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ABSTRACT

In this paper we provide a comprehensive description of the internal dynamics of
G0.253+0.016 (a.k.a. ‘the Brick’); one of the most massive and dense molecular clouds in the
Galaxy to lack signatures of widespread star formation. As a potential host to a future genera-
tion of high-mass stars, understanding largely quiescent molecular clouds like G0.253+0.016
is of critical importance. In this paper, we reanalyse Atacama Large Millimeter Array cy-
cle 0 HNCO J = 4(0,4)− 3(0,3) data at 3 mm, using two new pieces of software which we
make available to the community. First, scousepy, a Python implementation of the spectral
line fitting algorithm scouse. Secondly, acorns (Agglomerative Clustering for ORganising
Nested Structures), a hierarchical n-dimensional clustering algorithm designed for use with
discrete spectroscopic data. Together, these tools provide an unbiased measurement of the
line of sight velocity dispersion in this cloud, σvlos,1D = 4.4±2.1 km s−1, which is somewhat
larger than predicted by velocity dispersion-size relations for the Central Molecular Zone
(CMZ). The dispersion of centroid velocities in the plane of the sky are comparable, yield-
ing σvlos,1D/σvpos,1D ∼ 1.2± 0.3. This isotropy may indicate that the line-of-sight extent of
the cloud is approximately equivalent to that in the plane of the sky. Combining our kine-
matic decomposition with radiative transfer modelling we conclude that G0.253+0.016 is not
a single, coherent, and centrally-condensed molecular cloud; ‘the Brick’ is not a brick. In-
stead, G0.253+0.016 is a dynamically complex and hierarchically-structured molecular cloud
whose morphology is consistent with the influence of the orbital dynamics and shear in the
CMZ.
Key words: ISM: kinematics and dynamics – ISM: clouds – stars: formation – Galaxy: centre
– ISM: structure – turbulence
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2 J. D. Henshaw et al.

1 INTRODUCTION

The lifecycles of molecular clouds and stars are inextricably linked.
Molecular cloud evolution drives the formation of the stellar popu-
lations which light the Universe and, in turn, feedback from these
stars drives the dispersal of the gas clouds from which they are
born. It is a self-regulating process which helps to control the evo-
lution of galaxies through cosmic time.

Developing a complete understanding of molecular cloud evo-
lution requires detailed studies which probe a vast range of phys-
ical conditions. While nearby molecular clouds (i.e. those within
∼ 500 pc of Earth) have been studied in extensive detail over the
past decades (see e.g. André et al. 2014 and references therein),
only now, with facilities such as the Atacama Large Millimeter Ar-
ray (ALMA), are we able to target the more extreme ends of this
parameter space over an equivalent spatial dynamic range.

1.1 Star formation in the Milky Way’s Central Molecular

Zone

The Central Molecular Zone (hereafter, CMZ) of the Milky Way
(i.e. the central ∼ 500 pc) contains some of the Galaxy’s densest and
most massive molecular clouds and star clusters, offering an impor-
tant window into molecular cloud evolution under extreme phys-
ical conditions. The interstellar medium (ISM) conditions found
in the CMZ differ substantially from those found in the Galac-
tic disc. Molecular gas densities (Guesten & Henkel 1983; Bally
et al. 1987; Longmore et al. 2013a; Rathborne et al. 2014a; Mills
et al. 2018), pressures (Oka et al. 2001; Rathborne et al. 2014b;
Walker et al. 2018), temperatures (Huettemeister et al. 1993; Ao
et al. 2013; Ott et al. 2014; Mills & Morris 2013; Ginsburg et al.
2016; Krieger et al. 2017), and velocity dispersions (Bally et al.
1988; Shetty et al. 2012; Henshaw et al. 2016a; Kauffmann et al.
2017a) of CMZ clouds, as well as the cosmic ray ionisation rate
(Oka et al. 2005; Yusef-Zadeh et al. 2007) and the interstellar radi-
ation field (Clark et al. 2013), can be factors-of-several to orders of
magnitude greater than those found in solar-neighbourhood clouds
when compared on the same spatial scale. Although the conditions
found in the CMZ are therefore often considered to be extreme in
the context of the Milky Way, Kruijssen & Longmore (2013) argue
they are comparable to those found in high-redshift galaxies (e.g.
Swinbank et al. 2012) at the time of peak cosmic star formation rate
(around z∼ 2−3; Madau & Dickinson 2014). Consequently, under-
standing stellar mass assembly in the CMZ may help to provide a
representative view of the conditions necessary for star formation
at its cosmic peak.

One currently open question regarding star formation in
the CMZ is that despite harbouring a vast reservoir of dense
(& 103 cm−3) gas (∼a few 107 M⊙ or roughly ∼5% of the total
molecular gas content of the Milky Way, e.g. Dahmen et al. 1998),
the estimated star formation rate (SFR) is just . 0.09 M⊙ yr−1

(Longmore et al. 2013a; Koepferl et al. 2015; Barnes et al. 2017).
This SFR is approximately one order of magnitude below that ex-
pected from the observed linear relationship between the SFR and
the gas mass above a surface density of Σgas = 116 M⊙ yr−1 (Lada
et al. 2010, 2012), despite almost all of the molecular gas in the
CMZ lying above this threshold (Longmore et al. 2013a; Barnes
et al. 2017). This low SFR cannot be explained by incomplete sta-
tistical sampling of independent star-forming regions (Kruijssen &
Longmore 2014). Instead, the current underproduction of stars in
the CMZ appears to be genuine.

Numerous possible explanations for this discrepancy were dis-

cussed by Kruijssen et al. (2014). The authors hypothesised that
the low SFR in the CMZ may be due to the high turbulent gas pres-
sure, which would result in an elevated critical density threshold for
star formation.1 This led Kruijssen et al. (2014) to suggest that star
formation in the CMZ may be episodic, entering a starburst phase
every 10-20 million years. In this episodic picture, turbulent gas
flows towards the Milky Way’s CMZ along the Galactic bar, provid-
ing the fuel for new generations of star formation (as demonstrated
in simulations; e.g. Emsellem et al. 2015; Krumholz & Kruijssen
2015; Sormani et al. 2018). The key point is that this process takes
time: time to build up sufficient gas mass such that gravity can over-
come the high turbulent pressure and star formation can proceed at
a normal rate (Krumholz & Kruijssen 2015; Krumholz et al. 2017).
Previous starburst activity is evident throughout the CMZ. A large
population of 24µm point sources at negative Galactic longitudes
(e.g. Hinz et al. 2009) and the young massive clusters known as the
Arches and Quintuplet (Figer et al. 1999; Longmore et al. 2014),
may add support to the notion of episodicity.

Of course, the CMZ is not in a period of complete dormancy.
In fact, it hosts some remarkable star-forming complexes, namely
Sgr A, Sgr B1, Sgr B2, and Sgr C (Guesten & Downes 1983; Goss
et al. 1985; Mehringer et al. 1992, 1993; Yusef-Zadeh et al. 2009;
Kendrew et al. 2013; Ginsburg et al. 2018). Where star formation
is underway, there is evidence to suggest that it is closely coupled
to the orbital dynamics of the gas. Longmore et al. (2013b), study-
ing the subset of CMZ clouds known as the ‘dust ridge’ (Lis et al.
1994), noted an increase in star formation activity as a function
of increasing Galactic longitude along the dust ridge, and argued
that these clouds may share a common formation timeline. Long-
more et al. (2013b) further postulated that star formation may have
been triggered by the tidal compression experienced by the clouds
as they pass close (∼ 60 pc; Kruijssen et al. 2015) to the minimum
of the global Galactic gravitational potential located at the position
of the central supermassive black hole, Sgr A*. The link between
the orbital dynamics of the gas and star formation in the dust ridge
molecular clouds is supported by trends in observed star forma-
tion activity (Immer et al. 2012; Barnes et al. 2017; Walker et al.
2018; Ginsburg et al. 2018) and, less directly, in increasing gas tem-
peratures with increasing Galactic longitude (Ginsburg et al. 2016;
Krieger et al. 2017). However, the notion of an evolutionary se-
quence has also been disputed (see e.g. Kauffmann et al. 2017b;
Simpson 2018).

Henshaw et al. (2016b) extended the Longmore et al. (2013b)
hypothesis following the discovery of several quiescent molecular
clouds situated upstream from (but connected in position-position-
velocity space to) the dust ridge clouds (Henshaw et al. 2016a).
Having possibly formed via gravitational instabilities, this portion
of the CMZ possibly represents a physically continuous sequence
of molecular clouds which we can follow from their formation and
on-going assembly through to their subsequent collapse and emer-
gent star formation in the dust ridge.

1 The SFR of a molecular cloud is determined in turbulent theories of star
formation by computing the gas mass fraction above an effective critical
density threshold, ρcrit. These theories assume that clouds are supersoni-
cally turbulent, and that star-forming cores arise as self-gravitating den-
sity fluctuations in the turbulent flow. In the models of Krumholz & Mc-
Kee (2005) and Padoan & Nordlund (2011), ρcrit ∝ M

2
3D, where M3D is

the turbulent Mach number, leading to an elevated critical density for star
formation with increasing turbulent pressure. Although, as summarised by
Federrath & Klessen (2012), note that Hennebelle & Chabrier 2011 instead
predict ρcrit ∝M

−2
3D.
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‘The Brick’ is not a brick 3

Figure 1. G0.253+0.016 in context. A three colour composite image of the CMZ, highlighting some of the most prominent features. All data are from Spitzer

GLIMPSE (Churchwell et al. 2009). Blue is 3.6µm, green is 5.8µm, and red is 8.0µm emission. We highlight the dust ridge clouds (G0.253+0.016, clouds ‘b’,
‘c’, ‘d’, ‘e & f’, and Sgr B2), additional well-known and studied molecular clouds (Sgr C, and the 20 km s−1 and 50 km s−1 clouds), star forming complexes
(Sgr B1, G0.6− 0.056, and G0.3− 0.05), young massive clusters (the Arches and Quintuplet), the location of the velocity oscillations identified in Henshaw
et al. (2016a,b), and finally, the location of the nuclear star cluster and Sgr A∗. G0.253+0.016 can be clearly identified as a strong extinction feature against
the bright mid-IR emission arising from the Galactic centre.

Theoretically, this picture is supported by recent hydrodynam-
ical simulations of molecular clouds orbiting the Galactic centre.
These simulations demonstrate that many of the observed physical
features of CMZ clouds are plausibly controlled by the background
gravitational potential and their passage through the orbit’s peri-
centre (Kruijssen et al. 2019). However, it is worth noting that the
effect of the potential is dominant here, with the triggering of star
formation due to pericentre passages expected to be rare (occurring
in only ∼ 10−30% of accretion events into the inner CMZ; Jeffre-
son et al. 2018). Although there are numerous models with differing
perspectives on the three dimensional structure and orbital config-
uration of the CMZ (e.g. Sofue 1995; Sawada et al. 2004; Molinari
et al. 2011; Kruijssen et al. 2015; Ridley et al. 2017),2 as well as
some disagreement on the physical mechanisms driving the flow of
material along the Galactic bar and into the CMZ (e.g. Krumholz
& Kruijssen 2015; Sormani et al. 2018), there is general agreement
that Galactic dynamics play an important role in the regulation of
star formation in this environment (e.g. Kruijssen et al. 2014; Sor-
mani & Barnes 2019).

The aforementioned prominent features are displayed in
Fig. 1, where we show a three-colour image of the CMZ gen-
nerated from Spitzer GLIMPSE wavebands. Here, blue is 3.6µm,
green is 5.8µm, and red is 8.0µm emission. The group of molecu-
lar clouds collectively known as the dust ridge are those stretching
from G0.253+0.016 to Sgr B2.

1.2 G0.253+0.016: The prototypical Infrared Dark Cloud

A key proving ground for understanding star formation in the CMZ
is the molecular cloud G0.253+0.016 (also, GCM0.253+0.016,
G0.216+0.016, M0.25+0.01, M0.25+0.11, or ‘The Brick’).

2 See Henshaw et al. 2016a for a summary of how some of these geometries
can either be ruled out or further constrained by observations.

G0.253+0.016 is the first cloud in the dust ridge sequence. With
a mass of ∼ 105 M⊙ and a radius of just ∼ 2− 3 pc, G0.253+0.016
is one of the densest and most massive molecular clouds within
the Galaxy (Lis et al. 1994; Longmore et al. 2012; Kauff-
mann et al. 2013; Rathborne et al. 2015). Paradoxically, however,
G0.253+0.016 shows very few signatures of active star forma-
tion (Mills et al. 2015) and appears mostly in absorption at 8µm
(see Fig. 1). The only direct (and published) evidence for star for-
mation in the cloud comes from a H2O maser identified by Lis
et al. (1994).3 This makes G0.253+0.016 one of the only & 105 M⊙
molecular clouds in the Galaxy, identified thus far, that does not
display the signatures of advanced star formation (Ginsburg et al.
2012; Tackenberg et al. 2012; Urquhart et al. 2014; Longmore et al.
2017). The star formation potential of the cloud is therefore far
from certain. Despite G0.253+0.016 having sufficient mass to form
an arches-like cluster, it is not clear if we are observing a cloud
on the verge of collapse (Longmore et al. 2012; Rathborne et al.
2014a,b, 2015) or if instead the internal turbulent pressure and dy-
namic surrounding environment will hinder this evolution towards
star formation (Kauffmann et al. 2013, 2017a).

Establishing the role of environment on the evolution of
G0.253+0.016 is vital if we are to understand its fate. Recently,
Federrath et al. (2016) performed an investigation into the physical
and dynamical state of the cloud, speculating that shearing motions
on large scales may be responsible for the dearth of star formation.

3 Note that there have been claims of ongoing star formation based on
more indirect measures. Lis et al. (2001) estimate the internal luminosity
of G0.253+0.016 to be of the order ∼ 2.7× 105 L⊙, which they claim is
approximately equivalent to that of four B0 zero-age main-sequence stars.
Moreover, the presence of emission from warm dust towards the edge of the
cloud has been interpreted as being caused by heating from embedded pro-
tostars (Marsh et al. 2016). However, these indirect tracers of star formation
activity are yet to be supported by independent lines of evidence.

MNRAS 000, 1–29 (2019)



4 J. D. Henshaw et al.

The authors discuss this in the context of turbulent star formation
theory. Simulations indicate that solenoidal motions (i.e. those with
a high degree of vorticity) are capable of suppressing the SFR of a
molecular cloud by approximately one order of magnitude in com-
parison to fully compressive modes (Federrath & Klessen 2012).
Combining estimates of the turbulent velocity dispersion and the
magnetic field strength, Federrath et al. (2016) conclude that tur-
bulence within the cloud is dominated by solenoidal modes which
is the result of the shear on large scales. Highlighting the potential
importance of the orbital dynamics, Kruijssen et al. (2015) argue
that G0.253+0.016’s recent pericentre passage may be the source
of the shear. This argument was supported by recent hydrodynam-
ical simulations of molecular clouds following the Kruijssen et al.
(2015) orbit, which show that the observed velocity gradient across
G0.253+0.016 (e.g. Rathborne et al. 2015) is consistent with shear-
induced counter-rotation (Kruijssen et al. 2019).

In this Paper, we aim to perform a detailed investigation into
the structure and kinematics of G0.253+0.016, which have thus
far often been analysed using moment analysis (Higuchi et al.
2014; Johnston et al. 2014; Rathborne et al. 2015; Federrath et al.
2016, although see Kauffmann et al. 2013). Henshaw et al. (2016a)
demonstrated that moment analysis’ insensitivity to complex line-
of-sight density and velocity structure can result in critical informa-
tion being missed. We therefore revisit the analysis of the kinemat-
ics of G0.253+0.016 with the view to categorising and understand-
ing its internal dynamics. In Section 2 we describe the data used
throughout this paper. In Sections 3 and 4 we present our results. In
5 we make detailed comparison to previous results in the literature.
In 6 summarise our new view of the structure of G0.253+0.016
before drawing our conclusions in Section 7.

2 DATA

This paper makes use of the ALMA Early Science Cycle 0 Band 3
observations of G0.253+0.016 originally presented in Rathborne
et al. (2014b, 2015). The ALMA 12m observations cover the
full 3

′

× 1
′

extent of the cloud using a 13 point mosaic. The
correlator was configured to use four spectral windows in dual-
polarization mode centred at 87.2, 89.1, 99.1, and 101.1 GHz, each
with 1875 MHz bandwidth and 488 kHz (1.4-1.7 km s−1) channel
spacing. Because the data was Hanning smoothed by default by the
ALMA correlator in Cycle 0, the spectral resolution of the data is
3.4 km s−1 (Rathborne et al. 2015). The spatial resolution of the
observations is 1.7”. This corresponds to a physical spatial reso-
lution of ∼ 0.07 pc assuming a distance to the Galactic centre of
8.34±0.16 kpc (Reid et al. 2014), which we adopt throughout this
work, assuming that G0.253+0.016 is at an equivalent distance.

The ALMA dataset provided data cubes for 17 different
molecular species. Rathborne et al. (2015) studied each of these
in detail, making a statistical comparison with the available contin-
uum data (these data were combined with single-dish data provided
by the Herschel Space Observatory). Measuring the 2-D cross-
correlation coefficients, the authors were able to look for similar-
ities between the molecular species and the dust continuum (used
here as a proxy for density). The strongest correlations were found
between NH2CHO, HNCO, CH3CHO. Out of these species we se-
lect the HNCO 4(0,4)–3(0,3) transition (rest freq. ≈ 87.925 GHz)
as our primary tracer of the kinematics since it is bright and ex-
tended. HNCO is often spatially extended towards galactic cen-
tres (e.g. Dahmen et al. 1997; Meier & Turner 2005; Jones et al.
2012), and has proved fruitful for tracing the gas kinematics on

both large (∼ pc; Henshaw et al. 2016a) and small (∼ 0.1 pc; Fed-
errath et al. 2016) scales. The ALMA data were combined with
single-dish data available from the Millimetre Astronomy Legacy
Team 90 GHz Survey (MALT90; Foster et al. 2011; Jackson et al.
2013) obtained with the Mopra 22m telescope. For further infor-
mation regarding the data reduction and image processing we refer
the reader to Rathborne et al. (2015).

3 A GLOBAL LOOK AT THE KINEMATICS OF

G0.253+0.016

3.1 SCOUSEPY decomposition of the ALMA HNCO data

Our kinematic decomposition of the ALMA HNCO data is per-
formed using a newly-developed Python implementation of the
Semi-Automated multi-COmponent Universal Spectral-line fit-
ting Engine (scouse), first presented in Henshaw et al. (2016a).4

scousepy is a semi-automated routine used to fit large quantities of
complex spectroscopic data in an efficient and systematic way. The
procedure followed by scousepy is discussed in detail by Henshaw
et al. (2016a), but we highlight the key points here.

Briefly, the scousepy fitting procedure can be broken down
into several stages. scousepy first identifies the spatial region over
which it will perform the fitting. This can be tailored by the user
to target localised regions (in both position and velocity), or to
target data above a specified noise threshold. The philosophy be-
hind this step is to minimise workload. For example, although the
G0.253+0.016 HNCO data contains > 3×105 pixels, we masked all
spectra whose peak flux is below 0.03 mJy beam−1. The unmasked
region is (approximately) comparable to that studied by Federrath
et al. (2016), who employed a H2 column density threshold for their
study of 5×1022 cm−2.
scousepy then breaks up the map into small areas, referred

to as Spectral Averaging Areas (SAAs), and extracts a spatially-
averaged spectrum from each. In the new Python implementation,
the user has the option to refine the size of the spectral averag-
ing area depending on the local complexity of the line profiles.
To gauge the complexity of a spectrum a very simplistic metric is
used. We compute the difference in velocity between the intensity-
weighed average velocity (i.e. moment 1; v1) to the velocity of the
channel containing the peak emission in the spectrum (vpeak). The
idea is that for a simple, singly-peaked, symmetric line profile the
difference between these two quantities ∆vm ≡ |v1 − vpeak | ∼ 0. Al-
ternatively, ∆vm will be > 0 for a highly asymmetric line profile.
This is demonstrated in Fig. A1 located in Appendix A. The map is
then divided up into different sized SAAs, where the smallest areas
contain spectra with a high degree of complexity.

The refinement of the SAA size leads to higher quality fits
overall, particularly for large and complex datasets, because of the
greater accuracy of the input guesses supplied to the automated fit-
ting procedure. Moreover, having many overlapping SAAs (of po-
tentially different sizes) provides a variety of models to any given
pixel, enabling scousepy to make an informed choice about which
is the best-fitting solution.

The spatially averaged spectra extracted from each SAA are
then manually fitted by the user. Fitting is performed interactively

4
scousepy is publicly available for download here: https://github.
com/jdhenshaw/scousepy. Alternatively, the original IDL implemen-
tation can be downloaded here: https://github.com/jdhenshaw/
scouse.
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using pyspeckit,5 whose extensible framework facilitates the mod-
elling of a variety of line profiles (including Gaussian, Voigt, and
Lorentzian profiles, as well as hyperfine structure fitting). Specifi-
cally, for the ALMA HNCO data, we assume that the spectra can be
decomposed into individual Gaussians. This assumption is reason-
able given the lack of line wings in the spectral profiles as well as
the likelihood that the HNCO emission is optically thin (we quan-
tify this statement further in § 5.1.2).

Best-fitting solutions to the SAAs are then supplied to the
fully-automated fitting procedure that targets all of the individual
spectra contained within each region. This process is controlled by
a number of tolerance levels. For a full description of the tolerances
see Henshaw et al. (2016a). In summary, we fixed the following tol-
erance criteria during our search: (i) all detected components must
have a flux density which is greater than three times the local noise
value (T1 = 3.0; Henshaw et al. 2016a); (ii) each Gaussian compo-
nent must have a full-width-at-half-maximum (FWHM) line-width
of at least one channel (T2 = 1.0);6 (iii) for two Gaussian compo-
nents to be considered distinguishable, they must be separated by
at least half of the FWHM of the narrowest of the two (T5 = 0.5).
The remaining two tolerance levels (T3 and T4) restrict the degree
to which the parameters describing the velocity components can
deviate from their closest matching counterparts in the SAA spec-
trum. We set both of these tolerance levels to 3.0. As in Henshaw
et al. (2016a) the final best-fitting solution for each pixel is that
which has the smallest value of the (corrected) Akaike Information
Criterion (AICc; Akaike 1974).

The statistical information regarding the scousepy fitting of
the G0.253+0.016 can be found in Table A1 which can be found
in Appendix A. To summarise, a total of 2355 SAAs were manu-
ally fitted. This resulted in best-fitting solutions to 133065 out of
a total 315219 pixels (note the total here includes those pixels that
were masked during stage 1 of the fitting process), and a total of
457264 velocity components. Multiple component fits are required
to describe the spectral line profiles over a significant (∼ 96%) por-
tion of the map. These large values indicate the complexity of the
velocity structure.

3.2 Centroid velocities: Ubiquitous velocity oscillations,

cloud substructure, and velocity gradients

The result of the fitting procedure is displayed in Fig. 2. This image
is a 3-D PPV diagram highlighting the distribution of HNCO gas
throughout G0.253+0.016. Each data point represents the {l, b,v}
coordinates of an individual Gaussian component extracted by
scousepy. The colour (light to dark) of each data point encodes the
peak flux density of each spectral component.

The velocity structure of the cloud is clearly complex. The
most striking features of Fig. 2 are the vertical velocity oscilla-
tions appearing in the gas distribution appearing across a range of
spatial scales. These oscillatory gradients are reminiscent of those
first identified on larger scales in Henshaw et al. (2016a,b), and
suggest that such gradients are a common feature of the interstel-
lar medium in the CMZ. However, unlike those analysed in detail

5
pyspeckit can be downloaded here: https://github.com/

pyspeckit/pyspeckit.
6 It should be noted that this leads to the detection of unresolved velocity
components. Often these components are necessary for a good fit to the
remaining spectral components, and so we choose to fit them. However,
as we will discuss later, these components are removed for the clustering
analysis (see § 4).

by Henshaw et al. (2016b), which display a characteristic ampli-
tude (∼ 3.7 ± 0.1 km s−1) and wavelength (∼ 22.5 ± 0.1 pc), the
G0.253+0.016 oscillations appear to be more stochastic. This will
be explored further in a future publication (Henshaw et al., in prepa-
ration).

Further, one notices two large scale, dominant features that ap-
pear to merge (caution: in PPV-space) towards the southern portion
of the cloud. The first appears at a velocity of ∼ 35− 50 km s−1.
The second shows a distinct velocity gradient increasing in veloc-
ity from ∼ 0 km s−1 in the north and appears to merge in PPV-
space7 with the first feature at a velocity of ∼ 30 km s−1 towards
the south of the cloud. Many studies have described the prominent
velocity gradient observed across G0.253+0.016 (e.g. Higuchi et al.
2014; Johnston et al. 2014; Rathborne et al. 2015). Most recently,
it has been cited as evidence for the rotation induced by the orbital
dynamics of the CMZ (Federrath et al. 2016), which was argued
from a theoretical perspective by Kruijssen et al. (2015), and fur-
ther quantified using hydrodynamical simulations (Kruijssen et al.
2019). In this picture, as a cloud makes its closest approach to the
bottom of the Galactic gravitational potential well, the side of the
cloud closest to the central potential accelerates with respect to the
far-side, inducing shear, and causing the cloud to counter-rotate
with respect to its orbital motion.

We can estimate the velocity gradient across G0.253+0.016
using the intensity-weighted velocity field provided by the first or-
der moment

vm1 =

∑N
n=i

S ν(vi)vi
∑N

n=i
S ν(vi)

(1)

where S ν(vi) is the flux density at a velocity channel vi and N is the
number of channels. Following Federrath et al. (2016), we compute
this over a velocity range of 0− 45 km s−1 and clip all data below
3σrms. The velocity gradient is estimated as a fit to all {l,b,v} data
points assuming that the velocity field is well approximated by a
first-degree bivariate polynomial (e.g. Goodman et al. 1993; Hen-
shaw et al. 2016a)

v = v0 +Gvl
∆l+Gvb

∆b. (2)

Here, v0 is the systemic velocity of the mapped region, ∆l and ∆b

are the offset Galactic longitude and latitude values (expressed in
radians), and Gvl

and Gvb
are free-parameters in the least squares fit

and refer to the magnitudes of the velocity gradients in the l and
b directions, respectively (in km s−1 rad−1). The magnitude of the
velocity gradient (G ), and its direction (ΘG ), are then estimated
using:

G ≡ |Gvl,b
| =

(G 2
vl
+G 2

vb
)1/2

D
, (3)

and

ΘG ≡ tan−1
(

Gvl

Gvb

)

, (4)

whereby D is the distance to the cloud in pc (see § 2). For
the velocity gradient, Gvm1 , we find 4.0 km s−1 pc−1 (Gvm1 =

9.7 km s−1arcmin−1).
The computed velocity gradient is consistent with that re-

ported by Federrath et al. (2016), Gvm1 = 3.9 km s−1pc−1 (Gvm1 =

9.5 km s−1arcmin−1), where the slight difference is most likely due

7 We stress that this does not necessarily indicate a merger of structure in
physical space.
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‘The Brick’ is not a brick 9

increasing spatial resolution of the aforementioned observations.
However, despite this, our scousepy-derived velocity dispersions
are broader than those predicted by the observationally-derived,
steep velocity dispersion-size relationships of the CMZ. Using
σ= (σ0/kms−1)(r/pc)ζ , where σ0 is the absolute scaling of the ve-
locity dispersion and ζ is the slope, we can predict the magnitude of
the velocity dispersions measured on 0.07 pc scales (representative
of the ALMA synthesised beam), from the relationships derived by
Shetty et al. (2012) and Kauffmann et al. (2017a). Using {σ0, ζ} =

{2.8kms−1,0.64} (Shetty et al. 2012) and {5.5kms−1,0.66} (Kauff-
mann et al. 2017a), velocity dispersions of the order ∼ 0.5 km s−1

and ∼ 1.0 km s−1, respectively, are predicted. These are factors of
∼ 9 and ∼ 4 narrower than those measured from our scousepy de-
composition, respectively.

The fact that our mean measured velocity disper-
sion of 〈σvlos,1D〉 = 4.4kms−1 is fully resolved by ALMA
(2[2ln(2)]1/2〈σvlos,1D〉/∆vres > 3, where ∆vres is the spectral reso-
lution), could indicate that, in contrast to the derived relationships
of Shetty et al. (2012) and Kauffmann et al. (2017a), velocity
dispersions . 1 km s−1 are not dominant on (projected) ∼ 0.07 pc
scales throughout G0.253+0.016. This could imply a shallower
velocity dispersion-size relationship. However, this comparison
comes with the caveat that although our dispersion measurements
are taken on projected scales of the ALMA synthesised beam
(∼ 0.07 pc), we do not know the extent of the cloud along the
line-of-sight. Although this is also true of both the Shetty et al.
(2012) and Kauffmann et al. (2017a) studies, the discrepancy
between our measured, and the predicted, velocity dispersions
could instead indicate that the depth of the cloud is much greater
than the projected spatial extent over which the measurements are
taken.

Quantifying both the absolute scaling of non-thermal motions
measured at a given spatial scale as well as how the magnitude of
non-thermal motions varies as a function of spatial scale throughout
the CMZ is of critical importance to understanding star formation
in this environment (see § 1). A steep velocity dispersion-size rela-
tionship in the CMZ, if confirmed, may have profound implications
for how molecular clouds in this environment begin to build their
stellar mass.12 Therefore, higher spatial and spectral resolution ob-
servations, those which are capable of resolving the sound speed in
the molecular gas (∼ 0.46 km s−1 for 60 K gas), are first required to
confirm if the turnover in the scousepy histogram in the left hand
panel of Fig. 4 is real, and secondly, to fully characterise the gas
motions on small spatial scales throughout G0.253+0.016.

4 A DETAILED STUDY OF G0.253+0.016’S KINEMATIC

SUBSTRUCTURE

4.1 ACORNS decomposition of the ALMA HNCO data

To date, analyses of the gas kinematics of G0.253+0.016 have pre-
dominantly relied on techniques such as moment analysis (Rath-
borne et al. 2015; Federrath et al. 2016), and dendrograms (Kauff-

tral resolution to confirm the identification of the more extreme cases
(< 1 km s−1) of narrow velocity dispersions presented by Kauffmann et al.
(2017a).
12 The shape of the stellar Initial Mass Function, or more specifically, the
turnover in the IMF may be closely tied to the sonic length, which is the
scale below which thermal or magnetic support dominates over turbulence
(see e.g. Offner et al. 2014, and references therein).

mann et al. 2013). The former technique is beneficial as it is sim-
ple and fast to implement. It returns information on the pixel scale
and is an intuitive way of taking a ‘first look’ at spectroscopic
data. However, as is clearly demonstrated in § 3, detail is easily
lost when using moment analysis. Conversely, the latter technique
is beneficial in that complex line-of-sight structure is accounted
for as the algorithm seeks to build a hierarchy of structure, which
can be represented graphically in the form of a dendrogram (see
e.g. Rosolowsky et al. 2008). However, kinematic information is
provided in the form of intensity-weighted average quantities re-
lating to each structure. Further work is therefore required if one
is interested in how those kinematic quantities vary with position
within a given structure on the pixel scale. There was previously no
publicly-available code whose primary function is to extract hier-
archical information from spectroscopic data, but which simultane-
ously retains the pixel scale information needed to study variation
in the kinematics throughout each member of the hierarchy.

Our solution to this problem is the development of a new anal-
ysis tool, written in Python, named acorns (Agglomerative Clus-
tering for ORganising Nested Structures).13

acorns is based on a
technique known as hierarchical agglomerative clustering, whose
primary function is to generate a hierarchical system of clusters
within discrete data. Although acorns was designed with the anal-
ysis of discrete spectroscopic position-position-velocity (PPV) data
in mind (rather than uniformly spaced data cubes), clustering can
be performed in n-dimensions, and the algorithm can be readily ap-
plied using information in addition to PPV measurements. For a
full description of the acorns algorithm see Appendix B.

In the following sections we use acorns to further characterise
the velocity structure of the cloud. We perform the acorns decom-
position only on the most robust spectral velocity components ex-
tracted by scousepy. We define ‘robust’ as all velocity components
whose peak flux density is greater than ∼ 5× the typical measured
rms noise value14 and whose velocity dispersion is greater than
∼ 1.4 km s−1 (this corresponds to a FWHM of ∼ 3.4 km s−1, which
is a single resolution element). The selected data constitute ∼ 92%
of the total dataset extracted by scousepy (420398 kinematic mea-
surements).

For the clustering, we set the minimum radius of a cluster15

to be 1.2
′′

, which is ∼ 10% larger than the semi-major axis of the
ALMA synthesised beam. This is to ensure that all identified clus-
ters are spatially resolved. In addition to spatial information we
also include velocity information in the clustering. For two data
points to be classified as ‘linked’ we specify that the euclidean
distance between the points and the absolute difference in both
their measured centroid velocity and velocity dispersion can be no
greater than 1.2

′′

and 3.4 km s−1, respectively. In summary, these
constraints are selected because they reflect our observational lim-
itations.

During the initial phase of the clustering a total of 1152 clus-
ters were identified, representing ∼ 97% of the subsample selected
above.16 Having fixed these parameters for the initial development

13
acorns is publicly available for download here: https://github.com/

jdhenshaw/acorns.
14 This is performed on a pixel-by-pixel basis. The mean rms value is
〈σrms〉 = 0.8 mJy beam−1.
15 Note that here and throughout this paper the term ‘cluster’ is used in the
statistical sense to refer to an agglomeration of data points.
16 Note that using a linking length of 1.7 km s−1 for both the centroid ve-
locity and velocity dispersion (i.e. a single channel), respectively, changes
the results only slightly. In this case, the total number of clusters identified
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Fig. 2 (i.e. two dominant features separated by ∼20 km s−1 in the
north of the cloud that merge in velocity towards to south).

However, while 2 out of the 17 molecules discussed by Rath-
borne et al. (2015) do display some emission towards the centre
of the cloud (CH3CHO and NH2CN), it is not extended and it
does not peak exclusively in the central region. Rather, the emis-
sion qualitatively follows that of the other molecular transitions,
but with a small peak towards the centre. Moreover, data from in-
dependent studies illustrate that the ∼20 km s−1 gap between the
dominant PPV features observed in Fig. 2 is not populated with
emission from nitrogen-bearing species such as N2H+ (Pound &
Yusef-Zadeh 2018), which are less susceptible to freeze-out at high
densities (Bergin & Tafalla 2007).

The fact that the difference in velocity between the dominant
components is largest towards the north of the cloud may also be
problematic for this scenario. First, when observed at higher reso-
lution, lines that are presumed to be optically thin show multiply-
peaked line profiles towards the north and south of the cloud (cf.
the singly-peaked profiles in the schematic diagram presented by
Rathborne et al. 2014a). Secondly, the greatest velocity difference
is observed towards the north of the cloud, where we find trees A, B,
and C. In the context of widespread depletion, this would necessi-
tate either a density or temperature gradient in G0.253+0.016. Fur-
thermore it would suggest that either the highest density, or alterna-
tively, lowest temperatures, are observed in the north of the cloud
(where the absolute difference in the velocity peaks is the greatest;
∼ 35 km s−1; § 4.3.1). Studies of the dust continuum, and therefore
the inferred H2 column density towards G0.253+0.016 show no
evidence for such a density gradient (Longmore et al. 2012; John-
ston et al. 2014; Rathborne et al. 2015). Additionally, although the
highest temperatures (> 150 K) in G0.253+0.016 are found towards
the south of the cloud (i.e. towards tree D), warm gas temperatures
(80− 100 K) are also found in the north (and generally distributed
throughout; Ginsburg et al. 2016; Krieger et al. 2017). There is no
clear and monotonic trend in decreasing gas temperature towards
the north of the cloud.

It is worth noting that probably the strongest case for complete
depletion of molecules within an individual cloud core (although
it is yet to be confirmed) comes from Cyganowski et al. (2014).
However, this occurs on < 1000 AU scales where densities and tem-
peratures are estimated to be > 109 cm−3 and . 20 K, respectively.
Although dust temperatures within G0.253+0.016 are of the order
∼ 20 K (Longmore et al. 2012), the gas temperatures are actually
considerably higher (of the order & 60 K; Ginsburg et al. 2016;
Krieger et al. 2017), consistent with the gas and dust not being ther-
mally coupled at the derived cloud density of ∼ 104 cm−3 (Clark
et al. 2013). Therefore without detailed chemical modelling it is
currently difficult to reconcile the concept of parsec-scale deple-
tion throughout the interior of a singular, coherent, and centrally-
condensed cloud with the absence of either an increasing density
gradient or a decreasing temperature gradient towards the northern
portion of G0.253+0.016 (as would be required to create the PPV
profile observed in Fig. 2).

5.1.2 Scenario 1b: Optically-thick lines: G0.253+0.016 is a

centrally-concentrated cloud whose interior dynamics are

masked due to high optical depth

Another conceivable scenario is that the lines which are often con-
sidered to be optically thin (e.g. H13CO+, H13CN, HN13C), are
actually optically thick. If this is the case then the double peaked
profile in these lines may simply arise from self-absorption, with

the individual peaks representing the outer ‘shell’ of the cloud at
the τ = 1 surface.

We assess the possibility of the HNCO J = 4(0,4)−3(0,3) line
being optically thick using radiative transfer modelling. We adopt a
kinetic temperature of 60 K, (Ginsburg et al. 2016) and a fixed tur-
bulent line width of 4.4 km s−1 (i.e. 〈σvlos,1D〉). We treat the molec-
ular abundance and gas number density as free parameters, though
the best estimate of the average number density is 104 cm−3 (Fed-
errath et al. 2016) and the assumed canonical HNCO abundance is
10−9 (the typical abundance found towards dense cores, including
those in the CMZ, by Churchwell et al. 1986 and Zinchenko et al.
2000).

We perform radiative transfer calculations using both the large
velocity gradient (LVG) approximation and a 3-D model evaluated
on a 1-D grid. The LVG approximation assumes that each emitting
position in the cloud can only be absorbed by adjacent material,
since more distant material is doppler shifted out of the emission
line profile. For the geometric model, we consider a uniform den-
sity sphere of fixed radius 2.35 pc (to give a diameter, 4.7 pc, con-
sistent with Federrath et al. 2016) evaluated on a 1-D grid.20 We
employ the NLTE statistical equilibrium solver in the Monte Carlo
radiation transport code torus (Rundle et al. 2010), which is sim-
ilar to that of Hogerheijde & van der Tak (2000). This approach
accounts for the 3-D structure of the cloud by assuming spherical
symmetry. The level populations are computed in each cell using
either LTE or NLTE assumptions. In LTE the level populations are
trivially calculated analytically using the Boltzmann distribution.
The NLTE level populations are calculated iteratively. They are ini-
tialised to LTE conditions, then ray tracing is performed to deter-
mine the radiation field and recalculate the level populations. This
process is repeated until level populations converge. To estimate the
brightness temperature and optical depth, a ray at the line centre is
traced through the centre of the sphere along the observers line of
sight. All of the material is assumed to be centred on the same rest
velocity with a constant 4.4 km s−1 turbulent line width.

The resulting grid in the ray tracing approach, both in LTE and
NLTE, is given in the upper two panels of Figure 13. The single
white point represents the canonical HNCO abundance and derived
mean density of G0.253+0.016. The lower left panel of Fig. 13
shows the NLTE result in the LVG radex calculations. In this panel
the colour bar also represents the brightness temperature distribu-
tion and the black dotted contour in each plot denotes the region
where τ = 1.

In the ray tracing models, there is no component of the pa-
rameter space that is both optically thick and has a low enough
brightness temperature to be consistent with the observed TB distri-
bution extracted using scousepy throughout G0.253+0.016 (see the
bottom-right hand panel). In the LVG models, there is a very small
region of the parameter space where a solution is possible (hatched
contour; τ > 1 and TB < 5 K, where this latter condition represents
three standard deviations from the mean scousepy-derived bright-
ness temperature ∼ 1.75 K). However, the abundance of HNCO
would have to be enhanced above the value observed towards dense
cores by Churchwell et al. (1986) and Zinchenko et al. (2000) by at
least 1-2 orders of magnitude.

The above analysis comes with the caveats that our calcula-
tions assume spherical symmetry, as well as a uniform abundance,
density, and temperature. For more realistic conditions, there may
be localised regions within G0.253+0.016 where the line becomes

20 Note that the LVG calculation also assumes spherical symmetry.
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Higuchi et al. (2014) invoked cloud-cloud collisions as a pos-
sible formation mechanism for G0.253+0.016. The authors identi-
fied the presence of a shell (radius ∼ 1.3 pc) within G0.253+0.016,
in addition to large velocity gradients (∼ 20 km s−1 pc−1) and broad
velocity dispersions (of the order 30-40 km s−1). Comparing with
simulations of cloud-cloud collisions Higuchi et al. (2014) con-
clude that the shell structure may have been caused by the collision
between two clouds of different mass and radii, resulting in the for-
mation of a dense cloud which we now observe as G0.253+0.016.

The shell structure identified is that which we identify as the
‘C’-shaped arc belonging to tree B in § 4.2. Our kinematic anal-
ysis reveals that the arc is exclusively associated with tree B. The
fact that this feature only accounts for a small fraction of the to-
tal HNCO emission observed throughout G0.253+0.016 (roughly
∼ 17% of all fitted components) indicates that it is unlikely a relic
of the cloud formation process. While we can not rule out the pos-
sibility that G0.253+0.016 has formed via a cloud-cloud collision,
based on our combined scousepy and acorns decomposition, we
dispute that the presence of the arc is residual evidence of the for-
mation process of the cloud as a whole as hypothesised by Higuchi
et al. (2014). More generally, it is unclear whether cloud-cloud col-
lisions occur frequently enough, and on a short enough timescale,
for them to be a dominant physical mechanism in the formation of
clouds (Jeffreson et al. 2018; Jeffreson & Kruijssen 2018). Instead,
it has recently been suggested that large-scale instabilities may pro-
vide a plausible mechanism for the formation of massive and dense
molecular clouds in the CMZ, both in observations (Henshaw et al.
2016b) and in simulations (Sormani et al. 2018).

5.2.2 Scenario 2b: G0.253+0.016 is currently undergoing a

cloud-cloud collision

The concept of a cloud-cloud collision in G0.253+0.016 is not new.
It was first proposed by Lis & Menten (1998) (and further expanded
by Lis et al. 2001) as a possible explanation for both the presence
of multiple line-of-sight velocity components and the observed
widespread emission from shocked gas tracers (see also Kauffmann
et al. 2013). Lis et al. (2001) argued that the collision occurs be-
tween a molecular gas component observed at ∼ 20 km s−1 (cf. tree
B) and another at ∼ 40 km s−1 (cf. tree C).

Rathborne et al. (2014a) postulated that for a cloud collision
one may expect to observe two velocity components and a cen-
tral zone of hot and shocked gas at the collision interface. The au-
thors point out that while multiple velocity components are indeed
observed in the dense gas tracers in single-dish observations, the
same is true for those tracing hot and shocked gas. The hot and
shocked gas tracers (such as SiO) are not isolated to a single re-
gion within the cloud. Instead they have a similar distribution and
kinematic profile to the optically thin gas tracers. In the absence of
a specific collision region, Rathborne et al. (2014a) conclude that
the single cloud interpretation is more consistent with their obser-
vations (§ 5.1.1).

Using high-spatial resolution interferometric observations
however, Johnston et al. (2014) identified the presence of shocked
gas tracers and elevated gas temperatures towards the southern por-
tion of the cloud. This emission spatially coincides with our tree
D. In investigating the kinematics, the authors noted that there is
an additional velocity component, situated at ∼ 70 km s−1 which
is spatially coincident with the emission from shocked gas. These
two velocity components ‘connect’ in PV space, which led John-
ston et al. (2014) to suggest that they may be interacting.

This latter possibility was discussed by Henshaw et al.

(2016a), who compared the observed kinematics of the CMZ with
three different geometries aiming to describe the three-dimensional
structure of the CMZ. Henshaw et al. (2016a) concluded, albeit us-
ing much coarser spatial resolution observations (1′ ∼ 2.4 pc) than
Johnston et al. (2014), that the component observed at ∼ 70 km s−1

is unlikely to be associated with G0.253+0.016. The emission from
the ∼ 70 km s−1 component is morphologically distinct from that of
G0.253+0.016 (despite overlapping in projection), and is more ex-
tended (with projected extent > 150 pc), appearing to connect to the
molecular clouds closest in projection to Sgr A∗ (i.e. the 20 km s−1

and 50 km s−1 clouds). In each of the model geometries discussed
by Henshaw et al. (2016a), the 70 km s−1 component is unrelated
to G0.253+0.016. Given the observational evidence that is cur-
rently available, we therefore conclude that G0.253+0.016 and the
70 km s−1 velocity component are most likely spatially distinct and
non-interacting.

Despite the aforementioned discrepancy with the 70 km s−1

component, we can not rule out the possibility that interaction be-
tween sub-clouds within G0.253+0.016. The location of elevated
gas temperatures and shocked gas emission identified by Johnston
et al. (2014) is spatially coincident with our tree D, which sits at the
interface of trees B and C (caution: in PPV space). Indeed, our anal-
ysis shows that this location in tree D displays an enhancement of
HNCO emission (referred to as the ‘tiled bar’ in Mills et al. 2015;
cf. the bottom right hand panel of Fig. 7). Moreover, Fig. 11 demon-
strates that velocity dispersions (σvlos,1D) measured within tree D
are on average greater than those measured throughout the other
identified components. This could indicate that the interaction of
sub-structure within G0.253+0.016 may play an important role in
setting the internal dynamics of the cloud as well as its appearance
in shocked gas tracers (see also Lis et al. 2001; Kauffmann et al.
2013).

6 THE ACORNS VIEW OF G0.253+0.016: ‘THE BRICK’

IS NOT A BRICK

The kinematic analysis presented in § 3 and § 4 provides new and
unique insight into the structure of G0.253+0.016 and the phys-
ical processes that are important (or unimportant) in shaping its
appearance. The discussions presented in § 5.1.1 and § 5.1.2 en-
able us to conclude that, globally, emission from the HNCO J =

4(0,4)−3(0,3) transition ∼ 3 mm is both likely to be optically thin
and not widely depleted. Consequently HNCO is likely a reliable
tracer of the internal structure and dynamics of the cloud. Our inter-
pretation is therefore that, rather than a single, coherent, centrally-
condensed cloud with depletion in its cold interior, G0.253+0.016
is a complex, hierarchically-structured molecular cloud exhibiting
an intricate network of velocity components situated along the line-
of-sight. ‘The Brick’ is not a brick.

Despite the aforementioned interpretation, one should always
approach the connection between PPV space and true physical 3-D
space with caution (as demonstrated by e.g. Beaumont et al. 2013;
Clarke et al. 2018). However, both the arc (top right hand panel in
Fig. 7) and the ‘tilted bar’ (bottom right) have both been identified
in earlier works on G0.253+0.016, in a variety of molecular lines
(Higuchi et al. 2014; Mills et al. 2015). acorns has uniquely pro-
vided the first evidence that these features: i) were also present in
datasets in which they had previously not been identified, but were
simply masked by the kinematic complexity of the data; and ii)
are coherent in both (projected) space, velocity, and velocity dis-
persion. A key result of our analysis therefore is that acorns has

MNRAS 000, 1–29 (2019)



20 J. D. Henshaw et al.

Figure 14. A close up view of the immediate environment of
G0.253+0.016. The background image is equivalent to Figure 1, but here
we display some of the additional external factors which may play a signif-
icant role in the evolution of G0.253+0.016. The red ellipse highlights the
prominent supernova remnant, G0.30+0.04 (Kassim & Frail 1996; LaRosa
et al. 2000) and the dashed green ellipse is a supernova remnant candidate,
G0.224+0.032 (Ponti et al. 2015). The white circle highlights the location
of X-ray binary 1E1743.1−2843 (Porquet et al. 2003). The size of the circle
corresponds approximately to the spatial extent of the emission observed
with XMM − Newton (see Ponti et al. 2015). Filled cyan points indicate
the locations of Paschen α emitting sources obtained with the HST (Dong
et al. 2011). The white shaded region shows the footprint of the HST obser-
vations. The filled red circles indicate the locations of Wolf-Rayet stars, O
supergiants, and B supergiants, obtained by (Mauerhan et al. 2010). Finally,
the blue (near side) and yellow (far side) lines indicate the orbital model of
the CMZ derived by Kruijssen et al. (2015), with the arrows depicting the
direction of gas motion.

blindly identified structures that appear to be both physically mean-
ingful and statistically different from one another, evident through
their morphologically distinct emission features (Fig. 7) as well as
their differing internal dynamics (Figs. 3 and 11).

So what is shaping the structure of the cloud? It is likely that
G0.253+0.016 is a product of its complex and dynamic environ-
ment. A key result of recent hydrodynamical simulations is that the
small scale cloud structure of G0.253+0.016 is consistent with the
cloud being sculpted by the Galactic dynamics of the CMZ (Dale
et al. 2019; Kruijssen et al. 2019), but see also the simulations of
Sormani et al. 2018, where gas clouds are clearly influenced by or-
bital dynamics). A side-by-side comparison between the dust con-
tinuum observations presented in Fig. 8 (Rathborne et al. 2014b)
and simulated ALMA observations of clouds orbiting the Galactic
centre gives good qualitative agreement in terms of global morphol-
ogy and the complex spatial structure of G0.253+0.016 (Kruijssen
et al. 2019, see their Fig. 6). These simulations demonstrate that
high column densities, global velocity gradients, flattened cloud
morphology, and inclination on the plane of the sky all naturally
occur as a result of the influence of the background gravitational
potential and shearing motions induced by eccentric orbits.

In addition to the large-scale orbital dynamics that may shape
the cloud structure, there may be further external factors that
play a significant role in shaping the structure and evolution of

G0.253+0.016. In Figure 14, we show a zoom of the three-colour
Spitzer GLIMPSE image in Fig. 1, however, here we highlight
some of the main features in G0.253+0.016’s surrounding envi-
ronment. As can be seen, the cloud overlaps in projection with
the prominent supernova remnant G0.30+0.00 (also, G000.3+00.0,
G0.33+0.04, G0.4+0.1; red ellipse; Kassim & Frail 1996; LaRosa
et al. 2000). Additionally, Ponti et al. (2015) identify another super-
nova remnant candidate, G0.224+0.032,21 located directly to the
(Galactic) west of G0.253+0.016 (dashed green ellipse). The high
extinction of the cloud means that the soft X-ray emission is par-
tially obscured by the cloud. Nevertheless, Ponti et al. (2015) argue
that the properties of G0.224+0.032 are consistent with those of a
supernova remnant, but that the true size and energy are difficult to
estimate due to the obscuration.

Also indicated in Figure 14 are the positions of massive stars
located towards G0.253+0.016. The filled cyan points indicate the
locations of Paschen α emitting sources obtained with the Hub-
ble Space Telescope/Near-Infrared Camera and Multi-Object Spec-
trometer and Multi-Object Spectrometer (HST/NICMOS) identi-
fied by Dong et al. (2011) and the filled red circles indicate the
locations of Wolf-Rayet stars, O supergiants, and B supergiants,
obtained by Mauerhan et al. (2010). Dong et al. (2011) argue that
the majority of these sources are most likely evolved massive stars
(M∗ > 7 M⊙) with strong stellar winds. The source locations are
categorised into four different groups: i) & ii) those associated with
the young massive clusters the Arches and Quintuplet; iii) those lo-
cated with the nuclear star cluster; iv) and field sources outside the
main clusters. Although the footprint of the observations does not
include G0.253+0.016, there is a considerable number of field mas-
sive stars spread throughout the observed region. Feedback from
such massive stars has the potential to influence the molecular gas
in this environment. Indeed, it has been argued that the O4-6 su-
pergiant, which is situated immediately to the (Galactic) east of
G0.253+0.016 (that which lies within the boundary of the red el-
lipse in Fig. 14), may be responsible for the ionisation of the exte-
rior of the cloud in this direction (Mills et al. 2015).

Although projection effects may play a role in determining
whether or not these features indeed influence the structure of
G0.253+0.016; the fact remains that G0.253+0.016 displays com-
plex internal dynamics, both in terms of velocity gradients and
supersonic velocity dispersions, as well as elevated gas tempera-
tures, and a prevalence of emission from tracers of shocked gas.
The complex interplay of these large-scale (e.g. Galactic dynam-
ics) and comparatively small-scale (e.g. feedback) effects may all
contribute in sculpting the physical structure of G0.253+0.016, and
therefore its star formation potential.

7 CONCLUSIONS

We have performed a comprehensive study of the dynamics and
physical structure of G0.253+0.016. To facilitate this study we have
developed two pieces of software, both of which we make avail-
able to the community. The first, scousepy, is a redevelopment of
the spectral line fitting algorithm first presented by Henshaw et al.
(2016a). The second, acorns, is a hierarchical clustering algorithm
designed specifically for use with discrete data such as that out-
put by scousepy. Combined, these algorithms have helped us to

21 Note this is labelled as G0.224-0.032 in Ponti et al. (2015).
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develop a new view of G0.253+0.016. Our main conclusions are
summarised below.

(i) We have performed a full kinematic decomposition of the
HNCO ALMA data, quantifying and measuring the spectral lines
despite their well-known complexity. Globally, the kinematic struc-
ture of G0.253+0.016 appears to show two dominant features in
position-position-velocity space, one situated at ∼ 35− 50 km s−1

and another which ranges from ∼ 0−30 km s−1. Both features have
global velocity gradients in the north-south direction (in equatorial
coordinates or north east-south west in Galactic) following the
major axis of the cloud. However, the magnitude of the velocity
gradient across the latter feature is about a factor of ∼ 2 greater
than that across the former. This presents a more complex picture
than that of a singular cloud exhibiting the hallmarks of rotation as
has been suggested in previous works (e.g. Rathborne et al. 2014a;
Federrath et al. 2016).

(ii) A striking feature of our scousepy decomposition is the
‘wiggly’ nature of the kinematic substructure. Oscillatory velocity
gradients appear ubiquitously throughout the cloud. However,
unlike those identified on larger scales (Henshaw et al. 2016b),
which display a characteristic wavelength and amplitude, these
oscillations appear more stochastic. We will quantify these oscilla-
tions further in a future publication (Henshaw et al. in preparation).

(iii) Velocity dispersions measured along the line-of-sight
(extracted directly from spectral line fitting) are a factor of ∼ 2
below those derived from moment analysis due to the presence
of multiple velocity components identified within the spectra.
On average we measure 〈σvlos,1D〉 = 4.4 km s−1, with a standard
deviation of 2.1 km s−1. Assuming a fixed temperature of ∼ 60K,
this translates into a Mach number estimate of Mσvlos

,3D ∼ 16.5.
Although these velocity dispersions are broader than those pre-
dicted from the steep linewidth-size relationships of Shetty et al.
(2012) and Kauffmann et al. (2017a), these results add to mounting
evidence for the existence of narrow (. a few km s−1) lines on
small spatial scales in CMZ clouds.

(iv) ∼ 98% of the scousepy decomposition data are clustered
using acorns. We find that the dynamics are dominated by four
main features containing > 50% of the data.

(v) There are important differences between the four main
hierarchical structures (referred to as ‘trees’). The dominant tree
(C), situated at a mean velocity of 〈v〉 ∼ 37.0 km s−1, is most
similar to the intensity distribution observed in dust continuum ob-
servations giving the cloud its physical appearance as we observe
it on the plane of the sky. Tree B (〈v〉 ∼ 16.5 km s−1) exhibits a
prominent arc shaped feature which has been noted in previous
studies (Higuchi et al. 2014; Mills et al. 2015). Out of the two
smaller trees, D (〈v〉 ∼ 33.1 km s−1) displays a prominent linear
feature associated with elevated gas temperatures and velocity
dispersions. Finally, tree A (〈v〉 ∼ 2.9 km s−1) extends towards the
north of the cloud in the direction of dust ridge cloud ‘b’ which
has a similar velocity ∼ 3.4 km s−1 (Henshaw et al. 2016a). While
many of these features have been identified previously in the
literature, a key and unique element of our analysis is that acorns
provides the first evidence that these features are coherent in both
(projected) space and velocity. Moreover, acorns has extracted
these features blindly from the observational data. This indicates
that these features were already present in data such as the HNCO

emission initially presented by Rathborne et al. (2015), but were
masked by the kinematic complexity of the cloud.

(vi) We compare the trees’ mean line-of-sight velocity dis-
persions with the fluctuations in the centroid velocity across the
plane of the sky, finding 〈σvlos,1D〉 = {5.3,4.9,4.0,5.8} km s−1

and σvpos,1D = {3.5,5.2,4.6,4.5} km s−1, respectively. The ratio of
these two measurements yields 〈σvlos,1D/σvpos,1D〉 = 1.2 ± 0.3. We
speculate that this isotropy in the velocity fluctuations may contain
important information regarding the cloud geometry. Namely, that
the line-of-sight extent of the cloud components are approximately
equivalent to that in the plane of the sky.

(vii) We argue that emission from the J = 4(0,4)− 3(0,3) tran-
sition of HNCO is (globally) optically thin, and therefore is a good
tracer of the internal dynamics of the cloud overall. We disfavour
the interpretation that G0.253+0.016 is a centrally-condensed
molecular cloud with depletion in its cold interior, as was proposed
by Rathborne et al. (2014a), since the position-position-velocity
profile would necessitate either a strong increasing gradient in
density from south to the north of the cloud (or alternatively
decreasing temperature), which is not observed.

(viii) We do not rule out the possibility that the merger of
sub-structures within G0.253+0.016 may play an important role
in producing shocked gas emission, elevating the gas temperature,
and raising the velocity dispersion of the gas. However, we dispute
the conclusion of Higuchi et al. (2014) that the arc emission
feature is evidence that G0.253+0.016 has formed via cloud-cloud
collisions. Our kinematic analysis demonstrates that emission from
the arc feature is just a small fraction of the total cloud emission.
Therefore it is unlikely that this is a relic signature of the formation
mechanism of the cloud as a whole.

(ix) Finally, we discuss our findings in the context of the
large-scale kinematics of the CMZ. G0.253+0.016 is a complex,
hierarchically-structured molecular cloud exhibiting an intricate
network of velocity components situated along the line-of-sight;
‘the Brick’ is not a brick. We argue that the morphology is most
likely a product of the tangled interplay of both Galactic dynamics
and feedback present in the CMZ. Recent simulations of molecular
clouds orbiting galactic centres indicate that complex cloud struc-
ture is a natural outcome of the influence of the background gravi-
tational potential and shearing motions induced by eccentric orbits
(Sormani et al. 2018; Dale et al. 2019; Kruijssen et al. 2019). De-
tailed kinematic analysis of such simulations is highly promising
for further constraining the physical mechanisms shaping molecu-
lar cloud structure within the CMZ.

In the near future, studies such as the CMZoom survey (the
Sub-Millimeter Array’s legacy survey of the CMZ; Battersby et al.
2017, Battersby et al. in preparation) as well as future ALMA sur-
veys will facilitate a uniform description of molecular cloud dy-
namics throughout the CMZ. This will help to provide a statistical
understanding of the earliest phases of star formation in this com-
plex and dynamic environment.
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APPENDIX A: SCOUSEPY DECOMPOSITION

Here we include additional information regarding the scousepy fit-
ting procedure. The left hand panel of Fig. A1 displays the re-
sult of the new implementation for setting variable spectral av-
eraging area (SAA) sizes based on spectral complexity. The pro-
cedure is outlined in § 3.1. Briefly however, we plot a map of
∆vm ≡ |v1−vpeak | ∼ 0, where v1 is the first order moment and vpeak

is the velocity of the channel containing the peak emission. We also
plot a histogram of the individual pixel values. In the case of the
ALMA HNCO observations of G0.253+0.016 we divide the data
up into three logarithmically-spaced ∆vm bins, which we use to de-
fine the size of our SAAs and are overlaid on the ∆vm map. This
enables the user to pay close attention to regions which have line
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Table A1. scousepy: Global fitting statistics. See § 3.1 for details.

Output statistic Full resolution
Ntot 315219

Ntot,SAA 135020

NSAA 2355

NSAArefine [527, 1141, 687]

Nfit 133065

Ncomp 457264

Ncomp/Nfit 3.4

Norig/Nfit (%) 96.4

Nrefit/Nfit (%) 2.5

Nalt/Nfit (%) 1.1

Ntot Total number of pixels in the mapped area.
Ntot,SAA Total number of pixels included in the coverage.
NSAA Total number of spectral averaging areas.
NSAArefine Number of SAAs at each level of refinement (see text).
Nfit Total number of pixels fitted (automated).
Ncomp Total number of components fitted.
Ncomp/Nfit Mean number of Gaussian components per position.
Norig/Nfit Percentage of original fits in the final data product.
Nrefit/Nfit Percentage of refitted spectra in the final data product.
Nalt/Nfit Percentage of spectra with alternative solutions selected.

profiles with a greater degree of complexity. The right hand panel
of Fig. A1 highlights the locations which have best-fitting solu-
tions, with each pixel being colour-coded according the number of
velocity components identified at that location. Table A1 contains
the statistics of our scousepy decomposition.

APPENDIX B: EXTRACTING MOLECULAR GAS

KINEMATICS FOLLOWING SPECTRAL

DECOMPOSITION

As discussed in § 1, the primary aim of this study is to
obtain a detailed description of the molecular gas kinematics
of G0.253+0.016. To date, analyses of the gas kinematics of
G0.253+0.016 have predominantly relied on techniques such as
moment analysis (Rathborne et al. 2015; Federrath et al. 2016),
and dendrograms (Kauffmann et al. 2013). The former technique
is beneficial as it is simple and fast to implement, and it returns in-
formation on the pixel scale. However, taking an intensity-weighted
average velocity along the line-of-sight results in information being
lost, particularly in regions with complex LOS density and veloc-
ity structure. Conversely, the latter technique is beneficial in that
complex line-of-sight structure is accounted for as the algorithm
seeks to build a hierarchy of structure, which can be represented
graphically in the form of a dendrogram (see e.g. Rosolowsky et al.
2008). However, kinematic information is provided in the form
of intensity-weighted average quantities relating to each structure.
Further work is therefore required if one is interested in how those
kinematic quantities vary with position within a given structure on
the pixel scale.

More generally, there is an array of automatic algorithms
whose primary function is to parse and extract information regard-
ing the structure of molecular clouds and their internal dynam-
ics. These include, but are not limited to, those designed to seg-

ment and extract isolated peaks of emission for example ‘cores’,
‘clumps’, or ‘fibres’ (e.g. clumpfind, Williams et al. 1995; gauss-
clumps, Stutzki & Guesten 1990; fellwalker, Berry 2015; five,
Hacar et al. 2013), those which target the hierarchical structure
of molecular clouds (e.g. astrodendro, www.dendrograms.org;
dendrofind/quickclump, Wünsch et al. 2012; Sidorin 2017; see also
Miville-Deschênes et al. 2017), those which specifically aim to ex-
tract molecular clouds (e.g. cprops, Rosolowsky & Leroy 2006;
scimes, Colombo et al. 2015), and those which have been used to
target structure with a particular geometry, for instance filaments
(e.g. disperse, Sousbie 2011; Sousbie et al. 2011; filfinder, Koch
& Rosolowsky 2015). Despite this, there is currently no publicly
available code whose primary function is to extract hierarchical
structure within molecular clouds, thereby providing the important
connection between cores, clumps, and clouds, but which simulta-
neously retains the pixel scale information needed to study varia-
tion in the kinematics throughout each member of the hierarchy.

Our solution to this problem is the development of a new anal-
ysis tool, written in Python, named acorns (Agglomerative Clus-
tering for ORganising Nested Structures). The primary function
of acorns is to generate a hierarchical system of clusters within
discrete data. Although acorns was designed with the analysis of
spectroscopic (position-position-velocity; PPV) data in mind, it
can readily be implemented to other datasets, providing many ap-
plications.22 The following section is dedicated to describing the
methodology used by acorns.

B1 ACORNS: Agglomerative Clustering for ORganising

Nested Structures

B1.1 Introduction and description of the input parameters

acorns follows the philosophy of hierarchical agglomerative clus-
tering (HAC).23 HAC methods fall into two main categories:
‘bottom-up’ or ‘top-down’. acorns follows the bottom-up approach
in that each singleton data point begins its life as a ‘cluster’. Tradi-
tionally, clusters then merge until only a single cluster remains that
contains all of the data. The output of this technique is often vi-
sualised graphically as a dendrogram, which have become popular
in astronomy as a convenient way of representing and interpreting
the hierarchical nature of molecular clouds (e.g. Houlahan & Scalo
1992; Rosolowsky et al. 2008).

Briefly, clustering in acorns commences with the most signif-
icant data point. In the analysis presented in this work this refers to
the data point with the greatest peak intensity. However, given the
applicability of acorns to different systems, this may instead refer
to, for example, a density, column density, or mass. acorns then
descends in significance, merging clusters based on physically-
motivated user-provided criteria, until a hierarchy is established.

Input to acorns is an array of n×m dimensions, where n is the
number of parameters, at minimum 4, but in principle has no up-
per limit and depends on how many parameters the user wishes to
use during the clustering procedure. m refers to the number of data
points in the sample. As an example, in its simplest form (clustering
in two spatial dimensions), this array should consist of: x position,

22
acorns is publicly available for download here: https://github.com/

jdhenshaw/acorns.
23 More information on this technique and its philosophy can be found in
Manning et al. (2008).
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Figure B1. A flow chart depicting the steps followed by acorns during the
clustering procedure. The main loop is indicated in dark grey. The creation
of new clusters appears in green. The procedure employed during the ‘Link’
phase is described in § B1.3 and Fig. B2.

then also checked against the linking criteria supplied within
cluster_criteria.

(c) All data satisfying the clustering criteria are then cross-
referenced against the current cluster catalogue to see if they be-
long to an already established cluster within the hierarchy. If so,
a link is established and the hierarchy grows (we will expand on
this methodology in § B1.3).

(iv) Once acorns has cycled through all data points in the unas-
signed catalogue, it begins a second loop. The cluster catalogue is
first cleaned of any bud clusters and these data are used to generate
a new unassigned catalogue. This step picks up any data points that
were unable to be linked during the first pass of the algorithm.

(v) If specified by the user (relax), the clustering criteria are
relaxed and acorns performs additional loops based on this new
criteria. This helps further develop the hierarchy and this method is
described in more detail in § B1.4.

(vi) acorns then discards all remaining bud clusters since they
did not meet the criteria to become fully-fledged clusters.

acorns returns a system of clusters as its output. In a given hi-

Figure B2. A flow chart describing the growth and merging of clusters. This
strategy follows the methods of astrodendro (www.dendrograms.org)
and quickclump (Sidorin 2017), see § B1.3 for more details.

erarchy, the antecessor is the largest common ancestor of all clus-
ters within that hierarchy (note that for a given dataset there may
be multiple antecessors and each of them may or may not have de-
scendant substructure). Expanding the nomenclature typically used
in describing dendrograms (see e.g. Houlahan & Scalo 1992), an
antecessor refers to a tree in a forest of clusters. Each tree may or
may not exhibit substructure, referred to as branches and leaves.

B1.3 The growth of the hierarchy

The procedure employed by acorns during the growth of the hi-
erarchy is described in the flow chart in Fig. B2. This growth
strategy is developed following the methods of astrodendro (www.
dendrograms.org) and quickclump (Sidorin 2017). However, key
differences in the algorithms (namely working with discrete data,
rather than uniformly spaced data cubes) necessitate important dif-
ferences in the details of each step. After establishing a link be-
tween the bud cluster (see § B1.2) and already-established clusters
in the hierarchy (see step (iii)(c) in § B1.2), the next step depends
on the number of linked clusters:

(i) If no linked clusters are identified, the bud cluster is added to
the cluster catalogue as a new cluster.
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as in Fig. B1, but this time using the new relaxed criteria. The main
differences during the relax phase relate to the steps labeled ‘Find
linked clusters’ and ‘Link’ in Fig. B1, and are outlined as follows:

(i) During this phase, acorns attempts to link bud clusters
(Fig. B1) to an already-established forest (see § B1.2). It is impor-
tant to ensure that any links that are created are still strong despite
having relaxed the linking constraints.

Often the user wants to link data based on more than just posi-
tional (and intensity) information. Therefore if additional proper-
ties are considered when searching for linked clusters (e.g. the cen-
troid velocity or velocity dispersion), acorns checks these proper-
ties against those of the linked clusters. If the properties of the bud
cluster lie > 3σ away from the mean of the linked cluster proper-
ties (where σ refers to the standard deviation of that property), then
these linked clusters are prevented from creating links. This ensures
that even despite relaxing the linking constraints, only strong links
are forged.

(ii) During the relax phase, a bud cluster may be linked to mul-
tiple trees within the forest and, in some cases, it may be linked to
multiple clusters belonging to the same tree. acorns first establishes
whether or not it is possible to insert the bud cluster into the correct
position in the hierarchy. This is governed by the peak intensity of
the bud cluster, and the minimum and maximum intensity levels of
each linked cluster. If the bud cluster cannot be inserted into the
linked cluster, acorns searches downwards in the hierarchical tree
(if possible) to establish a link. If the bud cluster cannot be slotted
in at the correct level in any established tree, these linked clusters
are ignored. acorns returns a single linked cluster per tree to which
the bud cluster will be linked.

(iii) Step (iii)(c) (Fig. B2) is implemented as above, with a key
difference during the branching procedure. If a branch is to be cre-
ated, the bud cluster is firstly merged with the closest matching
cluster out of all the available linked clusters. A new branch (be-
tween multiple trees) is then created at the base of the parent hier-
archies.

B2 acorns: Clustering in 2-D

In this section we demonstrate the application of acorns to 2-D
data. The top left-hand panel of Fig. B3 depicts a clumpy ‘fila-
ment’ from which we wish to extract structural information. The
filament was generated using the clustering examples in Python’s
scikit-learn package.27 We first generate a 2-D set of data points
distributed randomly within the confines of a semi-circle with finite
width. We then convert the point density into an image by convolv-
ing the point density with a Gaussian kernel.

The top central panel of Fig. B3 shows a graphical represen-
tation of the hierarchical system identified by acorns, known as a
dendrogram. acorns picks out a total of seven ‘leaves’, which are
situated at the top of the hierarchy and highlighted in cyan, all of
which belong to a single ‘tree’ (i.e. the ‘filament’). The top right-
hand panel highlights this information on the filament image. The
leaves are indicated by cyan contours and the filament appears in
dark blue. In this particular instance we chose to search for clus-
ters using only the distance between data points as linking criteria.
Consequently this solution is identical to that found with astroden-
dro using equivalent input parameters. However, in principle (i.e. if

27 http://scikit-learn.org/stable/modules/clustering.html.

available), additional constraints could be added to the acorns link-
ing procedure, which would result in the solutions from the two al-
gorithms diverging. As an example, if one also had a measurement
of temperature at each position, that could also be included in the
clustering procedure.

The bottom panels compare this result with other struc-
ture finding algorithms commonly used in the literature, namely
clumpfind (left; Williams et al. 1995), fellwalker (centre; Berry
2015), and gaussclumps (right; Stutzki & Guesten 1990). Each of
these algorithms seeks to identify discretised islands of emission,
breaking the map up into ‘clumps’, whereas acorns (also astroden-
dro) searches for hierarchical information within data.

B3 acorns: Clustering in 3-D

A key difference between acorns and the algorithms mentioned in
§ B1.1, is that acorns is designed to work on decomposed spectro-
scopic data rather than data cubes. Analysis with acorns can there-
fore be performed in unison with such algorithms, complementing
their results by providing a detailed description of the gas kinemat-
ics.

This is illustrated in Fig. B4. Here we have generated two ‘fil-
aments’ (one of which is identical to that shown in Fig. B3). The
intensity field of both filaments is illustrated in the top-left panels
of Fig. B4. In this example, we also impose a velocity field. The fil-
aments have differing velocity gradients (also shown in the top-left
panels) and a uniform velocity dispersion (not shown). The inten-
sity distribution and velocity field of the filaments are designed in
such a way that the filaments overlap in PPV-space.

The top panels of Fig. B4 display the result of applying acorns
to this configuration. acorns identifies two clusters in the decom-
posed data. Importantly, the hierarchy associated with the blue fila-
ment is identical to that found in § B2. A corresponding hierarchy
is identified for the green filament. The top right-hand image dis-
plays a representative dendrogram of this hierarchical system.

The bottom left-hand image in Fig. B4 displays structures re-
covered by acorns in PPV-space. At the base of the image we
demonstrate how the two filaments overlap in projection and appear
as a ring. In PPV-space, we plot the velocity centroids; the data that
acorns uses for clustering. As can be seen, despite the velocity dis-
persion of the filaments being large enough such that they overlap
in PPV-space, the two clusters are distinguishable when focusing
on their centroids.

To illustrate the difference in approach between acorns and
astrodendro, the bottom right-hand image of Fig. B4 displays the
result of running astrodendro on the same data cube. The light-
coloured semi-transparent feature is a volume rendering of the main
structure identified by astrodendro (i.e. the trunk of the hierarchy),
and the darker shaded structures refer to the leaves. Herein lies
the key difference between the algorithms. Because of the blend-
ing in PPV-space between the two filaments, astrodendro, which
classifies structure as independent isosurfaces, returns a singular
doughnut-shaped structure. At no point in the hierarchy are the two
input filaments returned by astrodendro.

Encouragingly, there is close correspondence between many
of the leaves identified using both algorithms. There are some very
slight differences owing to the differences in the input parameters,
but these are small. The key difference occurs where blending in
PPV-space is observed, for example leaves #193 and #256. The rea-
son these are picked out by acorns is because these two features are
identifiable (albeit blended) as multiple velocity components in the
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