11
12

13

14
15
16
17
18
19
20
21
22
23
24

25

26
27
28
29
30
31
32
33
34
35

:' frontiers

Predicting roof pressures on a low-rise structure from freestream
turbulence using artificial neural networks

P.L. Fernandez-Caban'", F.J. Masters?, B.M. Phillips®

!Postdoctoral Research Associate, Department of Civil and Environmental Engineering, University
of Maryland, College Park, MD, USA

2Professor, Engineering School of Sustainable Infrastructure & Environment, Herbert Wertheim
College of Engineering, University of Florida, Gainesville, FL, USA

3Associate Professor, Department of Civil and Environmental Engineering, University of Maryland,
College Park, MD, USA

*Correspondence:
Pedro L. Fernandez-Caban
plferndz@umd.edu

Keywords: Low-rise building, roof pressures, upwind terrain, freestream turbulence, artificial
neural networks, backpropagation

Abstract

This paper presents a generalized approach for predicting (i.e., interpolating) the magnitude and
distribution of roof pressures near separated flow regions on a low-rise structure based on freestream
turbulent flow conditions. A feed-forward multilayer artificial neural network (ANN) using a
backpropagation (BP) training algorithm is employed to predict the mean, root-mean-square (RMS),
and peak pressure coefficients on three geometrically scaled (1:50, 1:30, and 1:20) low-rise building
models for a family of upwind approach flow conditions. A comprehensive dataset of recently
published boundary layer wind tunnel (BLWT) pressure measurements was utilized for training,
validation, and evaluation of the ANN model. On average, predicted ANN peak pressure coefficients
for a group of pressure taps located near the roof corner were within 5.1, 6.9, and 7.7% of BLWT
observations for the 1:50, 1:30, and 1:20 models, respectively. Further, very good agreement was found
between predicted ANN mean and RMS pressure coefficients and BLWT data.

1 Introduction

Boundary layer wind tunnel (BLWT) testing is still considered the primary experimental instrument to
accurately reproduce and assess wind-induced loads on building structures. The continued dependence
on wind tunnels is ascribed, in part, to the inability of computational (e.g., CFD) methods for accurately
capturing local pressure fields in flow separating regions around sharp edged bluff bodies (Ricci et al.,
2017); these regions typically produce the largest peak loads on low-rise structures. Furthermore, prior
experimental work (e.g., Hillier and Cherry, 1981; Gartshore, 1984; Akon and Kopp, 2016; Saathoff
and Melbourne, 1997) in BLWTs has revealed the strong influence of the turbulence characteristics of
the incident flow on the spatial distribution of local pressures near separating shear layers developed
around surface-mounted prisms (e.g., low-rise structures). These localized pressure fields directly
affect the overall (i.e., global) flow organization, which often leads to inaccuracies in numerical (e.g.
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LES) results when attempting to recreate the flow behavior around sharp-edged bluff bodies; even
when simple geometries are considered (e.g., Bruno el al., 2014). Alternatively, BLWTs experiments
have proven to be an effective tool for properly simulating the turbulence properties of approach flows
and accurately capturing the complex pressure fields acting on sharp-edged bluff bodies. Yet, due to
cost and time constraints, experiments in the BLWT commonly entail a limited number of building
configurations and approach flow conditions. Consequently, this study makes use of existing
experimental BLWT datasets and artificial neural networks (ANN) to assist in the development of
robust and reliable mathematical models for accurately quantifying peak wind loading on low-rise
structures and their inherent dependence on freestream turbulent flows.

Adequate assessment of wind-induced loads in the BLWT requires proper simulation of the
turbulent structures present in the lower part of the atmospheric boundary layer (ABL). In the case of
low-rise structures, previous studies have suggested that achieving the desired full-scale turbulence
characteristics at (or near) the model height is one of the main requirements for accurately quantifying
the magnitude and distribution of surface pressures in separated flow regions (e.g., St. Pierre et al.,
2005; Tieleman, 1992; Tieleman and Reinhold, 1978); flow parameters such as the roughness length
and the displacement height are often poor indicators of the local pressure fields in the separated flow
region. Akon and Kopp (2016) investigated the structure of the separation bubble near the leading edge
of the roof of a generic low-rise building model immersed in several turbulent boundary layer flows.
They found that the turbulence properties of the approaching flow affected both the pressure
distributions and the mean size of the separation bubble. Subsequently, Fernandez-Caban and Masters
(2018) independently confirmed these observations through a comprehensive series of BLWT
experiments for a family of boundary layer flows. The two studies focused on approach flows acting
parallel and perpendicular to the building dimension; i.e., cornering wind directions were not
investigated.

The present work aims at developing a generalized high-fidelity approach to accurately predict
(i.e., interpolate) the distribution of surface pressures near separated flow regions on a low-rise
structure based on freestream turbulent flow conditions. A robust feed-forward multilayer artificial
neural network (ANN) using a backpropagation (BP) training algorithm is employed to analytically
predict the mean, RMS, and peak pressure coefficients on the roof of a low-rise structure given the
freestream turbulence intensity (at eave height) and the normalized plan roof coordinates. A robust
feed-forward multilayer artificial neural network (ANN) using a backpropagation (BP) training
algorithm is employed. ANNs are biologically inspired mathematical models well suited for solving
nonlinear multivariate modeling problems. ANNs generate complex functional relationships (Turkkan
and Srivastava, 1995) to produce analytical models through training using experimental (or
computational) datasets, even when given noisy or incomplete information (Haykin, 1994), thus
providing a resourceful alternative to other multivariate/nonlinear interpolation techniques such as
regression polynomials and kriging methods (Franke, 1982).

Several works can be found in literature which apply ANNs for characterizing wind load effects
on building structures. For instance, Chen et al. (2003) employed a backpropagation training algorithm
to predict mean and root-mean-square (RMS) pressures acting on gable roofs of low-rise buildings.
Subsequently, Gavalda et al. (2011) further expanded on this work by presenting an ANN driven
interpolation methodology that incorporated variable plan dimensions and roof slopes. Additionally, a
fuzzy neural network (FNN) approach was developed in Fu et al. (2005) for the prediction of mean
pressure distributions and power spectra of fluctuating wind pressures on a cantilevered flat roof. The
use of ANNSs have also been examined in the evaluation of tall wind-exited buildings. For example,
Zhang and Zhang (2004) applied a radial basis function (RBF) neural network to predict and analyze
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wind-induced interference effects from surrounding obstructions on tall buildings. More recently,
Dongmei et al. (2017) coupled a backpropagation neural network (BPNN) with proper orthogonal
decomposition (POD-BPNN) for the prediction of wind-induced mean and RMS pressures acting on
the surface of a high-rise building. The current work further exploits the capabilities of ANNs by
integrating upwind terrain parameters into a network to produce functional relationships between the
turbulence features of the approaching flow and the peak pressure loading on bluff bodies.

A large dataset comprising an extensive series of aecrodynamic pressure tests conducted in a
large BLWT was utilized for training, validation, and testing the ANN model. The dataset encompasses
33 different terrains, three building model scales (1:20, 1:30, and 1:50) and three wind directions
(parallel and perpendicular to the ridgeline and cornering), which equates to nearly 300 independent
experiments. The present work focuses on the cornering (i.e., 45°) wind direction, critical for roof
suction pressures. The 33 upwind terrains simulate approach flow conditions ranging from marine (i.e.,
smooth) to dense suburban exposures.

The predictive capabilities of ANN can supplant the need for additional experiments to
investigate terrain effects in the BLWT, which typically entail laborious and time consuming
alterations of the upstream terrain (e.g., roughness grid) to achieve targeted roughness parameters and
turbulent characteristics at the test section. In addition, the approach can be utilized to further expand
existing aerodynamic databases; which commonly cover a limited number of upwind terrain conditions
(e.g., open and suburban); and provide a tool for design practitioners to rapidly and reliably quantify
the effects of changes in upstream terrain and extreme pressure loading acting on low-rise structures.

2 Experimental Dataset

The experimental dataset applied in this study comprises a series of BLWT pressure tests conducted
on a 1:20, 1:30, and 1:50 scaled rigid building models of the Wind Engineering Research Field
Laboratory (WERFL; Levitan and Mehta, 1992ab) experimental building. The complete dataset is
publicly accessible through the Natural Hazard Engineering Research Infrastructure (NHERI)
DesignSafe cyberinfrastructure web-based research platform (Fernandez-Caban and Masters, 2017;
dataset). BLWT experiments were conducted at the University of Florida (UF) NHERI Experimental
Facility. The UF BLWT is a low-speed open circuit tunnel with dimensions of 6 m W x3 m H x 38 m
L. The maximum blockage ratio in the tunnel was less than 0.8%. A more detailed description of the
UF BLWT can be found in Ferndndez-Caban and Masters (2018).

2.1 Model geometry, tap layout, and pressure measurements

The three WERFL building models were instrumented with 266 pressure taps; 152 roof taps and
114 wall taps. The tap location followed the layout used in the 1:100 WERFL building model of the
NIST aerodynamic database (Ho et al., 2003; Test 7, ST3/ST4), however 60 additional taps were added
on the roof of the model to improve the spatial resolution of the pressure field in this region, as shown
in Figure 1. The plan dimensions in Figure 1 are shown in terms of the eave height of the model H.
The full-scale dimensions of the WERFL building are 45 ft [13.7 m] X 30 ft [8.9 m] X 13 ft [3.96 m]
(Ya:12 roof slope; i.e., aerodynamically flat). A cornering (a = 45°) wind direction was considered in
this study.

Simultaneous pressure measurements were recorded using eight high-speed electronic pressure
scanning modules from Scanivalve (ZOC33, 2016). Pressure taps were connected to the modules using
122 cm long urethane tubing. Pressure coefficients shown in this paper are computed as the ratio of the
differential pressure and the mean velocity (dynamic) pressure at the eave height of the model:
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p(t) — po

G(®) = 1/2pUZ

(1)

where p(t) is the (absolute) pressure measured, p, is the reference (static) pressure, p is the air density,
and Uy is the mean streamwise velocity at eave height estimated from the mean reference velocity
pressure in the freestream at z = 1.48 m above the floor. The reference velocity pressure was converted
to the eave height of the building model using an empirical adjustment factor (k) obtained from flow
measurements with the model removed; Uy = kU,.f, where Uy is the mean velocity at z = 1.48 m.
Static reference pressures (py) were taken from the static port of the Pitot tube to ensure stable
measurements with negligible fluctuations. Air density (p) was calculated from the air temperature,
barometric pressure, and relative humidity measured during each test.

The pressure signals were digitally filtered to remove resonance and damping effects in the tubes
(Irwin et al., 1979) using transfer functions following the approach described in Pemberton (2010).
The test durations for the 1:20, 1:30, and 1:50 models were 300, 180, and 120 seconds, respectively.
These equate to a full-scale duration of approximately 30 min for the three models—assuming a 1/3.33
velocity scale. Data was recorded at sampling rate of 625 Hz. The pressure measurements in the dataset
are digitally filtered at 200 Hz using a 3™ order Butterworth low-pass filter.

2.2 Terrain simulation

Simulation of upwind terrain roughness is achieved through the Terraformer, an automated roughness
element grid that rapidly reconfigures the height and orientation of 1116 roughness elements in a 62 X
18 grid to produce desired upwind terrain conditions along an 18.3 m fetch (Fernandez-Caban and
Masters, 2017). Roughness elements are 5 cm X 10 cm in plan, and are spaced 30 cm apart in a
staggered arrangement. Height and orientation can be varied from 0 mm—160 mm and 0-360 degrees,
respectively. The turbulence properties of the approach flow at the test section were varied by adjusting
the configuration of the Terraformer upwind of the model. Wide and narrow edge windward element
orientations were applied (Figure 2). Roughness elements were elevated from h =0 mm—160 mm using
increments of 10 mm, thus producing 16 upwind terrain conditions for each element orientation;
totaling 33 terrains including the base floor (i.e., flush) case. Reynolds number (Re = HUy /v) ranged
from 3.2 x 10* (Uy~6 m/s and H = 79.2 mm; 1:50 model) to 14.9 x 10* (Uy~11.4 m/s and H = 198
mm; 1:20 model). Table 1 summarizes the freestream turbulence levels at the eave height of the models
for the range of roughness element heights and orientations examined.

Figure 3 illustrates two representative longitudinal turbulence spectra of the freestream measured
at eave height of the model z = H; H = 79.2, 132, 198 mm for the 1:50, 1:30, and 1:20 models,
respectively; for sparse and dense open terrain simulations. Measurements were collected at the center
of the test section using Cobra velocity probes with the model removed. The spectra are normalized by
the squared of the mean velocity (U?) at z = H. The von Karman spectrum—adopted in ESDU 83045
(1983)—was fitted to the data using equivalent full-scale roughness lengths zy; =0.01 m and 0.087 m.
These roughness lengths represent the two WERFL site conditions (i.e., exposures) examined for the
1:100 WERFL model in the NIST aerodynamic database; z, =0.01 m (ST3) and z, = 0.087 m (ST4).
The sparse open exposure was achieved in the UF BLWT for a roughness element height h = 40 mm
while h = 90 mm produced the dense open terrain simulation. Both examples used the wide edge
windward element orientation in the Terraformer.

3 Artificial Neural Networks (ANNs)

This is a provisional file, not the final typeset article
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ANNSs are biologically inspired mathematical methods which loosely resemble the complex functions
of the human brain for learning and pattern recognition (Nasrabadi, 2007). Common ANN systems
contain a collection of interconnected parallel processing units, called neurons. These neurons can store
experimental knowledge and transmit signals to other neurons to establish complex functional
relationships between inputs and outputs. Consequently, ANNs have been frequently used for
addressing multivariate models, nonlinear models, and interpolation problems for function
approximation and classification (Ghosh and Shin, 1992).

The most widely utilized ANN model is the multilayer feedforward perceptron (MFP). The
current work implements a backpropagation (BP) neural network (Rumelhart and McCelland, 1986),
which is a type of MFP that integrates error backpropagation training algorithms into the network. The
generalized schematic of the BP-ANN architecture is illustrated in Figure 4. The network consists of a
series of layers; an input layer, an output layer, and one or more hidden layers—e.g., the network in
Figure 4 is composed of two hidden layers. Each layer is made up of multiple nodes (i.e., artificial
neurons) operating in parallel. It is common practice to define ANNs in a simple notation form. For
example, the ANN architecture in Figure 4 can be defined as m—r- k—n, where m is the number of
inputs, n is the number of outputs, and r and k are the number of neurons in the first and second hidden
layers, respectively.

In ANNES, artificial neurons in consecutive layers are connected through a series of links. These
links act as signal transmitters; resembling the synapses in a biological brain; and are allocated with
adaptive weights which are calibrated during the training process using backpropagation algorithms.
The training of BP networks typically consists of two stages; feedforward (or activation propagation)
and error backpropagation. Figure 5 depicts the two stages for neuron j in a generic single layer BP
ANN. During the feedforward stage, the input signal to the neuron (s;) is computed as the sum of the
weighted inputs and bias, as show in Figure 5, where W; is the weight of the link connecting neuron i
of the preceding layer and neuron j, x; is the input from neuron i of the previous layer, and b; is the
bias of the current neuron. The output signal y; for the neuron j is then obtained by passing the input
signal s; through a nonlinear transfer (activation) function. Common activation functions used in ANN
for neurons in the hidden layer include the tangent sigmoid and the logarithmic sigmoid (Basheer and
Hajmeer, 2000). In the case of multilayer ANNS, the output signal y; is transmitted to the neurons of
the following layer as an input signal.

At the end of the feedforward stage, the final output vector is compared to a target output;
commonly through calculation of the mean squared error (MSE). The error is then back-propagated
from the output layer to the input layer using a backpropagation training algorithm to adjust weights
of the connecting links for minimization of the MSE. The error backpropagation stage continues until
a convergence criteria is reached. The Levenberg—Marquardt (LM) backpropagation algorithm was
selected in this study. The algorithm was designed to approach second-order training speed without
having to compute the Hessian matrix, and has proven very efficient when training networks with up
to a few hundred weights (Hagan and Menhaj, 1994); which is the case in the present study.

4 Predicting mean, RMS, and peak roof pressures using ANN

Designing an ANN model requires the selection of multiple parameters; e.g., number of inputs and
output, number of hidden layers, and the number of neurons in each layer. These parameters often have
a strong influence in the performance and computational efficiency of the network. Currently, there
are no general rules—and very few guidelines—for defining the optimum ANN architecture.
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Therefore, trial-and-error approaches are regularly employed to calibrate the network to achieve the
best ANN structure for a particular problem (e.g., Bre et al., 2018). A common approach; which is
adapted in this study; is to begin with a small number of neurons and progressively increase their
number until achieving adequate training results and observing diminishing returns with further
additional neurons.

In the current work, an ANN using a backpropagation training algorithm was employed to
predict the distribution of mean, RMS, and peak pressure coefficients on the roof of a low-rise structure
from the turbulence characteristics of the freestream. The ANN parameters are summarized in Table
2. The iputs to the ANN are the freestream turbulence intensity at eave height (I, 5) and the
normalized roof coordinates (x/H and y/H), while the ANN outputs are the mean (Cp mean), RMS
(Cprms), and peak (Cp peqr) pressure coefficients for all 152 roof taps (Figure 1) of each model. Peak
values are estimated from a Fisher-Tippett Type I (Gumbel) distribution for a 78% probability of non-
exceedance (Cook and Mayne, 1979). Although mean, RMS and peak C,, values were obtained from
time series, the time-varying C,, signal is not an output of the ANN; i.e., statistical analysis of the
pressure time series was performed prior to training the network. The hyperbolic tangent sigmoid
function was selected as the transfer function for the hidden layers. The function can generate values
in the range [-1, 1], and thus can accommodate for both positive (e.g., C,,ms) and negative (e.g.,
Cp,pear) outputs. Linear transfer functions are used in the output layer. As previously mentioned, only
the 45° wind direction is considered.

For each model scale, the complete BLWT dataset was divided into subsets for training,
validation, and testing of the ANN. The training data is used to adjust the weight and bias values of
each neuron during ANN training (Figure 5). The validation data subset supervises the training
process; without performing weight/bias adjustments; and can terminate the training process if the error
(i.e., observed vs. predicted) of the validation subset increases repeatedly for a specified number of
epochs (i.e., iterations). That is, the validation data serves as a stopping criteria during ANN training
to improve generalization and avoid overfitting of the training data. Finally, the testing data subset is
used to independently assess the predictive capabilities of the ANN model after training; i.e., the test
data does not participate in the training process.

During training of the ANNs, multiple training initializations runs were performed due to the
random nature of the weight and bias initialization functions in feedforward ANNs, which often
produce variations in the training results. The termination criteria for the training process was chosen
as the magnitude of the performance gradient (measured by the LM algorithm) and the number of
validation checks. As training progresses, the performance gradient becomes significantly small. The
training process terminates if the magnitude of the gradient falls below 0.00001. Further, the training
was halted after eight validation checks. The number of validation checks represents the number of
consecutive iterations that the validation performance fails to decrease.

Upwind terrains for both narrow and wide edge roughness element orientations were used for
training the network; including the smoothest (h = 0 mm; i.e., flush floor) and roughest (h = 160 mm,
wide edge) Terraformer configurations. These are listed in Table 2. The training data comprised nearly
76% of the upwind terrains. Four narrow edge element heights were chosen for validating the training
data. Finally, roughness heights h = 40, 80, 120, and 140 mm for a wide edge windward orientation
were selected to test the ANN.

5 Results

This is a provisional file, not the final typeset article
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5.1 ANN Training Performance

Figure 6 depicts subplots of performance histories during ANN training for the 1:50, 1:30, and 1:20
datasets. The performance function was chosen as the combined MSE of the predicted (i.e., ANN) and
observed (i.e., BLWT) mean, RMS, and peak C, values. The training, validation, and test subsets each
have predicted and observed values for the three C, statistics. The LM backpropagation algorithm was
employed to optimize (i.e., minimize) the MSE. At the end of the training process, the ANN for the
1:50 model achieved the lowest MSE from the three model scales, with a training performance of MSE
= 0.021. Nevertheless, the three ANNs achieved satisfactory performance results.

Linear regression was performed on the ANN C, outputs and BLWT data to assess the
predictive power of the network. Figure 7 includes subplots of ANN outputs (i.e., predictions) of mean,
RMS, and peak pressures plotted against observed BLWT data (i.e., target) for the three WERFL
models. Each subplot in Figure 7 includes data points from all 152 roof taps and upwind terrains
considered in the training, validation, and testing of the network. Error indices computed from least-
squares linear fits of the data are also reported in the figure; i.e., root mean squared error (RMSE),
mean absolute error (MAE), and coefficient of determination (R?); and are defined as

n
1
RMSE = —E(Oi — P2 (2)
n i=1
1w 3)
MAE = —Z|0i - Pll
n ]
i=1
_ 2i=1(0; — P;)? 4)

R?=1 —
100, -0)

where 0; is the observed BLWT data, P; is the predicted ANN data, O represents the mean value of
the observed data and n represents the total number of data points in the subset. Values of RMSE and
MAE near zero and R? close to unity indicate high predictive capability of the ANN model. Very good
agreement is observed in mean, RMS, and peak pressures for all model scales and data subsets; i.e.,
training, validation, and test data. Particularly, the ANN model displays remarkable predictive
capabilities on the test data; which is not used during the training process.

Table 3 summarizes the test data error indices for the three C, statistics individually. In the three
model scales, peak pressure coefficients show higher values of MAE and RMSE when compared to
RMS and mean C,,. For instance, MAE = 0.215 for the peak C, data of the 1:50 model, while the RMS
and mean MAE are 0.042 and 0.045, respectively. Further, MAE and RMSE of peak pressures appear
to increase marginally for larger building models. The larger errors in peak C,, data can be attributed
to the inherent uncertainties (i.e., variability) when estimating pressure extrema (Gavanski et al., 2016;
Huang et al., 2018) which results in more spread in the data. This is reflected in Figure 7 where peak
pressures (magenta markers) display a more scattered behavior than RMS and mean pressure data.
Nevertheless, the R? of the peaks reported in Table 3 show very good results, and closely match R?
values for mean and RMS pressures.
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5.2 Predicting roof corner pressures from freestream turbulence

Table 4 includes mean, RMS, and peak pressure coefficients predicted by the ANN model for three
representative pressure taps located near the roof corner of the 1:50 model. Only ANN predictions from
the test data are reported in the table; i.e., four upwind terrain configurations (see test data in Table 2).
Roof tap 215 is located closest to the roof corner (x/H = 0.02, y/H = 0.04), while taps 301 and 314
are further away from the roof corner, but near roof edges (see Figure 1). These taps were strategically
selected to evaluate the performance of the ANN model in extreme suction regions resulting from a
cornering wind direction. In general, ANN results show remarkable predictive power for the 1:50
model. For example, the largest errors reported for tap 215 were —3.7, +4.1, and +14.4% for the mean,
RMS, and peak pressures, respectively. The smallest error in the peak was —0.7% corresponding to tap
314 for a freestream turbulence of I, ; = 26.9% (h = 140 mm). The distribution of peak pressures on
the 1:50 model for this upstream condition is illustrated in Figure 8 for both the BLWT data and ANN
model.

ANN C,, predictions of roof corner taps 215, 301, and 316 for the 1:30 model (see Figure 1) are
listed in Table 5. For the most part, reasonably good agreement is found between the ANN model and
BLWT data. Particularly, the ANN model was highly proficient in predicting the mean, RMS, and peak
pressures for taps 215 and 314, where the highest errors in Cppeqn Were —9.7% and —5.4%,
respectively. However, noticeable discrepancies are evident in the mean and RMS pressures for tap
301, where the ANN model consistently underestimated the BLWT data (i.e., negative % errors). This
was also observed on the 1:50 model; although to a lesser extent. These discrepancies are noticeable
in Figure 9; i.e., ‘hot spots’ near the roof edge of the short building dimension. Yet, the distribution of
mean pressures predicted by the ANN model closely resembles the wind tunnel data. Moreover, the
ANN model shows good predictive performance of the peaks, where errors between the ANN model
and BLWT data were less than 10% in most cases.

Table 6 summarizes ANN C,, results obtained for the 1:20 model at the three roof tap locations
considered in Tables 4 and 5. In general, the ANN model demonstrates adequate predictive
performance of peak pressures for the three corner taps, where absolute errors between 1.2% and 21.9%
were found. However, similar to the 1:50 and 1:30 models, lower mean and RMS pressures are
predicted by the ANN model at tap 301 compared to the BLWT data. This is observed for the four
upwind terrain cases. Additionally, ANN predictions of the mean C,, for tap 314 display noticeable
deviations from the BLWT data. Figure 10 presents contour maps of observed and predicted (i.e.,
ANN) RMS pressures on the roof of the 1:20 model for I, y = 22.1% (h = 8 mm; wide). This upwind
terrain configuration corresponds to the largest errors in both mean and RMS in the 1:20 model. The
pressure maps illustrate how the ANN underestimates the intensity of the RMS pressures. Nevertheless,
the errors in the mean and RMS pressures did not seem to affect the prediction of the peaks, where
more than half of the values reported in Table 6 were less than 3.8% of the BLWT data. Of the three
model scales, the ANN performed the best on the 1:50 dataset, while the 1:20 produced the largest
discrepancies between the model and BLWT data.

5.3 Turbulence effects on area-averaged peak pressures

Figure 11 includes subplots of area-averaged peak pressures acting on the roof corner as a function of
freestream turbulence intensity at eave height (I, ;). The area-averaged pressures were computed from
peak C,, estimates of taps 215, 216, 301, 316, 315, and 314 located near the roof corner of the three
WERFL models (see Figure 1). The six taps cover a normalized corner roof area A/H? of 0.15, where
H is the eave height of the model; approximately 2.35 m? in full-scale. In Figure 11, the red markers

. . . 8
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represent BLWT data from the 33 upwind terrain configurations, while the continuous black line is the
ANN analytical (predictive) model. Peak pressure estimates were calculated from Gumbel distribution
for a 78% probability of non-exceedance.

Area-average pressures for the three WERFL models display similar trends of increasing peak
suction with freestream turbulence. For the smoothest upwind case (I, y ~8%), the three scales display
peak pressures of approximately —3. Further, little scatter is observed for turbulence levels ranging
from 8—-18%. In this range, the ANN model is able to closely follow the monotonic trend in the data.
However, for I, j; exceeding 18%, the scattering in the UF data becomes more pronounced. During the
ANN training process, the network parameters were carefully calibrated to avoid overfitting of data
subsets with significant scatter; e.g., peak pressure data associated with highly turbulent approach flow
conditions. This is particularly evident in the 1:30 and 1:20 building models. This resulted in improved
generalization of ANN model for the roughest upwind cases.

The subplots in Figure 11 also include area-averaged peak estimates computed from tests ST3
and ST4 of the NIST database. The turbulence intensity for the two experiments were derived from the
ESDU (1983) model based on full-scale roughness lengths of z; = 0.01 m and 0.087 m and a height z
= 3.96 m above ground level. This resulted in turbulence levels of 16.4% and 23.3% for ST3 and ST4,
respectively. Area-averaged peak values for test ST3 (diamond green marker) show reasonably good
agreement with the UF data when matching the turbulence levels at eave height, although NIST results
displayed slightly lower peak (area-averaged) suction values. Conversely, the averaged peak pressure
for test ST4 (square blue marker) shows noticeable discrepancies when compared to the UF data for
similar I, ;. The discrepancy could be, in part, ascribed to uncertainties in the turbulent characteristics
of the approach flow during pressure testing; i.e., surface pressures and approach flow conditions near
the model are usually not measured simultaneously. For example, Figure 11 reveals how a slight
reduction in I, y (e.g., 2%) can cause the NIST data to fall in line with the UF observations. This sheds
light regarding the sensitivity of peak pressures to the turbulent flow conditions of the freestream.

6 Discussion

In general, the results suggest that the ANN models can accurately predict mean, peak, and fluctuating
(i.e., RMS) pressures within the range of turbulent flow conditions considered. However, in some
cases, considerable errors exist between experimental BLWT data and ANN predictions; particularly
for the larger building models (e.g., 1:20). Discrepancies between BLWT data and the ANN model
appear to increase with building model scale for taps near roof corners. For instance, the largest errors
reported for mean pressure coefficients correspond to the 1:20 model (see Table 6). Peak and RMS C,
values also show relatively large errors for the largest building model. While it is evident that the
turbulence intensity of the freestream near the model height is a key factor for predicting peak surface
pressures, previous studies (e.g., Tieleman, 1992; Saathoff and Melbourne, 1997) have shown that the
turbulence scales of the incident flow also play an important role in the development of extreme
pressures, particularly in the mechanisms of transition within the separated shear layer (e.g., Lander et
al., 2018).

Early experimental work presented in Gartshore (1973) and Laneville (1975) has demonstrated the
effect of the small-scale turbulence on the flow structure near the separated shear layer. These small-
scale eddies; approximately of the same order as the thickness of the shear layer; predominantly control
the roll-up in flow separation regions. The level of small-scale turbulence is typically quantified by the
Melbourne parameter (1979), defined as the normalized spectral density of the longitudinal velocity
fluctuations evaluated at a wavelength (nH/U) corresponding to 1/10 of the characteristic dimension

9
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(e.g., eave height, H) of the bluff body. Further, it has been shown that large-scale turbulence;
represented by the integral length scale; can also influence the development and duration of extreme
pressure events (Tieleman, 2003). For instance, Saathoff and Melbourne (1997) reported a noticeable
increase in peak pressures; measured on a blunt flat plate; with increasing for the same turbulence
intensity, although the turbulence levels were in relatively smoother flows (/,,# ~8 and 12%). These
authors argue that large-scale turbulent eddies are less frequent and thus permit shear layer vortices to
further develop and strengthen, which results in higher surface pressures near flow separated regions.
Nevertheless, further research is needed to better understand (and more accurately quantify) the effect
of small- and large-scale turbulence features in the freestream flow and their influence on peak
pressures; particularly for bluff-bodies immersed in highly turbulent boundary layers. It can be inferred
from Figure 11 that the largest discrepancies between the BLWT data and ANN for the 1:30 and 1:20
models are generally found in BLWT experiments where the model is immersed in more turbulent
boundary layer flows (e.g., [.,,#> 18%). These observations are consistent with previous BLWT studies
(Fritz et al., 2008) which have shown significant variability in peak pressures near roof corners when
simulating rougher (i.e., suburban) upwind terrain conditions in the wind tunnel.

Results from the three building models also suggest a clear dependence of the building model
size on the performance of the neural network, where ANN predictions generally display larger
discrepancies in peak pressures with increasing model scale. This trend could be, in part, due to
Reynolds number effects in the BLWT; e.g., the Re for the 1:20 model is ~2.5 times greater than the
1:50 model. Previous work (e.g., Lim et al., 2007) has demonstrated the Re-dependence (that can
persist well-beyond Re > 2 x 10*) when quantifying peak suction pressures on sharp-edged bluff bodies
oriented at 45° to the approach flow; which is the wind direction considered in this study. This wind
orientation promotes the development of strong (and relatively steady) “delta-wing type” conical
vortices that originate at roof corners and extend along line inclines of ~11-14° relative to roof edges,
where smaller angles are associated with larger Re numbers (Tryggeson and Lyberg, 2010). The
structure of conical vortices has been shown to strongly affect Re, which partly explains the well-
known mismatch between measured peak pressures at model and full-scale under corner roof vortices
(Cochran, 1992). Consequently, these disparities should be accounted for when deriving full-scale
pressure data from BLWT experiments. Nonetheless, further work must be conducted to properly
correct these discrepancies.

7 Conclusions

A feed-forward multilayer ANN using a backpropagation (BP) training algorithm is developed to
predict the mean, RMS, and peak pressures on the roof of three geometrically scaled low-rise building
models for a wide-range of upwind approach flow conditions. A large dataset of BLWT experimental
data was utilized to train, validate, and test the network. The dataset consists of pressure data collected
on the surface of three low-rise building models immerse in 33 unique boundary layer flows. In general,
results indicate that the ANN model can accurately predict mean, RMS, and peak pressure coefficients
on the roof of a low-rise structure given the freestream turbulence intensity at eave height and the
normalized plan roof coordinates. Predicted ANN peak pressure coefficients for a series of pressure
taps located near the roof corner were, on average, within 5.1, 6.9, and 7.7% of observed BLWT data
for the 1:50, 1:30, and 1:20 model scales, respectively. The network also displayed reasonably good
agreement between predicted ANN mean and RMS pressure coefficients and BLWT data. Further, the
ANN was also successful in generating reliable functional relationships to associate area-averaged peak
pressures near the roof corner to the turbulence characteristics of the freestream. These relationships
similar trends for the three WERFL building models.

. .. . 10
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While the present work centers on the prediction of peak surface pressures from the freestream
turbulence intensity near the model height, it is well-established that other flow parameters can
influence the extreme pressure distribution, particularly in the separated shear layer. Both small and
large turbulence scales in the freestream can affect the magnitude and duration of peak pressure events.
These turbulent scale properties could potentially be introduced into the ANN model as input
parameters (in addition to /,,#), where small turbulence scales could be quantified by the Melbourne
parameter, while the integral length scale can be utilized to estimate the size of large-scale turbulent
eddies in the incident flow. Nonetheless, a better understanding of these parameters and their effect on
the flow field around flow separated regions is still needed to more accurately predict peak pressures.

In summary, the development of new predictive tools for quantifying peak wind loading on civil
infrastructure is essential for improving the numerical accuracy of computational modeling (e.g., CFD)
and steadily reducing our dependence on experimental testing. For instance, ANNs can be used to
expand existing aerodynamic databases and help cover a wide range of possible experimental
configurations. Further, ANNs can enhance the efficiency of newly developed cyber-physical methods
(e.g., Whiteman et al., 2018) for investigating and optimizing the performance of civil infrastructure
systems under wind hazards. Future work will further expand the capabilities of the current ANN model
by incorporating additional input parameters, such as wind direction, roof slope, and building aspect
ratio (Chen et al., 2003; e.g., Bre et al., 2018). Additionally, the predictive power of the neural network
can be further enhanced through simulation of more realistic upwind terrain conditions. This can be
achieved experimentally through the generation of random fields of roughness elements to recreate
real-world heterogeneous terrain conditions.
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586  Table 1. Longitudinal turbulence intensities of the freestream measured at the eave height of
587  the 1:50, 1:30, and 1:20 building models.

Roughness Turbulence Intensity at Eave Height, I, ;; (%)
Element 1:50 1:30 1220
Height, h - ) :
(mm) Wide | Narrow | Wide | Narrow | Wide | Narrow

0 9.1 8.5 7.9
10 10.9 10.3 10.3 9.6 9.7 9.0
20 12.8 11.3 12.3 10.6 11.8 9.9
30 15.2 12.5 13.8 12.0 13.9 11.2
40 17.2 13.4 16.7 13.0 16.2 12.5
50 18.2 14.9 18.6 14.3 18.1 13.7
60 18.2 15.7 19.2 15.2 19.5 14.7
70 20.4 16.2 21.2 15.9 20.9 15.1
80 21.4 16.5 21.5 16.6 22.1 15.8
90 22.7 17.3 22.5 17.7 23.2 16.7
100 22.8 17.7 24.0 17.8 24.5 17.0
110 24.4 18.8 24.7 19.1 25.2 18.3
120 25.3 19.4 24.7 19.8 26.3 18.5
130 25.0 20.1 26.2 19.7 26.2 19.2
140 26.9 20.6 26.5 20.7 28.0 20.2
150 27.7 20.1 27.6 21.7 30.4 19.9
160 30.2 222 28.5 23.0 29.6 21.1

588
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599  Table 2. Backpropagation ANN parameters for the 1:20, 1:30, and 1:50 building model.

Inputs Ly, x/H,y/H
Outputs Cpmeans Cprmss Cppeak
ANN architecture BP 3-12-10-3
/(s) f(s)

A
+1--mmmees V:' /
> 5 >S5
Transfer functions % /
B e

f(s) = tanh(s) f(s)=s
Tangent sigmoid Linear
(hidden layers) (output layer)
Wind direction a = 45° (cornering)
h =0-30 mm, 50-70 mm, 90-110 mm, 130 mm, 150-160 mm
Training data (wide edge windward), and h = 0—50 mm, 70-90 mm, 110 mm,
130 mm, 150—160 mm (narrow edge windward)'
Validation data h =60 mm, 100 mm, 120 mm, 140 mm (narrow edge windward)
Test data h =40 mm, 80 mm, 120 mm, 140 mm (wide edge windward)
Training algorithm Levenberg—Marquardt (LM) backpropagation
Number of validation 3
checks
Training performance 0.00001
gradient '

600  'Note: Roughness element height ranges are in 10 mm increments.
601
602
603
604
605
606
607

608
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609  Table 3. Regression performance for ANN test data (h = 40 mm, 80 mm, 120 mm, 140 mm;
610 wide edge windward).

Pressure
Building Model | Coefficient, MAE RMSE R?
Cp
RMS 0.042 0.058 0.986
1:50 Mean 0.045 0.059 0.983
Peak 0.215 0.283 0.977
RMS 0.056 0.068 0.979
1:30 Mean 0.053 0.066 0.977
Peak 0.288 0.312 0.971
RMS 0.097 0.091 0.960
1:20 Mean 0.101 0.095 0.947
Peak 0.324 0.339 0.971

611

612  Table 4. Prediction of mean, RMS, and peak pressures for taps 215, 301, and 314 on the 1:50
613  building model.

Tap ID h(mm)| I, g Cp,mean Cp,rMS Cppeak

(Wide) | (%) [BLWT[ ANN [% Error | BLWT | ANN] % Error | BLWT| ANN |% Error
215 | 40 | 172 -153 | -155 | 1.0 | 165 |1.72| 41 | -5.80 | -6.64 | 144
80 | 214 -1.78 | -1.72 | 3.7 | 2.04 | 201| -14 |-1008]-936| -7.1
120 | 253 -1.92 | -1.90 | -0.9 | 231 |234| 1.1 |-12.95|-1240| -43
140 269 -1.95 | -198 | 19 | 244 |248| 1.6 |-13.16|-13.71| 42
301 | 40 | 172 219 | 2.10 | 44 | 229 | 221 | -35 | 523 | 546 | 44
80 | 214 | 227 | 2.08 | 87 | 247 |225| -89 | -6.78 | -6.68 | -14
120 | 253 -2.12 | 2.07 | 27 | 242 |230| 47 | -8.60 | -8.11 | -5.7
140 | 269 -1.99 | 2.06 | 3.6 | 231 |233| 08 | -8.18 | -8.75| 69
314 | 40 | 172 -198 | -1.97 | 05 | 2.04 | 2.05| 05 | 445 | 463| 3.9
80 |214| -189 | -182 | -3.6 | 201 | 195| 29 | 570 | -5.56 | -2.5
120 | 253 -1.76 | -1.67 | 47 | 195 | 185| 49 | -6.99 | -6.62 | -53
140 | 269 | -1.67 | -1.61 | 3.6 | 191 | 181 ] 51 | -7.12 | -7.08 | -0.7
Mean % Error 33 3.3 5.1

614
615
616
617
618
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Table 5. Prediction of mean, RMS, and peak pressures for taps 215, 301, and 314 on the 1:30
building model.

Tap ID h (mm) | I 4 Cpmean Cp,RMsS Cp.peak

(Wide) | (%) [BLWT[ ANN |% Error | BLWT |ANN | % Error| BLWT | ANN | % Error
215 | 40 | 167 -093 | 084 | 97 | 1.05 | 1.04| 09 | -781 | -727 | -69
80 |215] -1.09 | -1.03 | -55 | 143 | 134| -59 |-11.77] 986 | -162
120 | 247 -135 | -133 | -17 | 190 | 1.72| 9.6 |-11.56|-11.90] 2.9
140 | 265 -1.46 | -151 | 3.6 | 2.09 | 1.94 | -75 |-12.67]-12.99] 25
301 | 40 | 167 241 | 211 | 127 | 251 222 -117 | -6.13 | -5.27 | -14.0
80 | 21.5| 227 | <188 | -17.1 | 2.45 | 2.06 | -159 | -7.08 | -6.64 | 6.2
120 | 247 213 | -1.78 | -16.7 | 2.41 |2.02]| -158 | -8.51 | -8.04 | -55
140 | 265 | 2.02 | -1.73 | -145 | 232 | 201 | -13.4 | -8.83 | 873 | -1.1
314 | 40 | 167 -1.94 | -1.83 | 54 | 199 | 1.87| -64 | -4.64 | -4.13| -109
80 |215| 176 | -1.71 | 29 | 1.86 | 1.79| -3.8 | -540 | -5.03 | -6.9
120 | 247 -1.68 | -1.68 | 01 | 1.84 | 181 ] -19 | -648 | -6.02 | -7.1
140 | 265 -1.65 | -1.65 | -0.1 | 1.85 |1.81| 22 | -6.84 | -6.61 | 33
Mean % Error 7.5 7.9 6.9

Table 6. Prediction of mean, RMS, and peak pressures for taps 215, 301, and 314 on the 1:20
building model.

Tap ID h(mm)| I,y Cp,mean Cp,rMS Cppeak

(Wide) | (%) 'BLWT| ANN |% Error| BLWT | ANN| % Error| BLWT | ANN | % Error
215 | 40 | 162 -158 | -142 | 99 | 171 |159]| 7.1 | -823 |846| 28
80 | 22.1 | -2.02 | -1.68 | -16.8 | 235 | 1.98 | -156 | -132 |-11.9] -9.9
120 | 263 | 2.11 | -198 | -6.1 | 258 |238| 7.7 | -148 |-143| 3.8
140 | 28.0 | 2.01 | 2.07 | 33 | 254 |248| 24 | -148 |-146| -09
301 | 40 | 162 2.06 | -1.87 | 91 | 2.15 | 1.95| 93 | -5.69 |-445| 21.9
80 | 22.1 | 248 | -1.95 | 212 | 2.66 | 2.11 | 205 | -824 |-6.71| -185
120 | 263 | 225 | -191 | -15.1 | 250 | 2.16 | -13.6 | -927 |-892| 3.8
140 | 280 | -1.94 | -1.78 | -84 | 221 |205| -72 | -850 |-932| 96
314 | 40 | 162 -1.74 | -157 | -10.1 | 1.80 | 1.64| 86 | -4.17 |-407| 2.5
80 | 22.1| -191 | -1.50 | -21.4 | 2.01 | 1.63 | -192 | -6.00 |-5.19| -13.5
120 | 263 | -1.75 | -1.53 | -12.6 | 1.90 | 1.71| -10.0 | -6.77 |-6.69| -1.2
140 | 280 | -151 | -152 | 08 | 1.68 |1.71| 22 | -735 |-7.10| 3.4
Mean % Error 11.2 10.3 7.7
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Figure 1. Pressure tap layout on the roof of the three UF WERFL building models. Tap ID and
(normalized) coordinates follow the layout of Test 7 (ST3/ST4) of the NIST aerodynamic
database. The red “x” markers represent additional taps that were added to the original layout
(blue “0” markers).
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637  Figure 2. Six representative upwind terrain configurations for the UF 1:20 WERFL building
638  model oriented at a 45° (cornering) wind direction.
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Sparse Open Terrain Simulation

UF 1:50
10*} ——UF1:30
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—ESDU, z, = 0.01m

z=396m
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Figure 3. Longitudinal turbulence spectra; at eave height (z = 3.96 m full-scale); of the
freestream measured at the center of the test section; with the building model removed. The
simulation of the two terrains is achieved for roughness element heights of 40 mm (sparse open)
and 100 mm (dense open) in a wide edge windward orientation.
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Figure 4. Architecture of multilayer artificial neural network with error backpropagation
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Figure 5. Feedforward (or activation propagation) and error backpropagation phases for
neuron j.
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680  Figure 6. ANN backpropagation performance history for training, validation, and testing
681  subsets: (a) 1:50, (b) 1:30, and (c) 1:20 building models.
682
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686  Figure 7. ANN regression plots showing the relationship between the outputs (C;, ANN) of the
687  network and the targets (C, BLWT) for the three WERFL building models.
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Figure 8. Prediction of peak pressure coefficients (C} eqr) for the 1:50 WERFL model and a
freestream turbulence intensity of 26.9% at eave height: (a) BLWT experimental data and (b)

ANN prediction.
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702 Figure 9. Prediction of mean pressure coefficients (C;, ;0qn) for the 1:30 WERFL model and a

703 freestream turbulence intensity of 21.5% at eave height: (a) BLWT experimental data and (b)
704  ANN prediction.

705
706
707

27



708

709
710
711

712
713
714
715
716
717
718
719
720
721
722

1:20 BLWT, | . =22.1%
0.0 : . 0]
y :
2 5
0.5 7
_0.75 .= g
1.0 b
e o
15| Lo
u IS
A
5 &
2ol o
WERE
258
S0 7
D o
- o
30|
. ” . . 075 . .
20 15 10 05 00
x/H
05 10 15 20 25 3.0
p,rms
(a)

ﬁo Wind

y/H

0.0

05/

1.0

1.5

20(

2.5

30|

Predicting Roof Pressures Using ANN

R° Wind

= 221%

1:20 ANN, /
u,

0.75 0

A %
A 7

4]
o S
~

0.75 0.5

05,

ol®

0.5.

2

.0

15 1.0
x/H

0.5 0.0

T

0.5

1.0

15 20 25 3.0

p,rms

(b)

Figure 10. Prediction of RMS pressure coefficients (C,) ;-,5) for the 1:20 WERFL model and a
freestream turbulence intensity of 22.1% at eave height: (a) BLWT experimental data and (b)

ANN prediction.
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726  Figure 11. Area-averaged peak pressures from six corner roof taps (Tap IDs 215, 216, 301,
727 314, 315, and 316) as a function of freestream turbulence: (a) 1:50, (b) 1:30 and (¢) 1:20.
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