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Energy Harvesting Communications Under Explicit
and Implicit Temperature Constraints

Abdulrahman Baknina, Student Member, IEEE, Omur Ozel, Member, IEEE, and Sennur Ulukus

Abstract— With a motivation to understand the effects of
temperature sensitivity on wireless data transmission perfor-
mance, we consider an energy harvesting communication system,
where the temperature dynamics are governed by the transmis-
sion power policy. Different from the previous work, we consider
a discrete time system where transmission power is kept constant
in each slot. We consider two models that capture different effects
of temperature. In the first model, the temperature is constrained
to be below a critical temperature at all time instants; we coin
this the explicit temperature constrained model. We investigate
throughput optimal power allocation for multiple energy arrivals
under general, as well as temperature and energy limited regimes.
We show that the optimal power allocation for the temperature
limited case is monotone decreasing. In the second model,
we consider the effect of the temperature on the channel quality
via its influence on additive noise power; we coin this the implicit
temperature constrained model. In this model, the change in the
variance of the additive noise due to previous transmissions is
non-negligible. In particular, transmitted signals contribute as
interference for all subsequent slots and thus affect the signal to
interference plus noise ratio (SINR). In this case, we investigate
throughput optimal power allocation under general, as well as
low and high SINR regimes. We show in the low SINR regime
that the optimal allocation dictates the transmitter to save its
harvested energy till the last slot. In the high SINR regime,
we show that the optimal power sequence is monotone increasing.
Finally, we consider the case in which implicit and explicit
temperature constraints are simultaneously active and we show
under certain conditions that the optimal power sequence is
monotone decreasing.

Index Terms—Energy harvesting communications, tempera-
ture constraints, power control, throughput maximization.

I. INTRODUCTION

UE to physical principles that govern the heating effect of
electromagnetic radiation, wireless sensors are by nature
prone to temperature increase caused by sensor operation.
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The temperature of the surrounding environment, transmit
power for data transmission, and circuit power associated
with processing all play roles in the time dynamics for
temperature in wireless sensors. In this regard, temperature
increase caused by sensor operation may be a limiting factor
in many applications. While this issue is tackled in the design
of the hardware with sufficient heat sinks for the least amount
of heat dissipation, in many temperature sensitive wireless
sensor applications the hazardous effect of heating has to be
carefully managed. This problem arises in various types of
biomedical wireless sensor networks [1]-[3] where depending
on the type of tissue and material properties of the sensor node,
data transmission has to be scheduled according to temperature
sensitivity [4]. More generally, temperature increase in a sen-
sor is a threat for the proper operation of the hardware [5], [6]
and therefore, the electric power that feeds the communication
circuitry has to be carefully scheduled to avoid heat related
damage.

With a motivation to understand the effects of tempera-
ture sensitivity on wireless data transmission performance,
we build on our recent works [7], [8] and consider data
transmission with energy harvesting sensors under temperature
constraints. In the current work, our particular focus is to
contrast two different effects of temperature on the optimal
power allocation in a single-user energy harvesting commu-
nication system. These effects show themselves as explicit
and implicit temperature constraints on the power allocation.
We determine throughput optimal offline power scheduling
policies under energy harvesting constraints along with explicit
and implicit temperature constraints. Transmission schedul-
ing problems under energy harvesting constraints only have
been studied in various works in the literature, see [9]-[35].
Previous works considered single-user channel [9]-[12],
broadcast channel [13], multiple access channel [14], [15],
interference channel [16], two-hop channel [17]-[19], two-
way channel [20], [21], and diamond channel [22]. The effect
of imperfect transmitter circuitry is considered in [23]-[29].
Receiver side energy harvesting communication systems is
considered in [30]-[35].

In contrast to our earlier works [7], [8], in this paper
we consider the scheduling problem under energy harvesting
and temperature constraints in discrete time. Our interest in
discrete time solution stems from the fact that circuits typically
run on digital clocks and decisions on the transmission strategy
are taken on discrete time intervals. In the first model we
consider here, which we coin as the explicit temperature
constrained model, we consider an explicit peak temperature
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constraint as in [7] and obtain a discrete time version of the
problem considered in [7]. In this temperature constrained
problem, increasing the transmission power increases the
throughput and the temperature. Due to the fixed temperature
budget, higher temperature levels mean smaller admissible
transmission power levels for future slots. When the temper-
ature constraint is not binding, the problem reduces to the
single-user energy harvesting channel studied in [9], where
the optimal power sequence is monotone increasing. When
the energy constraint is not binding, we show that the optimal
power sequence is monotone decreasing, and the resulting
temperature is monotone increasing.

In the second model we consider here, which we coin as
the implicit temperature constrained model, the temperature
is not explicitly constrained, however, the temperature affects
the additive noise power and hence the channel quality. This
problem arises when the dynamic range of the temperature is
large and affects the noise added at the receiver circuitry in the
spirit of [36]. Our current focus is to investigate this problem in
a scheduling-theoretic setting. In this case, the transmit powers
used in earlier time slots affect the thermal noise in the form
of intersymbol interference, and hence, the channel becomes
a use dependent or action dependent channel, see [37]-[39].
Our work represents, to the best of our knowledge, the first
instance of this implicit temperature constrained problem in
the context of energy harvesting communications.

In the implicit temperature constrained model, transmissions
in the previous slots interfere with the current transmission
due to temperature dependent noise and the causality of the
temperature filter. This filter is the discrete time version of the
continuous time first order filter that defines the temperature
dynamics. For the general signal to interference plus noise
ratio (SINR), we observe that the problem is non-convex and
is a signomial problem for which we obtain a local optimal
solution using the single condensation method in [40]. We then
propose a heuristic algorithm which improves upon the local
optimal solution and may achieve the global optimal solution.
Then, we consider the extreme settings of low and high SINR
regimes. We show that in the low SINR regime, saving energy
till the last slot and transmitting only in the last slot is optimal.
For the high SINR regime, we observe that the problem is a
geometric program and we explore specific structural results in
this setting. Expanding upon the equivalence of this problem
to its convex counterpart via a one-to-one transformation,
we show that the KKT conditions in the original problem
have a unique solution. Then, we obtain an algorithm to
solve the KKT conditions in the original problem. We show
convergence of this algorithm to the unique solution of the
KKT conditions. We then show that for this unique solution,
the power sequence is monotone increasing; hence, prov-
ing the monotone increasing property of the optimal power
sequence.

Finally, we consider the case when implicit and explicit
temperature constraints are simultaneously active. In general,
we observe that the problem is non-convex and the same
signomial programming approach as in the implicit temper-
ature constrained case is applicable. In the high SINR regime,
the problem is a geometric program and we show in the

6681

E;
environment
temperature
T.
N;
data queue TX Rx

Fig. 1. System model: the system heats up due to data transmission.

temperature limited case that the optimal power sequence is
monotone decreasing under certain conditions. We illustrate
our findings in various numerical results.

II. SYSTEM MODEL

We consider an energy harvesting communication system
in which the transmitter harvests energy E; in the ith slot,
see Fig. 1. We consider the temperature model considered
in [7] and [8]. In this model, the temperature, 7'(¢), evolves
according to the following differential equation,

dT(t)

dt
where T, is the environment temperature, 7'(¢) is the temper-
ature at time ¢, p(t) is the power, and a,b are non-negative

constants. With the initial temperature 7'(0) = T, the solution
of (1) is:

= ap(t) = b(T(t) - Te) M

t
T(t) = e_bt/ Tap(r)dr + T. (2)
0

In what follows we assume that the duration of each slot is
equal to A, which can take any positive value. Let us define
T; = T(iA) as the temperature level by the end of the ith slot,
P, £ P(iA) as the power level used in the ith slot. Using (2),
T; can be expressed as:

i
T; = e’bm/ Tap(t)dr + T, 3)
0

_ (i—1)A
_ efbAefb(zfl)A / ebT(lp(’T)d’T
0

iA
+ebiA / e’TaPdr + T, 4)
(i-1)A
ab;
= e T = T) + bi [1—e ] +T. 5
=ali_1+ [P+ ©)

where a = e, =4[l — o] and v =T, [1 — a].

The effect of A in (6) appears through the constants «, 3, .
As the slot duration increases, the values of (3,7 increase
while the value of « decreases; as the slot duration increases,
the temperature at the end of the slot becomes more dependent
on the power transmitted within this slot and less dependent
on the initial temperature at the beginning of the slot.
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We now eliminate the previous temperature readings in 7;
making the temperature a function of the powers only. We can
do this by recursively substituting 7;_; in 7; in (6) to have

k
Ty=BY o' 'P+T. @)

i=1

This formula shows that the temperature at the end of each
slot depends on the power transmitted in this slot and all
previous slots through an exponentially decaying temperature
filter. We note that this is the same formula that was developed
in [36] in which the slot duration was assumed to be unity; here
we assume a general slot duration which is equal to A. In what
follows, we denote the vector of elements by the bold letter
without a subscript, i.e., for example, the vector of powers is
defined as P £ [Py, ..., Pp).

III. EXPLICIT PEAK TEMPERATURE CONSTRAINT

We now consider the model in which we have an energy
harvesting transmitter with a peak temperature constraint. The
noise variance is the same throughout the communication
session and is set to o2. We consider a slotted system with a
constant power per slot. There are D slots. It follows from (4)
(and also [7, eq. (47)]), that the temperature is monotone
within the slot duration. Hence, for the peak temperature
constrained case, it suffices to constrain the temperature only
at the end of each slot; we begin the communication with the
system having temperature 7. In this case, the problem can
be written as

max
P>0
=1
s.t. Ty, < T,
k k

S AP <> B, Vk ®)
i=1

where A in the objective function and the energy constraint is
to account for the slot duration. In what follows, without loss
of generality, we drop A since it is just a constant multiplied
in the objective function and by defining E; = EK

We rewrite problem (8) making use of (7) as

D
1 P
2.3 log (1 + ;)
=1
k
- T
s.t. ZakﬂPi <
i=1
k k
Y P<Y Ei, Vk ©
i=1 i=1

In the last slot, either the temperature or the energy constraint
has to be satisfied with equality. Otherwise, we can increase
one of the powers until one of the constraints is met with
equality and this strictly increases the objective function.
This problem is a convex problem, which can be solved
optimally using the KKT conditions. The Lagrangian function

max
P>0
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for (9) is:
D D k
Pi k—1i Tc - Te
__Zlog<1+§)+z>\k <ZO¢ P, — 3 )
=1 k=1 i=1
D

k k
+ > <Z Pi- E) (10)
k=1 i=1 i=1

where \; and py represent the Lagrange multipliers corre-
sponding to the first set and the second set of constraints in (9),
respectively. Differentiating with respect to P; and equating to

zero we get,
+
P < 1 ﬂ (11)
i = D 5 -0
LD IEPVLLE DIy

where (z)T = max{z,0}. Additionally, the corresponding
complementary slackness conditions are

k
M (Z akip, - 1t 5 Te) =0 (12)
i=1
k k
ok (Z P - Z&) = (13)
i=1 i=1

In the optimal solution, if neither constraint was tight in slot
1 < D, then the power in slot ¢ + 1 is strictly less than the
power in slot . This follows from complementary slackness
in (12)-(13) since if at slot ¢, if both constraints were not tight
then we have \; = pu; = 0 which, using (11), implies that
P, > PiJrl.

In the following two subsections, we consider special cases
of (9) which we call energy limited case and temperature
limited case. In the energy limited case, the temperature budget
is sufficiently large so that the problem reduces to that limited
by the energy constraints only. In the temperature limited case,
energy budget is sufficiently large so that the problem reduces
to that limited by temperature constraints only.

A. Energy Limited Case

In this subsection, we study a sufficient condition under
which the system becomes energy limited, i.e., when the
temperature budget is sufficiently large so that the temperature
constraints are not binding. For all slots j in which the
following is satisfied

J
Som< et
=1 5

the temperature constraint cannot be tight. Intuitively, in this
case, the incoming energy is so small that it can never overheat
the system. Therefore, the binding constraint here is the
availability of energy. In particular, when (14) is satisfied for
j = D, then the temperature constraint can be completely
removed from the system. To prove this, we assume for the
sake of contradiction that we have at slot j, Zgzl B < L=T
while the temperature constraint is tight, which implies:

ZQT iw@<ZP<ZE

=1

(14)

5)
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which contradicts the assumption Zle E; < % The
strict inequality follows since a < 1. The structure of the
optimal solution for this case is studied in [9].

B. Temperature Limited Case

In this subsection, we first study a sufficient condition for
problem (9) to be temperature limited, i.e., when the energy
budget is sufficiently large so that the energy constraints
are not binding. The energy constraint is never tight if the
following condition is satisfied:

T, . Liibi
B k

Intuitively, the incoming energy is so large that there will never
be a shortage of energy. Therefore, the binding constraint here
is overheating the system. For the temperature limited case,
an upper bound on the transmission powers is equal to L BT

, Vke{l,...,D} (16)

This follows because for any slot k£ we have Z'L:l ok P 4

P, < T“ETE, thus P, can be at most equal to T“ETE. Hence,

(16) is sufficient to satisfy S>F | P, < S | E,.

In what follows, we study the structure of the optimal
policy for the temperature limited case. In the last slot,
the temperature constraint is satisfied with equality. The opti-
mal powers are monotonically decreasing in time. The proof
follows by contradiction. Assume for some index j that we
have P* < P? ;. We now form another policy, denoted as
{P;}, Wthh has P; = Py for all slots i # j,j + 1, while
we change the powers of slots j,7 + 1 to be Pj =P+
and Pjy, = P 71 — 0 for small enough ¢ > 0. This 4 always
exists as P/ < Pf, implies that Yo ad TP < LT,
Since the objective function is strictly concave, this new policy
yields a strictly higher objective function, which contradicts
the optimality of P < P ;. Now it remains to check that
with this new policy, the temperature constraint is still feasible
for any slot £ > 5 + 1 which follows from:

k
Z Oékiipi —+ Otkijp]‘ —+ Oékijilqurl
i=1,#7,j+1
k
= Z Ozk_ipi* + Oék_jpj + Oék_j_lpj+1 (17)
i=1,#4,j+1
k
< Z ak_iPi* + ak_jpf + ak—j—lpjfzrl (18)
i=1,#7,j+1
k
=Y o Py (19)
i=1
Tc - Te
< 3 (20)

Since this is valid for any £ > j+ 1, we can take in particular
k = D. Now we can increase any of the powers to satisfy
the last inequality by equality which strictly improves the
objective function. Hence, this violates the optimality of any
policy which has P < Py, forany i € {1,...,D}.
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Moreover, the optimal temperature levels are non-decreasing
in time. To prove this, using (7), it suffices to show that:

k+1
Zak Pr<y oMRE WE= {1, -1} @D
=1 =1
We rewrite (21) as follows,
k
(1-—a)) o 'P <Py, VE={l,....D-1} (22)
i=1

Since, we know that the last slot has to be satisfied with
equality then we know Zi’;l aP=ipr = % Hence, for
the constraint at k = D — 1 we have:

D—1 D
; aP P < L 5 L ;a’?*ip; (23)
which can be written as follows
D—1
(1—a) ) P '7'Pr < Pp (24)
i=1

which proves (22) for kK = D — 1. Now assume for the sake
of contradiction that (22) is false for k = D — 2, i.e.:

D—2
Phoy<(l—a)> oP?7'p; (25)
1=1
Substituting this in (24), we get:
Phy=aPp_ 1 +(1—-a)Pp_, (26)
D—-2 .
<a(l—a)> o” P+ (1-a)Ph, (27)
1=1
D—1
=(1-0a)) oP'Pr <P (28)
=1

But since we know that in the optimal policy the power
sequence is monotone decreasing, this is a contradiction
and (22) holds for £k = D — 2. The same argument follows for
any k < D — 2.

In the optimal solution, if the constraint is satisfied with
equality for two consecutive slots then the power in the second
slot must be equal to (1 — a)%. To obtain this, the two
consecutive constraints which are satisfied with equality are
solved simultaneously for the power in the second slot. In addi-
tion, when the temperature hits the critical temperature for the
first time, the transmission power in that slots will be strictly
higher than (1 — a)Z==Te To show this we denote the time
slot at which the temperature hits 7, for the first time as ¢*.
Hence, we have:

=1 _T
Z o 1o < I Zo/ TP = ﬁ < (29
Using both equations in (29) simultaneously we have:
T.-T.
(1—a)—— < P (30)

g

which is the power of the slot at which temperature hits the
critical temperature for the first time.
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Hence, when the temperature hits the critical temperature,
the optimal transmission power in all the subsequent slots
becomes constant and equal to (1 — Q)%. This follows
since the temperature is increasing, thus whenever the con-
straint becomes tight, it remains tight for all subsequent slots.
We now conclude that the transmission power at all slots are
bounded as follows

Tc _Te Tc _Te

(1—-a)

<P <

, Vi={1,...,D} (31
The lower bound follows from the discussion above while the
upper bound follows from the feasibility of the constraints.

We now proceed to find the optimal power allocation. Since
the problem is convex, a necessary and sufficient condition is
to find a solution satisfying the KKTs. The optimal power is
given by setting ;¢ = 0 in (11), which gives:

Oéi "
Pi = =D . . 0'2
2 —i Ak

It follows from the complementary slackness that if at slot
¢ the temperature constraint is satisfied with strict inequality
then P < P;.

(32)

IV. IMPLICIT TEMPERATURE CONSTRAINT

We now consider the case when the dynamic range of the
temperature increases. In this case, we need to consider the
change in the thermal noise of the system due to temperature
changes. The thermal noise is linearly proportional to the
temperature [41, Ch. 11]. The problem can be written as:

11 14+ P
1o T
o 2 & cTi_1 + o2

k k
st. Y P <Y E;, Vk
i=1 i=1

where c is the proportionality constant between the thermal
noise and the temperature. In this setting, the noise variance
in each slot is determined by the value of the temperature
at the beginning of the slot. Using (7) in (33), the problem
can now be written in terms of only transmission powers as
follows:

D

max
P>0

(33)

21 P,
max —log | 1+ —
P>0 2 B (5 Sl i1k 4 Te) 452
k k
st.Y P <Y E;, Vk (34)
i=1 i=1
where we define SINR; £ Lid In what

ci3 Z;::ll ai—l=kPp4cT.+02"
follows, in order to simplify the notation and facilitate simpler
expressions, we assume without loss of generality that ¢3 = 1
and define I'; £ CTZ—JJ”’Z Therefore, SINR; inside the log

. o P;
in (34) becomes SINR; = ST a1 A i Ty We note that

assuming ¢ = 1 is not binding for the analytical results
we develop in the rest of the paper and we stop using this
assumption for the numerical results in Section VI.
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The problem in this form highlights the effect of previous
transmissions on subsequent slots. The transmission power at
time ¢ appears as an inferfering term at slot indices greater than
¢ with an exponentially decaying weight due to the filtering
in the temperature. Using (7), the maximum temperature the
system can reach is equal to T},qx £ BZZl E; +T,. This
occurs when the transmitter transmits all its energy arrivals in
the last slot. The value of T;,,, is useful in determining the
maximum possible temperature for the system. As we show,
in the low SINR case in Section IV-A, the optimal power
allocation results in system temperature equal to 73,4 .

The problem in (34) is non-convex and determining the
global optimal solution is generally a difficult task. Next,
we adapt the signomial programming based iterative algorithm
in [40] for the energy harvesting case. This algorithm provably
converges to a local optimum point. The problem in (34) can
be written in the following equivalent signomial minimization

problem
<
=1

k k
sty P<> E;, Vk
i=1 =1

The objective function in (35) is a signomial function which
is a ratio between two posynomials. Note also that the energy
harvesting constraints in (35) are posynomials in P;.

In each iteration we approximate the objective by a posyn-
omial. We do this by approximating the posynomial in the
denominator by a monomoial. Appropriate choice of an
approximation which satisfies the conditions in [42] guarantees
convergence to a local optimal solution. Let us denote the
posynomial in the ith denominator evaluated using a power
vector P by u,;(P), i.e., we have

min =
P>0 i

2—111 L & )
k=1 Oéi_l_kpk =+ FO —+ Pz

(35)

i+1 i—1
wi(P) 2> 0p(P)=> o '"FR 4+ P+ Ty (36)
k=1 k=1

where for k = {1_, ...,i — 1} we have v (P) = o'~ 17k Py,
v;(P) = P; and vj ,(P) =T.
Using the arithmetic-geometric mean inequality, we approx-

imate each posynomial by a monomial as follows:

U R O 0! 0
« P P\ Iy i+l
; > _ — -
were () ) (7) () o
k=1 7 7

where 1! 6 =1 forall i = {1,..., D}.

We now solve the problem in (35) iteratively. First, we ini-
tialize the power allocation to any feasible power allocation
PY. Then, we approximate the posynomials u;(P?) using the
arithmetic-geometric mean inequality shown above. In each
iteration j, where the power allocation is P7, we choose 9,2 as
a function of the posynomials and the current power allocation
as follows:

o uh(P)

L(P7) =

0, (P7) w:(P7) (38)
which satisfies 1" 62 (P7) = 1. This choice of i (PJ)

guarantees that the iterations converge to a KKT point of
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Algorithm 1 Single-Condensation Method
1: Initialize P; = F;

2: repeat

3 Fork:—{l,...,z
4 Setwv (P)
5:  Calculate u,;(P) using (36)

6:  Calculate 6% (P7) according to (38)
7

8

— 1}, calculate v (P) = o'~ 17% P,
=Ty and v}(P) = P,

Approximate u;(P) using (37)
Solve problem (35) using the approximate objective
function calculated in Step 7
9: until Convergence to a local optimal solution

the original problem [42]. In particular, for each iteration this
is a geometric program and as required by [42], this can be
transformed into a convex problem; see also [40]. A pseudo
code for this procedure is provided in Algorithm 1. In each
iteration, the computation complexity of finding the solution of
the convex problem is polynomial in the number of constraints
and the number of variables, see [43].

The above iterative approach converges to a local optimal
solution. Achieving the global optimal solution is of exponen-
tial complexity. Alternatively, to get to the optimal solution,
an approach introduced in [44] can be used. This approach
solves the following problem iteratively:

min ¢
P>0,t
st. OP) <t
4

t <

yreys

where O(P) is the objective function of (35) and « is chosen
to be a number which is slightly more than 1 and ¢y can be
initialized to be the solution of problem (35) and then updated
as the optimal solutions resulting from (39).

This completes our treatment of the general problem for the
case of implicit temperature constraints. In the following two
subsections, we consider the two special cases of low and high
SINR, where we are able to provide more structural solutions.

20
a

(39)

A. Low SINR Case

The low SINR case occurs when the incoming energies
are small with respect to the noise variance. In this case,
an approximation to the logarithm function in the objective
function is the linear function, i.e., log(1l + ) ~ . Hence,
the objective function of (34) can be written as follows, c.f.
[45, eq. (14)]:

DI
logi-1-kp 4 T

i=1 2uk=1%

(40)

We next show that the optimal power allocation dictates that

the energy is saved till the last slot and transmitted then, i.e.,
D

Pf=0, i<D-1, and P}=> E

i=1

(41)
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This can be proved by developing an upper bound as follows:

S o

i=1

Ei’;l E;
To

and noting that this bound is achieved by the claimed power
allocation.

A sufficient condition to have a low SINR regime is
Zz 1 B < I'g. The temperature at the end of the commu-
nication session is equal to T4, = ﬁzz 1 B + Te.. Also,
the optimal power allocation does not need the non-causal
knowledge of the energy arrival process, as all the harvested
energy is used in the last slot.

D

P;
Y= 42)
i=1 2uk=1% Py +To

< (43)

B. High SINR Case

When the values of ¢ and o are small, SINR is high and
we approximate the objective function by ignoring 1 inside
the logarithm, i.e., log(1 + =) & log(z). Hence, the problem
in (34) can be written as:

D 11 . P
110 _

— 2 St ait1=k P 4T
k k

st. Y P <> Ei, Vk
=1 =1

The problem in (44) has the Lagrangian:

D Pz
- Zlog 1
i=1 o1 @R P+ T
D k k
+Y <ZB - ZEzv) (45)
k=1 =1 =1

Taking the derivative with respect to P; gives,

max
P>0

(44)

oL 1 D od—1-1 D
=—-=+ E + E pr (46)
OF; B j=itl Zk 104] =kp.+To 1o

and then equating to zero gives:

oY =

l j= z+1

a]l’t

Oﬂ I=kp.+ T

D
=> w7
k=i

Although the problem in (44) is non-convex, it is a geomet-
ric program and we show next that any local optimal solution
for this problem is globally optimal. To show this, we consider

the following equivalent problem:

3 log <Zk Lo 1_k€x’“+ro>

evi
i=1

k k
sty e <Y E;, Vk
=1 =1

This equivalent problem is obtained by substituting P; = e™*
and letting x; € R. The equivalent problem in (48) is a convex
optimization problem since the objective is a convex function

min
xeRDP

(48)
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in the form of a log-sum-exponent and the constraint set is a
convex set [46]. Hence, the KKTs are necessary and sufficient
for global optimality. We show this as follows.

We first write the Lagrangian of problem (48) as:

ev
Zlog <Z L i—1—kewk +p0>
+ Z Uk (Z e’ —
k=1 i=1

Taking the derivative with respect to x; gives,

k
Z&)m)
i=1

oL ozj_l_iexi D
=-1 —|— + " Vg
(50
which provides the following necessary condition:
D 1 D
aj—l—z
e T — — = v, (51)
j;d Zi:ll ad=1=kerr 4+ Ty kz::z

Using the transformation z; = log(P;) and setting v; = pu;,
we observe that any solution of (47) satisfies (51). Also,
complementary slackness corresponding to (45) is satisfied if
and only if it is satisfied by those for (49). Since the equivalent
problem in (48) is convex, any solution satisfying the KKTs is
global optimal and through the transformation z; = log(P;),
i = v; is also global optimal in the original problem in (44).

The equivalent problem in (48) can be solved using any con-
vex optimization toolbox. We further note that the equivalent
problem and the original problem both have unique solutions.
More generally, for any fixed multipliers g, the primal problem
of minimizing the Lagrangian function in (45) has a unique
solution. This follows because the Lagrangian function in (49)
is strictly convex as it is formed with strictly convex constraint
functions and a convex objective function; for fixed Lagrange
multipliers the Lagrangian function in (49) is strictly convex.

We now focus on the KKT conditions of the original
problem (44). Our ultimate goal in the following discussion
is to show that the optimal solution of (44) has a power
allocation which is monotone increasing in time index i, that
is, P; < P;41. We prove this by showing that the solution
of the corresponding KKTs in (47) with an arbitrary g > 0
is monotone increasing in time index ¢, hence, this also
follows for the optimal p*. We provide the proof for this
fact in Appendix A. The proof is enabled by developing an
algorithm with an update rule which satisfies the properties
of standard interference functions introduced in [47]. Hence,
from [47, Th. 2], the algorithm converges to a unique fixed
point. We then show that the power allocation at this unique
fixed point is monotone increasing in time. Then, from strict
convexity of this problem, we know that KKTs in (47) have a
unique solution. Hence, our algorithm converges to the unique
solution of the KKTs in (47) and this solution has monotone
increasing power allocations. When compared to its prede-
cessors in [9]-[14], our method yields a more general class
of problems in which optimal power allocation is monotone
increasing under energy harvesting constraints. We also note
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that due to [7, Lemma 3] and since the powers are monotone
increasing, the temperature sequence 7" resulting from the
optimal power allocation P/ is also monotone increasing.

In order to obtain the optimal solution, one has to deter-
mine the optimal Lagrange multipliers p* and the power
allocation P. This can be done numerically by using standard
techniques for constrained convex optimization. In particular,
one can use projected gradient descent [46] in the equivalent
convex problem in (48) to determine p* and corresponding
power allocation.

V. EXPLICIT AND IMPLICIT TEMPERATURE CONSTRAINTS

In this section, we consider the case when both implicit
and explicit temperature constraints are active. In this case,
the temperature controls the channel quality and is also con-
strained by a critical level. This problem is in the following
form:

D P,
2 log | 1+ == i—1—kp, LT
i=1 dopr O kT Lo

k

. T, —T,

s.t. Zak_’Pi < %
i=1

k k
D Pi<) Ei Vk
i=1 i=1

which is a non-convex optimization problem. We can tackle
the challenge due to non-convexity here as we did in
Section IV. In particular, in the general SINR case, one
can reach a local optimal solution for problem (52) using
the signomial programming approach described there. On the
other hand, in the low SINR case, the objective function
in (52) is approximated by 7, ST o e, and it
is a fractional program which can in general be mapped to a
linear program.

The problem in (52) possesses some of the properties of
the problem with explicit temperature constraints only studied
in Section III. In particular, if the temperature constraint is
tight for two consecutive slots in the optimal solution, then the
power level in the second slot must be equal to Ze=T= (1 — o).
Additionally, when the temperature at the end of a slot hits 7
for the first time, then the power in that slot must be strictly
higher than Ze==Z=(1 — o). We also note that the problem
reduces to the case of implicit temperature constraint when
the energy arrivals satisfy Zi’;l E; < L=Te a5 the explicit
temperature constraint is never tight in this case.

In the high SINR case, we have log(1+2z) ~ log(z) and the
problem (52) is a geometric program which can be transformed
to an equivalent convex problem. In general, the optimal power
sequence does not have a monotonic structure in this case.
When harvested energies are sufficiently large and the energy
constraints are not binding, and if o < %, then the
optimal power sequence P; is monotone decreasing and when
the temperature hits 7., the power becomes constant and is
equal to Mﬁ)(ka) Furthermore, under this condition the
temperature is monotone increasing. We provide the proof for
these facts in Appendix B.

max
P>0

(52)
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VI. NUMERICAL RESULTS

In this section we illustrate our analytical findings in the
earlier parts of this paper. We consider a wireless communi-
cation setting inspired by biomedical implant communications
with reasonably high bandwidth. We consider a band-limited
additive Gaussian noise channel with communication band-
width of B = 5 MHz and a noise spectral density of Ny =
2 x 107" W/Hz. Moreover, we let the pathloss coefficient
between the transmitter and the receiver be denoted by h
and we set this coefficient as 60 dB for all the scenarios
we consider below. We assume that this coefficient remains
constant throughout the communication duration. We set the
slot length to A = 1 second. With these system parameters in
place, the total throughput over the [0, D] interval is expressed
in the explicit temperature constrained scenario as follows:

D

A hP;
Te = —1 1 53
s ;2‘)@(*%3) (53)
D
1 P, .
— ; 51og2 (1 + 106) Bits/Hz (54)

The total throughput, in Bits/Hz, for the implicit temperature
constrained scenario is:

D

A hP;
TSZZEIOgQ 1+ ——
i=1 c (ﬁ D he1 OTIFRP +Te) +NoB
(55)
D 4 P
= Z 5 logy | 1+ P
=12 >y " Py+cT,1064-10-6
(56)
In particular, the noise power term c(ﬁ 22;11 otk
hPy + Te) corresponds to the thermal noise at the receiver

circuitry. In the ensuing numerical results, we will let the initial
temperature be T, = 37 °C throughout.

A. Explicit Temperature Constraints Only

In this subsection, we consider explicit peak temperature

constraints only. We set the parameters to a = 0.9 W?(S:ec
and b = 1 sec”!. We consider an energy arrival profile

E =[100,200, 20, 70, 200] mJ. Initially, we consider a critical
temperature level of T, = 37.1 °C. We observe the resulting
power profile in Fig. 2. Next, we illustrate the variations of the
optimal total throughput with respect to a and b parameters
in Figs. 3(a) and 3(b). As the value of a increases, the explicit
temperature constraint becomes the limiting constraint and we
observe that the total throughput decreases as in Figs. 3(a).
In contrast, we observe that as the value of b increases,
the explicit temperature constraint becomes less binding and
the total throughput increases as in Fig. 3(b).

Next, we consider the temperature limited case under
explicit temperature constraints. For this case, we set T, =
37.2 °C. We observe in Fig. 4 that in the temperature limited
regime the power is strictly decreasing and the temperature is
strictly increasing until it reaches the critical level.
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Fig. 2. Illustration of optimal power policy and resulting temperature profile

in the general case for explicit temperature constraints.
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Fig. 3. Variation of the optimal total throughput with respect to the
temperature related parameters a and b under a critical temperature constraint
T. =38 °C.

B. Implicit Temperature Constraints Only

In this subsection, we consider the scenario with implicit
temperature constraints only and the energy arrival profile
E = [100,30,50,70] mJ. We set the parameters a = 0.9

V;_;C and b = 1 sec™!. In Fig. 5(a) and Fig. 5(b), we observe
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Fig. 5. Variation of the optimal rate with respect to the temperature related
parameters a and b in an implicitly temperature constrained scenario.

the monotonic variations of the optimal total throughput with
respect to the parameters a and b, respectively. For Fig. 5(a),
we use ¢ = 107° % while for Fig. 5(b), we use ¢ =
135 x 107% X.

Next, we consider the high SINR regime for the same sce-
nario with the energy arrival profile £ = [30,70, 20, 80] mJ.
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Fig. 6. Illustration of optimal power policy and resulting temperature profile

in the high SINR regime for implicit temperature constraints.
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Fig. 7. Tllustration of optimal power policy and resulting temperature profile

in the high SINR regime for simultaneous implicit and explicit temperature
constraint.

The parameter determining the thermal noise is taken as
c = 10’12% so that the SINR is guaranteed to be signifi-
cantly larger than 1. In Fig. 6, we observe that the optimal
power allocation is monotone increasing as we proved in our

analytical results.

C. Simultaneous Explicit and Implicit
Temperature Constraints

In the last subsection of numerical results, we consider
the case when implicit and explicit temperature constraints
are simultaneously active. In particular, we focus on the high
SINR regime. We consider an energy arrival profile of £ =
[10, 50,200, 10] mJ. We set the two parameters as a = 2 %,
b = 1 sec”! and the critical temperature to 7, = 37.1 °C.
For this case, we set ¢ = 107! % so that the high SINR
asymptotic is achieved. We observe the optimal power and
resulting temperature profiles in Fig. 7.

We finally consider the high SINR case when the system
is temperature limited. For this case, we update the para-
meter b as b = 0.5 sec”! and the critical temperature as

T. = 38 °C. We show the optimal power allocation and the
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Fig. 8. Tllustration of optimal power policy and resulting temperature profile

in the temperature limited high SINR regime for simultaneous implicit and
explicit temperature constraint.

resulting temperature profile in Fig. 8. Note that optimal power
sequence is monotone decreasing, corresponding temperature
sequence is monotone increasing and the power level remains
constant when the temperature hits the critical level.

VII. CONCLUSION

We considered explicit and implicit temperature constraints
in a single-user energy harvesting communication system in
discrete time. Under explicit temperature constraints, the tem-
perature is imposed to be less than a critical level. In this
case, we studied optimal power allocation for multiple energy
arrivals. For the temperature limited regime, we showed that
the optimal power sequence is monotone decreasing while
the temperature of the system is monotone increasing. Next,
we considered an implicit temperature constraint where the
temperature level affects channel quality. We studied the gen-
eral case as well as the high and low SINR cases. In the low
SINR case, we showed that the optimal allocation dictates
the transmitter to save its harvested energy till the last slot
and transmit all the harvested energy then. In the high SINR
case, we observed that the problem is a geometric program
and we expanded upon its equivalent convex version to show
that optimal power allocation is monotone increasing in time.
Finally, we considered the case in which implicit and explicit
temperature constraints are simultaneously active. We iden-
tified a sufficient condition on the system parameters that
results in a monotone decreasing optimal power allocation.
Our current investigation leaves several directions to purse
in future research, such as, optimal power allocation for the
finite battery case; online power allocation under explicit and
implicit temperature constraints; explicit and implicit temper-
ature constraints in multi-user settings such as broadcast and
multiple access channels.

APPENDIX A
PROOF OF THE MONOTONICITY OF OPTIMAL
POWER ALLOCATION OF PROBLEM (44)

In this appendix, we present the proof for the monotonicity
of the optimal power allocation for the problem in (44).
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We rewrite its KKTs in (47) as follows:
1 ajflfz
L oSt @ 57)
B kz::z j:zi;rl 21:11 al =1k P 4+ T

Based on this equation, for a fixed p, we now define an update
rule to solve for the power allocation P; iteratively as follows:

1

Pi(P) £ D D j—1—i
Db Pk T D i ST S]J—l—kpk+l"0

(58)

where the function P;(P) calculates the updated power P
when the powers are equal to P. The algorithm proceeds
as follows: We first initialize the power allocation with any
arbitrary non-negative power allocation P°, where the super-
script denotes the iteration index. We then substitute with
P in (58) to obtain the new power allocation P!, where
P! £ (P (PY),...,Pp(PY). Similarly, we use the powers
P! to obtain the updated powers P2, and repeat this process.
We show next that this algorithm converges to a unique fixed
point.

To show that these updates converge to a unique fixed
point, we first present the following definition of a standard
interference function [47]:

Definition 1: Interference function I(P) is standard if for
all P > 0 the following properties are satisfied:

o Positivity I1(P) > 0.

o Monotonicity: If P > P, then I(P) > I(P’).

o Scalability: For all 0 > 1, 0I(P) > I(6P).

Now, we want to show that the update rule [(P) =
(P (P),P(P),...,Pp(P)) is a standard function, i.e., it
satisfies the three properties above.

The positivity property follows from,

1 1
>—>0

P;(P) >
2 (P) =

ZjD=1: 2%
where pup > 0 follows from (47) with ¢ = D and since the
power Pp is finite due to the finite energy constraint.

The monotonicity property follows since the denominator
of P;(P) is a decreasing function of the powers, and hence,
P;(P) is an increasing function of the powers.

The scalability property follows from the following
for 6 > 1,

(59)

1
P;(0P) = —5 - — (60)
L= et X ST R R T,
0
= — (61)
D D j—1—1i
0 i e+ 2220 ST a();—l—kpk+FTO
0
< , (62)
D D d—1—1i
Zk=i fe + Zj=i+1 STl aiml=k P 4Ty
— 9P,(P) (63)

This completes the proof that [(P) = (P (P), P(P),...,
Pp(P)) in (58) is a standard interference function.

From [47, Th. 2], we now conclude that the algorithm
in (58) converges to a unique fixed point. From the equivalence
of (44) to the strictly convex problem in (48), we know that
there is only one unique solution to the equations in (47), and
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hence, the algorithm in (58) converges to the unique power
allocation which solves the KKTs in (47).

It now remains to show that at this unique fixed point,
the power allocation is monotone increasing in time. We prove
this by showing that if we begin with any arbitrary monotone
increasing power allocation, the update algorithm retains this
ordering for the power allocation in each iteration, and hence,
in the limit. To show this, let us assume that we have an
arbitrary power vector P which satisfies P; < P;y; for all

t={1,...,D—1}. We want to show that P;(P) < P;11(P).
This follows from:
1
P (P) = g—2-¢ (64
Zk i1 MKt Z J=iH2 I ai—1-k P 4T
1
. (65)
D D j—2—i
Ek:i Mk + Zj:iJrQ >i) 57—1—’“Pk+1‘o
1
- [ 2—1 (66)
Zk i Mk + Z J=i+2 ZJ L ai—1-k P 4T,
1
= — (67)
D D di—2—1i
Do et Zj:HQ 31 @i 2 kP4l
1
fal qi—2—i (68)
Zk i Mk + Z J=i+2 ZJ 2 1ol =2= kP 4Ty
1
= ol 17t (69)
Ek i Mkt Z 7z+1 >i) Lai=1-k P 4T,
1
> — (70)
D D i -t
Zk:i Mk + iji‘i‘l Zi;ll ai=1=k P 4T
= P(P) D

where (65) follows by adding the non-negative Lagrange
multiplier y; in the denominator, (66) follows by neglecting
positive terms in the denominator in the second term of the
denominator, (67) follows by replacing >°7_% by Zij and
changing the indices inside the summation accordingly, (68)
follows since we have P, < Py.1, (69) follows by replacing
Zf:i 4o by Ef;—}rl and changing the indices inside the
summation accordingly, and (70) follows by adding a positive
term in the denominator. Since in each iteration the power
is monotone increasing, the power allocation will also be
monotone increasing at the fixed point.

APPENDIX B
PROOF OF THE MONOTONICITY OF THE OPTIMAL POWER

Bl'o
ALLOCATION OF PROBLEM (52) WHEN « < e ) o

We start the proof by noting that the KKT conditions and the
complementary slackness conditions for the problem in (52)
are necessary and sufficient for optimality.

Let us now define 7] as the first slot at which the temperature
hits 7. Since pur = 0 for k =1,...,77 — 1, KKT conditions
in the integer interval [1 : ¢]] are in the following form:

1 _
- - : —a W, i=1,...,i
P —;1 1P T
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where W £ EkD:i’l‘ a® . By comparing (72) for i and
141 <], we have:
1 1
e = (73)
P @i kP 4Ty P
We now rewrite (73) as follows:
a' kP, + P +T
Py = o i S °P, (74)
Ek:l o' ~FP, + T
P;
=all+ P; (75)
Yy @ P, + T
Now, due to the temperature constraints, we have P; < %

for all ¢ an - P; < ZLe—Te Hep nder th
or all ¢+ and ST T, = BTe ence, under the

assumed condition on «, we have
P;
i—1
Dy @R P + T

This proves that Piyq < P; for all ¢ € [1 : i — 1],
i.e., the optimal power allocation is non-increasing in the slots
{1,...,47}.

Now, if the temperature drops below 7. after slot ¢], say
at slot 43, the KKT conditions will have the form identical
to (72) in the interval [if + 1 : 43]. Following the steps,
we have that Py < P; for [if + 1 : 43], i.e., the optimal
power allocation is non-increasing in the slots {i;+1,...,5}.
It remains to show that the power allocation is also non-
increasing between slots 77 and 4] 4 1. Note that it follows that
the power in slot 7] is strictly higher than Te=Te)(z0) \hile
(Te—Te)(1-a)

all+

<1 (76)

in slot ¢7 + 1 the power can be no larger than
as otherwise this violates the temperature constraint. Hence,
the power allocation between slots ¢ and 7] + 1 is non-
increasing also. This concludes the proof of the first part. The
proof of the monotonicity of the resulting temperature follows
similar to (21)-(28).
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