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Abstract— With a motivation to understand the effects of
temperature sensitivity on wireless data transmission perfor-
mance, we consider an energy harvesting communication system,
where the temperature dynamics are governed by the transmis-
sion power policy. Different from the previous work, we consider
a discrete time system where transmission power is kept constant
in each slot. We consider two models that capture different effects
of temperature. In the first model, the temperature is constrained
to be below a critical temperature at all time instants; we coin
this the explicit temperature constrained model. We investigate
throughput optimal power allocation for multiple energy arrivals
under general, as well as temperature and energy limited regimes.
We show that the optimal power allocation for the temperature
limited case is monotone decreasing. In the second model,
we consider the effect of the temperature on the channel quality
via its influence on additive noise power; we coin this the implicit
temperature constrained model. In this model, the change in the
variance of the additive noise due to previous transmissions is
non-negligible. In particular, transmitted signals contribute as
interference for all subsequent slots and thus affect the signal to
interference plus noise ratio (SINR). In this case, we investigate
throughput optimal power allocation under general, as well as
low and high SINR regimes. We show in the low SINR regime
that the optimal allocation dictates the transmitter to save its
harvested energy till the last slot. In the high SINR regime,
we show that the optimal power sequence is monotone increasing.
Finally, we consider the case in which implicit and explicit
temperature constraints are simultaneously active and we show
under certain conditions that the optimal power sequence is
monotone decreasing.

Index Terms— Energy harvesting communications, tempera-
ture constraints, power control, throughput maximization.

I. INTRODUCTION

DUE to physical principles that govern the heating effect of

electromagnetic radiation, wireless sensors are by nature

prone to temperature increase caused by sensor operation.
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The temperature of the surrounding environment, transmit

power for data transmission, and circuit power associated

with processing all play roles in the time dynamics for

temperature in wireless sensors. In this regard, temperature

increase caused by sensor operation may be a limiting factor

in many applications. While this issue is tackled in the design

of the hardware with sufficient heat sinks for the least amount

of heat dissipation, in many temperature sensitive wireless

sensor applications the hazardous effect of heating has to be

carefully managed. This problem arises in various types of

biomedical wireless sensor networks [1]–[3] where depending

on the type of tissue and material properties of the sensor node,

data transmission has to be scheduled according to temperature

sensitivity [4]. More generally, temperature increase in a sen-

sor is a threat for the proper operation of the hardware [5], [6]

and therefore, the electric power that feeds the communication

circuitry has to be carefully scheduled to avoid heat related

damage.

With a motivation to understand the effects of tempera-

ture sensitivity on wireless data transmission performance,

we build on our recent works [7], [8] and consider data

transmission with energy harvesting sensors under temperature

constraints. In the current work, our particular focus is to

contrast two different effects of temperature on the optimal

power allocation in a single-user energy harvesting commu-

nication system. These effects show themselves as explicit

and implicit temperature constraints on the power allocation.

We determine throughput optimal offline power scheduling

policies under energy harvesting constraints along with explicit

and implicit temperature constraints. Transmission schedul-

ing problems under energy harvesting constraints only have

been studied in various works in the literature, see [9]–[35].

Previous works considered single-user channel [9]–[12],

broadcast channel [13], multiple access channel [14], [15],

interference channel [16], two-hop channel [17]–[19], two-

way channel [20], [21], and diamond channel [22]. The effect

of imperfect transmitter circuitry is considered in [23]–[29].

Receiver side energy harvesting communication systems is

considered in [30]–[35].

In contrast to our earlier works [7], [8], in this paper

we consider the scheduling problem under energy harvesting

and temperature constraints in discrete time. Our interest in

discrete time solution stems from the fact that circuits typically

run on digital clocks and decisions on the transmission strategy

are taken on discrete time intervals. In the first model we

consider here, which we coin as the explicit temperature

constrained model, we consider an explicit peak temperature
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constraint as in [7] and obtain a discrete time version of the

problem considered in [7]. In this temperature constrained

problem, increasing the transmission power increases the

throughput and the temperature. Due to the fixed temperature

budget, higher temperature levels mean smaller admissible

transmission power levels for future slots. When the temper-

ature constraint is not binding, the problem reduces to the

single-user energy harvesting channel studied in [9], where

the optimal power sequence is monotone increasing. When

the energy constraint is not binding, we show that the optimal

power sequence is monotone decreasing, and the resulting

temperature is monotone increasing.

In the second model we consider here, which we coin as

the implicit temperature constrained model, the temperature

is not explicitly constrained, however, the temperature affects

the additive noise power and hence the channel quality. This

problem arises when the dynamic range of the temperature is

large and affects the noise added at the receiver circuitry in the

spirit of [36]. Our current focus is to investigate this problem in

a scheduling-theoretic setting. In this case, the transmit powers

used in earlier time slots affect the thermal noise in the form

of intersymbol interference, and hence, the channel becomes

a use dependent or action dependent channel, see [37]–[39].

Our work represents, to the best of our knowledge, the first

instance of this implicit temperature constrained problem in

the context of energy harvesting communications.

In the implicit temperature constrained model, transmissions

in the previous slots interfere with the current transmission

due to temperature dependent noise and the causality of the

temperature filter. This filter is the discrete time version of the

continuous time first order filter that defines the temperature

dynamics. For the general signal to interference plus noise

ratio (SINR), we observe that the problem is non-convex and

is a signomial problem for which we obtain a local optimal

solution using the single condensation method in [40]. We then

propose a heuristic algorithm which improves upon the local

optimal solution and may achieve the global optimal solution.

Then, we consider the extreme settings of low and high SINR

regimes. We show that in the low SINR regime, saving energy

till the last slot and transmitting only in the last slot is optimal.

For the high SINR regime, we observe that the problem is a

geometric program and we explore specific structural results in

this setting. Expanding upon the equivalence of this problem

to its convex counterpart via a one-to-one transformation,

we show that the KKT conditions in the original problem

have a unique solution. Then, we obtain an algorithm to

solve the KKT conditions in the original problem. We show

convergence of this algorithm to the unique solution of the

KKT conditions. We then show that for this unique solution,

the power sequence is monotone increasing; hence, prov-

ing the monotone increasing property of the optimal power

sequence.

Finally, we consider the case when implicit and explicit

temperature constraints are simultaneously active. In general,

we observe that the problem is non-convex and the same

signomial programming approach as in the implicit temper-

ature constrained case is applicable. In the high SINR regime,

the problem is a geometric program and we show in the

Fig. 1. System model: the system heats up due to data transmission.

temperature limited case that the optimal power sequence is

monotone decreasing under certain conditions. We illustrate

our findings in various numerical results.

II. SYSTEM MODEL

We consider an energy harvesting communication system

in which the transmitter harvests energy Ẽi in the ith slot,

see Fig. 1. We consider the temperature model considered

in [7] and [8]. In this model, the temperature, T (t), evolves

according to the following differential equation,

dT (t)

dt
= ap(t) − b(T (t) − Te) (1)

where Te is the environment temperature, T (t) is the temper-

ature at time t, p(t) is the power, and a, b are non-negative

constants. With the initial temperature T (0) = Te, the solution

of (1) is:

T (t) = e−bt

∫ t

0

ebτap(τ)dτ + Te (2)

In what follows we assume that the duration of each slot is

equal to ∆, which can take any positive value. Let us define

Ti � T (i∆) as the temperature level by the end of the ith slot,

Pi � P (i∆) as the power level used in the ith slot. Using (2),

Ti can be expressed as:

Ti = e−bi∆

∫ i∆

0

ebτap(τ)dτ + Te (3)

= e−b∆e−b(i−1)∆

∫ (i−1)∆

0

ebτap(τ)dτ

+ e−bi∆

∫ i∆

(i−1)∆

ebτaPidτ + Te (4)

= e−b∆(Ti−1 − Te) +
aPi

b

[

1 − e−b∆
]

+ Te (5)

= αTi−1 + βPi + γ (6)

where α = e−b∆, β = a
b

[1 − α] and γ = Te [1 − α].
The effect of ∆ in (6) appears through the constants α, β, γ.

As the slot duration increases, the values of β, γ increase

while the value of α decreases; as the slot duration increases,

the temperature at the end of the slot becomes more dependent

on the power transmitted within this slot and less dependent

on the initial temperature at the beginning of the slot.
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We now eliminate the previous temperature readings in Ti

making the temperature a function of the powers only. We can

do this by recursively substituting Ti−1 in Ti in (6) to have

Tk = β
k

∑

i=1

αk−iPi + Te (7)

This formula shows that the temperature at the end of each

slot depends on the power transmitted in this slot and all

previous slots through an exponentially decaying temperature

filter. We note that this is the same formula that was developed

in [36] in which the slot duration was assumed to be unity; here

we assume a general slot duration which is equal to ∆. In what

follows, we denote the vector of elements by the bold letter

without a subscript, i.e., for example, the vector of powers is

defined as P � [P1, . . . , PD].

III. EXPLICIT PEAK TEMPERATURE CONSTRAINT

We now consider the model in which we have an energy

harvesting transmitter with a peak temperature constraint. The

noise variance is the same throughout the communication

session and is set to σ2. We consider a slotted system with a

constant power per slot. There are D slots. It follows from (4)

(and also [7, eq. (47)]), that the temperature is monotone

within the slot duration. Hence, for the peak temperature

constrained case, it suffices to constrain the temperature only

at the end of each slot; we begin the communication with the

system having temperature Te. In this case, the problem can

be written as

max
P≥0

D
∑

i=1

∆

2
log

(

1 +
Pi

σ2

)

s.t. Tk ≤ Tc

k
∑

i=1

∆Pi ≤
k

∑

i=1

Ẽi, ∀k (8)

where ∆ in the objective function and the energy constraint is

to account for the slot duration. In what follows, without loss

of generality, we drop ∆ since it is just a constant multiplied

in the objective function and by defining Ei = Ẽi

∆ .

We rewrite problem (8) making use of (7) as

max
P≥0

D
∑

i=1

1

2
log

(

1 +
Pi

σ2

)

s.t.

k
∑

i=1

αk−iPi ≤
Tc − Te

β

k
∑

i=1

Pi ≤
k

∑

i=1

Ei, ∀k (9)

In the last slot, either the temperature or the energy constraint

has to be satisfied with equality. Otherwise, we can increase

one of the powers until one of the constraints is met with

equality and this strictly increases the objective function.

This problem is a convex problem, which can be solved

optimally using the KKT conditions. The Lagrangian function

for (9) is:

L = −
D

∑

i=1

log

(

1 +
Pi

σ2

)

+
D

∑

k=1

λk

(

k
∑

i=1

αk−iPi −
Tc − Te

β

)

+

D
∑

k=1

µk

(

k
∑

i=1

Pi −

k
∑

i=1

Ei

)

(10)

where λk and µk represent the Lagrange multipliers corre-

sponding to the first set and the second set of constraints in (9),

respectively. Differentiating with respect to Pi and equating to

zero we get,

Pi =

(

1

α−i
∑D

k=i λkαk +
∑D

k=i µk

− σ2

)+

(11)

where (x)+ = max{x, 0}. Additionally, the corresponding

complementary slackness conditions are

λk

(

k
∑

i=1

αk−iPi −
Tc − Te

β

)

= 0 (12)

µk

(

k
∑

i=1

Pi −

k
∑

i=1

Ei

)

= 0 (13)

In the optimal solution, if neither constraint was tight in slot

i < D, then the power in slot i + 1 is strictly less than the

power in slot i. This follows from complementary slackness

in (12)-(13) since if at slot i, if both constraints were not tight

then we have λi = µi = 0 which, using (11), implies that

Pi > Pi+1.

In the following two subsections, we consider special cases

of (9) which we call energy limited case and temperature

limited case. In the energy limited case, the temperature budget

is sufficiently large so that the problem reduces to that limited

by the energy constraints only. In the temperature limited case,

energy budget is sufficiently large so that the problem reduces

to that limited by temperature constraints only.

A. Energy Limited Case

In this subsection, we study a sufficient condition under

which the system becomes energy limited, i.e., when the

temperature budget is sufficiently large so that the temperature

constraints are not binding. For all slots j in which the

following is satisfied

j
∑

i=1

Ei ≤
Tc − Te

β
(14)

the temperature constraint cannot be tight. Intuitively, in this

case, the incoming energy is so small that it can never overheat

the system. Therefore, the binding constraint here is the

availability of energy. In particular, when (14) is satisfied for

j = D, then the temperature constraint can be completely

removed from the system. To prove this, we assume for the

sake of contradiction that we have at slot j,
∑j

i=1 Ei ≤
Tc−Te

β

while the temperature constraint is tight, which implies:

Tc − Te

β
=

j
∑

i=1

αj−iPi <

j
∑

i=1

Pi ≤

j
∑

i=1

Ei (15)
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which contradicts the assumption
∑j

i=1 Ei ≤ Tc−Te

β
. The

strict inequality follows since α < 1. The structure of the

optimal solution for this case is studied in [9].

B. Temperature Limited Case

In this subsection, we first study a sufficient condition for

problem (9) to be temperature limited, i.e., when the energy

budget is sufficiently large so that the energy constraints

are not binding. The energy constraint is never tight if the

following condition is satisfied:

Tc − Te

β
<

∑k

i=1 Ei

k
, ∀k ∈ {1, . . . , D} (16)

Intuitively, the incoming energy is so large that there will never

be a shortage of energy. Therefore, the binding constraint here

is overheating the system. For the temperature limited case,

an upper bound on the transmission powers is equal to Tc−Te

β
.

This follows because for any slot k we have
∑k−1

i=1 αk−iPi +

Pk ≤ Tc−Te

β
, thus Pk can be at most equal to Tc−Te

β
. Hence,

(16) is sufficient to satisfy
∑k

i=1 Pi <
∑k

i=1 Ei.

In what follows, we study the structure of the optimal

policy for the temperature limited case. In the last slot,

the temperature constraint is satisfied with equality. The opti-

mal powers are monotonically decreasing in time. The proof

follows by contradiction. Assume for some index j that we

have P ∗
j < P ∗

j+1. We now form another policy, denoted as

{P̄i}, which has P̄i = P ∗
i for all slots i �= j, j + 1, while

we change the powers of slots j, j + 1 to be P̄j = P ∗
j + δ

and P̄j+1 = P ∗
j+1 − δ for small enough δ > 0. This δ always

exists as P ∗
j < P ∗

j+1 implies that
∑j

k=1 αj−kP ∗
k < Tc−Te

β
.

Since the objective function is strictly concave, this new policy

yields a strictly higher objective function, which contradicts

the optimality of P ∗
j < P ∗

j+1. Now it remains to check that

with this new policy, the temperature constraint is still feasible

for any slot k ≥ j + 1 which follows from:

k
∑

i=1, �=j,j+1

αk−iP̄i + αk−j P̄j + αk−j−1P̄j+1

=

k
∑

i=1, �=j,j+1

αk−iP ∗
i + αk−j P̄j + αk−j−1P̄j+1 (17)

<

k
∑

i=1, �=j,j+1

αk−iP ∗
i + αk−jP ∗

j + αk−j−1P ∗
j+1 (18)

=

k
∑

i=1

αk−iP ∗
i (19)

<
Tc − Te

β
(20)

Since this is valid for any k ≥ j +1, we can take in particular

k = D. Now we can increase any of the powers to satisfy

the last inequality by equality which strictly improves the

objective function. Hence, this violates the optimality of any

policy which has P ∗
i < P ∗

i+1 for any i ∈ {1, . . . , D}.

Moreover, the optimal temperature levels are non-decreasing

in time. To prove this, using (7), it suffices to show that:

k
∑

i=1

αk−iP ∗
i ≤

k+1
∑

i=1

αk+1−iP ∗
i , ∀k = {1, . . . , D − 1} (21)

We rewrite (21) as follows,

(1 − α)

k
∑

i=1

αk−iP ∗
i ≤ P ∗

k+1, ∀k = {1, . . . , D − 1} (22)

Since, we know that the last slot has to be satisfied with

equality then we know
∑D

i=1 αD−iP ∗
i = Tc−Te

β
. Hence, for

the constraint at k = D − 1 we have:

D−1
∑

i=1

αD−1−iP ∗
i ≤

Tc − Te

β
=

D
∑

i=1

αD−iP ∗
i (23)

which can be written as follows

(1 − α)

D−1
∑

i=1

αD−1−iP ∗
i ≤ P ∗

D (24)

which proves (22) for k = D − 1. Now assume for the sake

of contradiction that (22) is false for k = D − 2, i.e.:

P ∗
D−1 < (1 − α)

D−2
∑

i=1

αD−2−iP ∗
i (25)

Substituting this in (24), we get:

P ∗
D−1 = αP ∗

D−1 + (1 − α)P ∗
D−1 (26)

< α(1 − α)
D−2
∑

i=1

αD−2−iP ∗
i + (1 − α)P ∗

D−1 (27)

= (1 − α)
D−1
∑

i=1

αD−1−iP ∗
i ≤ P ∗

D (28)

But since we know that in the optimal policy the power

sequence is monotone decreasing, this is a contradiction

and (22) holds for k = D−2. The same argument follows for

any k < D − 2.

In the optimal solution, if the constraint is satisfied with

equality for two consecutive slots then the power in the second

slot must be equal to (1 − α)Tc−Te

β
. To obtain this, the two

consecutive constraints which are satisfied with equality are

solved simultaneously for the power in the second slot. In addi-

tion, when the temperature hits the critical temperature for the

first time, the transmission power in that slots will be strictly

higher than (1 − α)Tc−Te

β
. To show this we denote the time

slot at which the temperature hits Tc for the first time as i∗.

Hence, we have:

i∗−1
∑

i=1

αi∗−1−iPi <
Tc − Te

β
,

i∗
∑

i=1

αi∗−iPi =
Tc − Te

β
(29)

Using both equations in (29) simultaneously we have:

(1 − α)
Tc − Te

β
< Pi∗ (30)

which is the power of the slot at which temperature hits the

critical temperature for the first time.
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Hence, when the temperature hits the critical temperature,

the optimal transmission power in all the subsequent slots

becomes constant and equal to (1 − α)Tc−Te

β
. This follows

since the temperature is increasing, thus whenever the con-

straint becomes tight, it remains tight for all subsequent slots.

We now conclude that the transmission power at all slots are

bounded as follows

(1 − α)
Tc − Te

β
≤ Pi ≤

Tc − Te

β
, ∀i = {1, . . . , D} (31)

The lower bound follows from the discussion above while the

upper bound follows from the feasibility of the constraints.

We now proceed to find the optimal power allocation. Since

the problem is convex, a necessary and sufficient condition is

to find a solution satisfying the KKTs. The optimal power is

given by setting µ = 0 in (11), which gives:

Pi =

(

αi

∑D

k=i λkαk
− σ2

)+

(32)

It follows from the complementary slackness that if at slot

i the temperature constraint is satisfied with strict inequality

then Pi+1 < Pi.

IV. IMPLICIT TEMPERATURE CONSTRAINT

We now consider the case when the dynamic range of the

temperature increases. In this case, we need to consider the

change in the thermal noise of the system due to temperature

changes. The thermal noise is linearly proportional to the

temperature [41, Ch. 11]. The problem can be written as:

max
P≥0

D
∑

i=1

1

2
log

(

1 +
Pi

cTi−1 + σ2

)

s.t.

k
∑

i=1

Pi ≤

k
∑

i=1

Ei, ∀k (33)

where c is the proportionality constant between the thermal

noise and the temperature. In this setting, the noise variance

in each slot is determined by the value of the temperature

at the beginning of the slot. Using (7) in (33), the problem

can now be written in terms of only transmission powers as

follows:

max
P≥0

D
∑

i=1

1

2
log

⎛

⎝1 +
Pi

c
(

β
∑i−1

k=1 αi−1−kPk + Te

)

+ σ2

⎞

⎠

s.t.

k
∑

i=1

Pi ≤

k
∑

i=1

Ei, ∀k (34)

where we define SINRi � Pi

cβ
�i−1

k=1
αi−1−kPk+cTe+σ2

. In what

follows, in order to simplify the notation and facilitate simpler

expressions, we assume without loss of generality that cβ = 1

and define Γj � cTe+σ2

αj . Therefore, SINRi inside the log
in (34) becomes SINRi = Pi�i−1

k=1
αi−1−kPk+Γ0

. We note that

assuming cβ = 1 is not binding for the analytical results

we develop in the rest of the paper and we stop using this

assumption for the numerical results in Section VI.

The problem in this form highlights the effect of previous

transmissions on subsequent slots. The transmission power at

time i appears as an interfering term at slot indices greater than

i with an exponentially decaying weight due to the filtering

in the temperature. Using (7), the maximum temperature the

system can reach is equal to Tmax � β
∑D

i=1 Ei + Te. This

occurs when the transmitter transmits all its energy arrivals in

the last slot. The value of Tmax is useful in determining the

maximum possible temperature for the system. As we show,

in the low SINR case in Section IV-A, the optimal power

allocation results in system temperature equal to Tmax.

The problem in (34) is non-convex and determining the

global optimal solution is generally a difficult task. Next,

we adapt the signomial programming based iterative algorithm

in [40] for the energy harvesting case. This algorithm provably

converges to a local optimum point. The problem in (34) can

be written in the following equivalent signomial minimization

problem

min
P≥0

D
∏

i=1

(

∑i−1
k=1 αi−1−kPk + Γ0

∑i−1
k=1 αi−1−kPk + Γ0 + Pi

)

s.t.

k
∑

i=1

Pi ≤

k
∑

i=1

Ei, ∀k (35)

The objective function in (35) is a signomial function which

is a ratio between two posynomials. Note also that the energy

harvesting constraints in (35) are posynomials in Pi.

In each iteration we approximate the objective by a posyn-

omial. We do this by approximating the posynomial in the

denominator by a monomoial. Appropriate choice of an

approximation which satisfies the conditions in [42] guarantees

convergence to a local optimal solution. Let us denote the

posynomial in the ith denominator evaluated using a power

vector P by ui(P), i.e., we have

ui(P) �

i+1
∑

k=1

vi
k(P) =

i−1
∑

k=1

αi−1−kPk + Pi + Γ0 (36)

where for k = {1, . . . , i − 1} we have vi
k(P) = αi−1−kPk,

vi
i(P) = Pi and vi

i+1(P) = Γ0.

Using the arithmetic-geometric mean inequality, we approx-

imate each posynomial by a monomial as follows:

ui(P) ≥

(

i−1
∏

k=1

(

αi−1−kPk

θi
k

)θi
k

)

(

Pi

θi
i

)θi
i
(

Γ0

θi
i+1

)θi
i+1

(37)

where
∑i+1

k=1 θi
k = 1 for all i = {1, . . . , D}.

We now solve the problem in (35) iteratively. First, we ini-

tialize the power allocation to any feasible power allocation

P
0. Then, we approximate the posynomials ui(P

0) using the

arithmetic-geometric mean inequality shown above. In each

iteration j, where the power allocation is P
j , we choose θi

k as

a function of the posynomials and the current power allocation

as follows:

θi
k(Pj) =

vi
k(Pj)

ui(Pj)
(38)

which satisfies
∑i+1

k=1 θi
k(Pj) = 1. This choice of θi

k(Pj)
guarantees that the iterations converge to a KKT point of
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Algorithm 1 Single-Condensation Method

1: Initialize Pi = Ei

2: repeat

3: For k = {1, . . . , i − 1}, calculate vi
k(P) = αi−1−kPk

4: Set vi
i+1(P) = Γ0 and vi

i(P) = Pi

5: Calculate ui(P) using (36)

6: Calculate θi
k(Pj) according to (38)

7: Approximate ui(P) using (37)

8: Solve problem (35) using the approximate objective

function calculated in Step 7

9: until Convergence to a local optimal solution

the original problem [42]. In particular, for each iteration this

is a geometric program and as required by [42], this can be

transformed into a convex problem; see also [40]. A pseudo

code for this procedure is provided in Algorithm 1. In each

iteration, the computation complexity of finding the solution of

the convex problem is polynomial in the number of constraints

and the number of variables, see [43].

The above iterative approach converges to a local optimal

solution. Achieving the global optimal solution is of exponen-

tial complexity. Alternatively, to get to the optimal solution,

an approach introduced in [44] can be used. This approach

solves the following problem iteratively:

min
P≥0,t

t

s.t. O(P) ≤ t

t ≤
t0
α

k
∑

i=1

Pi ≤

k
∑

i=1

Ei, ∀k (39)

where O(P) is the objective function of (35) and α is chosen

to be a number which is slightly more than 1 and t0 can be

initialized to be the solution of problem (35) and then updated

as the optimal solutions resulting from (39).

This completes our treatment of the general problem for the

case of implicit temperature constraints. In the following two

subsections, we consider the two special cases of low and high

SINR, where we are able to provide more structural solutions.

A. Low SINR Case

The low SINR case occurs when the incoming energies

are small with respect to the noise variance. In this case,

an approximation to the logarithm function in the objective

function is the linear function, i.e., log(1 + x) ≈ x. Hence,

the objective function of (34) can be written as follows, c.f.

[45, eq. (14)]:

D
∑

i=1

Pi
∑i−1

k=1 αi−1−kPk + Γ0

(40)

We next show that the optimal power allocation dictates that

the energy is saved till the last slot and transmitted then, i.e.,

P ∗
i = 0, i ≤ D − 1, and P ∗

D =

D
∑

i=1

Ei (41)

This can be proved by developing an upper bound as follows:

D
∑

i=1

Pi
∑i−1

k=1 αi−1−kPk + Γ0

≤

D
∑

i=1

Pi

Γ0
(42)

≤

∑D

i=1 Ei

Γ0
(43)

and noting that this bound is achieved by the claimed power

allocation.

A sufficient condition to have a low SINR regime is
∑D

i=1 Ei ≪ Γ0. The temperature at the end of the commu-

nication session is equal to Tmax = β
∑D

i=1 Ei + Te. Also,

the optimal power allocation does not need the non-causal

knowledge of the energy arrival process, as all the harvested

energy is used in the last slot.

B. High SINR Case

When the values of c and σ are small, SINR is high and

we approximate the objective function by ignoring 1 inside

the logarithm, i.e., log(1 + x) ≈ log(x). Hence, the problem

in (34) can be written as:

max
P≥0

D
∑

i=1

1

2
log

(

Pi
∑i−1

k=1 αi−1−kPk + Γ0

)

s.t.

k
∑

i=1

Pi ≤

k
∑

i=1

Ei, ∀k (44)

The problem in (44) has the Lagrangian:

L = −
D

∑

i=1

log

(

Pi
∑i−1

k=1 αi−1−kPk + Γ0

)

+

D
∑

k=1

µk

(

k
∑

i=1

Pi −

k
∑

i=1

Ei

)

(45)

Taking the derivative with respect to Pi gives,

∂L

∂Pi

= −
1

Pi

+
D

∑

j=i+1

αj−1−i

∑j−1
k=1 αj−1−kPk + Γ0

+
D

∑

k=i

µk (46)

and then equating to zero gives:

1

Pi

−
D

∑

j=i+1

αj−1−i

∑j−1
k=1 αj−1−kPk + Γ0

=
D

∑

k=i

µk (47)

Although the problem in (44) is non-convex, it is a geomet-

ric program and we show next that any local optimal solution

for this problem is globally optimal. To show this, we consider

the following equivalent problem:

min
x∈RD

D
∑

i=1

1

2
log

(

∑i−1
k=1 αi−1−kexk + Γ0

exi

)

s.t.

k
∑

i=1

exi ≤

k
∑

i=1

Ei, ∀k (48)

This equivalent problem is obtained by substituting Pi = exi

and letting xi ∈ R. The equivalent problem in (48) is a convex

optimization problem since the objective is a convex function
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in the form of a log-sum-exponent and the constraint set is a

convex set [46]. Hence, the KKTs are necessary and sufficient

for global optimality. We show this as follows.

We first write the Lagrangian of problem (48) as:

L = −

D
∑

i=1

log

(

exi

∑i−1
k=1 αi−1−kexk + Γ0

)

+

D
∑

k=1

νk

(

k
∑

i=1

exi −

k
∑

i=1

Ei

)

(49)

Taking the derivative with respect to xi gives,

∂L

∂xi

= −1 +

D
∑

j=i+1

αj−1−iexi

∑j−1
k=1 αj−1−kexk + Γ0

+ exi

D
∑

k=i

νk

(50)

which provides the following necessary condition:

e−xi −

D
∑

j=i+1

αj−1−i

∑j−1
k=1 αj−1−kexk + Γ0

=

D
∑

k=i

νk (51)

Using the transformation xi = log(Pi) and setting νi = µi,

we observe that any solution of (47) satisfies (51). Also,

complementary slackness corresponding to (45) is satisfied if

and only if it is satisfied by those for (49). Since the equivalent

problem in (48) is convex, any solution satisfying the KKTs is

global optimal and through the transformation xi = log(Pi),
µi = νi is also global optimal in the original problem in (44).

The equivalent problem in (48) can be solved using any con-

vex optimization toolbox. We further note that the equivalent

problem and the original problem both have unique solutions.

More generally, for any fixed multipliers µ, the primal problem

of minimizing the Lagrangian function in (45) has a unique

solution. This follows because the Lagrangian function in (49)

is strictly convex as it is formed with strictly convex constraint

functions and a convex objective function; for fixed Lagrange

multipliers the Lagrangian function in (49) is strictly convex.

We now focus on the KKT conditions of the original

problem (44). Our ultimate goal in the following discussion

is to show that the optimal solution of (44) has a power

allocation which is monotone increasing in time index i, that

is, Pi ≤ Pi+1. We prove this by showing that the solution

of the corresponding KKTs in (47) with an arbitrary µ ≥ 0
is monotone increasing in time index i, hence, this also

follows for the optimal µ
∗. We provide the proof for this

fact in Appendix A. The proof is enabled by developing an

algorithm with an update rule which satisfies the properties

of standard interference functions introduced in [47]. Hence,

from [47, Th. 2], the algorithm converges to a unique fixed

point. We then show that the power allocation at this unique

fixed point is monotone increasing in time. Then, from strict

convexity of this problem, we know that KKTs in (47) have a

unique solution. Hence, our algorithm converges to the unique

solution of the KKTs in (47) and this solution has monotone

increasing power allocations. When compared to its prede-

cessors in [9]–[14], our method yields a more general class

of problems in which optimal power allocation is monotone

increasing under energy harvesting constraints. We also note

that due to [7, Lemma 3] and since the powers are monotone

increasing, the temperature sequence T ∗
i resulting from the

optimal power allocation P ∗
i is also monotone increasing.

In order to obtain the optimal solution, one has to deter-

mine the optimal Lagrange multipliers µ
∗ and the power

allocation P. This can be done numerically by using standard

techniques for constrained convex optimization. In particular,

one can use projected gradient descent [46] in the equivalent

convex problem in (48) to determine µ
∗ and corresponding

power allocation.

V. EXPLICIT AND IMPLICIT TEMPERATURE CONSTRAINTS

In this section, we consider the case when both implicit

and explicit temperature constraints are active. In this case,

the temperature controls the channel quality and is also con-

strained by a critical level. This problem is in the following

form:

max
P≥0

D
∑

i=1

1

2
log

(

1 +
Pi

∑i−1
k=1 αi−1−kPk + Γ0

)

s.t.

k
∑

i=1

αk−iPi ≤
Tc − Te

β

k
∑

i=1

Pi ≤

k
∑

i=1

Ei, ∀k (52)

which is a non-convex optimization problem. We can tackle

the challenge due to non-convexity here as we did in

Section IV. In particular, in the general SINR case, one

can reach a local optimal solution for problem (52) using

the signomial programming approach described there. On the

other hand, in the low SINR case, the objective function

in (52) is approximated by
∑D

i=1
Pi�i−1

k=1
αi−1−kPk+Γ0

and it

is a fractional program which can in general be mapped to a

linear program.

The problem in (52) possesses some of the properties of

the problem with explicit temperature constraints only studied

in Section III. In particular, if the temperature constraint is

tight for two consecutive slots in the optimal solution, then the

power level in the second slot must be equal to Tc−Te

β
(1 − α).

Additionally, when the temperature at the end of a slot hits Tc

for the first time, then the power in that slot must be strictly

higher than Tc−Te

β
(1 − α). We also note that the problem

reduces to the case of implicit temperature constraint when

the energy arrivals satisfy
∑D

i=1 Ei ≤ Tc−Te

β
as the explicit

temperature constraint is never tight in this case.

In the high SINR case, we have log(1+x) ≈ log(x) and the

problem (52) is a geometric program which can be transformed

to an equivalent convex problem. In general, the optimal power

sequence does not have a monotonic structure in this case.

When harvested energies are sufficiently large and the energy

constraints are not binding, and if α ≤ βΓ0

Tc−Te+βΓ0
, then the

optimal power sequence Pi is monotone decreasing and when

the temperature hits Tc, the power becomes constant and is

equal to
(Tc−Te)(1−α)

β
. Furthermore, under this condition the

temperature is monotone increasing. We provide the proof for

these facts in Appendix B.
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VI. NUMERICAL RESULTS

In this section we illustrate our analytical findings in the

earlier parts of this paper. We consider a wireless communi-

cation setting inspired by biomedical implant communications

with reasonably high bandwidth. We consider a band-limited

additive Gaussian noise channel with communication band-

width of B = 5 MHz and a noise spectral density of N0 =
2 × 10−19 W/Hz. Moreover, we let the pathloss coefficient

between the transmitter and the receiver be denoted by h
and we set this coefficient as 60 dB for all the scenarios

we consider below. We assume that this coefficient remains

constant throughout the communication duration. We set the

slot length to ∆ = 1 second. With these system parameters in

place, the total throughput over the [0, D] interval is expressed

in the explicit temperature constrained scenario as follows:

TS =
D

∑

i=1

∆

2
log2

(

1 +
hPi

N0B

)

(53)

=

D
∑

i=1

1

2
log2

(

1 +
Pi

10−6

)

Bits/Hz (54)

The total throughput, in Bits/Hz, for the implicit temperature

constrained scenario is:

TS =
D

∑

i=1

∆

2
log2

⎛

⎝1+
hPi

c
(

β
∑i−1

k=1 αi−1−khPk+Te

)

+N0B

⎞

⎠

(55)

=

D
∑

i=1

1

2
log2

(

1+
Pi

cβ
∑i−1

k=1 αi−1−kPk+cTe106+10−6

)

(56)

In particular, the noise power term c
(

β
∑i−1

k=1 αi−1−k

hPk + Te

)

corresponds to the thermal noise at the receiver

circuitry. In the ensuing numerical results, we will let the initial

temperature be Te = 37 ◦C throughout.

A. Explicit Temperature Constraints Only

In this subsection, we consider explicit peak temperature

constraints only. We set the parameters to a = 0.9
◦C

W. sec

and b = 1 sec−1. We consider an energy arrival profile

E = [100, 200, 20, 70, 200] mJ. Initially, we consider a critical

temperature level of Tc = 37.1 ◦C. We observe the resulting

power profile in Fig. 2. Next, we illustrate the variations of the

optimal total throughput with respect to a and b parameters

in Figs. 3(a) and 3(b). As the value of a increases, the explicit

temperature constraint becomes the limiting constraint and we

observe that the total throughput decreases as in Figs. 3(a).

In contrast, we observe that as the value of b increases,

the explicit temperature constraint becomes less binding and

the total throughput increases as in Fig. 3(b).

Next, we consider the temperature limited case under

explicit temperature constraints. For this case, we set Tc =
37.2 ◦C. We observe in Fig. 4 that in the temperature limited

regime the power is strictly decreasing and the temperature is

strictly increasing until it reaches the critical level.

Fig. 2. Illustration of optimal power policy and resulting temperature profile
in the general case for explicit temperature constraints.

Fig. 3. Variation of the optimal total throughput with respect to the
temperature related parameters a and b under a critical temperature constraint
Tc = 38 ◦C.

B. Implicit Temperature Constraints Only

In this subsection, we consider the scenario with implicit

temperature constraints only and the energy arrival profile

E = [100, 30, 50, 70] mJ. We set the parameters a = 0.9
◦C

W.sec
and b = 1 sec−1. In Fig. 5(a) and Fig. 5(b), we observe
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Fig. 4. Illustration of optimal power policy and resulting temperature profile
in the temperature limited regime for explicit temperature constraints.

Fig. 5. Variation of the optimal rate with respect to the temperature related
parameters a and b in an implicitly temperature constrained scenario.

the monotonic variations of the optimal total throughput with

respect to the parameters a and b, respectively. For Fig. 5(a),

we use c = 10−6 W
◦C

while for Fig. 5(b), we use c =
1.35 × 10−8 W

◦C
.

Next, we consider the high SINR regime for the same sce-

nario with the energy arrival profile E = [30, 70, 20, 80] mJ.

Fig. 6. Illustration of optimal power policy and resulting temperature profile
in the high SINR regime for implicit temperature constraints.

Fig. 7. Illustration of optimal power policy and resulting temperature profile
in the high SINR regime for simultaneous implicit and explicit temperature
constraint.

The parameter determining the thermal noise is taken as

c = 10−12 W
◦C

so that the SINR is guaranteed to be signifi-

cantly larger than 1. In Fig. 6, we observe that the optimal

power allocation is monotone increasing as we proved in our

analytical results.

C. Simultaneous Explicit and Implicit

Temperature Constraints

In the last subsection of numerical results, we consider

the case when implicit and explicit temperature constraints

are simultaneously active. In particular, we focus on the high

SINR regime. We consider an energy arrival profile of E =
[10, 50, 200, 10] mJ. We set the two parameters as a = 2

◦C
W.sec

,

b = 1 sec−1 and the critical temperature to Tc = 37.1 ◦C.

For this case, we set c = 10−12 W
◦C

so that the high SINR

asymptotic is achieved. We observe the optimal power and

resulting temperature profiles in Fig. 7.

We finally consider the high SINR case when the system

is temperature limited. For this case, we update the para-

meter b as b = 0.5 sec−1 and the critical temperature as

Tc = 38 ◦C. We show the optimal power allocation and the
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Fig. 8. Illustration of optimal power policy and resulting temperature profile
in the temperature limited high SINR regime for simultaneous implicit and
explicit temperature constraint.

resulting temperature profile in Fig. 8. Note that optimal power

sequence is monotone decreasing, corresponding temperature

sequence is monotone increasing and the power level remains

constant when the temperature hits the critical level.

VII. CONCLUSION

We considered explicit and implicit temperature constraints

in a single-user energy harvesting communication system in

discrete time. Under explicit temperature constraints, the tem-

perature is imposed to be less than a critical level. In this

case, we studied optimal power allocation for multiple energy

arrivals. For the temperature limited regime, we showed that

the optimal power sequence is monotone decreasing while

the temperature of the system is monotone increasing. Next,

we considered an implicit temperature constraint where the

temperature level affects channel quality. We studied the gen-

eral case as well as the high and low SINR cases. In the low

SINR case, we showed that the optimal allocation dictates

the transmitter to save its harvested energy till the last slot

and transmit all the harvested energy then. In the high SINR

case, we observed that the problem is a geometric program

and we expanded upon its equivalent convex version to show

that optimal power allocation is monotone increasing in time.

Finally, we considered the case in which implicit and explicit

temperature constraints are simultaneously active. We iden-

tified a sufficient condition on the system parameters that

results in a monotone decreasing optimal power allocation.

Our current investigation leaves several directions to purse

in future research, such as, optimal power allocation for the

finite battery case; online power allocation under explicit and

implicit temperature constraints; explicit and implicit temper-

ature constraints in multi-user settings such as broadcast and

multiple access channels.

APPENDIX A

PROOF OF THE MONOTONICITY OF OPTIMAL

POWER ALLOCATION OF PROBLEM (44)

In this appendix, we present the proof for the monotonicity

of the optimal power allocation for the problem in (44).

We rewrite its KKTs in (47) as follows:

1

Pi

=

D
∑

k=i

µk +

D
∑

j=i+1

αj−1−i

∑j−1
k=1 αj−1−kPk + Γ0

(57)

Based on this equation, for a fixed µ, we now define an update

rule to solve for the power allocation Pi iteratively as follows:

Pi(P) �
1

∑D

k=i µk +
∑D

j=i+1
αj−1−i

�j−1

k=1
αj−1−kPk+Γ0

(58)

where the function Pi(P) calculates the updated power Pi

when the powers are equal to P. The algorithm proceeds

as follows: We first initialize the power allocation with any

arbitrary non-negative power allocation P
0, where the super-

script denotes the iteration index. We then substitute with

P
0 in (58) to obtain the new power allocation P

1, where

P
1 � (P1(P

0), . . . , PD(P0)). Similarly, we use the powers

P
1 to obtain the updated powers P

2, and repeat this process.

We show next that this algorithm converges to a unique fixed

point.

To show that these updates converge to a unique fixed

point, we first present the following definition of a standard

interference function [47]:

Definition 1: Interference function I(P) is standard if for

all P ≥ 0 the following properties are satisfied:

• Positivity I(P) > 0.

• Monotonicity: If P ≥ P
′, then I(P) ≥ I(P′).

• Scalability: For all θ > 1, θI(P) ≥ I(θP).
Now, we want to show that the update rule I(P) =

(P1(P), P2(P), . . . , PD(P)) is a standard function, i.e., it

satisfies the three properties above.

The positivity property follows from,

Pi(P) ≥
1

∑D

j=i µj

≥
1

µD

> 0 (59)

where µD > 0 follows from (47) with i = D and since the

power PD is finite due to the finite energy constraint.

The monotonicity property follows since the denominator

of Pi(P) is a decreasing function of the powers, and hence,

Pi(P) is an increasing function of the powers.

The scalability property follows from the following

for θ > 1,

Pi(θP) =
1

∑D

k=i µk +
∑D

j=i+1
αj−1−i

�j−1

k=1
αj−1−kθPk+Γ0

(60)

=
θ

θ
∑D

k=i µk +
∑D

j=i+1
αj−1−i

�j−1

k=1
αj−1−kPk+

Γ0
θ

(61)

<
θ

∑D

k=i µk +
∑D

j=i+1
αj−1−i

�j−1

k=1
αj−1−kPk+Γ0

(62)

= θPi(P) (63)

This completes the proof that I(P) = (P1(P), P2(P), . . . ,
PD(P)) in (58) is a standard interference function.

From [47, Th. 2], we now conclude that the algorithm

in (58) converges to a unique fixed point. From the equivalence

of (44) to the strictly convex problem in (48), we know that

there is only one unique solution to the equations in (47), and
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hence, the algorithm in (58) converges to the unique power

allocation which solves the KKTs in (47).

It now remains to show that at this unique fixed point,

the power allocation is monotone increasing in time. We prove

this by showing that if we begin with any arbitrary monotone

increasing power allocation, the update algorithm retains this

ordering for the power allocation in each iteration, and hence,

in the limit. To show this, let us assume that we have an

arbitrary power vector P which satisfies Pi ≤ Pi+1 for all

i = {1, . . . , D−1}. We want to show that Pi(P) ≤ Pi+1(P).
This follows from:

Pi+1(P) =
1

∑D

k=i+1 µk +
∑D

j=i+2
αj−2−i

�j−1

k=1
αj−1−kPk+Γ0

(64)

≥
1

∑D

k=i µk +
∑D

j=i+2
αj−2−i

�j−1

k=1
αj−1−kPk+Γ0

(65)

≥
1

∑D

k=i µk +
∑D

j=i+2
αj−2−i

�j−1

k=2
αj−1−kPk+Γ0

(66)

=
1

∑D

k=i µk +
∑D

j=i+2
αj−2−i

�j−2

k=1
αj−2−kPk+1+Γ0

(67)

≥
1

∑D

k=i µk +
∑D

j=i+2
αj−2−i

�j−2

k=1
αj−2−kPk+Γ0

(68)

≥
1

∑D

k=i µk +
∑D−1

j=i+1
αj−1−i

�j−1

k=1
αj−1−kPk+Γ0

(69)

≥
1

∑D

k=i µk +
∑D

j=i+1
αj−1−i

�j−1

k=1
αj−1−kPk+Γ0

(70)

= Pi(P) (71)

where (65) follows by adding the non-negative Lagrange

multiplier µi in the denominator, (66) follows by neglecting

positive terms in the denominator in the second term of the

denominator, (67) follows by replacing
∑j−1

k=2 by
∑j−2

k=1 and

changing the indices inside the summation accordingly, (68)

follows since we have Pk ≤ Pk+1, (69) follows by replacing
∑D

j=i+2 by
∑D−1

j=i+1 and changing the indices inside the

summation accordingly, and (70) follows by adding a positive

term in the denominator. Since in each iteration the power

is monotone increasing, the power allocation will also be

monotone increasing at the fixed point.

APPENDIX B

PROOF OF THE MONOTONICITY OF THE OPTIMAL POWER

ALLOCATION OF PROBLEM (52) WHEN α ≤ βΓ0

Tc−Te+βΓ0

We start the proof by noting that the KKT conditions and the

complementary slackness conditions for the problem in (52)

are necessary and sufficient for optimality.

Let us now define i∗1 as the first slot at which the temperature

hits Tc. Since µk = 0 for k = 1, . . . , i∗1 − 1, KKT conditions

in the integer interval [1 : i∗1] are in the following form:

1

Pi

−

D
∑

j=i+1

1
∑j−1

k=1 αi−kPk + Γj−1−i

= α−iW, i = 1, . . . , i∗1

(72)

where W �
∑D

k=i∗
1
αkµk. By comparing (72) for i and

i + 1 ≤ i∗1, we have:

1

Pi

−
1

∑i

k=1 αi−kPk + Γ0

=
α

Pi+1
(73)

We now rewrite (73) as follows:

Pi+1 = α

∑i−1
k=1 αi−kPk + Pi + Γ0
∑i−1

k=1 αi−kPk + Γ0

Pi (74)

= α

(

1 +
Pi

∑i−1
k=1 αi−kPk + Γ0

)

Pi (75)

Now, due to the temperature constraints, we have Pi ≤
Tc−Te

β

for all i and Pi�i−1

k=1
αi−kPk+Γ0

≤ Tc−Te

βΓ0
. Hence, under the

assumed condition on α, we have

α

(

1 +
Pi

∑i−1
k=1 αi−kPk + Γ0

)

≤ 1 (76)

This proves that Pi+1 ≤ Pi for all i ∈ [1 : i∗1 − 1],
i.e., the optimal power allocation is non-increasing in the slots

{1, . . . , i∗1}.

Now, if the temperature drops below Tc after slot i∗1, say

at slot i∗2, the KKT conditions will have the form identical

to (72) in the interval [i∗1 + 1 : i∗2]. Following the steps,

we have that Pi+1 ≤ Pi for [i∗1 + 1 : i∗2], i.e., the optimal

power allocation is non-increasing in the slots {i∗1+1, . . . , i∗2}.

It remains to show that the power allocation is also non-

increasing between slots i∗1 and i∗1+1. Note that it follows that

the power in slot i∗1 is strictly higher than
(Tc−Te)(1−α)

β
, while

in slot i∗1 + 1 the power can be no larger than
(Tc−Te)(1−α)

β

as otherwise this violates the temperature constraint. Hence,

the power allocation between slots i∗1 and i∗1 + 1 is non-

increasing also. This concludes the proof of the first part. The

proof of the monotonicity of the resulting temperature follows

similar to (21)-(28).
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