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Abstract—This paper studies the multicast capacity of full-
duplex 1-2-1 networks. In this model, two nodes can communicate
only if they point “beams” at each other; otherwise, no signal
can be exchanged. The main result of this paper is that the
approximate multicast capacity can be computed by solving a
linear program in the activation times of links connecting pairs
of nodes. This linear program has two appealing features: (i)
it can be solved in polynomial-time in the number of nodes;
(ii) it allows to efficiently find a network schedule optimal for
the approximate capacity. Additionally, the relation between the
approximate multicast capacity and the minimum approximate
unicast capacity is studied. It is shown that the ratio between
these two values is not universally equal to one, but it depends
on the number of destinations in the network, as well as graph-
theoretic properties of the network.

I. INTRODUCTION

With the commercial deployment of Fifth Generation (5G)
cellular technology, expected as early as 2020, highly directive
millimeter wave (mmWave) communication is expected to
play a central role in a number of 5G applications/services.
These include ultra-high resolution video streaming, vehicle-
to-vehicle communication and massive machine type commu-
nication. Multicasting is foreseen to be of critical importance
to enable a number of these applications, for example in
multimedia broadcast and vehicular communication (for fleet
management and assisted driving) [1]. In this paper, we expand
on our recent investigation in [2] of unicast communication in
networks with mmWave nodes and study multicast traffic and
its relation to rates achieved in the unicast case.

In [2], we recently introduced Gaussian 1-2-1 networks, a
model that abstracts the directivity of mmWave communica-
tion. We used this model to study the Shannon capacity for
unicast traffic in arbitrary network topologies that consist of
Full-Duplex (FD) mmWave nodes, that is, nodes that can re-
ceive and transmit at the same time using two highly directive
beams. In particular, in [2] we proved that the unicast capacity
of a Gaussian 1-2-1 network with FD mmWave nodes can
be approximated to within a universal constant gap1. We use
approximate capacity to refer to such an approximation in the
remainder of the paper. The key differentiating point between
FD 1-2-1 networks and regular FD wireless networks is that
in the former, two nodes can communicate only if they point
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1Constant gap refers to a quantity that is independent of the channel
coefficients and operating SNR, and solely depends on the number of nodes.

beams at each other, otherwise no signal can be exchanged,
i.e., we do not have broadcast and multiple access channel
opportunities. This directivity of communication inherently
introduces a scheduling factor to the problem: in order to op-
erate the network close to its Shannon capacity, it is necessary
to understand which links should be activated (i.e., how the
beams should be steered) and for how long. In other words,
this leads to an optimization problem whose solution provides
the network approximate capacity. Because of this feature, the
1-2-1 model shares similiarities with link scheduling [3] and
hyperarc scheduling [4] in graphical models, particularly when
nodes are half-duplex, i.e., nodes can either receive or transmit
with a highly directive beam, but not both simultaneously.

The focus of this paper is on Gaussian FD 1-2-1 networks
with multicast traffic where a source wishes to communicate a
common message to a number of destinations in the network.
In particular, we are interested in characterizing the approxi-
mate multicast capacity for Gaussian FD 1-2-1 networks. For
classical wired networks (i.e., networks with orthogonal links),
the multicast capacity is given by the main theorem of network
coding [5]. For regular (i.e., without 1-2-1 constraints) FD
wireless networks, the approximate multicast capacity can be
achieved by the quantize-map-and-forward scheme [6].

Our first main result in this paper is to show that the approx-
imate multicast capacity of Gaussian FD 1-2-1 networks can
be computed using a Linear Program (LP) that is a function
of the amount of time a link is active in the network. This
formulation, which parallels the one in [7] for unicast traffic,
enables an efficient computation (i.e., that can be performed
in polynomial-time in the number of nodes in the network) of
two quantities: (i) the approximate multicast capacity, and (ii)
an operating schedule optimal for the approximate capacity.

Our second result in this paper is to characterize the worst-
case ratio between the approximate multicast capacity and
the minimum unicast capacity of the network. Note that in
wired networks, by the definition of multicast capacity, the
ratio between multicast and unicast capacities is always unity.
Similarly, in regular FD wireless networks, the ratio between
the approximate multicast and unicast capacities is always
equal to one, independently of the network topology or number
of destinations that share the multicast message. We here show
that such a result does not hold with 1-2-1 constraints, i.e.,
the ratio depends on the number of destinations, as well as
on graph theoretic properties of 1-2-1 networks. This is due
to the fact that in 1-2-1 networks, the scheduling naturally
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Fig. 1: Model of a 1-2-1 node (left) and an example of a
1-2-1 network with N = 3 relays (right).

introduces a contention for which the network seeks to best
serve the collection of all destinations rather than maximizing
the communication towards a single destination.
Paper Organization. Section II describes the Gaussian FD
1-2-1 network and presents known unicast capacity results.
Section III derives the approximate multicast capacity of
Gaussian FD 1-2-1 networks as the solution of an LP. Finally,
Section IV proves the worst case ratio between multicast and
unicast approximate capacities.

II. SYSTEM MODEL AND UNICAST CAPACITY

We use [n1 : n2] to denote the set of integers from n1 to
n2 ≥ n1; ∅ is the empty set; 1P is the indicator function; 0N

is the all-zero vector of length N ; |A| is the absolute value of
A when A is a scalar, and the cardinality when A is a set.

We consider a 1-2-1 Gaussian network denoted by N with
N + 1 nodes and multicast traffic. Node 0 is the source node
and it wishes to communicate a common message to a set of
destinations indexed by the set D ⊆ [1 : N ]. The remaining
nodes [1 : N ]\D are relays that assist the communication
between the source and the set of destinations. The 1-2-1
network model, introduced in [2], describes conditions on the
communication between nodes in the network. In particular,
at any time instant, a node in the network can only direct
(beamform) its transmission towards at most one other node.
Similarly, a node can only receive transmission from at most
one other node by directing its receiving beam towards the
node in question. A network example is depicted in Fig. 1.
At node i ∈ [0 : N ], the aforementioned functionality is
characterized by two states Si,t and Si,r that index the node
(if any) to which node i is transmitting to and receiving from,
respectively. Thus, for all i ∈ [0 : N ], we have that

Si,t ⊆ [1 : N ]\{i}, |Si,t| ≤ 1, (1a)
Si,r ⊆ [0 : N ]\{i}, |Si,r| ≤ 1. (1b)

For the source (node 0), we additionally have that S0,r = ∅
since the source does not intend to receive communication.
Note that, throughout this paper, we assume that the nodes
are operating in FD, and hence it is possible ∀i ∈ [1 : N ] that
both Si,t and Si,r are simultaneously non-empty. In [2], it was
shown that the memoryless channel model for the Gaussian
1-2-1 network model can be written as

Yj =

{
hjSj,rXSj,r (j) + Zj if |Sj,r| = 1,

0 otherwise,
(2)

where: (i) Sj,t and Sj,r are defined in (1); (ii) Yj ∈ C
is the channel output at node j; (iii) hji ∈ C represents
the channel coefficient from node i to node j; the channel
coefficients are assumed to remain constant for the entire
transmission duration and hence they are known by all nodes
in the network; (iv) Zj is the additive white Gaussian noise at
the j-th node; noises across nodes in the network are assumed
to be independent and identically Gaussian distributed as
CN (0, 1); (v) Xi ∈ CN+1 has elements Xi(k) defined as
Xi(k) = Xi1{k∈Si,t}, where Xi ∈ C is the channel input at
node i; the channel inputs are subject to an individual power
constraint, i.e., E[|Xi|2] ≤ P,∀i ∈ [0 : N ]; note that, if node
i is not transmitting, i.e., Si,t = ∅, then Xi = 0N+1.

The focus in [2] was on the unicast capacity for the Gaussian
FD 1-2-1 network, i.e., where the destination set is a singleton
set, D = {N}. Although the Shannon capacity C of the
Gaussian 1-2-1 unicast network is not known, we have shown
in [2, Theorem 1] that it can be approximated by Ccs,iid as

Ccs,iid ≤ C ≤ Ccs,iid +O(N logN), (3a)

Ccs,iid = max
λs:λs≥0∑

s λs=1

min
Ω:Ω⊆[0:N−1],

0∈Ω

∑
(i,j):i∈Ω,
j∈Ωc

 ∑
s:

j∈si,t,
i∈sj,r

λs

 `j,i, (3b)

`j,i = log
(

1 + P |hji|2
)
, (3c)

where: (i) Ω enumerates all possible cuts in the graph repre-
senting the network, such that the source belongs to Ω; (ii)
Ωc = [0 : N ]\Ω; (iii) s enumerates all possible network
states of the 1-2-1 network in FD, where each network state
corresponds to specific values for the variables in (1) for each
network node; (iv) λs, i.e., the optimization variable, is the
fraction of time for which state s is active; we refer to a
schedule as the collection of λs for all feasible states, such
that they sum up to at most 1; (v) si,t and si,r denote the
transmitting and receiving states for node i in the network
state s as defined in (1). In other words, for Gaussian FD 1-2-
1 networks, Ccs,iid in (3) is the approximate unicast capacity,
i.e., a constant gap approximation of the unicast capacity C.

III. CONSTANT GAP APPROXIMATION OF THE MULTICAST
CAPACITY

The cut-set bound for the FD 1-2-1 multicast network is

Cmulti
cs = max

P{Xi,Si}
(·)

min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

I(X̂Ω;YΩc |X̂Ωc), (4)

where: (i) X̂Ω = {(Xi, Si) : i ∈ Ω} and Xi is the channel
input at the i-th node and Si = (Si,t, Si,r) combines the
switching variables of node i; (ii) YΩ = {Yi : i ∈ Ω} and
Yi is the signal received at node i.

Using arguments similar to the ones used in [7] to bound the
unicast capacity, we can upper and lower bound the multicast
capacity Cmulti of the network as

Cmulti
cs,iid ≤ Cmulti ≤ Cmulti

cs,iid + GAP, (5)
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where GAP = log(N + 1) + N log(N2 + N), and Cmulti
cs,iid

is defined in (6), at the top of the next page. Note that the
expression of Ccs,iid(d, λ) in (6) is exactly the minimum cut
that we get for the single unicast case [7] when we consider
node d as the destination and the fixed schedule λ. Similar to
the single unicast case, we can evaluate the mutual information
term in Cmulti

cs,iid in (6) for the Gaussian noise case and express
it as a function of the point-to-point link capacities as

Cmulti
cs,iid = max

λs:λs≥0∑
s λs≤1

min
d∈D

Ccs,iid(d,λ)︷ ︸︸ ︷
min

Ω⊆[0:N ]:0∈Ω,
d∈Ωc

∑
(i,j):i∈Ω,
j∈Ωc

`
(s)
j,i , (7)

where `
(s)
j,i =

 ∑
s:

j∈si,t,
i∈sj,r

λs

 `j,i.

The expression in (7) looks very similar to the approximate
capacity expression for the single unicast case in (3), with the
difference that in multicast we also have a minimization over
d ∈ D, which ensures that each destination is able to reliably
decode the message. Note that the inner minimization in (7) is
the min-cut over a graph with edge capacities `(s)j,i . Thus, for
fixed d ∈ D and fixed schedule λ, we can replace Ccs,iid(d, λ)
in (7) with its equivalent max-flow formulation, and we obtain

P0 : Cmulti
cs,iid = max

λs:λs≥0∑
s λs≤1

min
d∈D

max
{F (d)

d,j }

∑
j∈[0:N ]\d

F
(d)
d,j

0 ≤ F (d)
j,i ≤ `

(s)
j,i ∀(i, j) ∈ [0 : N ]× [1 : N ], d∈D (8)∑

j∈[1:N ]\{i}
F

(d)
j,i =

∑
k∈[0:N ]\{i}

F
(d)
i,k ∀i∈[1 : N ]\{d}, d∈D,

where F
(d)
j,i is the information flow from node i to node j

when the destination is node d.
We observe that in the optimization problem P0 in (8), if

we can exchange the inner min-max with max-min, then we
can write Cmulti

cs,iid in (8) as the following LP

P1 : Cmulti
cs,iid = max

λs

max
F

min
d∈D

 ∑
j∈[0:N ]\d

F
(d)
d,j


0 ≤ F (d)

j,i ≤ `
(s)
j,i ∀(i, j) ∈ [0 : N ]× [1 : N ], d ∈ D∑

j∈[1:N ]\{i}
F

(d)
j,i =

∑
k∈[0:N ]\{i}

F
(d)
i,k ∀i ∈ [1:N ]\{d}, d ∈ D

∑
s

λs ≤ 1, (9)

λs ≥ 0 ∀s,

where F =
⋃
d∈D {F

(d)
d,j }. We next prove that, without loss

of generality, we can indeed exchange the min-max with the
max-min. Towards this end, we start by noting that, by the
max-min inequality, we have

min
d∈D

max
F

∑
j∈[0:N ]\d

F
(d)
d,j ≥ max

F
min
d∈D

∑
j∈[0:N ]\d

F
(d)
d,j . (10)

Thus, to prove equality between the two sides of (10) (and
consequentially the equivalence between P0 and P1), we need
to prove that

min
d∈D

max
F

∑
j∈[0:N ]\d

F
(d)
d,j ≤ max

F
min
d∈D

∑
j∈[0:N ]\d

F
(d)
d,j . (11)

We prove the inequality in (11) by leveraging the result in the
following lemma.

Lemma 1. Let I be a discrete set and X =
∏
i∈I Xi.

Consider the set of functions {fi(·)}i∈I , fi : X → R such
that fi(·) depends only on Xi. Then, we have

min
i∈I

max
x∈X

fi(x) ≤ max
x∈X

min
i∈I

fi(x). (12)

Proof. For any x ∈ X , we can write it as x=[x1, x2, · · · , x|I|],
such that xi ∈ Xi. Since the value of fi(·) depends only on
xi, then we can define x?i as the value of xi that maximizes
fi. Thus, for x? = [x?1, x

?
2, · · · , x?|I|]∈X , we have that

max
x∈X

fi(x) = fi(x
?).

Furthermore, we have that

max
x∈X

min
i∈I

fi(x)
(a)

≥ min
i∈I

fi(x
?) = min

i∈I
max
x∈X

fi(x), (13)

where (a) follows from the fact that we are considering a
particular x ∈ X . This proves Lemma 1.

Remark 1. In Lemma 1, consider I = D, x = F, xi = {F (i)
i,j }

and fi(x) =
∑
j∈[0:N ]\i F

(i)
i,j . Then, we have the intended

relation in (11).

We now would like to rewrite the LP P1 such that the sched-
ule variables λs are combined into variables λji representing
the fraction of time the link of capacity `j,i is active. With
this, we can obtain a significant reduction in the number of
optimization variables for scheduling, i.e., from exponential in
N in P1 to polynomial in N . It is not difficult to show that,
by using the change of variables

λji =
∑
s:

j∈si,t,
i∈sj,r

λs,

the LP P1 is equivalent to the LP P2 below

P2 : Cmulti
cs,iid = max

F, λ
min
d∈D

 ∑
j∈[0:N ]\d

F
(d)
d,j


(2a) 0 ≤ F (d)

j,i ≤ λji`j,i ∀(i, j) ∈ [0:N ]×[1:N ], d∈D
(2b)

∑
j∈[1:N ]\{i}

F
(d)
j,i =

∑
k∈[0:N ]\{i}

F
(d)
i,k ∀i ∈ [1:N ], d∈D

(2c)
∑

j∈[1:N ]\{i}
λji ≤ 1, ∀i ∈ [0 : N ] (14)

(2d)
∑

k∈[0:N ]\{i}
λik ≤ 1, ∀i ∈ [1 : N ]

(2e) λji ≥ 0, ∀(i, j) ∈ [0:N ]× [1:N ].
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Cmulti
cs,iid = max

P{Si}(·)
min
d∈D

Ccs,iid(d,λ)︷ ︸︸ ︷
min

Ω⊆[0:N ]:0∈Ω,
d∈Ωc

max
P{Xi}|{Si}

(·)

∑
s

λs I(XΩ;YΩc |S[0:N+1]=s,XΩc), (6)

In P2 the number of variables is O(|D|N2). This, together with
the fact that P2 has a polynomial in N number of constraints,
ensure that the approximate multicast capacity Cmulti

cs,iid can be
computed efficiently, i.e., in polynomial-time in N .

Remark 2. The formulation in P2 for the approximate multi-
cast capacity of Gaussian FD 1-2-1 networks differs from the
formulation in unicast only in the number of flow variables
needed for the multicast case. However, with similar feasibility
constraints on the link activation times {λji} both in multicast
and unicast, we can use the algorithm in [7, Appendix F]
to compute an optimal schedule {λs} for the approximate
capacity in polynomial-time by using the solution of P2.

In the following section, we focus on characterizing a lower
bound on the ratio between the multicast approximate capacity
in P2 and the minimum unicast approximate capacity in FD.

IV. MULTICAST VS MINIMUM UNICAST APPROXIMATE
CAPACITY

In this section, we focus on characterizing the ratio between
the approximate multicast and unicast capacities of Gaus-
sian FD 1-2-1 networks. For brevity, we denote Cmulti

cs,iid with
Cmulticast. In particular, the approximate multicast capacity
is given by the LP P2 in (14). For destination d ∈ D, the
approximate unicast capacity Cd is given by [7]

P3d : Cd = max
F, λ

 ∑
j∈[0:N ]\d

F
(d)
d,j


0 ≤ F (d)

j,i ≤ λ
(d)
ji `j,i ∀(i, j) ∈ [0 : N ]× [1 : N ]∑

j∈[1:N ]\{i}
F

(d)
j,i =

∑
k∈[0:N ]\{i}

F
(d)
i,k ∀i ∈ [1 : N ]

∑
j∈[1:N ]\{i}

λ
(d)
ji ≤ 1, ∀i ∈ [0 : N ] (15)

∑
k∈[0:N ]\{i}

λ
(d)
ik ≤ 1, ∀i ∈ [1 : N ]

λ
(d)
ji ≥ 0 ∀(i, j) ∈ [0 : N ]× [1 : N ].

Note that the superscript (d) is fixed throughout the LP and
is included to specialize the variables used in computing Cd.

We now define the following parameters for our network:

• Cmu: minimum unicast approximate capacity from the
source to the destinations, i.e., Cmu = mind∈D Cd;

• ∆+: maximum number of incoming links (with non-zero
capacity) to a node in the 1-2-1 network;

• ∆−: maximum number of outgoing links (with non-zero
capacity) from a node in the 1-2-1 network.

With these definitions, we can now state the following
theorem that relates Cmu and Cmulticast.

Theorem 2. For a Gaussian FD 1-2-1 network with destina-
tion set D, we have that

Cmulticast ≥
1

min {|D|, max{∆+,∆−}}Cmu. (16)

Furthermore, there exists a class of networks for which this
ratio is tight.

Proof. Without loss of generality, the destination nodes are
indexed by {1, 2, · · · , D}, with D = |D|. The key intuition
behind the worst-case ratio in Theorem 2 is that, when the
destinations are spread out in different places in the network
(e.g. in Fig. 2 and Fig. 3), the network scheduling needs to
balance the amount of traffic to be delivered to each destina-
tion. Thus, because of this, the approximate multicast capacity
decreases. In what follows, we formalize this notion by
considering two different cases, namely |D| ≤ max{∆+,∆−}
and |D| > max{∆+,∆−}, respectively. In each of the two
cases, we show that there exists a feasible schedule (in terms
of link activation times) in (14) that achieves the bound in (16).
Moreover, we also present network examples for which the
ratio guarantee in (16) is indeed tight.
Case 1: |D| ≤ max{∆+,∆−}.
In this particular case, ∀d ∈ D, let {λ(d)?

ji } be an optimal
schedule in P3d for the approximate unicast capacity from the
source to destination d. We can define a feasible schedule for
the LP P2 in (14) as

λ′ji =
1

|D|
∑
d∈D

λ
(d)?

ji ∀(i, j) ∈ [0 : N ]× [1 : N ].

In other words, for multicast traffic, we timeshare the network
with the optimal schedule for each of the destinations d ∈
D. Let {F ′(d)

j,i } be the optimal flow variables that maximize
the objective function for the fixed schedule {λ′ji} in P2. By
the timesharing argument, it is not difficult to see that for
all destinations, we have that the evaluation of the objective
function in P2 using this timesharing schedule gives that∑

j∈[0:N ]\d
F
′(d)
d,j ≥

1

|D|
∑

j∈[0:N ]\d
F

(d)?

d,j =
1

|D|Cd ∀d ∈ D,

where {F (d)?

d,j } are optimal for P3d. Since the computed
{F ′(d)

j,i } and {λ′ji} are feasible in the LP P2, then we have
the desired ratio, i.e.,

Cmulticast ≥ min
d∈D

∑
j∈[0:N ]\d

F
′(d)
d,j ≥ min

d∈D
1

|D|Cd =
1

|D|Cmu.
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Fig. 2: Network with tight ratio for |D| ≤ max{∆+,∆−}.
The D = |D| destinations are shown with a bold border.

To show that the bound is tight, consider the network
topology illustrated in Figure 2. It is not difficult to see
that, for this particular network, Cmu = R. For the multicast
approximate capacity Cmulticast, the source has to timeshare
between the |D| destinations to achieve a rate of R/|D|. Thus,

Cmulticast =
1

|D|Cmu.

This concludes the proof for the first case.
Case 2: |D| > max{∆+,∆−}.
In this particular case, we define the multicast schedule as

λ′ji =
1

max{∆+,∆−}1{`ji>0} ∀(i, j) ∈ [0 : N ]×[1 : N ].

To show that this schedule is feasible in the LP P2, we note
that for every node i in the network, we have that∑
k∈[0:N ]\{i}

λ′ik =
∑

k∈[0:N ]\{i}

1

max{∆+,∆−}1{`ik>0}

=
1

max{∆+,∆−}
∑

k∈[0:N ]\{i}
1{`ik>0}

=
1

max{∆+,∆−}
∑

k∈N+(i)

1 =
|N+(i)|

max{∆+,∆−}
(a)

≤1, (17)

where: (i) N+(i) = {k ∈ [0 : N ]|`ik > 0} is the set of
neighboring nodes to i that have incoming edges into i with
non-zero point-to-point link capacity; (ii) the inequality in (a)
follows from the definition of ∆+ that ensures that |N+(i)| ≤
∆+, ∀i ∈ [0:N ]. Using similar arguments, we can also show
that ∑

j∈[1:N ]\{i}
λ′ji ≤ 1.

The analysis above proves that the constructed schedule λ′ji
is feasible, i.e., it satisfies the constraints in (2c)−(2e) in the
LP P2. By fixing and substituting {λ′ji} in P2, we can now
compute the achievable multicast rate through this LP

R′multicast = max
F

min
d∈D

 ∑
j∈[0:N ]\d

F
(d)
d,j


0≤F (d)

j,i ≤
1

max{∆+,∆−}`j,i ∀(i, j) ∈ [0:N ]×[1:N ], d∈D∑
j∈[1:N ]\{i}

F
(d)
j,i =

∑
k∈[0:N ]\{i}

F
(d)
i,k ∀i ∈ [1:N ], d∈D. (18)
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Fig. 3: Network with tight ratio for |D| > max{∆+,∆−}.
The D = |D| destinations are shown with a bold border.

Note that the only variables in the LP in (18) are the flow
variables {F (d)

j,i }. Thus, in (18), we are effectively computing
the multicast capacity in a wired network with link capacities

`′j,i =
1

max{∆+,∆−}`j,i.

R′multicast =
1

max{∆+,∆−} min
d∈D

{
C

(wired)
d

}
, (19)

where C
(wired)
d is the unicast capacity to destination d when

we consider a wired network with the same link capacities as
our network. In other words, the network has orthogonal links
that can be activated for 100% of the time. Thus, it is not
difficult to see that Cd ≤ C

(wired)
d , ∀d ∈ D and we have that

Cmulticast ≥ R′multicast =
1

max{∆+,∆−} min
d∈D

{
C

(wired)
d

}
≥ 1

max{∆+,∆−} min
d∈D
{Cd}=

1

max{∆+,∆−}Cmu,

which proves the lower bound in the second case. To show that
the bound is indeed tight in this case, consider the network
shown in Figure 3. For this particular case, it is not difficult
to see that the unicast approximate capacity to each of the
destinations is R. Furthermore, in multicast, the source needs
to switch (equally) between the ∆− different paths connected
to it to satisfy different destinations. Thus, we have

Cmulticast =
1

max{∆+,∆−}Cmu.

This concludes the proof of Theorem 2.
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