the running-sum of the mass ajizi. After the sum-step, in
(10), the buffer is updated to account for the use of new
information from j ∈ N in

ik .
With the above modifications, the total mass in the systems

is preserved at each iteration, as shown next. Consider only
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the z-variables; similar argument applies to the φ-variables.
The total mass associated with the z-variables at iteration k
is defined as

mkz ,
I∑
i=1

zki +
∑

(j,i)∈E

(ρkij − ρ̃kij). (11)

We show next that mk+1
z = mkz = · · · = m0

z =
∑I
i=1 z

0
i .

Since agent ik triggers k → k + 1, it is sufficient to show

zk+1
ik

+
∑
j∈N in

ik

(ρk+1
ikj
− ρ̃k+1

ikj
) +

∑
j∈N out

ik

(ρk+1
jik
− ρ̃k+1

jik
)

= zkik +
∑
j∈N in

ik

(ρkikj − ρ̃
k
ikj) +

∑
j∈N out

ik

(ρkjik − ρ̃
k
jik). (12)

Using (8)-(10), we can write

zk+1
ik

+
∑
j∈N in

ik

(ρk+1
ikj
− ρ̃k+1

ikj
) +

∑
j∈N out

ik

(ρk+1
jik
− ρ̃k+1

jik
)

(a)
= aikikz

k+ 1
2

ik
+
∑
j∈N in

ik

(ρkikj − ρ
k−dkj
ikj

)

+
∑
j∈N out

ik

(ρkjik + ajikz
k+ 1

2

ik
− ρ̃kjik)

(b)
= z

k+ 1
2

ik
+
∑
j∈N in

ik

(ρkikj − ρ
k−dkj
ikj

) +
∑
j∈N out

ik

(ρkjik − ρ̃
k
jik)

(8)
= zkik +

∑
j∈N in

ik

(ρ
k−dkj
ikj

− ρ̃kikj)

+
∑
j∈N in

ik

(ρkikj − ρ
k−dkj
ikj

) +
∑
j∈N out

ik

(ρkjik − ρ̃
k
jik)

= zkik +
∑
j∈N in

ik

(ρkikj − ρ̃
k
ikj) +

∑
j∈N out

ik

(ρkjik − ρ̃
k
jik) (13)

where in (a) we used i) (9)-(10), ii) ρk+1
ikj

= ρkikj , for all
j ∈ N in

ik , and iii) ρ̃k+1
jik

= ρ̃kjik , for all j ∈ N out
ik

; and in (b),
we used aikik +

∑
j∈N out

ik
ajik = 1.

The mass preservation property above ensures that, if a
consensus is reached, i.e., limk→∞ zki /φ

k
i = c∞ for all i ∈

V , then it must be c∞ = (1/I) ·
∑I
i=1 z

0
i . This will be

formally proved in Theorem 3.2 for the more general P-
ASY-SUM-PUSH algorithm, introduced in Sec. III-A.

In Table 2, we summarize the main update of the agent
that triggers the generic iteration k → k + 1 in a functional
form; this will be used in Sec. III-A as a building block
of the P-ASY-SUM-PUSH. Note that in the update of the
z-variable we added a (possible) perturbation, denoted by
ε ∈ Rn, which will be used in the next section to build a
more general algorithm.

A. Perturbed-ASY-Sum-Push (P-ASY-SUM-PUSH)

We are now ready to introduce P-ASY-SUM-PUSH, which
serves as a unified algorithmic framework to accomplish
several distributed tasks over digraphs in an asynchronous
manner, such as solving the average consensus problem and

TABLE 2: The functional F

function F (i, k, (ρij)j∈N in
i
, (σij)j∈N in

i
, ε)

(S.1) Sum:

z
k+ 1

2
i = zki +

∑
j∈N in

i

(
ρij − ρ̃k

ij

)
+ ε;

φ
k+ 1

2
i = φki +

∑
j∈N in

i

(
σij − σ̃k

ij

)
.

(S.2) Push:

zk+1
i = aii z

k+ 1
2

i , φk+1
i = aiiφ

k+ 1
2

i ;

ρk+1
ji = ρk

ji + aji z
k+ 1

2
i , ∀j ∈ N out

i ;

σk+1
ji = σk

ji + aji φ
k+ 1

2
i , ∀j ∈ N out

i

(S.3) Mass-Buffer Update:

ρ̃k+1
ij = ρij , σ̃k+1

ij = σij , ∀j ∈ N in
i .

return zk+1
i /φk+1

i .

tracking the average of agents’ time-varying signals (e.g.,
the sum of the gradients). More importantly, P-ASY-SUM-
PUSH will be the building block of the main algorithm of
the paper–ASY-SONATA (cf. Sec. IV).

We introduce a “global view” of the algorithm, which
describes the asynchronous actions performed locally by
the agents (cf. Table 2) through the dynamics of the
“global state” of the system, defined by the tuple G ,
(z, φ,ρ, σ, ρ̃, σ̃). By doing so, one can capture in a unified,
abstract model several computational architectures/systems
and asynchronous modus operandi. A global iteration clock
(not known to the agents) is introduced: k → k + 1 is
triggered when one agent ik performs its “push” opera-

tion, using possibly delayed information ρ
k−dkj
ikj

, j ∈ N in
ik ,

thus generating the vectors zk+1
ik

, φk+1
ik

(ρk+1
jik

, σk+1
jik

)j∈N out
ik

,
(ρ̃k+1
ikj

, σ̃k+1
ikj

)j∈N in
ik

, which completely defines the new state
of the system Gk+1. Note that the way agent ik forms its

own estimates ρ
k−dkj
ikj

is immaterial to the description of
the algorithm. Therefore, the update Gk → Gk+1 is fully
defined, once ik and dk , (dkj )j∈N in

ik
are given. The P-

ASY-SUM-PUSH is summarized in Algorithm 1.
The following comments are in order. The selection

(ik,dk) in Step 1 is not performed by anyone; it is instead
an a-posteriori description of agents’ actions: All agents
act asynchronously and continuously; the agent completing
the “push” step and updating its own variables triggers
retrospectively the iteration counter k → k+1 and determines
the pair (ik,dk) along with all quantities involved in the
other steps.

The meaning of Step 2 is the following: agent ik maintains
a local variable τikj that keeps track of the “age” (generated
time) of the ρ-variable it has used, initialized to be zero and
recursively updated according to (14). If k−dkj is larger than
τikj , indicating that the received ρ-variable is newer, agent
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Algorithm 1 P-ASY-SUM-PUSH (Global View)

Data: z0i ∈ Rn, φ0i = 1, ρ̃0ij = 0, σ̃0
ij = 0, τ−1ij = −D,

for all j ∈ N in
i and i ∈ V; σtij = 0 and ρtij = 0, for all

t = −D, . . . , 0; and {εk}k∈N+
. Set k = 0.

While: a termination criterion is not met do
(S.1) Pick (ik,dk);
(S.2) Set (purge out the old information):

τkikj = max
(
τk−1
ikj

, k − dkj
)
, ∀j ∈ N in

ik ; (14)

(S.3) Update the variables performing

yk+1
ik

= F(ik, k, (ρ
τk

ikj

ikj
)j∈N in

ik
, (σ

τk

ikj

ikj
)j∈N in

ik
, εk);

(S.4) Untouched state variables shift to state k + 1
while keeping the same value; k ← k + 1.

ik accepts ρ
k−dkj
ikj

and updates τikj as k − dkj ; otherwise,
the variable will be discarded and τikj is not changed. Note
that (14) can be performed without any coordination. It
is sufficient that each agent attaches a time-stamp to its
produced information reflecting it local timing counter.

Convergence is established under the following assump-
tions, and it is stated in Theorem 3.2.

Assumption 3.1 (On the asynchronous model): Suppose:
(i) ∃ 0 < T < ∞ such that ∪k+T−1t=k it = V , for all k ∈

N+;
(ii) ∃ 0 < D <∞ such that 0 ≤ dkj ≤ D, for all j ∈ N in

ik

and k ∈ N+. �

Theorem 3.2: Let {(yki )Ii=1, (ρ
k
ij , ρ̃

k
ij)(j,i)∈E}k∈N+

be the
sequence generated by Algorithm 1, under Assumption 3.1,
and with A , (aij)

I
i,j=1 satisfying Assumption 2.4(i),(iii).

Let mkz be defined in (11); we have mkz =
∑I
i=1 z

0
i +∑k−1

t=0 ε
t. There exist constants ρ ∈ (0, 1) and C1 > 0, such

that, for all i ∈ V and k ≥ (2 I − 1) · T + I ·D − 1,∥∥∥yk+1
i − (1/I) ·mk+1

z

∥∥∥ ≤ C1

(
ρk‖z0‖+

k∑
l=0

ρk−l‖εl‖

)
.

(15)
Proof: The proof is involved and can be found in [38],

along with the expressions of the above constants.
Discussion: Several comments are in order.
1) On the asynchronous model: Algorithm 1 represents a
gamut of asynchronous parallel schemes and architectures,
all captured in an abstract and unified way by the mecha-
nism of generation of the indices ik and delay vectors dk,
which the agents need not know. The only conditions to be
satisfied by (ik,dk) are in Assumption 3.1: (i) controls the
frequency of the updates whereas (ii) limits the age of the
old information used in the computations. These assumptions
are quite mild. For instance, (i) is automatically satisfied
if each agent wakes up and performs an update whenever
some internal clock ticks, without the need of any central
clock or coordination with the others. Assumption 3.1(ii)
imposes some conditions on the communications: the in-
formation used by any agent is outdated by at most D

units (with D finite but arbitrarily large). This however
does not enforce a-priori any specific protocol (on the
activation/idle time/communication). For instance, i) agents
need not perform the actions in Table 2 sequentially or inside
the same activation; ii) executing the “push” step does not
mean that agents must broadcast their new variables in the
same activation; this would incur in a delay (or packet loss)
in the communication.
2) Beyond average consensus: By choosing properly the
perturbation signal εk, P-ASY-SUM-PUSH can solve more
general problems than the plain average consensus. Some
examples are discussed next.
(i) Error free: εk = 0. P-ASY-SUM-PUSH solves the
average consensus problem and (15) reads

∥∥∥yk+1
i − (1/I) ·

I∑
i=1

z0i

∥∥∥ ≤ C1 ρ
k ‖z0‖.

(ii) Vanishing error: limk→∞ ‖εk‖ = 0. Using [30,
Lemma 7(a)], (15) reads limk→∞ ‖yk+1

i −mk+1
z ‖ = 0.

(iii) Asynchronous tracking. Each agent i owns a (time-
varying) signal {uki }k∈N+ ; the average tracking problem
consists in asymptotically track the average signal ūki ,
(1/I) ·

∑I
i=1 u

k
i , that is,

lim
k→∞

‖yk+1
i − ūk+1

i ‖ = 0, ∀i ∈ V . (16)

Under mild conditions on the signal, this can be accom-
plished in a distributed and asynchronous fashion, using P-
ASY-SUM-PUSH, with the following setting: z0i = u0

i , for
all i ∈ V; εk = uk+1

ik
− ũkik , with

ũk+1
i =

{
uk+1
i if i = ik;

ũki otherwise;

and ũ0
i = u0

i . In this setting, (15) holds, with mk+1
z =∑I

i=1 ũ
k+1
i . Furtheremore, if limk→∞

∑I
i=1 ‖u

k+1
i −uki ‖ =

0, one can show that (16) holds. This instance of P-ASY-
SUM-PUSH will be used in Sec. IV to perform asynchronous
gradient tracking inside ASY-SONATA.

Remark 3.3 (Comparison with [6], [31], [32]): As
already mentioned, coding the information throughout
counter variables (like ρ-, σ−, ρ̃-, and σ̃-variables in our
scheme) was first introduced in [31] to design a synchronous
average consensus algorithm robust to packet losses. In
[32], this scheme was extended to deal with uncoordinated
(deterministic) agents’ activations whereas [6] built on [32]
to design, in the same setting, a distributed Newton-Rapshon
algorithm. There are several important differences between
P-ASY-SUM-PUSH and the aforementioned schemes,
namely: i) none of them can deal with delays but packet
losses; ii) [31] is synchronous; and iii) [6], [32] are not
parallel schemes, as at each iteration only one agent
is allowed to wake up and transmit information to its
neighbors. For instance, [6], [32] cannot model synchronous
parallel (Jacobi) updates.
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IV. ASYNCHRONOUS SONATA (ASY-SONATA)

We are ready now to introduce our distributed asyn-
chronous algorithmic framework–ASY-SONATA. The al-
gorithm combines SONATA (cf. Sec. III) with P-ASY-
SUM-PUSH (cf. Sec. III-A), the latter replacing the syn-
chronous tracking scheme (2)-(4). The “global view” of
the scheme is given in Algorithm 2. Note that, each agent
i now, in addition to its x- and y-variables, also owns
the mass-counters ((ρkji)j∈N out

i
, (σkji)j∈N out

i
), and the buffers

((ρ̃kij)j∈N in
i
, (σ̃kij)j∈N in

i
), which are used to employ gradient

tracking in an asynchronous fashion. For notational simplic-
ity and without loss of generality, we assumed that the v-
and y- variables are subject to the same delays (e.g., they
are transmitted within the same packet); same convergence
results hold if different delays are considered [38].

In ASY-SONATA, agents continuously and with no coor-
dination perform: (Step 1) their local computations, possibly
using an out-of-sync estimate ykik of the average gradient;
(Step 2) a consensus step on the x variables, using possibly

outdated information v
k−dkj
j from their in-neighbors; and

(Step 3) gradient tracking to update the local estimate ykik
by employing the functional F (cf. Table 2), based on

the current mass counters ((ρ
k−dkj
ikj

)j∈N in
ik
, (σ

k−dkj
ikj

)j∈N in
ik

). In
(17), a step-size is used. We discuss next the convergence
properties of the scheme, using either a constant step-size or
diminishing, uncoordinated ones.

Algorithm 2 ASY-SONATA (Global View)

Data: For all agent i and ∀j ∈ N in
i , x0

i ∈ Rn, z0i =
∇fi(x0

i ), φ0i = 1, ρ̃0ij = 0, σ̃0
ij = 0, τ−1ij = −D. And for

t = −D,−D + 1, . . . , 0, ρtij = 0, σtij = 0, vti = 0. Set
k = 0.
While: a termination criterion is not met do

(S.1) Pick (ik,dk);
(S.2) Set:

τkikj = max(τk−1
ikj

, k − dkj ), ∀j ∈ N in
ik .

(S.3) Local Descent:

vk+1
ik

= xkik − γ
kykik . (17)

(S.4) Consensus:

xk+1
ik

= wikikv
k+1
ik

+
∑
j∈N in

ik

wikjv
τk

ikj

j .

(S.5) Gradient Tracking:

εk = ∇fik(xk+1
ik

)−∇fik(xkik)

yk+1
ik

= F(ik, k, {ρ
τk

ikj

ikj
}j∈N in

ik
, {σ

τk

ikj

ikj
}j∈N in

ik
, εk).

(S.6) Untouched state variables shift to state k + 1
while keeping the same value; k ← k + 1.

A. Constant Step-size

Convergence under a constant step-size is given in The-
orem 4.1 and Theorem 4.2 below, for the case of strongly
convex and (non)convex function F , respectively. The proof
of the two theorems is quite involved and can be found in
[38]. We use the following merit function

MF (xk) , max{‖∇F (x̄k)‖2, ‖xk − 1I ⊗ x̄k‖2}, (18)

where xk , [xk>1 , · · · ,xk>I ]> and x̄k , (1/I) ·
∑I
i=1 x

k
i .

Note that MF is a valid merit function, since it is continuous
and MF (x) = 0 if and only if all xi’s are consensual and
optimal (resp. stationary solutions).

Theorem 4.1 (Linear convergence): Consider Problem
(P) under Assumption 2.2, and let x? denote its unique
solution. Let {(xki )Ii=1}k∈N+ be the sequence generated
by Algorithm 2, under Assumption 3.1, and with weight-
matrices W and A satisfying Assumption 2.4. Then, there
exists a constant γ̄1 > 0 such that if γk ≡ γ ≤ γ̄1, it holds

‖xi − x?‖ = O(λk), ∀i ∈ V , (19)

for some λ ∈ (0, 1). �
Theorem 4.2 (Sublinear convergence): Consider Problem

(P) under Assumption 2.1 (thus possibly nonconvex). Let
{(xki )Ii=1}k∈N+ be the sequence generated by Algorithm 2,
in the same setting of Theorem 4.1. Given δ > 0, let Tδ be
the first iteration k ∈ N+ such that MF (xk) ≤ δ. Then, there
exists a γ̄2 > 0, such that if γk ≡ γ ≤ γ̄2, Tδ = O(1/δ).�

The expression of the constants in the theorems above can
be found in [38].

Theorem 4.1 states that both consensus and optimization
errors of the sequence generated by ASY-SONATA vanish
geometrically. Therefore, ASY-SONATA matches the per-
formance of a centralized gradient method in a distributed,
asynchronous computing environment. We are not aware of
any other scheme enjoying such a property in the consid-
ered setting. Note that ASY-SONATA is globally convergent
regardless of the initialization. This is a major difference
with respect to the distributed algorithm proposed in [6]
(also employing a robustification of the push-sum consensus,
cf. Remark 3.3). Convergence therein is established assuming
that all agents initialize their local copies to be almost
consensual and in a neighborhood of the optimal solution.

Finally, Theorem 4.2 shows that for general, possibly
nonconvex instances of Problem (P), both consensus and
optimization errors of the sequence generated by ASY-
SONATA vanish at O(1/δ) sublinear rate.

B. Uncoordinated diminishing step-sizes

While the use of a constant step-size is appealing to
obtain strong convergence rate results, obtaining in a dis-
tributed setting its upper-bound expression, as required in
Theorems 4.1 and 4.2, is not practical. In fact, such a value
depends on global network and optimization parameters, not
available at the agents’ side. Furthermore, the theoretical
values are quite conservative, meaning that they would lead
to slow convergence in practice. This naturally suggests the
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Fig. 1: Example of construction of the global step-size sequence
{γk}k in (17) from the local agents’ ones {αt}t = {1/2, 1/3, . . .}.

use of a diminishing step-size strategy. However, because
of the distributed nature of the system, one cannot simply
assume that the sequence {γk}k∈N+ in (17) is a classical
diminishing step-size sequence. In fact, this would require
each agent to know the global iteration counter k, which
is impossible. Inspired by [39], we assume instead that
each agent, independently and with no coordination with the
others, draws the step-size from a local sequence {αt}t∈N+ ,
according to its local clock. The sequence {γk}k∈N+ will be
thus the result of the “uncoordinated samplings” of the local
out-of-sync sequences {αt}t∈N+

. Fig. 1 shows an example
of how the resulting sequence {γk}k∈N+

is built, with three
agents and {αt}t∈N+ = {1/2, 1/3, . . .}.

The next theorem shows that in this setting, ASY-SONATA
converges sub-linearly for both convex and nonconvex in-
stances of (P)–the proof can be found in [38].

Theorem 4.3: Consider (P) under Assumption 2.1 (thus
possibly nonconvex). Let {(xki )Ii=1}k∈N+

be the sequence
generated by Algorithm 2, in the same setting of Theo-
rem 4.1, but with the agents using a local step-size sequence
{αt}t∈N+ satisfying αt ↓ 0 and

∑∞
t=0 α

t =∞. Given δ > 0,
let Tδ be the first iteration k ∈ N+ such that MF (x) ≤ δ.
Then

Tδ ≤ inf
{
k ≥ 0

∣∣∣ k∑
t=0

γt ≥ c/δ
}
,

where c is a positive constant (see [38]). �

V. NUMERICAL RESULTS

We test ASY-SONATA on the Least Squares (LS) problem,
a strongly convex instance of Problem (P). We compare
it with the asynchronous primal-dual based method in [8]
(referred to as ASY-PrimalDual). As benchmark, we also
apply NEXT [30] in the synchronous setting.

In the LS problem, each agent i estimates an unknown
signal x0 ∈ Rn through linear measurements bi = Mix0 +
ni, where Mi ∈ Rdi×n is the sensing matrix, and ni ∈ Rdi is
the additive noise. The LS problem can be written in the form
of (P), with each fi(x) = ‖Mix − bi‖2. We set n = 200
and fix x0 with its elements being i.i.d. random variables
drawn from the standard normal distribution. Each agent i
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Fig. 2: LS problem: Distance from optimality Jk versus commu-
nication cost.

takes di = 30 observations. For each Mi, we firstly generate
all the elements as i.i.d. random variables drawn from the
standard normal distribution, and then normalize the matrix
by multiplying it with the reciprocal of its spectral norm.
The components of the additive noise ni are i.i.d., Gaussian
distributed, with zero mean and variance equal to 0.04.

We simulate a network of I = 30 agents; the traveling
time of each packet is an integer taken uniformly from the
interval [0, 40]. Since both ASY-PrimalDual and NEXT can
only be applied to undirected graphs, in our experiment, we
consider such a setting. A graph is firstly generated according
to the Erdos-Renyi model, with parameter p = 0.3 (which
represents the probability of having an edge between any
two nodes), and is selected if its algebraic connectivity is
strictly greater than 2. A compatible doubly stochastic weight
matrix is then generated by the Metropolis-Hasting rule. We
test ASY-SONATA using both constant and uncoordinated
diminishing step-size, with the following tuning. In ASY-
SONATA (resp. NEXT), the constant step-size is set to
γ = 0.84 (resp. γ = 0.9) whereas the local diminishing step-
size of each agent are chosen as αt+1 = αt (1− µαt), with
α0 = 0.9 and µ = 0.003. In ASY-PrimalDual, the step-size
is set to be α = 0.62 and η = 0.9 (see [8] for a definition
of this quantities). These choices lead to the best practical
performance for the algorithms.

In Fig. 2, we plot the optimality gap defined as
1
I

∑I
i=1 ‖xki − x?‖22 achieved by all the algorithms versus

the communication cost, where x? is the unique solution
of the LS. The curves are averaged over 100 Monte-Carlo
simulations with different graph instantiations. The commu-
nication cost is counted as the number of scalars sent by all
agents in the network at each iteration. It is not difficult to
check that, at each iteration, in ASY-SONATA, each agent
transmits (2n+1)I scalars (namely: v, ρ, and σ) whereas in
ASY-PrimalDual the number of scalars to be transmitted is
(I+ |E|2 )n (both node and edge variables). The figure shows
that ASY-SONATA converges faster than ASY-PrimalDual;
equivalently, it reaches the same solution accuracy requiring
less communications. Also, ASY-SONATA achieves linear
convergence rate and, quite remarkably, it exhibits perfor-
mance close to the synchronous scheme, NEXT.
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VI. CONCLUSIONS

We proposed ASY-SONATA, a distributed asynchronous
algorithmic framework for convex and nonconvex (uncon-
strained, smooth) multi-agent problems, over digraphs. The
algorithm is robust against uncoordinated agents’ activa-
tion and (communication/computation) (time-varying) de-
lays. When employing a constant step-size, ASY-SONATA
achieves a linear rate for strongly convex problems–matching
the rate of a centralized gradient algorithm–and sublinear rate
for (non)convex problems. Sublinear rate is also established
when agents employ uncoordinated diminishing step-sizes,
which is more realistic in a distributed setting. To the best
of our knowledge, ASY-SONATA is the first distributed
algorithm enjoying the above properties, in the general
asynchronous setting described in the paper.
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