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Abstract— In the current grid, power is available at all times,
to all users, indiscriminately. This makes the grid vulnerable to
sporadic demands and much effort has been invested to mitigate
their effect. We offer here a digital approach to power
distribution: an energy-on-demand approach in which the user
initiates an energy request to the server of the energy provider
before receiving the energy. Considering a micro-grid with a mix
of generators (sustainable and other sources), the server optimizes
the entire power network before granting the energy requests,
fully or partially. The energy is packetized and is routed to the
user’s address by an array of switches. For example, in an office
building, the energy provider may queue energy requests by some
air-condition units and grant these requests later. During
recovery from a blackout, pockets of instability may be isolated by
their unusual energy demands. In its simplest form, this network
can be realized by overlaying an auxiliary (control, or, data)
network on top of an energy delivery network and coupling the
two through an array of addressable digital power switches. In
assessing this approach, we are concentrating in this paper on the
management of energy requests by using statistical models. An
energy network with a limited channel capacity and the optimal
path for energy flow in a standard IEEE 39 bus are considered.
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I. THE DIGITAL APPROACH TO ENERGY NETWORKS

At the present time, loads are determining the level of current
consumed by the grid. A large effort has been invested in
sensing the change in frequency and phase of this (analog)
power grid; otherwise, blackouts may occur. Our approach uses
a demand-supply management model [1-4]: (1) Users (or loads)
issue energy requests (energy equals power over time). (2) The
service provider optimizes the energy allocation prior to the
energy dissemination. (3) The service provider then allots the
energy to selected users on a cycle-by cycle basis. The cycle
duration may vary and depends the grid's reaction time. While
this seems to pose a heavy burden on the grid's communication,
the protocol has a stabilizing effect on a limited and intermittent
energy supply. Energy storage elements become integral part of
the network and their inclusion is simpler than interfacing them
with the currently deployed power grid. Owing to the request-
grant allocation protocol, energy demands and energy
consumptions may be closely monitored and safety margins can
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be optimized (and minimized) for any given moment, thus
increasing the overall power network's efficiency. The
advantage of such approach can be demonstrated during the
recovery of power networks from a blackout. The issues that
brought the grid down still exist and would be unknown in the
present power grid framework. However, by analyzing all
energy requests, the energy provider can isolate pockets of
vulnerabilities before the energy is distributed. The approach is
wholly and considers every aspect of the network: power
generation, distribution, and usage.

Fusing data and energy [5-8] in discrete formats dramatically
reduces management complexity because, in principle, the
energy (power delivered over time) can be directed to specific
users. Packetizing energy is a new concept that is uncommon to
the power community but not to the information network
community. It does not violate Kirchhoff's laws as proven by
numerous information networks and we propose to realize it
within the micro-grid framework. The digitation of time
(through allocation of energy at varying time slots), or the
digitation of power (to be delivered by discrete current levels
while keeping the voltage constant) are but two possible energy
digitization approaches. The simplest adaptation of such Energy
Networks is by interfacing a power network with an auxiliary
data network that opens and closes power switches along the
energy routs to addressed users (Figure 1(a)). The energy
supplier selects the appropriate smart load through data fused to
the energy packet. Figure 1(b) shows the synergistic operation
of data and energy where a data network provides the
management and control of the power network.
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Figure 1. (a) Smart limiters and (b) the simplest framework of two overlaid
networks: the data (switch) network, which is coupled to the power network
through controlled smart loads. Also shown are AC and solar power sources.



An alternative energy source (e.g., a solar panel) may be
incorporated into the distribution loop as yet another address
(see path allocation below). The data network manages the
communications between users and the distribution point,
energy delivery, and the management of the two energy sources
at a much higher frequency than the frequency used to transmit
the electrical power itself.

The focus of this paper is on optimization of energy delivery
when using this new approach. We ran statistical models to
answer the following question: how many request cycles are
needed before a customer is satisfied under limited power
conditions? Answering this question will help us figuring out
the optimal cap for energy networks.

II. LATENCY AND STORAGE ISSUES

For simulation purposes users are requesting energy,
randomly. Each user has an address so a specific user's behavior
can be followed. We assign a probability to users who request
energy to turn their appliance ON (meaning they start with an
appliance OFF) and another probability for those users who have
their equipment already ON and wish to continue to do so. In
this way we can simulate the user behavior at any given cycle.
When the energy requests pass a certain cap, some of the
requests will be sent to a queue. Specifically, the micro-grid
operates as the currently deployed grid if it can satisfy all
requests without sending any to the queue. An example is
provided in Figure 2: two random numbers are generated for
each user. For those users that were OFF in the previous round,
we check whether the randomly generated number, preg, is
smaller than a given request probability, prequest. If yes, then a
new random number is generated for the actual energy request.
The second randomly generated number is used for those users
whose equipment is already ON. If the randomly generated
number, pon, is larger than psty on, then their new request will be
0 (they will be turned OFF). Otherwise, they will remain ON
with their previous energy request. In this way we minimize a
succession of turning the power ON and OFF for those users
who consume relatively large amount of power. Unsatisfied
energy requests are sent to the queue. (As a note, one could
generate a single random probability number and compare it to
the prequest and pon for the two groups involved as in step 2 of
Figure 2: the group with its power ON in the previous step and
the group with its power OFF in the previous step. Both
approaches yielded similar results). Finally, we point out that
the process is not entirely Markovian; the queue memorizes the
size and the order of the requested energy until satisfied or until
the request is dropped. Specifically, a 2-state Markovian chain
is an adequate analytical model for ON and OFF states as long
as the queue is empty. A three-state analytical Markovian chain
has a 6% discrepancy with the numerical results because the
queue has a selection rule and does not accept the energy
requests randomly. Specifically, we considered two examples:
satisfy the large energy requests first (hence sending the reaming
small amounts to the queue) and separately, satisfy small energy
requests first (hence sending the large energy requests to the
queue).

Step 1: (ON=logical(e_requested)
preg=rand(1,numel(e_requested
pon=rand(1,numel(e_requested)
p_stay_on

)i %Generate number to compare with p_request
) %Generate a number to compare with

Step 2:
e_requested(not(ON) & preq<p_request)=rand(1,numel(e_requested(e_requested==0 &
preq<p_request)));

e_requested(ON & pon>p_stay_on)=0; %Turn off

Figure 2. An example of simulating steps in MatLab for the Digital Power
Networks.

Currently, micro-grids are limited by the overall generated
power. Predictive models and years of data collection aid the
utilities in forecasting the level of service during the hour of a
day and the month for the entire grid. In addition, phase sensors
monitor the frequency at which the grid operates. We have a
modest goal in mind and consider only a subset of the entire grid.
Yet, and contrary to current grid design we are moving one step
further by adjusting the allotted energy according to actual
energy requests. As a leading example, consider an office
building with many air-condition (A/C) units. Each unit places
a request for energy. Since starting an A/C motor requires as
much as 8 times more current than its steady states consumption,
the energy server may delay some requests for a marginal
service disruption. In our simulations we set an energy cap for
the total energy available per request cycle (round). As the two
probabilities become larger, more users (or for that matter,
addresses) turn their equipment ON and more users whose
equipment is already ON remain ON. That situation puts an
unsustainable burden on the power network - the power network
cannot satisfy all users at the same time and unsatisfied requests
ought to be sent to the queue. In the current analog grid, the
system will become overloaded and fail.

A finite probability to stay in the queue provides us with the
freedom to let the user choose a limited time frame during which
energy is still needed. Thus, if that probability to stay in the
queue is small, then the energy request will eventually be
dropped from the queue and the number of remaining requests
could be satisfied more quickly. If, on the other hand, the
probability of staying in the queue is large (probability 1 for
staying in the queue until the request is satisfied), then the
waiting period may be prolonged. If the energy cap is large
enough and all requests are satisfied, then there will be no
queued requests. In this case, the Energy Network behaves
similarly the current power grid, yet with a direct knowledge of
the grid’s status during the request cycle and full control over
the energy flow (Figure 3,4).
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Figure 3. (a) Mean numbers of rounds and (b) users (customers) waiting in the
queue when the probability of waiting in the queue is 0.1. Here, we consider a
total number of users to be 500. The channel capacity (energy cap) was set to

150 units of energy and each user could ask for up to one unit of energy.

%Generate a random request when turning on



When the probability of staying in queue increases to 0.5, the
waiting period (in number of rounds) and the number of users
waiting in the queue would obviously increase, as shown in
Figure 4. While the probability to stay in the queue increased 5
times, the maximum number of cycles in the queue has not
increased as much; the Energy Network was able to distribute
the requests quite efficiently.
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Figure 4. (a) Mean of the total number of rounds that a user spends in the
queue and (b) the mean number users waiting in the queue, when the
probability of waiting in the queue is 0.5. This means that more users are
waiting in the queue compared to the case presented in Figure 3. The total
number of users is 500 and the cap is set to 150 units, where each user may ask
for up to one unit of energy.

There are two approaches to decide whose request is served
first. In the one used to generate Figures 3-4 we satisfy the
smaller energy requests first and send the overflow of requests
to the queue. In the one used to generate Table 1 and Figure 5
we satisfied the largest energy requests first and send the
overflow requests to the queue. The two approaches would
result in different queue time and number of requests waiting to
be satisfied. Satisfying the smaller energy requests first, would
results in smaller number of queued and large energy requests
albeit with prolonged waiting periods. Our simulations take into
account random energy requests for each customer (Figure 5).
This is a simple case of a power grid with capacity of 250 energy
units and 500 customers. Each round presents one cycle of
energy requests (say every 0.5 second). For most cases, the
Energy Network can satisfy all users except for the case where
the probability to stay ON approaches 1. Thus, for most
scenarios (probabilities) the situation is very similar to the
present grid. However, and unlike the present grid, overflow of
users’ demands is placed in a queue and would not overwhelm
the entire grid, thus avoiding blackouts.
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Figure 5. (a) In most cases the digital grid accommodates all energy requests.
When the demand is large (probability to stay ON is close to 1) some users
are sent to the queue. (b) Number of users waiting in the queue. The scale is
focused on the large probability range for staying ON.

Having the ability to schedule the delivered energy makes us
wonder if adding a battery to the ENERGY NETWORK would
decrease the waiting time for a waiting/demanding user [9-10].
The short answer is NO - even with a very large battery, the slow
charge/discharge cycles may not cope with the fast and
randomly distributed demand fluctuations. As we have shown
earlier [3] one requires a minimum time of a least 1 minute to
meaningfully charge a laptop battery. However, if every
customer is equipped with a super-capacitor/battery system, and
if all of these energy storage units are at the service of the entire
grid (namely, they may deliver energy to other users, as well),
then one may imagine that not only we may achieve fast
charge/discharge cycles but also a more regulated grid. Such
approach, which we dub ‘cloud energy storage,” has the effect
of increasing the energy cap for the power network. While fast
charging and discharging of large amounts of electrical energy
make super-capacitors ideal for short-term energy storage the
amount of energy stored is rather limited with today’s
technology. The Energy Network takes a wholly approach to
storage and delivery of energy on an energy cycle basis.

When the energy cap is increased to 2/3 of the maximum
users’ requests the digital grid can accommodate the random
energy requests without the need for a battery and without
sending users’ requests to the queue. Our simulations showed
that batteries will be charged and will stay charged all the time,
independently of the probabilities of staying ON or OFF.

In Table 1 we provide a snapshot of one time slot (one
request cycle, or one round) of a 10-user digital micro-grid.
These 10 users may tap into an energy storage while their energy
grant is pending. Each user may consume no more than one unit
of energy (but could consume less). Let us consider an energy
cap on the energy consumption of 3 energy units. The
probability to switch from OFF to ON and to continue to request
a service are both 0.3. These switching probabilities are fairly
low but the energy cap is also very low; it is 30% of the
maximum consumed energy by all users. The maximum stored
energy in the battery is set to 10% of the maximum total energy
(1 unit in total) that may be consumed in one cycle. Let us
consider Users 2 and 7 in Table 1. The users request various
amounts of energy at some point in time. Because the energy
cap is only 3 units of energy, the system cannot accommodate
all requests and some users are put on hold (namely, their
requests are queued). Priority in this case was given the largest
energy requests in reverse order thus the smallest request was
queued. In order to avoid long delays in the energy supply, User
2 taps into a battery resource.

Users: 1 2 3 4 5 6 7 8 9 10 Total
Request 0.4974 | 0.4869 0 0.5473 0 0 0.5221 0 0.9519 0 3.0056
Grant 0.4974 0 0 0.5473 0 0 0.5221 0 0.9519 0 25187
Queued - 1 - - - - - - - - 1
Storage 0 0.4869 0 0 0 0 0 0 0 0 0.4869

Table 1. A snapshot of requested, granted, queued, and stored energy for a 10-
user micro-grid network.

The energy storage may be physically situated on the user
premise or shared amongst all users (cloud energy storage). If



there is an excess of energy in the system, then the energy
storage is charged. Fast charge/discharge of the energy storage
is required because the requests are varying for each round.

III. OPTIMIZATION SCENARIOS — ENERGY STORAGE

Here, the energy storage acts as a secondary energy source,
and the power network provides for the primary source of
energy. The energy storage is treated as an addressed user when
extra energy, left by the optimization process, and energy is
routed in its direction. The energy storage stores up to 10% of
grid’s capacity. Let us also consider that only designated users,
which typically is set as 10% of the total number of users, are
allowed to tap the energy storage. When the primary source
cannot offer energy to the users, they enter the queue and try to
tap into the secondary source. These users do not leave the
queue because there is no guarantee that the storage has energy
during the next round. Below, we have used an optimization
approach that minimizes the wait in the queue.

There are several ways to handle the energy requests, and
thus, the optimization of the energy flow. One family of
optimization algorithms is the genetic algorithm. It is based on
a learnt process (namely, collecting data for several request
cycles), yet allows for random events to happen.

A. Genetic Algorithms

Genetic Algorithms optimize the energy allocation by using
a few simple rules:

1. Selection: select parents from population (energy users)
for the next generation of solutions (children). In our case we
fit the incoming small energy requests first, moving on to the
larger requests until we reach the channel capacity limit.
Unsatisfied large energy requests are sent to the queue.
Obviously, instead, one can accommodate the largest energy
requests first, or any combination of the above. In a large pool
of users and limiting the maximum demand to one energy unit
the selection process does not significantly change the outcome.

2. Crossover: just like in biology, the characteristics of the
parents in each generation are “mixed” into several possible
solutions (population/children).

3. Mutation: random changes happen in the characteristics of
the parents to generate the children.

The genetic algorithms are learnt algorithms; for random
processes they reach optimization after several rounds and thus,
the process was run for 100 or 50 cycles to reach an averaged
solution and run for 20 more cycles to reach a higher degree of
optimization. Time wise, it translated to a longer computing
times. It took 1 sec to handle 500 customers to reach a non-
optimized solution on a laptop computer. It took 283 sec for the
genetic algorithm to reach a much better optimized energy
distribution among 500 users while using the same laptop
machine.

The code is part of optimization package of Matlab. We
considered the following experiment setup: number of users —
500; channel capacity — 200 units (maximum 1 unit per user);
storage capacity of 20 energy units; the probability of a request
to stay in the queue equals to 1; the probability to change status
in the queue is equal to 0; and the number of preferred users that

can tap into energy storage elements was 40. The results are
shown in Figure 6.

Since the requests are randomly changing from one energy
request cycle to another, it is better to present both the mean and
its standard deviation. In Figure 6 we show 500 users in a power
network with a capacity of 200 energy units. The mean value
well represents the situation at low probabilities. When the
network reaches its full capacity, the variation in the number of
users sent to the queue obviously increases.
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Figure 6. (a) Mean number of users receiving energy as a function of probability
to stay ON and as a function of the probability of energy requests. (c) Standard
deviation of number of customers receiving energy. (b) Mean number of
requests in the queue and its standard deviation (d). In obtaining the mean
values, the program was running for 20 simulations and collected information
during 50 cycles (rounds) each.

A direct comparison for cases with and without the energy
storage was made. We found out that the impact of the battery
on the digital power network is relatively small; the energy
storage element holds relatively small amount of energy and
needs to charge part of the time. A larger impact is achieved if
the battery is interfaced with a solar panel of equal energy
capacity. The charging of the battery is not made on the expense
of the grid and what extra solar energy left is added to the
network energy capacity (Table 2). An optimized solution is
consider in Section 4.

IV. OPTIMIZATION SCENARIOS - SOLAR ENERGY WITH
BATTERY

There are several ways that extra energy from a storage
element and/or sustainable sources may be utilized by the power
network. Solar energy may be added to the overall network
resources as is done today albeit with the caveat that its
availability is not certain (that is the reason why we assign a
finite probability to its energy supply). In the example (Table 2
below) we interfaced a solar panel with a battery. The reason
being that while the capacity of the solar energy source is
relatively small, it can augment the 'standard' micro-grid in times
of need. We allow for only special customers to tap into this
resource. The simulations conditions are: number of simulations
was 50; number of cycles (rounds of time slots) — 50; number of



customers was 500; number of special customers — 50; energy
cap (or channel capacity) — 100; the probability to stay in the
queue was p=1; the probability to change your queue status was
p=0; battery capacity was 10 energy units. Each user may
request up to 1 energy unit. The comparison was made for a
specific probability to stay ON was p=0.5 and the probability to
request energy if the user was at OFF state as, p=0.5. The cap
for the solar energy source was 10 energy units.

WHEH SOLAR WITH SOLAR
EHERGY ARMD NG ENERGY AND
OPTIMIZATION TETIRIZATION

Energy distringed per raound 55,53 35978
Energy requested per round: 18580 348.23
Humberof customers in the queue per raund 8279 673
sumberof cu stomers that recewed ensrgy per reund 20310 700335
Murabor of customers that roquested enerpy pat round: 3954 237.31
Murnbar of customers thetware satisfied i the queveper round £83 &7 73
Energy Gessntad by ihe solar energy system por rownh 2417 25578
Enaszy avatiante in the hattory of the solay aaseay systam nay round: G897 03323
Saiar erergy pradured perround: 2443 25571
spember of custormers that reguestes solar enesgy per round: 8312 48,8720
Humberof customers that received soler enesgy per round 2476 549
Toial energy delvered {Sofar-Grid] per reund, i6ls 192,55
Murahar of rountds 3 custamer I8 tha quoue wHRs 12 b satisfiad: 1856 20855
Hurbar of rounds 3 customer sperds in the guaue 8.229 357
Wait ime {0 receive energy framthe sokee system: 52033 S.3738

Table 2. A power network interfaced with a power storage): the comparison is
made with and without optimization). The main advantage for the optimized
solution is the ability to accommodate more users in the queue and the
decrease in the queueing time. The time is measured in cycles (rounds, or
time slots). 'Energy requested per round' includes new and queued energy
requests — it becomes smaller for the overall optimized solution.

V. OPTIMIZATION SCENARIOS — THE PATH OF ENERGY
FLow

Optimization of the power flow should not only include time
but also space (path). It is difficult to divert energy in the
currently deployed grid (albeit it is possible). With distributed
energy resources (DER) in mind we have considered a test bus
system composed of a mixed generators sustainable sources and
users. In Figure 7 below, we present the statistics of connecting
several alternative sources to several users using the IEEE 39
test bus system. The bus is made of sources (green nodes), users
who receive energy (orange nodes), users who do not ask for
energy (light yellow nodes), users who are in queue (red nodes),
path-through users that do not tap into the energy flowing
through them (blue nodes) and energy flow paths (light blue
arrows). The program searches for the minimal path (the
Dijkstra's method) to determine which source will be used to
which user. There was no limit on the source or the path
capacity, however, there was a limit of 5 users per source. Extra
users were directed to another source nearby. The total energy
delivered to the users could not be larger than the global system

capacity. For simplicity, an average energy loss of 6% per path
was considered.

The statistics changes at each request cycle (round, or time
slot) and we present here a snapshot of a randomly chosen cycle.
For simplicity, we included the probability of connecting the
nodes but not their associated loss. As we can see from the
figure, the scenario is rather complex; some nodes forward
energy, others consume it, and some nodes play several roles,
such as generators and consumers. Such scenarios may be
important for a system with sustainable generators with storage
elements; since the energy from such sources may change in
time, the conventional grid and energy storage elements would
supplement (even momentarily) the needed energy.

V1. SUMMARY

We have proposed a request-grant protocol to control energy
networks. It was shown that this protocol handles well energy
demands by sending over-the-cap requests to a queue. This
paper outlined how to handle such queued requests. While
requiring an auxiliary power switching array, the Energy
Network concept nonetheless mitigate power fluctuations and
incorporates sustainable sources in a seamless fashion.
Adaptation of such approach to the smart homes and to very
large Internet of Things (IoT) is an exciting possibility.
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Figure 7. (a) Simulating energy distribution in the IEEE 39 bus system. This is a snapshot at some particular round. Each number assigned to a dark gray arrow
is the probability of a connected path. Red nodes: Users waiting in the queue; Green nodes: Sources; Light Yellow nodes: Users not requesting energy; Orange
nodes: Users receiving energy, Blue arrows: Energy Path; Blue nodes: Users where energy is flowing through without tapping into it. (b) A situation where no
node is in the queue



