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Abstract 13 

This paper presents a generalized approach for predicting (i.e., interpolating) the magnitude and 14 

distribution of roof pressures near separated flow regions on a low-rise structure based on freestream 15 

turbulent flow conditions. A feed-forward multilayer artificial neural network (ANN) using a 16 

backpropagation (BP) training algorithm is employed to predict the mean, root-mean-square (RMS), 17 

and peak pressure coefficients on three geometrically scaled (1:50, 1:30, and 1:20) low-rise building 18 

models for a family of upwind approach flow conditions. A comprehensive dataset of recently 19 

published boundary layer wind tunnel (BLWT) pressure measurements was utilized for training, 20 

validation, and evaluation of the ANN model. On average, predicted ANN peak pressure coefficients 21 

for a group of pressure taps located near the roof corner were within 5.1, 6.9, and 7.7% of BLWT 22 

observations for the 1:50, 1:30, and 1:20 models, respectively. Further, very good agreement was found 23 

between predicted ANN mean and RMS pressure coefficients and BLWT data.  24 

1 Introduction 25 

Boundary layer wind tunnel (BLWT) testing is still considered the primary experimental instrument to 26 

accurately reproduce and assess wind-induced loads on building structures. The continued dependence 27 

on wind tunnels is ascribed, in part, to the inability of computational (e.g., CFD) methods for accurately 28 

capturing local pressure fields in flow separating regions around sharp edged bluff bodies (Ricci et al., 29 

2017); these regions typically produce the largest peak loads on low-rise structures. Furthermore, prior 30 

experimental work (e.g., Hillier and Cherry, 1981; Gartshore, 1984; Akon and Kopp, 2016; Saathoff 31 

and Melbourne, 1997) in BLWTs has revealed the strong influence of the turbulence characteristics of 32 

the incident flow on the spatial distribution of local pressures near separating shear layers developed 33 

around surface-mounted prisms (e.g., low-rise structures). These localized pressure fields directly 34 

affect the overall (i.e., global) flow organization, which often leads to inaccuracies in numerical (e.g. 35 
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LES) results when attempting to recreate the flow behavior around sharp-edged bluff bodies; even 36 

when simple geometries are considered (e.g., Bruno el al., 2014). Alternatively, BLWTs experiments 37 

have proven to be an effective tool for properly simulating the turbulence properties of approach flows 38 

and accurately capturing the complex pressure fields acting on sharp-edged bluff bodies. Yet, due to 39 

cost and time constraints, experiments in the BLWT commonly entail a limited number of building 40 

configurations and approach flow conditions. Consequently, this study makes use of existing 41 

experimental BLWT datasets and artificial neural networks (ANN) to assist in the development of 42 

robust and reliable mathematical models for accurately quantifying peak wind loading on low-rise 43 

structures and their inherent dependence on freestream turbulent flows.  44 

Adequate assessment of wind-induced loads in the BLWT requires proper simulation of the 45 

turbulent structures present in the lower part of the atmospheric boundary layer (ABL). In the case of 46 

low-rise structures, previous studies have suggested that achieving the desired full-scale turbulence 47 

characteristics at (or near) the model height is one of the main requirements  for accurately quantifying 48 

the magnitude and distribution of surface pressures in separated flow regions (e.g., St. Pierre et al., 49 

2005; Tieleman, 1992; Tieleman and Reinhold, 1978); flow parameters such as the roughness length 50 

and the displacement height are often poor indicators of the local pressure fields in the separated flow 51 

region. Akon and Kopp (2016) investigated the structure of the separation bubble near the leading edge 52 

of the roof of a generic low-rise building model immersed in several turbulent boundary layer flows. 53 

They found that the turbulence properties of the approaching flow affected both the pressure 54 

distributions and the mean size of the separation bubble. Subsequently, Fernández-Cabán and Masters 55 

(2018) independently confirmed these observations through a comprehensive series of BLWT 56 

experiments for a family of boundary layer flows. The two studies focused on approach flows acting 57 

parallel and perpendicular to the building dimension; i.e., cornering wind directions were not 58 

investigated. 59 

The present work aims at developing a generalized high-fidelity approach to accurately predict 60 

(i.e., interpolate) the distribution of surface pressures near separated flow regions on a low-rise 61 

structure based on freestream turbulent flow conditions. A robust feed-forward multilayer artificial 62 

neural network (ANN) using a backpropagation (BP) training algorithm is employed to analytically 63 

predict the mean, RMS, and peak pressure coefficients on the roof of a low-rise structure given the 64 

freestream turbulence intensity (at eave height) and the normalized plan roof coordinates. A robust 65 

feed-forward multilayer artificial neural network (ANN) using a backpropagation (BP) training 66 

algorithm is employed. ANNs are biologically inspired mathematical models well suited for solving 67 

nonlinear multivariate modeling problems. ANNs generate complex functional relationships (Turkkan 68 

and Srivastava, 1995) to produce analytical models through training using experimental (or 69 

computational) datasets, even when given noisy or incomplete information (Haykin, 1994), thus 70 

providing a resourceful alternative to other multivariate/nonlinear interpolation techniques such as 71 

regression polynomials and kriging methods (Franke, 1982). 72 

Several works can be found in literature which apply ANNs for characterizing wind load effects 73 

on building structures. For instance, Chen et al. (2003) employed a backpropagation training algorithm 74 

to predict mean and root-mean-square (RMS) pressures acting on gable roofs of low-rise buildings. 75 

Subsequently, Gavalda et al. (2011) further expanded on this work by presenting an ANN driven 76 

interpolation methodology that incorporated variable plan dimensions and roof slopes. Additionally, a 77 

fuzzy neural network (FNN) approach was developed in Fu et al. (2005) for the prediction of mean 78 

pressure distributions and power spectra of fluctuating wind pressures on a cantilevered flat roof. The 79 

use of ANNs have also been examined in the evaluation of tall wind-exited buildings. For example, 80 

Zhang and Zhang (2004) applied a radial basis function (RBF) neural network to predict and analyze 81 
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wind-induced interference effects from surrounding obstructions on tall buildings. More recently, 82 

Dongmei et al. (2017) coupled a backpropagation neural network (BPNN) with proper orthogonal 83 

decomposition (POD-BPNN) for the prediction of wind-induced mean and RMS pressures acting on 84 

the surface of a high-rise building. The current work further exploits the capabilities of ANNs by 85 

integrating upwind terrain parameters into a network to produce functional relationships between the 86 

turbulence features of the approaching flow and the peak pressure loading on bluff bodies.  87 

A large dataset comprising an extensive series of aerodynamic pressure tests conducted in a 88 

large BLWT was utilized for training, validation, and testing the ANN model. The dataset encompasses 89 

33 different terrains, three building model scales (1:20, 1:30, and 1:50) and three wind directions 90 

(parallel and perpendicular to the ridgeline and cornering), which equates to nearly 300 independent 91 

experiments. The present work focuses on the cornering (i.e., 45º) wind direction, critical for roof 92 

suction pressures. The 33 upwind terrains simulate approach flow conditions ranging from marine (i.e., 93 

smooth) to dense suburban exposures.  94 

The predictive capabilities of ANN can supplant the need for additional experiments to 95 

investigate terrain effects in the BLWT, which typically entail laborious and time consuming 96 

alterations of the upstream terrain (e.g., roughness grid) to achieve targeted roughness parameters and 97 

turbulent characteristics at the test section. In addition, the approach can be utilized to further expand 98 

existing aerodynamic databases; which commonly cover a limited number of upwind terrain conditions 99 

(e.g., open and suburban); and provide a tool for design practitioners to rapidly and reliably quantify 100 

the effects of changes in upstream terrain and extreme pressure loading acting on low-rise structures. 101 

2 Experimental Dataset 102 

The experimental dataset applied in this study comprises a series of BLWT pressure tests conducted 103 

on a 1:20, 1:30, and 1:50 scaled rigid building models of the Wind Engineering Research Field 104 

Laboratory (WERFL; Levitan and Mehta, 1992ab) experimental building. The complete dataset is 105 

publicly accessible through the Natural Hazard Engineering Research Infrastructure (NHERI) 106 

DesignSafe cyberinfrastructure web-based research platform (Fernández-Cabán and Masters, 2017; 107 

dataset). BLWT experiments were conducted at the University of Florida (UF) NHERI Experimental 108 

Facility. The UF BLWT is a low-speed open circuit tunnel with dimensions of 6 m W × 3 m H × 38 m 109 

L. The maximum blockage ratio in the tunnel was less than 0.8%. A more detailed description of the 110 

UF BLWT can be found in Fernández-Cabán and Masters (2018). 111 

2.1 Model geometry, tap layout, and pressure measurements 112 

The three WERFL building models were instrumented with 266 pressure taps; 152 roof taps and 113 

114 wall taps. The tap location followed the layout used in the 1:100 WERFL building model of the 114 

NIST aerodynamic database (Ho et al., 2003; Test 7, ST3/ST4), however 60 additional taps were added 115 

on the roof of the model to improve the spatial resolution of the pressure field in this region, as shown 116 

in Figure 1. The plan dimensions in Figure 1 are shown in terms of the eave height of the model 𝐻. 117 

The full-scale dimensions of the WERFL building are 45 ft [13.7 m] × 30 ft [8.9 m] × 13 ft [3.96 m] 118 

(¼:12 roof slope; i.e., aerodynamically flat). A cornering (𝛼 = 45º) wind direction was considered in 119 

this study. 120 

Simultaneous pressure measurements were recorded using eight high-speed electronic pressure 121 

scanning modules from Scanivalve (ZOC33, 2016). Pressure taps were connected to the modules using 122 

122 cm long urethane tubing. Pressure coefficients shown in this paper are computed as the ratio of the 123 

differential pressure and the mean velocity (dynamic) pressure at the eave height of the model:   124 
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𝐶𝑝(𝑡) =

𝑝(𝑡) − 𝑝0

1/2𝜌𝑈𝐻
2  (1) 

where 𝑝(𝑡) is the (absolute) pressure measured, 𝑝0 is the reference (static) pressure, 𝜌 is the air density, 125 

and  𝑈𝐻 is the mean streamwise velocity at eave height estimated from the mean reference velocity 126 

pressure in the freestream at 𝑧 = 1.48 m above the floor. The reference velocity pressure was converted 127 

to the eave height of the building model using an empirical adjustment factor (𝑘) obtained from flow 128 

measurements with the model removed;  𝑈𝐻 = 𝑘𝑈𝑟𝑒𝑓, where 𝑈𝑟𝑒𝑓 is the mean velocity at 𝑧 = 1.48 m. 129 

Static reference pressures (𝑝0) were taken from the static port of the Pitot tube to ensure stable 130 

measurements with negligible fluctuations. Air density (𝜌) was calculated from the air temperature, 131 

barometric pressure, and relative humidity measured during each test.  132 

The pressure signals were digitally filtered to remove resonance and damping effects in the tubes 133 

(Irwin et al., 1979) using transfer functions following the approach described in Pemberton (2010). 134 

The test durations for the 1:20, 1:30, and 1:50 models were 300, 180, and 120 seconds, respectively. 135 

These equate to a full-scale duration of approximately 30 min for the three models—assuming a 1/3.33 136 

velocity scale. Data was recorded at sampling rate of 625 Hz. The pressure measurements in the dataset 137 

are digitally filtered at 200 Hz using a 3rd order Butterworth low-pass filter. 138 

2.2 Terrain simulation 139 

Simulation of upwind terrain roughness is achieved through the Terraformer, an automated roughness 140 

element grid that rapidly reconfigures the height and orientation of 1116 roughness elements in a 62 × 141 

18 grid to produce desired upwind terrain conditions along an 18.3 m fetch (Fernández-Cabán and 142 

Masters, 2017). Roughness elements are 5 cm × 10 cm in plan, and are spaced 30 cm apart in a 143 

staggered arrangement. Height and orientation can be varied from 0 mm–160 mm and 0–360 degrees, 144 

respectively. The turbulence properties of the approach flow at the test section were varied by adjusting 145 

the configuration of the Terraformer upwind of the model. Wide and narrow edge windward element 146 

orientations were applied (Figure 2). Roughness elements were elevated from ℎ = 0 mm–160 mm using 147 

increments of 10 mm, thus producing 16 upwind terrain conditions for each element orientation; 148 

totaling 33 terrains including the base floor (i.e., flush) case. Reynolds number (𝑅𝑒 = 𝐻𝑈𝐻/𝜈) ranged 149 

from 3.2 x 104 (𝑈𝐻~6 m/s and 𝐻 = 79.2 mm; 1:50 model) to 14.9 x 104 (𝑈𝐻~11.4 m/s and 𝐻 = 198 150 

mm; 1:20 model). Table 1 summarizes the freestream turbulence levels at the eave height of the models 151 

for the range of roughness element heights and orientations examined.  152 

Figure 3 illustrates two representative longitudinal turbulence spectra of the freestream measured 153 

at eave height of the model 𝑧 = 𝐻; 𝐻 = 79.2, 132, 198 mm for the 1:50, 1:30, and 1:20 models, 154 

respectively; for sparse and dense open terrain simulations. Measurements were collected at the center 155 

of the test section using Cobra velocity probes with the model removed. The spectra are normalized by 156 

the squared of the mean velocity (𝑈2) at 𝑧 = 𝐻. The von Karman spectrum—adopted in ESDU 83045 157 

(1983)—was fitted to the data using equivalent full-scale roughness lengths  𝑧0 = 0.01 m and 0.087 m. 158 

These roughness lengths represent the two WERFL site conditions (i.e., exposures) examined for the 159 

1:100 WERFL model in the NIST aerodynamic database;  𝑧0 = 0.01 m (ST3) and 𝑧0 = 0.087 m (ST4). 160 

The sparse open exposure was achieved in the UF BLWT for a roughness element height ℎ = 40 mm 161 

while ℎ = 90 mm produced the dense open terrain simulation. Both examples used the wide edge 162 

windward element orientation in the Terraformer.  163 

3 Artificial Neural Networks (ANNs) 164 
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ANNs are biologically inspired mathematical methods which loosely resemble the complex functions 165 

of the human brain for learning and pattern recognition (Nasrabadi, 2007). Common ANN systems 166 

contain a collection of interconnected parallel processing units, called neurons. These neurons can store 167 

experimental knowledge and transmit signals to other neurons to establish complex functional 168 

relationships between inputs and outputs. Consequently, ANNs have been frequently used for 169 

addressing multivariate models, nonlinear models, and interpolation problems for function 170 

approximation and classification (Ghosh and Shin, 1992). 171 

The most widely utilized ANN model is the multilayer feedforward perceptron (MFP). The 172 

current work implements a backpropagation (BP) neural network (Rumelhart and McCelland, 1986), 173 

which is a type of MFP that integrates error backpropagation training algorithms into the network. The 174 

generalized schematic of the BP-ANN architecture is illustrated in Figure 4. The network consists of a 175 

series of layers; an input layer, an output layer, and one or more hidden layers—e.g., the network in 176 

Figure 4 is composed of two hidden layers. Each layer is made up of multiple nodes (i.e., artificial 177 

neurons) operating in parallel. It is common practice to define ANNs in a simple notation form. For 178 

example, the ANN architecture in Figure 4 can be defined as 𝑚–𝑟– 𝑘– 𝑛, where 𝑚 is the number of 179 

inputs, 𝑛 is the number of outputs, and 𝑟 and 𝑘 are the number of neurons in the first and second hidden 180 

layers, respectively.  181 

In ANNs, artificial neurons in consecutive layers are connected through a series of links. These 182 

links act as signal transmitters; resembling the synapses in a biological brain; and are allocated with 183 

adaptive weights which are calibrated during the training process using backpropagation algorithms. 184 

The training of BP networks typically consists of two stages; feedforward (or activation propagation) 185 

and error backpropagation. Figure 5 depicts the two stages for neuron 𝑗 in a generic single layer BP 186 

ANN. During the feedforward stage, the input signal to the neuron (𝑠𝑗) is computed as the sum of the 187 

weighted inputs and bias, as show in Figure 5, where 𝑊𝑗𝑖 is the weight of the link connecting neuron 𝑖 188 

of the preceding layer and neuron 𝑗, 𝑥𝑖 is the input from neuron 𝑖 of the previous layer, and 𝑏𝑗 is the 189 

bias of the current neuron. The output signal 𝑦𝑗 for the neuron 𝑗 is then obtained by passing the input 190 

signal 𝑠𝑗 through a nonlinear transfer (activation) function. Common activation functions used in ANN 191 

for neurons in the hidden layer include the tangent sigmoid and the logarithmic sigmoid (Basheer and 192 

Hajmeer, 2000). In the case of multilayer ANNs, the output signal 𝑦𝑗 is transmitted to the neurons of 193 

the following layer as an input signal. 194 

At the end of the feedforward stage, the final output vector is compared to a target output; 195 

commonly through calculation of the mean squared error (MSE). The error is then back-propagated 196 

from the output layer to the input layer using a backpropagation training algorithm to adjust weights 197 

of the connecting links for minimization of the MSE. The error backpropagation stage continues until 198 

a convergence criteria is reached. The Levenberg–Marquardt (LM) backpropagation algorithm was 199 

selected in this study. The algorithm was designed to approach second-order training speed without 200 

having to compute the Hessian matrix, and has proven very efficient when training networks with up 201 

to a few hundred weights (Hagan and Menhaj, 1994); which is the case in the present study.  202 

4 Predicting mean, RMS, and peak roof pressures using ANN  203 

Designing an ANN model requires the selection of multiple parameters; e.g., number of inputs and 204 

output, number of hidden layers, and the number of neurons in each layer. These parameters often have 205 

a strong influence in the performance and computational efficiency of the network. Currently, there 206 

are no general rules—and very few guidelines—for defining the optimum ANN architecture. 207 

https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Brain
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Therefore, trial-and-error approaches are regularly employed to calibrate the network to achieve the 208 

best ANN structure for a particular problem (e.g., Bre et al., 2018). A common approach; which is 209 

adapted in this study; is to begin with a small number of neurons and progressively increase their 210 

number until achieving adequate training results and observing diminishing returns with further 211 

additional neurons. 212 

In the current work, an ANN using a backpropagation training algorithm was employed to 213 

predict the distribution of mean, RMS, and peak pressure coefficients on the roof of a low-rise structure 214 

from the turbulence characteristics of the freestream. The ANN parameters are summarized in Table 215 

2. The inputs to the ANN are the freestream turbulence intensity at eave height (𝐼𝑢,𝐻) and the 216 

normalized roof coordinates (𝑥/𝐻 and 𝑦/𝐻), while the ANN outputs are the mean (𝐶𝑝,𝑚𝑒𝑎𝑛), RMS 217 

(𝐶𝑝,𝑟𝑚𝑠), and peak (𝐶𝑝,𝑝𝑒𝑎𝑘) pressure coefficients for all 152 roof taps (Figure 1) of each model. Peak 218 

values are estimated from a Fisher-Tippett Type I (Gumbel) distribution for a 78% probability of non-219 

exceedance (Cook and Mayne, 1979). Although mean, RMS and peak 𝐶𝑝 values were obtained from 220 

time series, the time-varying 𝐶𝑝 signal is not an output of the ANN; i.e., statistical analysis of the 221 

pressure time series was performed prior to training the network. The hyperbolic tangent sigmoid 222 

function was selected as the transfer function for the hidden layers. The function can generate values 223 

in the range [−1, 1], and thus can accommodate for both positive (e.g., 𝐶𝑝,𝑟𝑚𝑠) and negative (e.g., 224 

𝐶𝑝,𝑝𝑒𝑎𝑘) outputs. Linear transfer functions are used in the output layer. As previously mentioned, only 225 

the 45º wind direction is considered. 226 

For each model scale, the complete BLWT dataset was divided into subsets for training, 227 

validation, and testing of the ANN.  The training data is used to adjust the weight and bias values of 228 

each neuron during ANN training (Figure 5).  The validation data subset supervises the training 229 

process; without performing weight/bias adjustments; and can terminate the training process if the error 230 

(i.e., observed vs. predicted) of the validation subset increases repeatedly for a specified number of 231 

epochs (i.e., iterations). That is, the validation data serves as a stopping criteria during ANN training 232 

to improve generalization and avoid overfitting of the training data. Finally, the testing data subset is 233 

used to independently assess the predictive capabilities of the ANN model after training; i.e., the test 234 

data does not participate in the training process. 235 

During training of the ANNs, multiple training initializations runs were performed due to the 236 

random nature of the weight and bias initialization functions in feedforward ANNs, which often 237 

produce variations in the training results. The termination criteria for the training process was chosen 238 

as the magnitude of the performance gradient (measured by the LM algorithm) and the number of 239 

validation checks. As training progresses, the performance gradient becomes significantly small. The 240 

training process terminates if the magnitude of the gradient falls below 0.00001. Further, the training 241 

was halted after eight validation checks. The number of validation checks represents the number of 242 

consecutive iterations that the validation performance fails to decrease.  243 

Upwind terrains for both narrow and wide edge roughness element orientations were used for 244 

training the network; including the smoothest (ℎ = 0 mm; i.e., flush floor) and roughest (ℎ = 160 mm, 245 

wide edge) Terraformer configurations. These are listed in Table 2.  The training data comprised nearly 246 

76% of the upwind terrains. Four narrow edge element heights were chosen for validating the training 247 

data. Finally, roughness heights ℎ = 40, 80, 120, and 140 mm for a wide edge windward orientation 248 

were selected to test the ANN. 249 

5 Results 250 
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5.1 ANN Training Performance 251 

Figure 6 depicts subplots of performance histories during ANN training for the 1:50, 1:30, and 1:20 252 

datasets. The performance function was chosen as the combined MSE of the predicted (i.e., ANN) and 253 

observed (i.e., BLWT) mean, RMS, and peak 𝐶𝑝 values. The training, validation, and test subsets each 254 

have predicted and observed values for the three 𝐶𝑝 statistics. The LM backpropagation algorithm was 255 

employed to optimize (i.e., minimize) the MSE. At the end of the training process, the ANN for the 256 

1:50 model achieved the lowest MSE from the three model scales, with a training performance of MSE 257 

= 0.021. Nevertheless, the three ANNs achieved satisfactory performance results.  258 

Linear regression was performed on the ANN 𝐶𝑝 outputs and BLWT data to assess the 259 

predictive power of the network. Figure 7 includes subplots of ANN outputs (i.e., predictions) of mean, 260 

RMS, and peak pressures plotted against observed BLWT data (i.e., target) for the three WERFL 261 

models.  Each subplot in Figure 7 includes data points from all 152 roof taps and upwind terrains 262 

considered in the training, validation, and testing of the network. Error indices computed from least-263 

squares linear fits of the data are also reported in the figure; i.e., root mean squared error (𝑅𝑀𝑆𝐸), 264 

mean absolute error (𝑀𝐴𝐸), and coefficient of determination (𝑅2); and are defined as 265 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑂𝑖 − 𝑃𝑖)2

𝑛

𝑖=1

 (2) 

 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑂𝑖 − 𝑃𝑖|

𝑛

𝑖=1

 
(3) 

 
𝑅2 = 1 −

∑ (𝑂𝑖 − 𝑃𝑖)2𝑛
𝑖=1

∑ (𝑂𝑖 − 𝑂̅)2𝑛
𝑖=1

 
(4) 

where 𝑂𝑖 is the observed BLWT data, 𝑃𝑖 is the predicted ANN data,  𝑂̅ represents the mean value of 266 

the observed data and 𝑛 represents the total number of data points in the subset. Values of  𝑅𝑀𝑆𝐸 and 267 

𝑀𝐴𝐸 near zero and 𝑅2 close to unity indicate high predictive capability of the ANN model. Very good 268 

agreement is observed in mean, RMS, and peak pressures for all model scales and data subsets; i.e., 269 

training, validation, and test data. Particularly, the ANN model displays remarkable predictive 270 

capabilities on the test data; which is not used during the training process.   271 

Table 3 summarizes the test data error indices for the three 𝐶𝑝 statistics individually. In the three 272 

model scales, peak pressure coefficients show higher values of  𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 when compared to 273 

RMS and mean 𝐶𝑝. For instance, 𝑀𝐴𝐸 = 0.215 for the peak 𝐶𝑝 data of the 1:50 model, while the RMS 274 

and mean 𝑀𝐴𝐸 are 0.042 and 0.045, respectively. Further,  𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 of peak pressures appear 275 

to increase marginally for larger building models. The larger errors in peak 𝐶𝑝 data can be attributed 276 

to the inherent uncertainties (i.e., variability) when estimating pressure extrema (Gavanski et al., 2016; 277 

Huang et al., 2018) which results in more spread in the data. This is reflected in Figure 7 where peak 278 

pressures (magenta markers) display a more scattered behavior than RMS and mean pressure data. 279 

Nevertheless, the 𝑅2 of the peaks reported in Table 3 show very good results, and closely match 𝑅2 280 

values for mean and RMS pressures.  281 
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5.2 Predicting roof corner pressures from freestream turbulence 282 

Table 4 includes mean, RMS, and peak pressure coefficients predicted by the ANN model for three 283 

representative pressure taps located near the roof corner of the 1:50 model. Only ANN predictions from 284 

the test data are reported in the table; i.e., four upwind terrain configurations (see test data in Table 2). 285 

Roof tap 215 is located closest to the roof corner (𝑥/𝐻 = 0.02, 𝑦/𝐻 = 0.04), while taps 301 and 314 286 

are further away from the roof corner, but near roof edges (see Figure 1).  These taps were strategically 287 

selected to evaluate the performance of the ANN model in extreme suction regions resulting from a 288 

cornering wind direction. In general, ANN results show remarkable predictive power for the 1:50 289 

model. For example, the largest errors reported for tap 215 were –3.7, +4.1, and +14.4% for the mean, 290 

RMS, and peak pressures, respectively. The smallest error in the peak was –0.7% corresponding to tap 291 

314 for a freestream turbulence of 𝐼𝑢,𝐻 = 26.9% (ℎ = 140 mm).  The distribution of peak pressures on 292 

the 1:50 model for this upstream condition is illustrated in Figure 8 for both the BLWT data and ANN 293 

model.  294 

ANN 𝐶𝑝 predictions of roof corner taps 215, 301, and 316 for the 1:30 model (see Figure 1) are 295 

listed in Table 5. For the most part, reasonably good agreement is found between the ANN model and 296 

BLWT data. Particularly, the ANN model was highly proficient in predicting the mean, RMS, and peak 297 

pressures for taps 215 and 314, where the highest errors in 𝐶𝑝,𝑚𝑒𝑎𝑛 were –9.7% and –5.4%, 298 

respectively.  However, noticeable discrepancies are evident in the mean and RMS pressures for tap 299 

301, where the ANN model consistently underestimated the BLWT data (i.e., negative % errors). This 300 

was also observed on the 1:50 model; although to a lesser extent. These discrepancies are noticeable 301 

in Figure 9; i.e., ‘hot spots’ near the roof edge of the short building dimension. Yet, the distribution of 302 

mean pressures predicted by the ANN model closely resembles the wind tunnel data. Moreover, the 303 

ANN model shows good predictive performance of the peaks, where errors between the ANN model 304 

and BLWT data were less than 10% in most cases. 305 

Table 6 summarizes ANN 𝐶𝑝 results obtained for the 1:20 model at the three roof tap locations 306 

considered in Tables 4 and 5. In general, the ANN model demonstrates adequate predictive 307 

performance of peak pressures for the three corner taps, where absolute errors between 1.2% and 21.9% 308 

were found. However, similar to the 1:50 and 1:30 models, lower mean and RMS pressures are 309 

predicted by the ANN model at tap 301 compared to the BLWT data. This is observed for the four 310 

upwind terrain cases. Additionally, ANN predictions of the mean 𝐶𝑝 for tap 314 display noticeable 311 

deviations from the BLWT data. Figure 10 presents contour maps of observed and predicted (i.e., 312 

ANN) RMS pressures on the roof of the 1:20 model for 𝐼𝑢,𝐻 = 22.1% (ℎ = 8 mm; wide). This upwind 313 

terrain configuration corresponds to the largest errors in both mean and RMS in the 1:20 model. The 314 

pressure maps illustrate how the ANN underestimates the intensity of the RMS pressures. Nevertheless, 315 

the errors in the mean and RMS pressures did not seem to affect the prediction of the peaks, where 316 

more than half of the values reported in Table 6 were less than 3.8% of the BLWT data. Of the three 317 

model scales, the ANN performed the best on the 1:50 dataset, while the 1:20 produced the largest 318 

discrepancies between the model and BLWT data.    319 

5.3 Turbulence effects on area-averaged peak pressures  320 

Figure 11 includes subplots of area-averaged peak pressures acting on the roof corner as a function of 321 

freestream turbulence intensity at eave height (𝐼𝑢,𝐻). The area-averaged pressures were computed from 322 

peak 𝐶𝑝 estimates of taps 215, 216, 301, 316, 315, and 314 located near the roof corner of the three 323 

WERFL models (see Figure 1). The six taps cover a normalized corner roof area 𝐴/𝐻2 of 0.15, where 324 

𝐻 is the eave height of the model; approximately 2.35 m2 in full-scale.  In Figure 11, the red markers 325 
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represent BLWT data from the 33 upwind terrain configurations, while the continuous black line is the 326 

ANN analytical (predictive) model. Peak pressure estimates were calculated from Gumbel distribution 327 

for a 78% probability of non-exceedance. 328 

Area-average pressures for the three WERFL models display similar trends of increasing peak 329 

suction with freestream turbulence. For the smoothest upwind case (𝐼𝑢,𝐻 ~8%), the three scales display 330 

peak pressures of approximately –3. Further, little scatter is observed for turbulence levels ranging 331 

from 8–18%. In this range, the ANN model is able to closely follow the monotonic trend in the data. 332 

However, for 𝐼𝑢,𝐻 exceeding 18%, the scattering in the UF data becomes more pronounced. During the 333 

ANN training process, the network parameters were carefully calibrated to avoid overfitting of data 334 

subsets with significant scatter; e.g., peak pressure data associated with highly turbulent approach flow 335 

conditions. This is particularly evident in the 1:30 and 1:20 building models. This resulted in improved 336 

generalization of ANN model for the roughest upwind cases.  337 

The subplots in Figure 11 also include area-averaged peak estimates computed from tests ST3 338 

and ST4 of the NIST database. The turbulence intensity for the two experiments were derived from the 339 

ESDU (1983) model based on full-scale roughness lengths of 𝑧0 = 0.01 m and 0.087 m and a height 𝑧 340 

= 3.96 m above ground level. This resulted in turbulence levels of 16.4% and 23.3% for ST3 and ST4, 341 

respectively. Area-averaged peak values for test ST3 (diamond green marker) show reasonably good 342 

agreement with the UF data when matching the turbulence levels at eave height, although NIST results 343 

displayed slightly lower peak (area-averaged) suction values. Conversely, the averaged peak pressure 344 

for test ST4 (square blue marker) shows noticeable discrepancies when compared to the UF data for 345 

similar 𝐼𝑢,𝐻. The discrepancy could be, in part, ascribed to uncertainties in the turbulent characteristics 346 

of the approach flow during pressure testing; i.e., surface pressures and approach flow conditions near 347 

the model are usually not measured simultaneously. For example, Figure 11 reveals how a slight 348 

reduction in 𝐼𝑢,𝐻  (e.g., 2%) can cause the NIST data to fall in line with the UF observations. This sheds 349 

light regarding the sensitivity of peak pressures to the turbulent flow conditions of the freestream. 350 

6 Discussion 351 

In general, the results suggest that the ANN models can accurately predict mean, peak, and fluctuating 352 

(i.e., RMS) pressures within the range of turbulent flow conditions considered. However, in some 353 

cases, considerable errors exist between experimental BLWT data and ANN predictions; particularly 354 

for the larger building models (e.g., 1:20). Discrepancies between BLWT data and the ANN model 355 

appear to increase with building model scale for taps near roof corners. For instance, the largest errors 356 

reported for mean pressure coefficients correspond to the 1:20 model (see Table 6). Peak and RMS Cp 357 

values also show relatively large errors for the largest building model. While it is evident that the 358 

turbulence intensity of the freestream near the model height is a key factor for predicting peak surface 359 

pressures, previous studies (e.g., Tieleman, 1992; Saathoff and Melbourne, 1997) have shown that the 360 

turbulence scales of the incident flow also play an important role in the development of extreme 361 

pressures, particularly in the mechanisms of transition within the separated shear layer (e.g., Lander et 362 

al., 2018). 363 

Early experimental work presented in Gartshore (1973) and Laneville (1975) has demonstrated the 364 

effect of the small-scale turbulence on the flow structure near the separated shear layer. These small-365 

scale eddies; approximately of the same order as the thickness of the shear layer; predominantly control 366 

the roll-up in flow separation regions. The level of small-scale turbulence is typically quantified by the 367 

Melbourne parameter (1979), defined as the normalized spectral density of the longitudinal velocity 368 

fluctuations evaluated at a wavelength (nH/U) corresponding to 1/10 of the characteristic dimension 369 
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(e.g., eave height, H) of the bluff body. Further, it has been shown that large-scale turbulence; 370 

represented by the integral length scale; can also influence the development and duration of extreme 371 

pressure events (Tieleman, 2003). For instance, Saathoff and Melbourne (1997) reported a noticeable 372 

increase in peak pressures; measured on a blunt flat plate; with increasing for the same turbulence 373 

intensity, although the turbulence levels were in relatively smoother flows (Iu,H ~8 and 12%). These 374 

authors argue that large-scale turbulent eddies are less frequent and thus permit shear layer vortices to 375 

further develop and strengthen, which results in higher surface pressures near flow separated regions. 376 

Nevertheless, further research is needed to better understand (and more accurately quantify) the effect 377 

of small- and large-scale turbulence features in the freestream flow and their influence on peak 378 

pressures; particularly for bluff-bodies immersed in highly turbulent boundary layers. It can be inferred 379 

from Figure 11 that the largest discrepancies between the BLWT data and ANN for the 1:30 and 1:20 380 

models are generally found in BLWT experiments where the model is immersed in more turbulent 381 

boundary layer flows (e.g., Iu,H > 18%). These observations are consistent with previous BLWT studies 382 

(Fritz et al., 2008) which have shown significant variability in peak pressures near roof corners when 383 

simulating rougher (i.e., suburban) upwind terrain conditions in the wind tunnel. 384 

Results from the three building models also suggest a clear dependence of the building model 385 

size on the performance of the neural network, where ANN predictions generally display larger 386 

discrepancies in peak pressures with increasing model scale. This trend could be, in part, due to 387 

Reynolds number effects in the BLWT; e.g., the Re for the 1:20 model is ~2.5 times greater than the 388 

1:50 model. Previous work (e.g., Lim et al., 2007) has demonstrated the Re-dependence (that can 389 

persist well-beyond Re > 2 × 104) when quantifying peak suction pressures on sharp-edged bluff bodies 390 

oriented at 45° to the approach flow; which is the wind direction considered in this study. This wind 391 

orientation promotes the development of strong (and relatively steady) “delta-wing type” conical 392 

vortices that originate at roof corners and extend along line inclines of ~11–14° relative to roof edges, 393 

where smaller angles are associated with larger Re numbers (Tryggeson and Lyberg, 2010). The 394 

structure of conical vortices has been shown to strongly affect Re, which partly explains the well-395 

known mismatch between measured peak pressures at model and full-scale under corner roof vortices 396 

(Cochran, 1992). Consequently, these disparities should be accounted for when deriving full-scale 397 

pressure data from BLWT experiments. Nonetheless, further work must be conducted to properly 398 

correct these discrepancies. 399 

7 Conclusions  400 

A feed-forward multilayer ANN using a backpropagation (BP) training algorithm is developed to 401 

predict the mean, RMS, and peak pressures on the roof of three geometrically scaled low-rise building 402 

models for a wide-range of upwind approach flow conditions. A large dataset of BLWT experimental 403 

data was utilized to train, validate, and test the network. The dataset consists of pressure data collected 404 

on the surface of three low-rise building models immerse in 33 unique boundary layer flows. In general, 405 

results indicate that the ANN model can accurately predict mean, RMS, and peak pressure coefficients 406 

on the roof of a low-rise structure given the freestream turbulence intensity at eave height and the 407 

normalized plan roof coordinates. Predicted ANN peak pressure coefficients for a series of pressure 408 

taps located near the roof corner were, on average, within 5.1, 6.9, and 7.7% of observed BLWT data 409 

for the 1:50, 1:30, and 1:20 model scales, respectively. The network also displayed reasonably good 410 

agreement between predicted ANN mean and RMS pressure coefficients and BLWT data. Further, the 411 

ANN was also successful in generating reliable functional relationships to associate area-averaged peak 412 

pressures near the roof corner to the turbulence characteristics of the freestream. These relationships 413 

similar trends for the three WERFL building models. 414 
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While the present work centers on the prediction of peak surface pressures from the freestream 415 

turbulence intensity near the model height, it is well-established that other flow parameters can 416 

influence the extreme pressure distribution, particularly in the separated shear layer. Both small and 417 

large turbulence scales in the freestream can affect the magnitude and duration of peak pressure events. 418 

These turbulent scale properties could potentially be introduced into the ANN model as input 419 

parameters (in addition to Iu,H), where small turbulence scales could be quantified by the Melbourne 420 

parameter, while the integral length scale can be utilized to estimate the size of large-scale turbulent 421 

eddies in the incident flow. Nonetheless, a better understanding of these parameters and their effect on 422 

the flow field around flow separated regions is still needed to more accurately predict peak pressures. 423 

In summary, the development of new predictive tools for quantifying peak wind loading on civil 424 

infrastructure is essential for improving the numerical accuracy of computational modeling (e.g., CFD) 425 

and steadily reducing our dependence on experimental testing. For instance, ANNs can be used to 426 

expand existing aerodynamic databases and help cover a wide range of possible experimental 427 

configurations. Further, ANNs can enhance the efficiency of newly developed cyber-physical methods 428 

(e.g., Whiteman et al., 2018) for investigating and optimizing the performance of civil infrastructure 429 

systems under wind hazards. Future work will further expand the capabilities of the current ANN model 430 

by incorporating additional input parameters, such as wind direction, roof slope, and building aspect 431 

ratio (Chen et al., 2003; e.g., Bre et al., 2018). Additionally, the predictive power of the neural network 432 

can be further enhanced through simulation of more realistic upwind terrain conditions. This can be 433 

achieved experimentally through the generation of random fields of roughness elements to recreate 434 

real-world heterogeneous terrain conditions. 435 

8 Author contributions 436 

PF performed the data analysis, prepared the figures and tables, and drafted the paper with input from 437 

FM and BP. FM and BP provided valuable guidance in developing the paper in addition to revising the 438 

data analysis procedures. 439 

9 Funding 440 

Experimental support for this research was provided by the National Science Foundation through the 441 

NSF Natural Hazards Engineering Research Infrastructure (NHERI, CMMI-1520843) Experimental 442 

Facility at the University of Florida (UF). The development and drafting of the paper was supported 443 

by NSF under Grant No. 1636039. 444 

10 Acknowledgments 445 

The authors wish to recognize the Powell Structures and Materials Laboratory staff, with special thanks 446 

to Jon Sinnreich, Steve Schein, Eric Agostinelli, Kevin Stultz, and Shelby Brothers for their 447 

contribution in wind tunnel testing. Any opinions, findings, and conclusions or recommendations 448 

expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors, 449 

partners, and contributors. 450 

11 References 451 

Akon, A.F., and Kopp, G.A. (2016). Mean pressure distributions and reattachment lengths for roof-452 

separation bubbles on low-rise buildings. J. Wind Eng. Ind. Aerodyn. 155, 115-125. 453 

Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, 454 

and application. Journal of microbiological methods, 43(1), 3-31. 455 



Predicting Roof Pressures Using ANN 

 
12 

This is a provisional file, not the final typeset article 

Bre, F., Gimenez, J. M., & Fachinotti, V. D. (2018). Prediction of wind pressure coefficients on 456 

building surfaces using artificial neural networks. Energy and Buildings, 158, 1429-1441. 457 

Bruno, L., Salvetti, M. V., & Ricciardelli, F. (2014). Benchmark on the aerodynamics of a 458 

rectangular 5: 1 cylinder: an overview after the first four years of activity. Journal of Wind 459 

Engineering and Industrial Aerodynamics, 126, 87-106. 460 

Chen, Y., Kopp, G. A., & Surry, D. (2003). Prediction of pressure coefficients on roofs of low 461 

buildings using artificial neural networks. Journal of wind engineering and industrial aerodynamics, 462 

91(3), 423-441. 463 

Cochran, L. S. (1992). Wind-Tunnel Modelling of Low-Rise Structures. Ph.D. Thesis, Civil 464 

Engineering, Colorado State University, CO. 465 

Cook, N. J., & Mayne, J. R. (1979). A novel working approach to the assessment of wind loads for 466 

equivalent static design. Journal of Wind Engineering and Industrial Aerodynamics, 4(2), 149-164. 467 

Davenport, A. G. (1964, June). Note on the distribution of the largest value of a random function 468 

with application to gust loading. In ICE Proceedings (Vol. 28, No. 2, pp. 187-196). Thomas Telford. 469 

Dongmei, H., Shiqing, H., Xuhui, H., & Xue, Z. (2017). Prediction of wind loads on high-rise 470 

building using a BP neural network combined with POD. Journal of Wind Engineering and 471 

Industrial Aerodynamics, 170, 1-17. 472 

ESDU (1983). Strong winds in the atmospheric boundary layer, Part 2: Discrete gust speeds, 473 

Engineering Sciences Data Unit, Itm. No. 83045, London, UK. 474 

Fang, C. and Sill, B.L (1995). Pressure distribution on a low-rise building model subjected to a 475 

family of boundary layers. J. Wind Eng. Ind. Aerodyn. 56, 87-105. 476 

Fernández-Cabán, P. L., & Masters, F.J., (2017). Upwind Terrain Effects on Low-Rise Building 477 

Pressure Loading Observed in the Boundary Layer Wind Tunnel. DesignSafe-CI [publisher], Dataset, 478 

doi:10.17603/DS2W670 479 

Fernández-Cabán, P. L., & Masters, F. J. (2017). Near surface wind longitudinal velocity positively 480 

skews with increasing aerodynamic roughness length. Journal of Wind Engineering and Industrial 481 

Aerodynamics, 169, 94-105. 482 

Fernández-Cabán, P. L., & Masters, F. J. (2018). Effects of Freestream Turbulence on the Pressure 483 

Acting on a Low-Rise Building Roof in the Separated Flow Region. Frontiers in Built Environment, 484 

4, 17. 485 

Fritz, W. P., Bienkiewicz, B., Cui, B., Flamand, O., Ho, T. C., Kikitsu, H., ... & Simiu, E. (2008). 486 

International comparison of wind tunnel estimates of wind effects on low-rise buildings: Test-related 487 

uncertainties. Journal of structural engineering, 134(12), 1887-1890. 488 

Franke, R. (1982). Scattered data interpolation: tests of some methods. Mathematics of computation, 489 

38(157), 181-200. 490 

Fu, J. Y., Li, Q. S., & Xie, Z. N. (2006). Prediction of wind loads on a large flat roof using fuzzy 491 

neural networks. Engineering Structures, 28(1), 153-161. 492 



Predicting Roof Pressures Using ANN 

 
13 

Gartshore, I. S. (1984). Some effects of upstream turbulence on the unsteady lift forces imposed on 493 

prismatic two dimensional bodies. J. Fluids Eng., 106(4), 418-424. 494 

Gavalda, X., Ferrer-Gener, J., Kopp, G. A., & Giralt, F. (2011). Interpolation of pressure coefficients 495 

for low-rise buildings of different plan dimensions and roof slopes using artificial neural networks. 496 

Journal of wind engineering and industrial aerodynamics, 99(5), 658-664. 497 

Gavanski, E., Gurley, K. R., & Kopp, G. A. (2016). Uncertainties in the estimation of local peak 498 

pressures on low-rise buildings by using the Gumbel distribution fitting approach. Journal of 499 

Structural Engineering, 142(11), 04016106. 500 

Ghosh, J., & Shin, Y. (1992). Efficient higher-order neural networks for classification and function 501 

approximation. International Journal of Neural Systems, 3(04), 323-350. 502 

Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt 503 

algorithm. IEEE transactions on Neural Networks, 5(6), 989-993. 504 

Haykin, S. (1994). Neural networks: a comprehensive foundation. Prentice Hall PTR. 505 

Hillier, R. and Cherry, N. J. (1981). The effects of stream turbulence on separation bubbles. J. Wind 506 

Eng. Ind. Aerodyn. 8(1-2), 49-58. 507 

Ho, T. C. E., Surry, D., & Morrish, D. P. (2003). NIST/TTU cooperative agreement–windstorm 508 

mitigation initiative: Wind tunnel experiments on generic low buildings. The Boundary Layer Wind 509 

Tunnel Laboratory, The University of Western Ontario, London, Ontario, Canada. 510 

Huang, G., Ji, X., Zheng, H., Luo, Y., Peng, X., & Yang, Q. (2017). Uncertainty of peak value of 511 

non-Gaussian wind load effect: analytical approach. Journal of Engineering Mechanics, 144(2), 512 

04017172. 513 

Irwin, H. P. A. H., Cooper, K. R., & Girard, R. (1979). Correction of distortion effects caused by 514 

tubing systems in measurements of fluctuating pressures. Journal of Wind Engineering and Industrial 515 

Aerodynamics, 5(1-2), 93-107. 516 

Kiya and Sasaki (1983). Structure of large-scale vortices and unsteady reverse flow in the reattaching 517 

zone of a turbulent separation bubble. J. Fluid Mech. 154, 463-491. 518 

Lander, D. C., Moore, D. M., Letchford, C. W., and Amitay, M. (2018). Scaling of square-prism 519 

shear layers. J. Fluid Mech. 849, 1096–1119. 520 

Laneville, A. (1975). “An explanation of some effects of turbulence on bluff bodies,” in Proc. Fourth 521 

International Conference on Wind Effects on Building and Structures (Heathrow) 522 

Levitan, M. L., & Mehta, K. C. (1992). Texas Tech field experiments for wind loads part 1: building 523 

and pressure measuring system. Journal of Wind Engineering and Industrial Aerodynamics, 43(1-3), 524 

1565-1576. 525 

Levitan, M. L., & Mehta, K. C. (1992). Texas Tech field experiments for wind loads part II: 526 

meteorological instrumentation and terrain parameters. Journal of Wind Engineering and Industrial 527 

Aerodynamics, 43(1-3), 1577-1588. 528 



Predicting Roof Pressures Using ANN 

 
14 

This is a provisional file, not the final typeset article 

Lim, H. C., Castro, I. P., & Hoxey, R. P. (2007). Bluff bodies in deep turbulent boundary layers: 529 

Reynolds-number issues. Journal of Fluid Mechanics, 571, 97-118. 530 

Melbourne, W.H. (1979). Turbulence effects on maximum surface pressures, a mechanism and 531 

possibility of reduction, Proc. 5th Int. Conf. on Wind Engineering, Colorado, USA, Pergamon Press, 532 

pp 541-552.  533 

Nasrabadi, N. M. (2007). Pattern recognition and machine learning. Journal of electronic imaging, 534 

16(4), 049901. 535 

Pemberton, R. (2010). An overview of dynamic pressure measurement considerations. Scanivalve 536 

Corporation. March, 2010.  537 

Ricci, M., Patruno, L., & de Miranda, S. (2017). Wind loads and structural response: Benchmarking 538 

LES on a low-rise building. Engineering Structures, 144, 26-42. 539 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-540 

propagating errors. nature, 323(6088), 533. 541 

Saathoff, P. J., & Melbourne, W. H. (1997). Effects of free-stream turbulence on surface pressure 542 

fluctuations in a separation bubble. Journal of Fluid Mechanics, 337, 1-24. 543 

Tieleman, H. W., Reinhold, T. A., and Marshall, R. D. (1978). On the wind-tunnel simulation of the 544 

atmospheric surface layer for the study of wind loads on low-rise buildings. J. Wind Eng. Ind. 545 

Aerodyn. 3(1), 21-38. 546 

Tieleman, H. W. (1992). Problems associated with flow modelling procedures for low-rise structures. 547 

J. Wind Eng. Ind. Aerodyn. 42(1), 923-934. 548 

Tieleman, H. W. (1993). Pressures on surface mounted prisms: the effects of incident turbulence. J. 549 

Wind Eng. Ind. Aerodyn. 49, 289-300. 550 

Turkkan, N., & Srivastava, N. K. (1995). Prediction of wind load distribution for air-supported 551 

structures using neural networks. Canadian Journal of Civil Engineering, 22(3), 453-461. 552 

Tryggeson, H., and Lyberg, M. D. (2010). Stationary vortices attached to flat roofs. J. Wind Eng. Ind. 553 

Aerodyn. 98, 47–54. 554 

St. Pierre, L. S., Kopp, G. A., Surry, D., & Ho, T. C. E. (2005). The UWO contribution to the NIST 555 

aerodynamic database for wind loads on low buildings: Part 2. Comparison of data with wind load 556 

provisions. Journal of Wind Engineering and Industrial Aerodynamics, 93(1), 31-59. 557 

Whiteman, M. L., Fernández-Cabán, P. L., Phillips, B. M., Masters, F. J., Bridge, J. A., & Davis, J. 558 

R. (2018). Multi-Objective Optimal Design of a Building Envelope and Structural System Using 559 

Cyber-Physical Modeling in a Wind Tunnel. Frontiers in Built Environment, 4, 13. 560 

Zhang, A., & Zhang, L. (2004). RBF neural networks for the prediction of building interference 561 

effects. Computers & Structures, 82(27), 2333-2339. 562 



Predicting Roof Pressures Using ANN 

 
15 

ZOC33 (2016). Miniature Pressure Scanner. Available at: http://scanivalve. com/products/pressure-563 

measurement/miniature-analog-pressure-scanners/zoc33-miniature-pressure-scanner/ (Accessed: 564 

March 13, 2018). 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 

 583 

 584 

  585 



Predicting Roof Pressures Using ANN 

 
16 

This is a provisional file, not the final typeset article 

Table 1. Longitudinal turbulence intensities of the freestream measured at the eave height of 586 

the 1:50, 1:30, and 1:20 building models. 587 

Roughness 

Element 

Height, ℎ 

(mm) 

Turbulence Intensity at Eave Height, 𝐼𝑢,𝐻 (%) 

1:50 1:30 1:20 

Wide Narrow Wide Narrow Wide Narrow 

0 9.1 8.5 7.9 

10 10.9 10.3 10.3 9.6 9.7 9.0 

20 12.8 11.3 12.3 10.6 11.8 9.9 

30 15.2 12.5 13.8 12.0 13.9 11.2 

40 17.2 13.4 16.7 13.0 16.2 12.5 

50 18.2 14.9 18.6 14.3 18.1 13.7 

60 18.2 15.7 19.2 15.2 19.5 14.7 

70 20.4 16.2 21.2 15.9 20.9 15.1 

80 21.4 16.5 21.5 16.6 22.1 15.8 

90 22.7 17.3 22.5 17.7 23.2 16.7 

100 22.8 17.7 24.0 17.8 24.5 17.0 

110 24.4 18.8 24.7 19.1 25.2 18.3 

120 25.3 19.4 24.7 19.8 26.3 18.5 

130 25.0 20.1 26.2 19.7 26.2 19.2 

140 26.9 20.6 26.5 20.7 28.0 20.2 

150 27.7 20.1 27.6 21.7 30.4 19.9 

160 30.2 22.2 28.5 23.0 29.6 21.1 
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Table 2. Backpropagation ANN parameters for the 1:20, 1:30, and 1:50 building model. 599 

Inputs 𝐼𝑢,𝐻, 𝑥/𝐻, 𝑦/𝐻   

Outputs 𝐶𝑝,𝑚𝑒𝑎𝑛, 𝐶𝑝,𝑟𝑚𝑠, 𝐶𝑝,𝑝𝑒𝑎𝑘 

ANN architecture BP 3–12–10–3 

Transfer functions 

  

Tangent sigmoid 

(hidden layers) 

Linear 

(output layer) 

Wind direction  𝛼 = 45º (cornering) 

Training data 

ℎ = 0–30 mm, 50–70 mm, 90–110 mm, 130 mm, 150–160 mm 

(wide edge windward), and ℎ = 0–50 mm, 70–90 mm, 110 mm, 

130 mm, 150–160 mm (narrow edge windward)1  

Validation data ℎ = 60 mm, 100 mm, 120 mm, 140 mm (narrow edge windward) 

Test data ℎ = 40 mm, 80 mm, 120 mm, 140 mm (wide edge windward) 

Training algorithm Levenberg–Marquardt (LM) backpropagation 

Number of validation 

checks 
8 

Training performance 

gradient 
0.00001 

1Note: Roughness element height ranges are in 10 mm increments. 600 
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Table 3. Regression performance for ANN test data (𝒉 = 40 mm, 80 mm, 120 mm, 140 mm; 609 

wide edge windward). 610 

Building Model 

Pressure 

Coefficient, 

𝐶𝑝 
𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑅2 

1:50 

RMS 0.042 0.058 0.986 

Mean 0.045 0.059 0.983 

Peak 0.215 0.283 0.977 

1:30 

RMS 0.056 0.068 0.979 

Mean 0.053 0.066 0.977 

Peak 0.288 0.312 0.971 

1:20 

RMS 0.097 0.091 0.960 

Mean 0.101 0.095 0.947 

Peak 0.324 0.339 0.971 

 611 

Table 4. Prediction of mean, RMS, and peak pressures for taps 215, 301, and 314 on the 1:50 612 

building model. 613 

Tap ID 
ℎ (mm) 

(Wide) 

𝐼𝑢,𝐻 

(%) 

𝐶𝑝,𝑚𝑒𝑎𝑛 𝐶𝑝,𝑅𝑀𝑆 𝐶𝑝,𝑝𝑒𝑎𝑘 

BLWT ANN % Error BLWT ANN % Error BLWT ANN % Error 

215 40 17.2 -1.53 -1.55 1.0 1.65 1.72 4.1 -5.80 -6.64 14.4 

80 21.4 -1.78 -1.72 -3.7 2.04 2.01 -1.4 -10.08 -9.36 -7.1 

120 25.3 -1.92 -1.90 -0.9 2.31 2.34 1.1 -12.95 -12.40 -4.3 

140 26.9 -1.95 -1.98 1.9 2.44 2.48 1.6 -13.16 -13.71 4.2 

301 40 17.2 -2.19 -2.10 -4.4 2.29 2.21 -3.5 -5.23 -5.46 4.4 

80 21.4 -2.27 -2.08 -8.7 2.47 2.25 -8.9 -6.78 -6.68 -1.4 

120 25.3 -2.12 -2.07 -2.7 2.42 2.30 -4.7 -8.60 -8.11 -5.7 

140 26.9 -1.99 -2.06 3.6 2.31 2.33 0.8 -8.18 -8.75 6.9 

314 40 17.2 -1.98 -1.97 -0.5 2.04 2.05 0.5 -4.45 -4.63 3.9 

80 21.4 -1.89 -1.82 -3.6 2.01 1.95 -2.9 -5.70 -5.56 -2.5 

120 25.3 -1.76 -1.67 -4.7 1.95 1.85 -4.9 -6.99 -6.62 -5.3 

140 26.9 -1.67 -1.61 -3.6 1.91 1.81 -5.1 -7.12 -7.08 -0.7 

Mean % Error 3.3  3.3  5.1 

 614 

 615 

 616 

 617 

 618 
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Table 5. Prediction of mean, RMS, and peak pressures for taps 215, 301, and 314 on the 1:30 620 

building model. 621 

Tap ID 
ℎ (mm) 

(Wide) 

𝐼𝑢,𝐻 

(%) 

𝐶𝑝,𝑚𝑒𝑎𝑛 𝐶𝑝,𝑅𝑀𝑆 𝐶𝑝,𝑝𝑒𝑎𝑘 

BLWT ANN % Error BLWT ANN % Error BLWT ANN % Error 

215 40 16.7 -0.93 -0.84 -9.7 1.05 1.04 -0.9 -7.81 -7.27 -6.9 

80 21.5 -1.09 -1.03 -5.5 1.43 1.34 -5.9 -11.77 -9.86 -16.2 

120 24.7 -1.35 -1.33 -1.7 1.90 1.72 -9.6 -11.56 -11.90 2.9 

140 26.5 -1.46 -1.51 3.6 2.09 1.94 -7.5 -12.67 -12.99 2.5 

301 40 16.7 -2.41 -2.11 -12.7 2.51 2.22 -11.7 -6.13 -5.27 -14.0 

80 21.5 -2.27 -1.88 -17.1 2.45 2.06 -15.9 -7.08 -6.64 -6.2 

120 24.7 -2.13 -1.78 -16.7 2.41 2.02 -15.8 -8.51 -8.04 -5.5 

140 26.5 -2.02 -1.73 -14.5 2.32 2.01 -13.4 -8.83 -8.73 -1.1 

314 40 16.7 -1.94 -1.83 -5.4 1.99 1.87 -6.4 -4.64 -4.13 -10.9 

80 21.5 -1.76 -1.71 -2.9 1.86 1.79 -3.8 -5.40 -5.03 -6.9 

120 24.7 -1.68 -1.68 0.1 1.84 1.81 -1.9 -6.48 -6.02 -7.1 

140 26.5 -1.65 -1.65 -0.1 1.85 1.81 -2.2 -6.84 -6.61 -3.3 

Mean % Error 7.5  7.9  6.9 

 622 

Table 6. Prediction of mean, RMS, and peak pressures for taps 215, 301, and 314 on the 1:20 623 

building model. 624 

Tap ID 
ℎ (mm) 

(Wide) 

𝐼𝑢,𝐻 

(%) 

𝐶𝑝,𝑚𝑒𝑎𝑛 𝐶𝑝,𝑅𝑀𝑆 𝐶𝑝,𝑝𝑒𝑎𝑘 

BLWT ANN % Error BLWT ANN % Error BLWT ANN % Error 

215 40 16.2 -1.58 -1.42 -9.9 1.71 1.59 -7.1 -8.23 -8.46 2.8 

80 22.1 -2.02 -1.68 -16.8 2.35 1.98 -15.6 -13.2 -11.9 -9.9 

120 26.3 -2.11 -1.98 -6.1 2.58 2.38 -7.7 -14.8 -14.3 -3.8 

140 28.0 -2.01 -2.07 3.3 2.54 2.48 -2.4 -14.8 -14.6 -0.9 

301 40 16.2 -2.06 -1.87 -9.1 2.15 1.95 -9.3 -5.69 -4.45 -21.9 

80 22.1 -2.48 -1.95 -21.2 2.66 2.11 -20.5 -8.24 -6.71 -18.5 

120 26.3 -2.25 -1.91 -15.1 2.50 2.16 -13.6 -9.27 -8.92 -3.8 

140 28.0 -1.94 -1.78 -8.4 2.21 2.05 -7.2 -8.50 -9.32 9.6 

314 40 16.2 -1.74 -1.57 -10.1 1.80 1.64 -8.6 -4.17 -4.07 -2.5 

80 22.1 -1.91 -1.50 -21.4 2.01 1.63 -19.2 -6.00 -5.19 -13.5 

120 26.3 -1.75 -1.53 -12.6 1.90 1.71 -10.0 -6.77 -6.69 -1.2 

140 28.0 -1.51 -1.52 0.8 1.68 1.71 2.2 -7.35 -7.10 -3.4 

Mean % Error 11.2  10.3  7.7 

 625 

 626 

 627 
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 629 

 630 

Figure 1. Pressure tap layout on the roof of the three UF WERFL building models. Tap ID and 631 

(normalized) coordinates follow the layout of Test 7 (ST3/ST4) of the NIST aerodynamic 632 

database. The red “x” markers represent additional taps that were added to the original layout 633 

(blue “o” markers). 634 

 635 
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 636 

Figure 2.  Six representative upwind terrain configurations for the UF 1:20 WERFL building 637 

model oriented at a 45º (cornering) wind direction.  638 

 639 

 640 
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 641 

(a) (b) 

Figure 3. Longitudinal turbulence spectra; at eave height (𝒛 = 3.96 m full-scale); of the 642 

freestream measured at the center of the test section; with the building model removed. The 643 

simulation of the two terrains is achieved for roughness element heights of 40 mm (sparse open) 644 

and 100 mm (dense open) in a wide edge windward orientation. 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 



Predicting Roof Pressures Using ANN 

 
23 

 668 

Figure 4. Architecture of multilayer artificial neural network with error backpropagation 669 

 670 

Figure 5. Feedforward (or activation propagation) and error backpropagation phases for 671 

neuron 𝒋. 672 

 673 

 674 
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 676 

(a)  677 

(b)  678 

(c)  679 

Figure 6.  ANN backpropagation performance history for training, validation, and testing 680 

subsets: (a) 1:50, (b) 1:30, and (c) 1:20 building models.  681 
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 683 

 684 

 685 

Figure 7.  ANN regression plots showing the relationship between the outputs (𝑪𝒑 ANN) of the 686 

network and the targets (𝑪𝒑 BLWT) for the three WERFL building models. 687 

 688 

 689 

 690 
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 693 
 694 

 695 

(a) (b) 

Figure 8.  Prediction of peak pressure coefficients (𝑪𝒑,𝒑𝒆𝒂𝒌) for the 1:50 WERFL model and a 696 

freestream turbulence intensity of 26.9% at eave height: (a) BLWT experimental data and (b) 697 

ANN prediction. 698 

 699 
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 701 
(a) (b) 

Figure 9.  Prediction of mean pressure coefficients (𝑪𝒑,𝒎𝒆𝒂𝒏) for the 1:30 WERFL model and a 702 

freestream turbulence intensity of 21.5% at eave height: (a) BLWT experimental data and (b) 703 

ANN prediction. 704 
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 708 
(a) (b) 

Figure 10.  Prediction of RMS pressure coefficients (𝑪𝒑,𝒓𝒎𝒔) for the 1:20 WERFL model and a 709 

freestream turbulence intensity of 22.1% at eave height: (a) BLWT experimental data and (b) 710 

ANN prediction. 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 
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(a)  723 

(b)  724 

(c)  725 

Figure 11.  Area-averaged peak pressures from six corner roof taps (Tap IDs 215, 216, 301, 726 

314, 315, and 316) as a function of freestream turbulence: (a) 1:50, (b) 1:30 and (c) 1:20. 727 

 728 


