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Abstract. We establish the convergence of statistically invariant states for
the stochastic Boussinesq equations in the infinite Prandtl number limit
and in particular demonstrate the convergence of the Nusselt number
(a measure of heat transport in the fluid). This is a singular parameter
limit significant in mantle convection and for gasses under high pres-
sure. The equations are subject to a both temperature gradient on the
boundary and internal heating in the bulk driven by a stochastic, white
in time, gaussian forcing. Here, the stochastic source terms have a strong
physical motivation for example as a model of radiogenic heating. Our
approach uses mixing properties of the formal limit system to reduce the
convergence of invariant states to an analysis of the finite time asymp-
totics of solutions and parameter-uniform moment bounds. Here, it is
notable that there is a phase space mismatch between the finite Prandtl
system and the limit equation, and we implement methods to lift both
finite and infinite time convergence results to an extended phase space
which includes velocity fields. For the infinite Prandtl stochastic Boussi-
nesq equations, we show that the associated invariant measure is unique
and that the dual Markovian dynamics are contractive in an appropriate
Kantorovich—Wasserstein metric. We then address the convergence of so-
lutions on finite time intervals, which is still a singular perturbation. In
the process we derive well-posed equations which accurately approximate
the dynamics up to the initial time when the Prandtl number is large.
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1. Introduction

Buoyancy driven convection plays a central role in a wide variety of physical
processes: from Earth’s climate system to the internal dynamics of stars. As
such it is of fundamental importance to identify and predict robust statistical
quantities in these complex flows and to connect such statistics with the basic
equations governing their dynamics, for example the Boussinesq equations. In
particular characterizing pattern formation, mean heat transport, and small
scale dynamics as a function of physical parameters and boundary conditions
remains a topic of intensive research theoretically, numerically, and experimen-
tally; see e.g. [3,5,32,34] for a broad overview of recent developments.

It has long been understood that statistically invariant states of the non-
linear partial differential equations of fluid dynamics provide mathematical ob-
jects which are expected to contain various robust statistical quantities found
in turbulent fluid flows. An ongoing challenge is therefore to address the exis-
tence, uniqueness, ergodicity, and dependence of these measures on parameters
in a variety of specific contexts. While one may certainly pose such questions for
deterministic equations [cf. [19]] the stochastic setting can be more tractable
given the regularizing effect of noise on the associated probability distribu-
tion functions. Moreover, energy may be supplied to the system through both
boundary or within the bulk of a fluid, the latter setting for instance models
radioactive decay processes in the earth’s mantle; see [4,24,33,39,41,51]. Both
sources can therefore have an essentially stochastic character in situations of
physical interest.

In this and a companion work, [21], we study statistically invariant states
of the stochastically driven Boussinesq equations

1 N
P—T(atu+u'Vu)fAu:Vp+RakT, V-u=0, (1.1)
N
dT +u- VTdt = ATdt + ) opdW", (1.2)
k=1

for the (non-dimensionalized) velocity field u = (uq,us,us), pressure p, and
temperature 7" of a buoyancy driven fluid. The system (1.1)—(1.2) evolves in
a three dimensional domain (z,y,2) = (x,2) € D = [0,L]? x [0,1] and is
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supplemented with the boundary conditions

U=0 = Uz=1 = 0, iZ—‘|z:0 = Ra, T|.—1 =0, (1 3)

u, T are periodic in x = (z,y). '
The unitless physical parameters in the problem are the Prandt/ number Pr
and Rayleigh numbers Ra and Ra; see Remark 2.3 and [21] for further details
concerning this choice of nondimensionalization. The unit vector k = (0,0,1)
points in the direction of the gravitational force. The driving noise in (1.2)
is given by a collection of independent white noise processes dW* = dW*(t)
acting spatially through the functions o} = oy (z,y, z) which form a complete
orthogonal basis of eigenfunctions (ordered with respect to eigenvalues) of the
Laplace operator on D supplemented with homogeneous Dirichlet boundary
conditions for z = 0,1 and periodic in x = (z, y). The stochastic terms in (1.2)
have been normalized so that

N
> lokllzzm) =1, (1.4)
k=1

with the strength of the body forcing expressed in terms of the physical pa-
rameters Ra and Ra; see (2.7) below.

Our principal aim here is to establish convergence properties of statisti-
cally invariant states of (1.1)-(1.3) to invariant measures of the active scalar
equation

—Au=Vp+ RakT, V-u=0, (1.5)
N

dT +u-VTdt = ATdt + > opdW* (1.6)
k=1

in the Large Prandtl number limit, that is, when Pr in (1.1) diverges to oo.
Here (1.5)—(1.6) is complemented with boundary conditions as in (1.3). Note
that u and p are determined by T" according to (1.5). We write this functional
dependence as u = M(T) and denote L(T) = (M(T),T).

The analysis of convection in the large Prandtl number limit is of basic
interest in a variety of physical contexts, most notably in modeling certain
portions of the earth’s mantle and for convection in gasses under high pressure,
where the Prandtl number can reach the order of 10?4, see [8,14,37]. It is
worth emphasizing that the system (1.5)—(1.6) has very complex dynamics
even without stochastic forcing when the Rayleigh number(s) are sufficiently
large; see [3,5,6,8,14,32,37,38,44].

Overview of the main results

Let us now present a heuristic version of our main results; for the precise
formulation see Theorem 2.2 below. Recall that for any function F' and measure
1, the push-forward of p under F is given by Fyp := o F~1,

Theorem 1.1. Fiz any Ra, Ra > 0 and consider (1.1)~(1.3) and (1.5)~(1.6)
with N independently forced directions in the temperature equation. If N =
N(Ra, Ra) is sufficiently large, then (1.5)—(1.6) possesses a unique ergodic
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invariant measure (. Let {{1py } pr>1 be any sequence of statistically invariant
states associated to (1.1)—(1.3) satisfying a uniform exponential moment bound
(see (2.13) below noting that € := %).1 Then ppy, converges to Lypiso in a
suitable metric. In particular, for any sufficiently regular observable ¢ on the
(u,T) phase space,

[ otw Ty, — | ¢<L<T>>duoo‘ < o(pry, (1.7)

where C' = C(¢, Ra, Ra),q = q(Ra, Ra) > 0 are independent of Pr and q is
independent of ¢.

The proof of Theorem 1.1 contains several further results of independent inter-
est. Firstly, we show that the Markovian dynamics of probability laws for the
infinite Prandtl system, (1.5)— (1.6) is contractive in a suitable Wasserstein
distance; see Theorem 2.2, (2.29) below. Secondly, we demonstrate that the
finite time dynamics converge in the limit as Pr — oo.

Note that our results do not rely on the well-posedness of (1.1)—(1.2) or
make any assertions concerning the convergence of (1.1)—(1.2) to the formal
limit (1.5)—(1.6) for small times. On the other hand, as notable biproduct of
our convergence analysis, we derive a well posed approximation of (1.1)—(1.2)
up to the initial time ¢ = 0 which is valid for large values of Pr. See Sect. 5.3
and Theorem 5.1 below for further details.

It is also worth emphasizing that our proof of Theorem 1.1 applies es-
sentially verbatum to the two-dimensional version of (1.1)—(1.3), where the
horizontal variable x is one-dimensional. Here all the statistically invariant
states of the full system satisfy the uniform moment bound (2.13). Further-
more, in collaboration with Whitehead [21], the authors have established that
with N = oo and Pr = Pr(Ra, Ra) > 0 sufficiently large, the 2D version of
(1.1)—(1.3) possesses a unique ergodic invariant measure fip,.

An empirical quantity of particular interest in convection is the Nusselt
number Nu, a ratio of convective to conductive heat transfer, which is defined
in terms of a statistical average (e.g. a time average) of the observable ¢y, =
fD upT dz.? However, in the deterministic case, even in the turbulent regime
of Ra > 1, Nu depends on initial condition, both at finite and infinite values
of Pr and it is unclear that Nu is continuous at Pr = co. We show that the
addition of a stochastic perturbation avoids these concerns.

Corollary 1.1. For fited Ra, Ra > 0 and any Pr = Pr(Ra,ﬁa) sufficiently
large, the system (1.1)~(1.3) posed in two space dimensions with N = oo and

INote that usual fundamental difficulties concerning the well-posedness of 3D Navier—Stokes
apply to (1.1)—(1.2) and so, following [17], we consider only weak solutions whose laws do not
change in time. The uniform exponential moment condition is analogous to a finite energy
criterion for weak solutions of the 3D Navier—Stokes equations. In [21] we have established
the existence of such states pp,, see Proposition 2.1 below for a precise restatement. In
particular we cannot rule out the existence of a collection {pp, } preny Which does not satisfy
(2.13). Observe that none of these difficulties arise in the 2D case.

2Here uo represents the vertical velocity component for the 2D version of (1.1)—(1.3).
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(1.4) possesses a unique ergodic invariant measure pp,, and the Nusselt num-
ber Nu given by

Nu= (Nu)p,:=1+ ; // usT dx dpp,r(u,T) (1.8)
Ra|D| D

satisfies
lim (Nu)pr = (Nt)oo -

Pr—oo

Note that (Nu)eo is defined by (1.8) relative to the unique ergodic invariant
measure oo of (1.5)—(1.6).

It should be emphasized that, because pp, is ergodic for large Pr, our
Nusselt number has an equivalent formulation in terms of time and noise av-
eraged solutions. That is, for pp,-almost every initial condition (ug,Tp), the
number Nu given by (1.8) satisfies

t
Nu=1+ lim ;E <1/ / usT(x, s) dx ds) , (1.9)
t—o0 Ra\D| t o JD

where (u,T) is the solution of (1.1)—(1.3) with initial condition (ug,Tp). The
same statement can be made with respect to the Nusselt number for the infinite
Prandtl system (1.5)—(1.6). Note that, if the Nusselt number given by (1.9)
is reformulated without the infinite time limit, then convergence as Pr — oo
follows as a consequence of convergence of solutions on finite time intervals (see
Theorem 2.1 below). The reader is advised to consult [21, Theorem 1.4] for
more details regarding the Nusselt number for (1.1)—(1.3), including bounds
relative to the Rayleigh numbers.

Theorem 1.1 and Corollary 1.1 may be seen as complementary to a series
of recent works [43-48] which address large Prandtl number asymptotics for
the Boussinesq system in a deterministic framework. Here, we show that the
addition of stochastic terms allows for stronger convergence results, but the
proofs require a different framework. In particular, Corollary 1.1 resolves a
conjecture of Wang [48] by confirming that stochastic forcing stabilizes the
Nusselt number in the infinite Prandtl number limit.

Methods of analysis

The starting point of our analysis is to establish a strict contraction property
for the Markov semigroup { P };>¢ associated to the formal limit system (1.5)—
(1.6). We show that for some t, > 0 sufficiently large and for any probability
measures (i, fi on the phase space associated with the 7" component of (1.5)—
(1.6), one has

- 1 -
PP, i) < 5 p(us i), (1.10)

where p is an appropriately chosen Kantorovich—Wasserstein metric. See (2.19)
and Theorem 2.2, (i) for a precise formulation.

The bound (1.10) is crucial since it allows us to reduce the proof of the
convergence of statistically invariant states in the infinite Prandtl limit to the
convergence of solutions on finite time intervals. Indeed, suppose that g is
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the (unique) invariant measure for (1.5)-(1.6) and for € > 0 let p. be the T
component of any stationary solution of (1.1)—(1.2) with ¢ := 1/ Pr. Utilizing
the invariance of o and (1.10) we find

Pt 110) = plpe, poPr.) < plpe, pe PY)) + p(pe Py, o Py)
1
< plpes neP) + 5p(kes o) (1.11)
and consequently

p(pe, po) < Qp(/‘l’t‘v/*LEPtO*) :

By properties of the Wasserstein metric, specifically (2.21), and using the sta-
tionarity of the solutions corresponding to p. we therefore obtain the estimate

plhe, o) < 2Ep(T=(t.), T (L)) (1.12)

We have thus bounded the distance between invariant states by the mean dis-
tance between solutions at a fixed finite time t¢.. Note that these two solutions
satisfy identical initial conditions which are distributed as p..

Recently the strategy leading to (1.12) has proven effective for establish-
ing the convergence of statistically invariant states for a variety of problems;
see [7,22,25,27,31]. However, in order to implement this approach, one typi-
cally faces several major challenges. A first challenge is to prove the contrac-
tion estimate (1.10), where the semigroup {P{};>¢ corresponds to (1.5)-(1.6).
Moreover, in our setting, it is desirable to lift this contraction property to the
extended phase space involving both the velocity u and temperature compo-
nents T of our system. This is particularly relevant in view of the physical
significance of the Nusselt number, a quantity involving both u and 7" as in
(1.8). A second challenge is to show that Ep(T¢(t.), T%¢(t,)) — 0 as e — 0
in order to take advantage of (1.12). This task requires suitable ¢ = Pr—!
uniform moment bounds on the stationary statistics p° and finite time conver-
gence results for solutions in the limit as Pr — oo. As we describe presently
the results established here require new ideas in comparison to the aforemen-
tioned related works. This is partially due to the presence of non-homogeneous
boundary conditions for (1.5)—(1.6) and to the singular nature of the limit from
(1.1)=(1.2) to (1.5)—(1.6).

Regarding the first challenge, guided by the classical Doob—Khasminskii
Theorem [11,15,30] and as encompassed by the more recent developments in
[25,27,29], one can establish a contraction of the type (1.10) when the Markov
semigroup is smoothing, suitable moment bounds hold, and there is some form
of irreducibility in the dynamics. The question of smoothing for the Markov
semigroup can be translated to a control problem; see (B.10) below. In our
setting, when the number of forced directions N = N(Ra, Ra) is sufficiently
large, an appropriate control can be found through Foias—Prodi type consid-
erations [18]. Since (1.5)—(1.6) may be seen as an advection diffusion system
with u being two derivatives smoother than T, such a strategy largely repeats
the approach used in previous works on the 2D stochastic Navier—Stokes equa-
tions [26,27,31,50]. On the other hand establishing suitable moment bounds
is more delicate due to the non-homogenous boundary conditions imposed
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in (1.3) and requires a careful use of the maximum principle along with ex-
ponential martingale estimates. These bounds have been carried out in our
companion work [21]. The main obstacle to proving (1.10) is to establish irre-
ducibility, which does not follow from the approach set out in previous works,
e.g. [10,20,22,26,49]. This is because the system (1.5)—(1.6) with its stochastic
terms removed can have highly non-trivial dynamics, see [8,14,37,38,44]. We
show that, despite this complication, the support of every invariant measure of
(1.5)—(1.6) contains the basic conductive state. Indeed we establish with the
use of another Foias—Prodi bound that a Girsanov shift of (1.5)—(1.6) converges
to the conductive state with positive probability. We then employ moment es-
timates and stopping time arguments to translate this non-zero probability
back to the original system (1.5)—(1.6) yielding the desired irreducibility.

In order to establish convergence of invariant states on the extended
phase space, we adapt a methodology from recent joint work of the authors
with Friedlander [22] which enhances (1.10) to a “lifted” contraction property
with respect to a carefully chosen metric (see Lemma 3.1 below). By invoking
this lifted contraction property, and appropriately modifying the argument
in (1.11)—(1.12), the convergence of invariant states as Pr — oo reduces to
establishing the convergence of solutions of (1.1)-(1.2) to those of (1.5)—(1.6)
at a fixed time ¢, > 0, independent of ¢, when the initial conditions have the
same distribution in temperature only.

The second major challenge regards the convergence of solutions of (1.1)—
(1.2) on finite time intervals as Pr — oo for which we develop a suitable as-
ymptotic analysis. This is a non-trivial task since the small parameter 1/Pr
lies in front of the time derivative terms in (1.1). Moreover, the convergence
analysis in [43-48] for a deterministic analogue of (1.1)—(1.2) requires signifi-
cant modification. In particular these references crucially use higher temporal
regularity properties which are missing in our stochastic setting. As a substi-
tute we derive a stochastic evolution equation for the velocity component and
use martingale properties of associated Ito integrals. Our analysis then takes
advantage of uniform moment estimates from [21], some previously unobserved
cancellations in certain error terms and delicate stopping time arguments.

Analogous to the results in [43-48] we derive an ‘intermediate system’,
which we refer to as the ‘corrector’. We show rigorously that this system ap-
proximates the finite Prandtl system in the velocity equation over bounded
time intervals up the initial time; cf Theorem 5.1. While this corrector system
is of independent interest we also provide a somewhat simpler and more direct
analysis of the convergence of (1.1)—(1.2) to (1.5)—(1.6) which well approxi-
mates the infinite Prandtl system after an O(1/Pr) time transient. Indeed,
this more direct approach is sufficient for the upper bound in (1.12) since this
bound only involves a fixed time ¢, > 0.

Manuscript organization

The manuscript is organized as follows. In Sect. 2 we introduce the rigorous
mathematical setting of the stochastic Boussinesq equations, (1.1)—(1.3), which
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serves as a foundation for the rest of the analysis. We also introduce the formal-
ities of the Kantorovich—-Wasserstein metric in Sect. 2.2, and provide a rigorous
formulation of our main results in Sect. 2.3. Section 3 describes core of our
strategy that reduces the question of convergence to finite time asymptotics
and uniform moment bounds. Section 4 is devoted to establishing the contrac-
tion (1.10) for the infinite Prandtl system (1.5)—(1.6). In Sect. 5 we carry out
the finite time convergence analysis. The section concludes with a derivation
and analysis of the intermediate corrector system. In Sect. 6 we establish con-
vergence of the Nusselt number. Finally two Appendices recall various elements
essentially contained in previous works that we have used in our analysis. Ap-
pendix A is devoted to details for various moment estimates from [21] for a
class of drift-diffusion equations which we use to bound (1.5)—(1.6). In Appen-
dix B we outline gradient estimates on the Markov semigroup corresponding
to (1.5)—(1.6) which are carried out in a similar fashion to e.g. [26].

2. Mathematical preliminaries and main results

We begin our analysis of the stochastic Boussinesq equations by recalling some
details of their mathematical setting. The section concludes with a mathemati-
cally precise restatement of Theorem 1.1. Here and below we implicitly assume
that C, ¢, Cy etc. are constants depending on the domain D with any other de-
pendency indicated explicitly.

For the forthcoming analysis it is convenient to consider an equivalent
homogeneous, form of the stochastic Boussinesq equations. Introducing the
‘small parameter’ ¢ = Pr~! > 0 and making the change of variable 6 =
T — Ra(1 — z) we rewrite (1.1)-(1.2) as?

£(8pu° +uf - Vu®) — Au® = Vj© + Raké®, V-u® =0, (2.1)
N

d6° +u® - VO°dt = Ra - ujdt + A6°dt + ) opdW, (2.2)
k=1

supplemented with the homogenous boundary conditions
u\Ez:O = uTz:l = O’ 9|€z:0 = 0|€Z:1 = 07

2.3
u®, 6° are periodic in x = (z,y). 23)

Here, in reference to the Ra-u§ term in (2.2) recall that u® = (u$, u5, u5). The
corresponding infinite Prandtl system (e = 0) is given by

—Au’ = Vj+ Rak#®, V-u’=0, (2.4)
N

d6° +u’ - V6°dt = Ra - uldt + AQ°dt + Y o dWF, (2.5)
k=1

again with initial conditions #°(0) = 6 and boundary conditions as in (2.3).

3Note that we have implicitly modified the pressure in (2.1) by RaRa(z — %zQ) since (1 — z)
k=vV(z— %z2)
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Remark 2.1. Notice that we do not prescribe an initial condition for u® in
(2.4)—(2.5) as this component does not satisfy an independent evolution equa-
tion. Indeed, (2.4)—(2.5) can be rewritten as

N
df° + (M6°) - VO°dt = Ra(M6°)sdt + A6°dt + Y ordW*, (2.6)
k=1
where the constitutive law M recovers u from 6 according to (2.4) as in (2.9)
below.

Remark 2.2. The systems (2.1)—(2.2) and (2.4)—(2.5) can be reformulated in
terms of T = 6° + Ra(1 — z), which satisfies (1.1)-(1.2) or (1.5)-(1.6), respec-
tively, and has boundary conditions (1.3). Our analysis makes use of both of
these formulations.

Remark 2.3. Asnoted above, parameters in the problem are the Prandtl (Pr =
e~1) and Rayleigh numbers (Ra, Ra), which are unit-less. In terms of basic
physical quantities of interest we have that

5_1:Pr:K, Razw, P:a:m, (2.7)

K vK3/2 ol

where v is the kinematic viscosity, x the thermal diffusivity, g the gravitational
constant, a the coefficient of thermal expansion, h the distance between the
confining plates, T, — T} the temperature differential, and v = H/pc the inten-
sity H of the volumetric heat flux normalized by the density p and specific heat
¢ of the fluid. We refer the interested reader to [21], where the dimensionless
form of the stochastically driven Boussinesq equations is derived.

2.1. Functional setting of the Boussinesq equations

We next define the phase space for the Boussinesq equations, which is very
close to the classical framework for the Navier—Stokes equations; see e.g. [9,40]
for further details.

We define H := H; x Hy as the phase space for (2.1)—(2.3), where

Hy:={ue (L*D))*:V-u=0,u- n;—o,; = 0,u is periodic in x},
Hs := {6 € L*(D) : 0 is periodic in x}

and we denote by H = Hj the phase space for (2.4)—(2.5). The spaces H and
H are endowed with the standard L?-norm and we denote each of them by || - ||
as the appropriate meaning will be clear from the context.* All other norms
are written as || - |x below for a given space X. We define H! type spaces as

Vii={ue (H'D))?:V -u= 0,uj.—0,1 = 0, u is periodic in x},
Vo :={0 € H'(D) : 0,—0,, = 0,0 is periodic in x}.

4Below will also consider the weighted metrics (2.22), (2.24) which generate an equivalent
topology on H and H but are more suitable for the convergence of measures in the associated
Wasserstein metric.
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Let V =V; x Vo and V = V5. We will sometimes consider the LP(D) spaces
of p-integrable functions for p € [1,00] and endow these spaces with their
standard norms.

In what follows we frequently project or lift the dynamics to account for
the phase space mismatch between (2.1)—(2.2) and (2.4)—(2.5). We define

II: H — H, to be the projection onto the # component of H. (2.8)
Associated with the limit system (2.4)—(2.5) we have the constitutive law
M(0) = RaA~"' POk, (2.9)

where A is the Stokes operator and P the Leray projector. In other words
u = M (0) is the solution of

—Au=Vp+ Rakf, V-u=0;

see Sect. 5.1 and in particular (5.1) below. We define the ‘lifting map’ L : H —
H from the temperature component to the extended phase space

L(6) = (M(6),6). (2.10)

Finally, we denote Pr(X) as the space of Borel probability measures on
a given complete metrizable space X, typically H, H etc. For p € Pr(H), we
take TIu(-) = p(II71(+)) to be the push-forward of u by II. Similarly Ly is the
push-forward of p by L when u € Pr(H).

We have the following general results concerning the existence and unique-
ness of solutions of (2.1)—(2.3) and (2.4)—(2.5):

Proposition 2.1. (Existence, Uniqueness, and Continuous Dependence) Fiz
any values Ra, Ra > 0.
(i) For everye > 0 and any given pu° € Pr(H) with [(||ul/*+||6]|*)du’(u,8) <
oo there exists a stochastic basis S = (Q, F,{Fi}1>0,P, W) upon which
is defined an H-valued stochastic process (u,0%) with the regularity

(0%, 6) € L2(0 L2, ([0, 00); V) 1 L5, ([0, 00); H)),

loc

which is weakly continuous in H, adapted to {F,}1>0, satisfies (2.1)—(2.2)
weakly and such that (u®(0),0°(0)) is distributed as u°. We say that such
a pair (S, (u®,0°)) is a weak-martingale solution of (2.1)—(2.3). If, for
some p > 2, andn > 0,

/Hexp(n(llull2 + 1101170 du’ (u,0) < o, (2.11)

there exists no > 0 and a weak martingale solution (S, (u®,0%)) such that

t
Eexp <no < sup ([uc||* +116°]1Z») +/0 (V] + ||V9€2)d8>>

€[0,t]

<C <o (2.12)

for each t > 0, where C > 0 is a constant independent of ¢ € (0, 1].
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(ii) Additionally, for anye > 0, there exists a martingale solution (S, (ug, 0%))
of (2.1)~(2.2) which is stationary in time, meaning that the law of the
solution is independent of time. These stationary solutions (S, (ug,0%))
may be chosen in such a way that, for any p > 2 there is an n =
1(p, Ra, Ra) > 0, for which

sup [ exp(u(lull + 613, ))dc(,6) = Co <0, (213)
1>>0 JH
where pi.(-) = P((ug(t),05(t)) € -) for any fized t > 0.
(iii) Now consider the case when € = 0. Fix a stochastic basis S and any Fo-
measurable random variable 6y € L?(Q, H). Then there exists a unique
process 0° with

0° € L2(Q; LL,.([0,00); V) N C([0, 00); H)), (2.14)

loc

which is Fi-adapted, weakly solves (2.4)—(2.5), and satisfies the initial
condition 0°(0) = 6.

(iv) For a given stochastic basis S and each 6y € H denote 0°(-, 0y, W) as the
unique corresponding stochastic process satisfying (2.4)—(2.5) with (2.14).
We have that 0y — 0°(t,00, W) is Fréchet differentiable in 6y € H for
any t > 0 and any fized realization W(-) = W(-,w). On the other hand
W 0°(t, 00, W) is Fréchet differentiable in W from Cy([0,t],RY) to H
for each fized 8g € H and t > 0.

These results are standard for a systems like (2.1)—(2.3) and (2.4)—(2.5);
see e.g. [12,13,17,23]. The only novelty in view of existing methods is the
uniform moment bound (2.13). The existence of such a collection of solutions
is established using the maximum principle and exponential moment bounds
in the companion work [21]; ¢f. Appendix A below.

The Markovian framework for (2.4)—(2.5) is defined as follows. The tran-
sition functions are given by

P2(0g, A) :=P(0°(t,00) € A), t>0, 0y € H,AcB(H), (2.15)

where B(H) denotes the Borel sets of H, and the associated semigroup is given
by

P¢(00) :=Ep(0°(t,00)), t>0, ¢ € My(H), (2.16)

where My(H) is the set of bounded measurable functions on H. In view of the
continuous dependence on initial conditions the semigroup {P?};>0 is Feller,
that is, it maps the set of continuous bounded functions on H, Cj,(H), to itself.
This semigroup acts on Borelian probability measures p according to

JPO(A) = / PO(0, A)du(6), A € B(H). (2.17)
H

A measure p € Pr(H) is said to be invariant with respect to {P{};>o if
uP? = p for all t > 0. Recall that in three space dimensions the Markovian
framework for the full system with € > 0 cannot be implemented due to a lack
of global well-posedness.
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As an immediate consequence of bounds in Appendix A and the Krylov—
Bogolyubov averaging technique we have

Lemma 2.1. Under the assumptions of Proposition 2.1 and for any Ra, Ra
there exists an invariant measure po of the Markov semigroup PP. Moreover
for any such measure

/ exp (|02 )dpo(6) < Co < oo, (2.18)
H

for any p > 2 and any suitably small n = n(p, Ra, Ra).
2.2. Wasserstein distance, weighted metrics and associated observables

We next recall the general setting of the Kantorovich-Wasserstein distance
in which we establish our convergence results. We then introduce weighted
metrics on H and H along with some associated classes of observable which
are used to measure distances between measures in the analysis below.

Let (X, p) be a complete metric space and take Pry(X, p) to be the set of
Borel probability measures p on X with [ p,(0,6)du(f) < oco. On Pry(X, p) we
define the Kantorovich-Wasserstein metric, relative to p, equivalently as®

/X 6(0)du(0) — / 5(0)di(0)

= sup
H‘ﬁ“Lip,pSl (219)
= inf 6,6)dr (6, 0),
FEC(u,ﬂ)/xXxp( )d'(6,6)
where
6(0) — ¢(0)]
@]l Lip,p := sup ————=-+ (2.20)
PP s p(0,0)

for ¢ : X — R, and C(u, ft) is the collection of Borel probability measures
Iin Pr(X x X) with u, i as its marginals. Hence, the last term in (2.19) is
equivalent to

p(p, i) = inf Ep(X,Y), (2.21)
where the infimum is taken over all X-valued random variables X, Y distributed
as pu, i respectively. See e.g. [16,42] for further background on these metrics.

Specializing to our current setting, the following metrics on H and H
prove useful for measuring the distance between the laws of solutions of (2.1)-

(2.2) and (2.4)—(2.5). Following e.g. [27] we introduce, for n > 0, the weighted
metric on H as

1
p08) = _int  [Ceptlh Gl (222)
vect(0,15:H) Jo
7(0)=0,7(1)=0
for any 0, 6 € H. Notice that

16— 81 < py(6,8) < exp(2n(10]1* + 1161*))]16 - ]I, (2.23)

5Here note slight abuse of notation wherein we denote both the underlying metric and its
Wasserstein by p; the meaning of p will be clear from context in what follows.
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for 0, 6 € H. For the extended phase space H, similarly to our recent work
[22], we take

pn((w,0), (8,0)) = [u— 1l + py(6,0), (2.24)
again defined for any n > 0.

For the statement of the main results we consider the following class of
‘observables’

VH) =V,H) = {pe C'(H):[¢], <o},

where the semi-norm [],, is given by

[¢]n =
sup sup  [Vuo(u,0) - [ +exp(—nllf]) sup |[Vood(u,b) ¢
(uw,0)eH | CeH,[[¢||=1 §€H, [€]|=1

Note that, as in [27, Proposition 4.1],

||¢Hsz,p,, S C[¢] (225)
for any ¢ € C'(H) with the constant C' independent of ¢.

2.3. Statement of the main results

We now precisely formulate the main results of this work on the convergence of
solutions when Pr — co. We begin with the following finite time convergence
result:

Theorem 2.1. For each € € (0,1), let (u®,0%) with its associated stochastic
basis S be a martingale solution of (2.1)—(2.2) in the sense of Proposition 2.1.
Relative to this S, let 0° be a solution of (2.4)—(2.5). Suppose there ewists
Co,n > 0 such that®

Z‘ligﬂ‘i[exp(??(llu‘g(O)ll2 +16°(0) 175 + 16°(0)175))] < Co <00, (2.26)

and suppose that (u®, %) maintains (2.13). Then, for each t > 0, there exists
Y9 >0, C > 0 such that

E[ sup ||6° 90 P4 u® s)||%1ds
(ge[opt 16°(s) — 0°(s)] / || o)) ) o)
<C (57 + (E[|65(0) — 0°(0)]2 + eEJ[uc (0) — M(9°)<0)II2)7) 7

foreach 0 <~y <~y and any p > . Here, the constants C' = C(p,n, Ra, Ra, Cy,
llollzs,t) and vo = vo(n, Ra, Ra,Cy, ||o||3,t) are independent of € > 0 and
depends on the initial conditions only through Cy.

The proof of Theorem 2.1 is established in Sect. 5.2.
6 Although we can relax the assumption on the initial velocity field to gth moment bounds

for some ¢ > 4, we have opted to impose an exponential moment condition for simplicity of
presentation.
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Remark 2.4. It is worth noting that since (u®, °) are only martingale solutions
the associated stochastic bases S are not unique and could in fact vary as a
function of e; that is, we cannot assume that these solutions are all defined
relative to the same stochastic basis. Similar remarks apply to the bound (2.30)
below. However, crucially, in both (2.27) (2.30) the constants do not depend
on the choice of basis. Thus, since this subtlety does not cause any trouble
in what follows, we shall henceforth suppress this technical point in order to
avoid notational confusion.

We next state our results regarding the convergence of statistically in-
variant states to the unique invariant measure of the formal limit system (cf.
Theorem 1.1).

Theorem 2.2. Let {P}i>0 be the Markov semigroup associated to (2.4)—(2.5)
defined in (2.16). There exists Ny > 0 and ng > 0 depending only on Ra and
Ra such that if N > Ny, where N is the number of stochastically forced modes
in (2.4)—(2.5), then the following bounds hold:

(i) For some ,C > 0 depending only on Ra and Ra

(WP, iPY) < C exp(—t)py (1, i), (2.28)

for any p, i € Pri(H, py), n € (0,m0) and everyt > 0, where p,, is defined
in (2.19). In particular, there exists a unique ergodic invariant measure
Mo € P’I‘l(H, pn) Of (2.4)*(2.5).

(ii) Suppose that {pe}eso is any collection of measures corresponding to sta-
tionary martingale solutions of (2.1)—(2.3) and satisfying the uniform
bound (2.13) for any n € (0,10) and some p > 3. Let ug be the unique
invariant measure of (2.4)~(2.5). Then, there exists ¢ = G(Ra, Ra), C =
CN’(Ra,R~a), independent of € > 0, such that

pn(pte, L) < Cel (2.29)

for every € > 0. Consequently, for the stationary processes (ug,6%) and
9%, distributed as p. and po, respectively,

E(¢(ug, 05) — d(L83))| < ClglyeT (2.30)
for any ¢ € V(H).

The proof of (i) is carried out in Sect. 4 with some technical details relegated
to Appendices A and B. In Sect. 3 we describe a general strategy which shows
that, under the conditions of Theorem 2.2, (2.29) follows from (2.28) and
(2.27).

We conclude this section by making several important remarks.

Remark 2.5. (i) Assertions of Theorem 2.2 also hold in two space dimen-
sions and in addition one can show that (2.1)-(2.3) has a well defined
Markov semigroup. Thus, any statistically invariant state corresponds to
an invariant measure of the associated semigroup. This allows us to show
in [21] that the e-independent exponential moment bounds in (2.13) hold
for all invariant measures.
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(ii) In 3D, the existence of a sequence of statistically invariant states of (2.1)—
(2.3) satisfying the uniform moment bound (2.13) is established in the
companion work [21]. However we have not been able to show that every
sequence of invariant states have such (uniform) exponential moments.

(iii) In Sect. 5 we also derive a ’corrector’ system which well approximates the
dynamics of the velocity field of the full system (2.1)—(2.2) up to the initial
time for large values of Pr or equivalently small € > 0. See Theorem 5.1
below for further details. Note however that this more refined version of
(2.27) is not needed in order to achieve (2.29), (2.30).

3. Reduction to finite time dynamics

In this section we describe a general strategy for reducing the convergence of
measures to finite time asymptotics and uniform moment bounds when the
formal limit system satisfies a suitable mixing condition as in (2.28). To fix
ideas we assume the conditions of Theorem 2.2 throughout this section. Also,
we assume that both (2.28), (2.27) hold; we establish these bounds rigorously
below in Sects. 4, 5 respectively. The reader should note that the presented
method is flexible and can be applied in a variety of settings. See, for example,
[22,25,27,31].

We adapt some ideas from our recent work [22, Section 5] to the present
setting. For n > 0 take

Py (0.0) = py(L(6), L(6)),

where p, is defined in (2.24) and recall that L is the lifting operator given in
(2.10). It is not hard to show that the metrics p, and p; are equivalent (see
[22] for details), and consequently the associated Wasserstein metrics on H
are also equivalent. Then from (2.28) we obtain the following result, see [22,
Corollary 5.4] and surrounding commentary for further details.

Lemma 3.1. Under the same conditions as Theorem 2.2 (i), we have
n(L(nPY), L(APY)) < Ce™ " py(L(u), L(f1)) (3.1)
for any p, i € Pri(H, py,), and every t > 0.

Using (3.1) choose t* > 0 to guarantee that

P (L), L(j1))- (3:2)

| —

Po(L(uPL), L(PL)) <
By the invariance of pyg
P, Lito) < po(ft, LITRE)PYy 4 ) + (O PPy ), Lo Py e )

< f(fi, L(ITR) Py )) + %[ﬁn(L((Hﬁ)Pf), 1) + P (i, Lpto) ]
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for any ¢ > 0 and any other measure i € Pr(H). Here recall that II is the
projection operator defined in (2.8). Rearranging, taking a time average we
obtain

ol i) < 2 [ 175 L) PE,1) + i L) P e

2 2t* o ~
-2 / (s L) P))dt (3.3)
With (3.3) now in hand, we consider a sequence of stationary martingale
solutions {(u%,0%)}e>0 and take {{c}e>0 C Pr(H) to be the corresponding
collection of stationary measures. We suppose that {u.}.~o satisfies the uni-
form moment condition (2.13) as in Proposition 2.1, (ii). We also denote 9%’6
(and M(Gg’s)) the solution of (2.4), (2.5) with the initial condition 6¢(0) so
that, for every ¢t > 0, the law of 0%’5 (t) is (Tlue ) PY. Consequently, (2.21), (2.24)
yield
P (e, L((Ipe) ) < Ellug(t) — M(05° (1))l + Epy(65(1),65°(2)), (3.4)

where we recall M is defined as in (2.9). By (2.23) one has, for any ¢ > 0,
B (05(1),03°(1)) < E (exp(20(105()1 + 10302 105(1) — 0 (1))

< CE (exp(n(105(0) 1 + 03 ) *)]105(0) — 037 (1)]*?)

5 2 0,e 2 1/4
< C(Eexp(129]105()]1%) - Eexp(120]6%°()]1%)))
- (E05() — 0% (1))
Using (A.4) with p = 2 we obtain
Epy (65(t), 65°(t)

1/2

. 1/2 R . 1/2
< C(Bexp(96n]65(0)2)* (ElI65(1) - 03°0I1) .~ (35)
Finally combining (3.3) with (3.4), (3.5) we obtain
2t
e Lyo) < CE | u(0) = (03 () st
R 1/2 R . 1/2
+C (Eexp(969]05(0)]1%) " sup | (Blos(®) -6 0l7) . (36)

te[0,2t*
which holds for any ¢* > 0 such that (3.2) holds.

With (3.6) established we conclude this section by detailing the proof of
Theorem 2.2, (i) up to the supporting results proven in Sects. 4 and 5.

Proof of Theorem 2.2, (ii). The inequality (2.28) implies (3.1) which in turn
implies the bound (3.6). Applying (2.27) with (u®, 6°) = (ug, 0%) and 6° = 0%‘5,
noting 92’5(0) = 0°(0), and recalling the assumed bound (2.13) we infer (2.29).
To prove (2.30), let C' be as in (2.25). Since the Lipschitz norm, with metric
py of ¥ := ¢/C[¢], is at most one, then, by (2.19)
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B00(05.05) ~ 0(208)] = | [ vt 0)t.0) = [ w(u.0) L) 0)
< pn(ﬂ& L/‘O) ’ (3'7)
and the result follows from (2.29). The proof is complete. O

4. Contraction in the Wasserstein distance for the infinite
Prandtl system

In this section we establish some properties of the infinite Prandtl system
(2.4)—(2.5), which provide a sufficient condition for proving Theorem 2.2 (i) as
a consequence of a general result in [27, Theorem 3.4]. These properties are
summarized as follows:

Proposition 4.1. There exist ng > 0 and Ny, depending only on Ra, Ra, such
that for any 0 < n < ng, whenever the number of forced modes N exceeds Ny,
we have

(a) Lyapunov structure: For all t* > 0, there exists Cy = C1(t*,n) such that
for each 63 € H and every t € [0,t*],
)

E (exp(n]|6° (¢, 69)]1”)(
< Cy exp(n(1 + 4RaRa)e~?||69]1%) (4.1)

where the operator Jy+ is the Fréchet derivative of 0°(t,0o) with respect
to initial condition 0; see (B.1) and (B.8) below.

(b) Gradient Bound for Markov semigroup: for any ¢ € CL(H), and every
t>0,0c H

IVP?¢(9)I<CeXp(77II9|2)< P (|6(0)1%) + o(2) PP(IIWS(@)IP)), (4.2)

where §(t) — 0 as t — oco. Here again ¢ : [0,00) — [0,00) and C'" > 0
depend only on Ra, Ra, and 7.

(¢) Irreducibility condition: for any M > 0, € > 0 there is a t. = t.(M,e,n)
such that for each t > t,

inf sup T{(0,0) € Hx H:p,(0,0) <e} >0, (43)

90l1,1100 I <M TeC(80, PP,65, PP)
where, as above in (2.19), C(dg, P, 05 Py') denotes the collection of all
couplings of the measures 5o, PP and 9%, PY.

Proving the first item, (a), essentially reduces to establishing a moment
bound which follows from estimates found in [21], and which we recall below in
Appendix A (see Proposition A.2). The second condition, (4.2), can be trans-
lated to a control problem through the use of Malliavin calculus which in our
setting amounts to proving a relatively straightforward Foias-Prodi type esti-
mate. Once again (b) can be established by methods essentially contained in
previous works and we relegate further details to Appendix B. As already men-
tioned above, the principal novel challenge here is to prove the irreducibility
property (c¢) which we turn to next.
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4.1. Irreducibility

In previous related works the proof of irreducibility essentially relies on the fact
that the governing equations without stochastic forcing have a trivial attractor
which is stable under small force perturbations; see e.g. [10,20,26,49]. In our
present situation, (2.4)—(2.5), the dynamics without body forces can be highly
non-trivial.” Our approach to proving (4.3) is based on a control argument
and Foias-Prodi type estimates. With these estimates in place, by invoking the
Girsanov theorem and stopping time arguments, (4.3) is established following
previous proofs of support theorems for SPDEs with additive noise, see e.g.
[11, Theorem 7.4.1]. For clarity and precision of exposition, we provide a self-
contained proof of irreducibility.

As a preliminary step we show that (4.3) follows from a simpler bound.

Lemma 4.1. For a given N > 0 consider (2.4)—(2.5) with N independently
forced directions. If for every M,e > 0 there is a t, = t.(M,€) > 0 such that

inf  P(]|6°(¢, 0 ht>t, 4.4
HeﬂlﬁlgM ([[0°(t, 60)[| <€) >0, for each t > t., (4.4)

then (4.3) holds for such an N and any n > 0.

Proof. For any 6,0y € H consider the element T' € C(09, Py, 05, P) defined
on cylindrical sets as

['(A x B) = P,(6y, A) x Pi(6y, B), A,B e B(H).
For each t > 0 and any M, n,~y > 0 one has

inf sup 1{(0,0) € Hx H: p,(0,0) < v}
16ol,[00lI<M TeC(b6, Py,65, Pr)

>  if T {(9,5) € B x By : 0] + 18] < ’yexp(—4n)}
100,160l < 1

2
> ( inf P, (00,{0€ H: 0] < min{v/z'exp(_4’7)’1}}>)

6ol <M

2
= inf  P(||0(¢,600)] < min{vy/2-exp(—4n),1 ,
(,int PG B0 < mingy /2 exp(~1). 1))
where we have used (2.23) in the first inequality. Applying (4.4) with ¢ =
min{vy/2 - exp(—4n),1}) and the given M > 0 yields the desired result. O

In order to establish (4.3) the rest of the section is therefore devoted to

Proposition 4.2. There exists No = No(Ra, Ra) sufficiently large (cf. (4.9))
such that, for any N > Ny and every M,e > 0, there is a t, = t.(M,e) > 0
such that (4.4) is satisfied.

"Note that the geometric control methods developed in [1,2], and in [23] for the Boussinesq
system, would be difficult to apply, as these methods seemingly require a detailed under-
standing of the wave-number interactions in (2.4)—(2.5).
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Proof of Proposition 4.2. We first establish the analogue of (4.4) for the mod-
ified system

—Au=Vjp+Rakf, V-u=0, (4.5)

N
df +a-Vdt = (Ra -z + A0 — Ay Py)dt + Y opdW*,
k=1
3(0) = 6o, (46)
when N is sufficiently large.® As in (2.1)—(2.2) we supplement (4.5)—(4.6) with
the homogeneous boundary conditions (2.3). Denote 1) := 0 — ZkN:1 oWk =
6 — oW which satisfies
O+ 1 - Vip = Ra - iz + A — AnPytp + (AcW — Ay PyoW — 1 - V(e W)),
¥(0) = 0.

Taking an inner product with ¥, using that u is divergence free, the inverse
Poincaré inequality [see (B.14) below] and the bound

IVall < Ral|d]| < Ra(||v[| + [loW1]) (4.7)
which follows from (4.5) we have
1d 5 - _
57 I¢I7 A [I81® < (Ralla]l + [ AcW || + Anllo W] + [al[[| VoW L) ]

< C(RaRa([[¢ + oW ) + [AoW | + An [loW |
+ Ra([[¢] + [loWIDIVoW | o< ) [|9]]-

For any t > 0, let & = sup{s € [0,t] : ||¢»(s)|| = 0} with the convention that
the supremum of the empty set is zero. Thus, for any ¢ > 0, on the interval
[&:,t] it follows that

d -
19l + (v — CRa(Ra + [[VoW|| 1)) |14l
<C ((Raﬁ?a Ay + Ra|VoW|p=)|loW | + ||AUWH) . (4.8)

Next, we use the fact that, with positive probability, each of ||cW]||, ||VoW ||,
|AcW || stays close to zero over finite time intervals. For v > 0, ¢ >0, N > 0
consider the sets

Xyai={ sup VoW~ <1, sup [AaW] <
s€10,t]

e
s€[0,t] 2C"

C

1
smwwwwgv( i AQ}.
s€[0,t] 2C(RaRa+ A\x + Ra)

Since ¢ is spatially smooth we infer from standard properties of Brownian
motion that P(X, . n) > 0 for any v > 0, ¢ > 0, and N > 0. On the other

8Here recall that Py denotes the projection onto the first N modes of —A [with boundary
conditions as in (2.3)] and Ay is the corresponding largest eigenvalue in this collection.
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hand, on X, ; n the differential inequality

D0l + ( — CRa(Ra + D)) < 7
holds over the interval [&, t].
Hence, fixing Ny sufficiently large, we have for any N > Ny,
An > max{2CRa(Ra +1),1}, (4.9)
and we infer that on X, ; v,
16, 60) | < (I + lloW | < 2y + e[|,

where note that ||¢)(¢)|| = 0 on the set where & > 0. Therefore, for a given
M >0, € > 0, by choosing v = ¢/4 and ¢, = t,(M, €) such that e V"M < £,
we have for any t > t,

inf  P(||0(¢,00)| <€) > P(X. >0. 4.10
o PO 60)]| < ) = P(Xeyan) (4.10)

In order to now infer (4.4) from (4.10) we apply the Girsanov theorem and
make further bounds to a slightly modified version of (4.5)—(4.6). For K > 0
and 0y € H define 0 = (-, 6y) as the solution of (4.5)(4.6) with the term
—AnPn0 replaced with —A\y PnOgx i (| PnOk||). Here xx is a smooth, non-
negative cut-off function with yx =1 for || < K and xx =0 for |z| > K+ 1.
Consider the stopping times

ic(bo) = inf { 1Pl (s,00)]| = K |

for any K > 0 and any 6y € H. It is not hard to see that for any K > 0 and
any 0y € H

P (e‘(t A i (00), 00) = Oxc (¢ AT (00), 6o), for every t > 0) =1 (411)

On the other hand, for any 6y € H and K > 0, the law of O (-, ) is absolutely
continuous with respect to the law of the processes 6°(-, 6p) solving (2.4)—(2.5).
Indeed, for 6y € H and K > 0 define

Moy c(t) = exp ( /Ot gy AW ;/Ot |a90)K|2d5> L (@12)
where
gy, i (s) = —Ano ' PnOx (s, 00)xx (| POk (s,60)])
and take
dQgy, it == Moy, i (t)dP.

Notice that, since |0~ Px O (s, 00)xx (|| PnOx )| < [lo~ |- (K+1), the Novikov
condition is satisfied and for any € > 0, ¢t > 0, K > 0, and 6 € H, the Girsanov
theorem yields

P(6(t, 80) | < €) = Qoo st (10 (2 60) | < ) = E (Moy, s ()15, 1<) -



NoDEA Large Prandtl asymptotics in randomly forced convection Page 21 of 43 43
Hence, for any ¢ > 0, 0y € H, and for any 1, K,t > 0, the Markov inequality
implies
P(I6(t, 80) | < €) = TP (I0x (£,00) | < e, Mo, i (1) = T)
> 1P (||§(t, 00)|| < e, Mg, k() > 3,75 (6p) > t) ,
where we used (4.11) for the final inequality. On the other hand
P (||§(t,00)|| <e) <P (||9(t,90)|| <€, Mg, k(t) > J) +P (Mg, x(t) < 3J)

< P ([|0(,60)] < €, Moy, i (t) = 1,7 (6o) > t)
+ P (Mo, k(t) <I)+P(1x(00) < t).

These two bounds yield

1
S inf P
7 oL (110(t, 00)[| <€)

> inf P(||0
2 nf (16(t, 0)|| < €)

— sup (IP’ (Mg, k() < I) +P(rx (0p) < t))7 (4.13)

ll6ol| <D

for any M, e, t > 0 and for any K,J > 0.
Since the first term on the the right-hand side of (4.13) is independent

of K > 0 and J > 0, we finish the argument by showing that for every fixed
M, K,t>0

sup P (Mg, x(t) <) —0, asI—0, (4.14)
1ol <M

and for every given M,t > 0

sup P(rx(0g) <t) — 0, as K — oo. (4.15)
ll6oll<M

For the first bound (4.14), we have from (4.12) and It6 isometry

t 1 t
]P’(Mng(t) < j) =P (/ OzngdW + 5/ |05907K|2d5 > log(:ll))
0 0

1 ¢ 1/t
<——_ _E = 2d
< Tog@ 1) </ 0‘9°’de’+2/0 o x| )

2 t ~ ~
< —=pE 1+A?v||o‘1PN||2/ [1PnO(t, 00)|1*xx (| Pn O (t, 60))ds ) ,
log(3—1) 0
L2 (1+ 2% [|o 7 Py |*(K + 1)%t)
- log(31~1) ’

valid for any J € (0,1), K > 0, and any 6y € H. For the second bound, (4.15)
observe that, in view of (4.11),
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P(rx(6p) <t) <P ( sup ||PN9_(S,00>H > K)
s€0,t]

s€[0,t]

1 _
< 7B < sup ||9(8790)2> : (4.16)
From the Itd formula, and (1.4), it follows that
d)|0]|? + 2\ x || P 2dt + 2|| V| 2dt = (2}§a<a3,0‘> + 1) dt + (0, )dW.

Integrating in time and using (4.5), inverse Poincaré inequality [see (B.14)],
and (4.7) we infer for any s > 0

10(s) 22y / 16]2dr

< ||90H2+2Raéa/ 0]/2dr 4+ s +2 sup
0 rel0,s]

/OT<J, é)dW’ |

Using the assumption (4.9) and the Birkholder-Davis-Gundy inequality we
infer

E ( sup ||§(s,00)||2) < [|6o]|® + 17¢. (4.17)
s€[0,t]
Combining (4.16) and (4.17) thus yields the second bound (4.15).

Using (4.10), (4.13), (4.14), and (4.15), we conclude the proof as follows.
Given any € > 0 and any M > 0, and with Ay given as in (4.9), choose t.
as in (4.10), that is, such that e *¥**M < &. Fix any ¢ > ¢, and by (4.10)
we have a = a(M,e,t) := infjjg,<as P(||0(t,00)] < €) > 0. Now, by (4.15),
we can pick K sufficiently large so that supjg,<a P(7c(60) < t) < a/4,
and with K, Mt fixed, we can by (4.14) choose J > 0 small enough so that
Supyig,/<m P (M g, (t) <3) < a/4. Finally, by combining these choices with
(4.13) we obtain that

Ja
int P(|6(,60)] <€) > = > 0.
e (000 < )2

The proof of Proposition 4.2 is thus complete. O

5. Finite time asymptotics

In this section we prove Theorem 2.1. We also derive a 'corrector’ system which
we show approximates the velocity component of the full system (2.1)—(2.2)
up to the initial time (see Theorem 5.1 below).

5.1. Preliminaries: the Stokes operator
Before proceeding further we recall (see e.g. [9,40]) some properties of solutions
of the Stokes equation

—Au=Vp+f, V.-u=0, (5.1)



NoDEA Large Prandtl asymptotics in randomly forced convection Page 23 of 43 43

supplemented with the mixed periodic-Dirichlet boundary conditions as in
(2.3). We can express (5.1) more abstractly as Au = Pf, where A = —PA is
the Stokes operator. Here, P is the Leray projection on divergence free vector
fields P : (L*(D))® — H; with Hy, the space of L? divergence free vector
fields, defined in Sect. 2.1.° As in the classical elliptic theory we have that for
any f € (L?(D))3, there exists a unique u € D(A) = V4 N (H%(D))? which
satisfies

[ul[g= < CJIE], (5.2)

where C is independent of f. In what follows we frequently denote u = A~! Pf.

Since A is a positive, self-adjoint operator which is unbounded on the
space H; with a compact inverse, by Hilbert’s theorem there is a complete
orthonormal basis of eigenfunctions {ej}r>1 of A with the associated non-
decreasing sequence of eigenvalues A; diverging to infinity. Take

Px to be the projection onto the subspace Hy := span{ey,...,ex}. (5.3)

Here the regularity theory as found in, say [9,40], show that each ey, is smooth
and hence in particular Hy C V.
We also consider the associated linear evolution given as

ou—pAu=Vp+£f, V-u=0, u(0)=ug, (5.4)
for any parameter 1 > 0 and relative to the (sufficiently regular) data f, ug sup-

plemented with the boundary conditions (2.3). Here, for any f € L? ([0, c0);

loc

Hy) and ug € H; there exists a unique solution u of (5.4) withu € L2 ([0, 00);

loc

V1) N C([0,00); Hy). Moreover, A is the generator of an analytic semigroup
which we denote as {exp(—uAt)}i>o0.

5.2. Finite time convergence estimates

We next turn to the proof of Theorem 2.1:

Proof of Theorem 2.1. Take ¢¢ = 0° — 6° and v& = u® —u® with u® = M (8°),
where M is defined by (2.9). Referring to (2.1)—(2.3) and (2.4)—(2.5) we see
that ¢° satisfies

91¢° — A¢* = Ra - v5 — v© - VO? —u® - V¢, ¢°(0) = 6°(0) — 6°(0) := ¢5 .

Therefore, taking an L? inner product with ¢° and using that V - v = 0 we
have

1d ~
3l IV I = [ (Fao5 - v* - Vo*)da
< Ballve 16+ v o IV 16 o

Hence from standard Sobolev embeddings, Young’s inequality, and the Poincaré
inequality we obtain

d ~ 2
2912 < € (10°1%: + Ba” ) [IVve|12.

9 Equivalently Au = —Au — Vp, where p = p(u) the ‘pressure’ is the unique H' function
satisfying Ap = —div(Aw) in the weak sense.
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Integrating in time we infer that

sup [|¢°(s A7)
s€0,t]

. -2 tAT .
<l + s (@I +Fa) [ v @pa (59

s€[0,tAT]

for any ¢t > 0 and any stopping time 7 > 0.
We now turn to derive an evolution equation for v¢. Recalling that u®
and u® satisfy respectively, (2.1) and (2.4) we find

e(0pu® +u® - Vu®) — Av® = V¢ + Rak¢®, (5.6)

where ¢° = p*—pis thfe difference in the pressures. On the other hand, recalling
that u’ = RaA~1(P(k6°)), we have

du’ = —RaA™'P (1A< (uO -V#°— A0’ — Ra - u%)) dt

N
+Ra» A7 P(koy)dW". (5.7)
k=1

Multiplying (5.6) by 7!, subtracting the resulting system from (5.7) and
rearranging we obtain

1 1
dv® — “Avedt = -
€ €

(ch + Ral%df) dt
+ (RaA_lP (l; (uo V0 — A0° + Ra - ug)) —u®- Vug)dt

N
— Ra) A™'P(koy)dW*, (5.8)
k=1

with V. v® = 0.
Using (5.8) we estimate v as follows. The It6 formula and (5.9) yields

2
d||v|* + gl\VVE||2dt
2
:gRa<¢€, ’l}§>dt

+2 <RaA_1P(lA< (uo -V6° — A0° — Ra - ug)> —u- VUE,V€> dt

N N
+ Ra®>» |A7'P(koy)|*dt — 2Ray (A~ P(koy),ve)dW*
k=1 k=1
::(Tl +To+T54+Ty+T5 +T6)dt+SdW (59)

With the Young and Poincaré inequalities we have

1 - 4Ra? R
11] < 19wl + g2 (510)
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For T, we use that A~1 is self-adjoint on H, D(A) C H and that u®,v¢ are
divergence free to obtain

|T2| = 2Ra /uO -VO°(A~'v)3dx| = 2Ra /uo -V(A™vE)3 0%

where (A~1v®)3 represents the third component of the vector field A~1ve.
Hence (5.2) and the imbedding H? < L* imply

| T2| < 2Ral[u®|[[|0° [V (A™'v) [ < CRa?||6°]?| V7|
1
< 4—€||Vv5||2 + eCRa*(|0°||*. (5.11)
For the terms T3 and T, we use the regularity of the Stokes operator to obtain

1 ~ 2
|T5| + [Ta] < 4—€|\VVE|\2 +4eRa®([|6°)* + Ra” [[u’[?)

IN

1 -
ye NAALE + eRa?(Ra”Ra® +1)C||6°||2 . (5.12)

The most delicate term is T5. Here we take advantage of an additional
cancellation to obtain extra regularity. Since u® = v® + u® we find

1
75| = 2|(u” - Vu’, vo)| = 2|(u” - v, u) < [ VVE)* + defful || fluc]f?
3

1
< 2 IVVEIP 4+ eCRa? (10" + Jlus]|"), (5.13)

where we used the imbedding H? < L° and (5.2) for the final bound. Finally
we observe |Tg| < C'Ra®.
Combining the bounds (5.10)—(5.13) and rearranging in (5.9) we find

1
dlve|?+ [ Vve | Pdt

4Ra® e (2 4 5 2 04 £||4
< ——— ¢ [Pt + eC(1 + Ra*)(1 + Ra”)(|0°||* + [|w[|* + 1)t
N A~
+ CRa?dt — 2Ra Y (A™'P(kay),ve)dW" (5.14)
k=1

where the constant C' > 0 is independent of Ra, Ra, and & > 0. Consequently,
for any ¢t > 0 and any stopping time 7, we have

tAT tAT
vV iPar < v ) + 4Ra? / (1612 + eC)at’
-9 tAT
+220(1 + RaM)(1 + Ha )/ (16°1* + [us|* + 1) d’
0
tAT R
—aRaZ/ (A7'P(koy), ve)dW>, (5.15)
0

where C' is independent of ¢ > 0, Ra, Ra, and 7.
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Next for any x > 0 define the stopping times

— 0 23 > ) )
= fnf {0°(0)[3 > ) (5.16)

From this definition and the bounds (5.5), (5.15) we now infer

E sup [|¢°(s A T)|]?
s€0,t]

t
< E|/¢E||? + 4Ra? (n—i-R~a2)/ ]E( sup ¢6(3ATN)||2> dt’
0 !

se€0,¢

+e (Fo + Ra2> (E[|[v¢(0)||* + Ra*Ct)
t
4000+ Ra' 4 DRat+ 1) [ BI04 ]+ 1)
0

which implies with the Gronwall inequality that

E sup [|¢*(s A7)l
s€[0,t]

< exp (C(Ra4 +1) (H Y Ra'+ 1) (t+ 1)) (M) + E[652),  (5.17)

where
t
M) =B+ [ [ (a1 + 6°)) + 1]
0

and the constant C' is independent of k, e, Ra, Ra, and t. By (2.26) and our
standing assumption that (2.12) holds, we observe that M. is bounded inde-
pendently of € > 0 and we obtain

E ( sup ||¢)€(5)|2nm>t> <E sup [[¢°(s ATo)|?

s€0,t] s€[0,t]
< Ci(e +E[45]%) exp (Cix), (5.18)
where the constant C; = C(Ra, Ra,t) is independent of € > 0 and x > 0.

Set X.(t) := sup,c(oq |9°(s)]|* and for each t > 0, K > 0, ¢ > 0 define
the sets

Bt = { sup [|6°(s)|7 > H} = {7 <t}

s€[0,t]

For each ¢ > 0 one finds by the Markov inequality, Proposition A.1, and the
assumption (2.26) that for sufficiently small 1 = 71 (Ra,n) > 0,

P(E;xe) < e "Eexp (771 sup |90(s)||2L3> < Che™ M, (5.19)

s€[0,t]
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where Cy = Cy(Cy, Ra, Ra, ||o||zs,n,t) > 0 is independent of € > 0 and x > 0.
On the other hand, for any v € (0,1) we have

EX.(t) = i[@ X.(tH)1

x>
(=)

kg( sup n00<s>||ia><k+1
s€(0,t]

M

E (Xa (t)’y]lﬂc StnTkJrl >t)

~
Il

0

(E(Xe(t)Lrii>0)” (B(Brne))'

M

>~
Il

0

< Cle+Eg51M) Y exp(YCilk+1) = (1=7)mk),  (5.20)
k=0
where we have used (5.18) and (5.19) for the final bound. Here, C' = C(Co, Ra,
Ra, ||o||3,m,t) is independent of ¢ > 0, E||¢§||? and C; is the constant appear-
ing in (5.18). Thus when v < clin the series in (5.20) converges. Then for
any p > 0 and any v < (=%—) A p we find

Ci+n
E sup l¢°(s)|I”
s€[0,t]

1/2 1/2
< C(E sup (|6°()[PP=") +[|6°(s) |27 E sup [|¢°(s)[*)
s€[0,t] s€[0,t]
Combing this bound with (2.26) and (5.20) we now obtain the first part of
(2.27).
To address the second term in (2.27) we return to (5.15). Taking expected
values we obtain

s€0,t]

t
E/ IVve|2dt <e(E[lv*(0)|* + C) + CE ( sup II¢8(8)II2> ,
0

where C' = C(Ra, Ra,t,Cy) is independent of ¢ > 0. Combining this observa-
tion with the previous bound, the proof of Theorem 2.1 is now complete.
O

5.3. Approximation up to initial conditions: the corrector

We next formally derive and then rigorously analyze a refined approximation
of (2.1)-(2.2). By Theorem 2.1, the velocity component M (6°) of the limit
system (2.4)—(2.5) well approximates the velocity field u® of the full system
(2.1)-(2.2) in the norm L2([0,t], H' (D)) for each fixed t > 0. Also Theorem 2.2,
(ii) shows that the invariant measure of the limit system approximates any
invariant state of the full system, which can be interpreted as a approximation
of laws of solutions as t — oo. On the other hand, we do not expect (2.4)-
(2.5) to accurately describe the behavior of (2.1)—(2.2) up to ¢ = 0 due to the
presence of a (initial time) boundary layer.
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We next derive the so called ‘corrector equation’ which provides effective
dynamics for (2.1)—(2.2) and which is globally well-posed and whose velocity
component remains close to the dynamics of (2.1)—(2.2) in L*°([0, 7], L*(D)),
that is, even up to time zero. Note that similar considerations motivate the
analysis in [45] which treats such small time approximations in the determin-
istic setting.

Formal derivation. In order to identify multiple time scales in (2.1)—(2.2) we
introduce an additional ‘slow time’ variable ¢ = et. We then replace

1
8,5 — 8t + *8§.
€
Under this ansatz the momentum equation (2.1) becomes
£(Opuf +uf - Vu®) + d.u® — Au® = Vi© + Rak6®

Dropping the terms of order € and using Duhamel’s formula we obtain
S A~
u(s) = e uc(0) + / e~ A6 P(Rak6®)dr (5.21)
0

where as in Sect. 5.1, e~ denotes the semigroup whose generator is the Stokes
operator A.

The form of (2.1) suggests that u® fluctuates rapidly in comparison to
0°. Under the further ansatz that there is a clear separation of time scales
between the motion of u® and that of #° we suppose that 6° is independent of
. From (5.21) this yields

u'(c) = e u®(0) + A (P(Ra - k0°)) — e~ A~ (P(Rako?))
= A"Y(P(Ra - k6%)) + w°(s), (5.22)
where w* solves
ow® —Aw® =V¢*, w(0)=u(0) —y°
and — Ay® = Vp® 4+ Rak0(0) (5.23)
and we have made the further approximation that 6°(t) ~ 6¢(0) relative to the
slow time scale <.

Next, we return to the original time scale ¢ and obtain the effective dy-
namics for (2.1)—(2.2) starting from any initial condition (6§, u§) € H,

— AW = V)£ + Ra-kb° + Aw(t), V- & =0, (5.24)
N

d6® + (ff - VEE - A§€> dt = Ra-i5dt + Y odW*, 6°(0) = 05, (5.25)
k=1

where w¢ solves

1 1
Ow® — —Aw® = ~-V¢°, V-w® =0, w°(0)="Pyneuj+y°,
i € B ) © Nty (5.26)
and —Ay*=Vp°+ Ra-k;, V- -y°=0.
We supplement (5.24)—(5.26) with boundary conditions (2.3). Note that for
technical reasons we slightly modify the initial condition for w® compared to



NoDEA Large Prandtl asymptotics in randomly forced convection Page 29 of 43 43

(5.23) by taking u®(0) = Py-=uf, where we recall that Py- is the projection
onto the first N modes of the Stokes operator A as in (5.27) and N°¢ satisfies

e(A\ye)? ~ 1. (5.27)

This specification 6®(0) is only used to avoid regularity issues at the initial
time in (5.24) and as such, a number of other modifications can be employed.

5.3.1. Rigorous error estimates for the corrector. The following theorem as-
serts that (5.24)—(5.26) approximates (2.1)—(2.2) in the desired norms.

Theorem 5.1. Fiz any e > 0 choose N. satisfying (5.27). Suppose we are given
a sequence {MO’E}se(o,l) C Pr(H) such that

sup [ (IValP + explalull + [6]3) di®(a,) <00, (528)
0<e<1JH
For each ¢ > 0 we consider a martingale solutions (u®,0%) of (2.1)~(2.3) as
in Proposition 2.1, (i). We suppose that each (u®,0%) has initial conditions
distributed according to the distribution pu®¢ and satisfies the uniform moment
bound (2.12). In particular, for each € > 0 the corresponding martingale solu-
tion fizes a stochastic basis S and defines (05, uf) := (6°(0),u®(0)). Then,

(i) up to the specification of the stochastic basis S and the initial conditions

(u§, 05), there exists a unique, adapted

6° € L*( Li,o([0,00); V) N C([0, 00); H))

loc
solving (5.24)—-(5.26). )
(ii) For anyt > 0 there is a yg = Yo(Ra, Ra,t) such that, for any 0 < vy < 7,
p >y, and e > 0,

E ( sup [|6°(s) — 95(5)|lp> <Ce7,
s€[0,t]
(5.29)

E < sup [[a°(s) — us(s)||p> < et

s€[0,t]

where the constants C' = C(P:a, Ra,t,p) and vo and are both independent
of € > 0.

Proof. As in Proposition 2.1, (iii), (iv) the well posedness of (5.24)—(5.26) is
standard and can be established along similar lines as one would for the 2D
Stochastic Navier—Stokes equations. To see this observe that, although we are
working in 3D, we have one more degree of smoothing in the constitutive
law, (5.24), producing 0 from 6° compared to Biot-Savart in the Navier—
Stokes equation. We omit further details here again referring the reader to e.g.
[12,13,17].

To prove (5.29) we reuse many of the estimates from the proof of Theo-
rem 2.1. Taking v¢ = u® — u° and (f)g =0° — 5’3, we have

8t<l7>8—A<Z~5€:éa-ﬁ§—95~v9~5—u5~v<l~5€, (ZEE(O):O’
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and hence repeating the arguments leading to (5.5) we obtain the estimate

~ ~ _ 9 tAT _
sup [F(s AP sup (IFIR+ Ra’) [ Vo) (530)
0

s€[0,t] s€[0,tAT]

for any ¢ > 0 and any stopping time 7 > 0. By (5.24) and (2.1), v satisfies

(O + v - Vu®) — AV® = V¢ + Rak¢® — Aw®, (5.31)
where w* solves (5.26). Referring to (5.24) we have

¢ = A~ (RaP (kb)) — w* (5.32)

and consequently (5.25) and (5.26) yield

d® = —dw®+ RaA~" P(kdf")

= fl(Aws + Vqg)dt
~RaA™'P(k( - VO~ AFF — Ra- ) dt
N

+ Ra A~ P(koy)dW* . (5.33)
k=1

Multiplying (5.31) by e, subtracting (5.33) and rearranging we obtain

dv° — Savear = 1 (vqf + Ral%g?sE) dt
g g

+(Raa™ P (k(a - VO — A — Ra-35)) — ¢ - V) dt
— Ra iA*lp(fmk)dW’“, vE(0) = (I — Py)us, (5.34)
k=1

with V - v¢ = 0. Here note the close similarity between (5.8) and (5.34); in
view of (5.32), (5.26) the primary distinction here is in the initial condition.
As above in (5.9), the It formula implies

€ 2 €
Ve |P 4[|Vt
2
= gRa<¢>€,v§>dt
+2 <RaA—1P(f< (8 V0° A~ Ra ) ) — u® - V', ¥ ) dt
+RaQZ|A LP(koy,)|dt — QRaZ A7 P(koy), vE)YdWF

k=1 k=1
= (T1 + T+ T3 +Ty+T5 + Tﬁ)dt + SdW. (535)

We now estimate (5.35) with bounds similar to (5.10)—(5.13). Here, bounds on
u need to be replaced with appropriate estimates for @°. For the terms T5, T4
we simply treat G® terms as
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16 (@)II* < C(Ra®(16°(1)]1* + lwe (£)]*)
< C(Ra?||0°(t)|* + [[ug]|* + Ra®[165]1*) - (5.36)

The estimate (5.13) on the term Ty involves an L* bound on u¢ and thus
requires a bit more care. In this case

18 (@)[|7~ < Cla(®) 7 < C(Ra®(|6° ()| + [[we ()1 72).

By standard properties of analytic semigroups, the inverse Poincaré inequality,
and the form of w(0) one has

lw (@)1= = e/ *w (0)|[3= < Cllw* ()32 < CRa®|I65|1° + C|| Pt 772
< CRa?|I05]1* + C(\y=)*[1ag1?, (5.37)

where C is independent of ¢ € (0, 1). Combining these two estimate and again
taking advantage of the cancelation from u® = v¢ + u®

1, .
IT5| < V9% + el a1

A

1 € 1> € €
IV + C(Ra® + DG + gl + [la®]*)- (5.38)

Observe that in comparison to (5.13), the additional power of ¢ is used to
cancel (\y.)?%.

Combining the analogues of (5.10)—(5.12) with (5.36) and using (5.36)
with (5.35) we obtain

- 1o
d[ve|?+ [ vve|Pat

CRa? , -~
< S e 2ar

~ 2 ~
C(1+Ra4>(1+Ra Y1071+ 116511+ [[ug ||+ [[u®]|*+ 1)dt
—2Raz P(koy)), v )dW" (5.39)

where the constant C' > 0 is independent of Ra, Ra, and ¢ > 0. We now use
(5.39) with (5.30) and repeat the stopping time argument as in (5.17)—(5.20)
to infer the first part of the (5.29).1°

We turn next to the the convergence of the velocity fields, the second
part of (5.29). We obtain from (5.35) and the pointwise bounds yielding the
drift terms in (5.39) that

@I < exp (2 ) v5)2
E

t
-|-C'/ exp(—
0

10Note that the loss of the € in front of the second term after the inequality in (5.39) in
comparison (5.14) does not charge the ultimate outcome of this bound as we only required
an e-independent upper bound for M. in (5.18).

ﬂ(%ﬂ&@ﬁ+&w0%+%@’
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t -
<o (1) 19517

+ CRa? sup [|¢°(s)]|? +& sup Re(s) + Xe(t), (5.40)
s€[0,t] s€[0,t]

where

5 2 ne 5 5 5
Re(t) := C(1+ Ra")(1+ Ra")([|6°[|* + [165]" + [[u§]|* + [lu®]|* + 1)
N
)Z P(koy)), v )dW*

t
X:(t) == —2Ra/0 exp (
k=1

= | e (-1=2) sy

Using the inverse Poincaré inequality and (5.27) one has

and

t - * =
exp (‘) 1617 < (T = Pre)ug|® < CORe) Vg
< Ce||Vug*. (5.41)

Therefore combining (5.40) with (5.41), using the bound already obtained for
ll¢=(s)| in (5.29) and the uniform bounds (2.12), (5.28)

E sup [[¥5(t)[” < C(e”/* +7) + CE sup |[X.(s)"*  (5.42)
s€[0,t] s€[0,t]

for any p > 0, where 4 = min{p, v} is obtained from the bound [|¢°(s)|| and
the constant C' = C(Ra, Ra,t,p) is independent of € > 0.
In order to estimate X. observe that this process satisfies

1
dX. + gXadt =gdW, X.(0)=0,
and hence, by the Ito lemma,

2
dXx? + ngdt = g2dt + 29X.dW .

Consequently,
s p/4 t p/4
E sup |X.(s)[”/2 < CE sup / gXdW|  +CE (/ g2d3> . (5.43)
s€[0,t] sef0,t] [J0 0

With the Burkholder—David—Gundy inequality and Young’s inequality we have

s p/4 t p/8
/ gX.dW| < CE ( / g2X3ds)
0 0

t
< -E sup |X.["/2+ CE (/ |\75||2ds> . (5.44)
0

s€[0,t]

E sup
s€[0,t]

N[ —
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With (5.43), (5.44), the bound (5.45) now yields
t p/4
E sup [¥5(8)|]P < C(eP/2 +£7) + CE (/ ||v€2ds) . (5.45)
0

s€[0,t]

On the other hand, from (5.39), using for a second time the existing bounds
on ||¢%(s)] in (5.29) and (2.12), we have

t t t
]E/ | Vve||%dt geE|\vo||2+CRa2/ ]E||¢5||2ds+sIE/ R.ds
0 0 0
< C(e+¢€7), (5.46)

where the constant C' depends on t, Ra, Ra but again is independent of € > 0.
When p < 4 the second portion of the desired inequality (5.29) now follows
from (5.45), (5.46), and Holder’s inequality. On the other hand, when p > 4
then we estimate

t p/4 t
E (/ ||\782ds) <E sup ||\7€||p_2+IE3/ |v]|2ds
0 s€(0,t] 0

< sup [[VE[[P77 4 Cle +e7),

s€[0,t]
so that the second part of (5.29) follows in this later case with (5.46) and an
iterative argument. This completes the proof of Theorem 5.1, (ii). 0

6. Convergence of the Nusselt number

In this final section we prove Corollary 1.1, note that this is not an immediate
consequence of Theorem 2.2. Indeed, the Nusselt number Nu (cf. (1.8)) is
defined as a statistical average of the observable

Onu(u,0) = /D uzfldz, (6.1)

but (2.30) is not satisfied since ¢, ¢ V (H). Nevertheless, Corollary 1.1 follows
from a combination of Theorem 2.2 with exponential moment bounds on the
unique invariant measures.

Proof of Corollary 1.1. In two space dimensions, with N = oo and Pr =
Pr(Ra,]%a) large enough (or ¢ = Pr~! small enough), [21, Theorem 1.3
and Theorem 2.2 yields respectively unique invariant measures u. of (2.1)
(2.2) and pg for (2.4)—(2.5). We aim to show that lim._o(Nu). = (Nu)g. To
simplify the notation, write ¢ instead of ¢y, defined by (6.1).
Consider a smooth cut-off function ¥ : [0, 00) — [0, 1] satisfying ¢ = 1 for
€10,1], ¥ =0 for z > 2, and |¢'| < 2 everywhere. Denote ¥r(-) := ¥(-/R)
and write

/ o, 0)dpe / H(L(0))dpo >’

‘/ ¢(w, O)wr(ul* + 101 dpe (u, 0) / S(L(0))Yr(IL(0)]*)duo (6)
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- ‘/H 9w, 0)(1 = r(|[ul® + 10]°))dpc (u, 9)’

+ / S(L(9))(1 — vr(IL(O)]*))dpo(8 )’
H
=: Il +IQ —f—]g

We bound the first term by observing that ¢r(u, 0) := ¢(u, 0)yr(||[ul|® + ||0]/?)
satisfies

(6r], < C(R+1), (6.2)

for a constant C' > 0. It follows from (6.2) and Theorem 2.2 that I; < C(R+
1)e4. We control I> using Markov’s inequality and (2.13), which yields, for any
n > 0 sufficiently small

pe(ER) < G*”R/HGXP(H(HUIIZ +11011%))dpe (u,8) < Coe™ .

uniformly in e > 0, where Eg = {|lul|? + ||0]|*> < R}. Notice that 1 —
Yr(llull* + [|0]*) < 1gg, and observe that for fixed n > 0, on the set Ef,
we have |, (u,0)] < exp(n(|lul|® + ||0]|?)/2) for R = R(n) sufficiently large.

By Holder’s inequality we obtain

1/2
L<c ( [ el + ||9|2))dug(u,9)> (e (B2 < CCL2 a2,

We can control I3 similarly by using exponential moment bounds for the in-
variant measure pp, and the estimate ||[L(9)|| < C||0||. Thus,

/¢Nu(s)(u )dpie(u /¢Nu 0))dpio(0)

< O((R+ 1)e? + e~ "8/2), (6.3)
and we can make this expression less than any § > 0 by taking R = R(0)
sufficiently large and then € = ¢(R, 0) sufficiently small. O

Remark 6.1. From the proof above we can easily infer that Corollary 1.1 will
also apply to any observable ¢ on the extended phase space that is locally
Lipschitz and sub-exponential at infinity (for a sufficiently small exponential
power 1 > 0 dictated by (2.13)). We have chosen the convergence of the Nusselt
number to emphasize the physical significance of our results.
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Appendix A: Moment bounds for stochastic drift-diffusion
equations

In this appendix we collect some moment bounds proved in [21] which have
been used in the analysis above.
As in [21] we consider the following class of stochastic divergence-free
drift diffusion systems
N
¢+ v - VEdt = (Ra - vs + Adt + > ardW*,  £(0) =& (A1)
k=1
evolving on the three dimensional domain D = [0, L]* x [0, 1]. Here Ra > 0 is
a fixed parameter and v = (v1,v2,v3) is any sufficiently regular and adapted,
divergence free vector field. Both v and £ are supposed to satisfy the boundary
condition (2.3). Recall that by the change of variable T = £ + Ra(1 — z) we
may reformulate (A.1) as

N
dT +v - VTdt = ATdt + Y orpdW*,
k=1
T(0) =Ty = & + Ra(l — z),
where v and T satisfy boundary conditions (1.3). As such, bounds for £ solving

(A.1) immediately translate to bounds for T
In [21] we prove:

(A.2)

Proposition A.1. Suppose that v € L% ([0,00); V1N (H?(D))*)NC([0,00); H1)

loc

a.s. and is Fy-adapted. Fiz any p > 2 and any initial condition §, € HNLP(D)
which is Fo-measurable with

E exp(n][éollZ») < oo,

for somen > 0. Then there exists ng = no(o, R~a,p) > 0 such that for anyt >0
and any positive n < 1y,

n 2
Eexp (21’/2+2 821[10%] ||f||Lp>
-2
< CiEexp (nlléo 2 +npt(lo 2, + 272 (4R’ + 1)) (A3)
for a constant C = C(}%a,p) independent of t, n, &, and v. Furthermore,

Eexp (54503 ) < CEexp (n(e™™ %)) . (A.4)
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where again C = C(Ra,p,||o|r», D) and k = k(Ra,D) > 0 are independent
Of t; m, 507 and v.

We now return to the infinite Prandtl system (2.4)-(2.5) and recall a
bound analogous to (A.4) but which uses more of the specific structure of the
velocity equation.

Proposition A.2. Fiz an initial condition 03 € H which is Fy-measurable, and
let 00 = 09(t,08) denote the corresponding solution to (2.4)—~(2.5). There is a
universal constant n* > 0 such that for any t > 0 and n € (0,n*], there exists
C = C(Ra, Ra) > 0 such that

o—t/4 [t
E (exp <77|90|2 + WT/ ||V‘90||2d3>>
0
< Cexp (n(l + 4Ra1§a)67t/2H98H2) ‘

The proof of Proposition A.2 can be found in [21].

Appendix B: Gradient estimates on the Markov semigroup

In this section we establish the gradient bound for the Markov semigroup
generated by (2.4)—(2.5) in order to prove (4.2). For this purpose we begin by
briefly recalling how (4.2) is translated to a control problem through the use of
Malliavin calculus. We refer to e.g. [36] or [35] for further general background
on this subject and to [20,26,28] for the application of this formalism in a
setting close to ours.

Define the random operators

0°(t, 00 + €€, W) — 0°(t, 00, W)

Jo.t§ = 2% c (B.1)
for any £ € H and
0(t, 00, W + e [w) —0°(t, 0, W
Ao gw := lim (t, % €Jow) = 0°(t,00, W) (B.2)
e— €

for any w € L2(; L%([0,t;RY)). Here Ag,w = (D0° w), where the un-
bounded operator ® : L?(Q; H) +— L?(; L?(0,t,RY) @ H) is the Malliavin
derivative and w is any element in the domain of the dual operator § of ®.

For our purposes it is sufficient to recall that any F;-adapted process in
L2(9; L%(]0,t]; RY)) belongs to the domain of § and §(w) corresponds to the
1t0 integral of w so that

E(®X,w)=E (X /Ot wdw> (B.3)

for any X € Dom(®) and any F;-adapted w. This is a special case of the
Malliavin integration by parts formula. We furthermore recall that © satisfies
a chain rule namely that if ¢ € C1(H) and § € Dom(D) then ¢(f) € Dom(D)
and

DH(0) = V(0)D0. (B.4)
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Combining (B.3)—(B.4) and making use of the It isometry we infer that,
VP $(00)é =E (Vo(6°(t,00)) To,.€)

(¢(9°(t 60)) / wdw> L E (Vo0 00)) (Fo.sé — Aogw))

1/2
< \/Po(o6)P) (E ( w|2ds>
+ POV 12) (Bl To.u€ — Apsw]|?)? (B.5)

for any ¢ € CL(H), 0y € H and any (adapted) w € L?(£2; L%([0,t]; RY)).
Our desired bound (4.2) follows from (B.5) if, for every ¢ € H with
|€]| = 1 there is (adapted) w = w(&) € L2([0,00); RY) such that

E||Jo.€ — Ao w(©)]]? < Cexp(2n]lfo]2)5() (B.6)
sup E / o (€)Pdt < C exp(2n]6ol?) (B.7)
lEl=1 0

where 6(t) — 0 as t — oo and C, 7, and § are independent of 6.

To solve the control problem (B.6)—(B.7) we observe that (B.1) and (B.2)
admit explicit characterizations as linearizations of (2.4)—(2.5). For any ¢ € H°
we let p(t) = p(t,&) := Jo.+:&, which satisfies

op+u’-Vp+v? Ve = Ra-vd + Ap,

) (B.8
—Av0:Vp+RakP7 V'VO:07 p(o):§7 )

supplemented by boundary conditions as in (2.3).1! On the other hand, setting
p = Agw for any w € L?([0,t],RY) we have

Op+u’-Vp+ vV =Ra-vf + Ap+ > opwy,
Pt (B.9)

_A{,OZVp—FRaR[), V-v'=0, 5(0) =0,

again with boundary conditions as in (2.3).

Denote p(t) = p(t, &, w) = p—pand v := v—v for any w € L?([0, 00); RY)
and £ € H. We now choose w as a function of ¢ as follows. Let Py be the pro-
jection on the first IV eigenfunctions of the Laplacian with boundary conditions
asin (2.3). Set w(t) := 0 *APyp, where A > 0 and N will be selected below.!2

11 Notice that (B.8) can also be written as
dep + (L6°) - Vp+ (Lp) - V0° = Ra(Lp) + Ap,  p(0) =&,

where I = RaA~1Pk and A is the Stokes operator, P; cf. (5.1) and (2.6) above. Similar
formulations can also be given for (B.9), (B.10).

120f course the choice of N will determine the number of modes subject to stochastic
perturbation. Observe that w is well defined as {0} }1_; is the set of the first N (nonzero)
eigenvectors of the Laplacian.



43 Page 38 of 43 J. Foldes, N. E. Glatt-Holtz, and G. Richards NoDEA

Relative to this choice of w = w(§), p satisfies
op+u’-Vi+v°-Ve = Ra- 5y + Ap— APy, (B.10)
AV =Vp+Rakp, V-¥'=0, p(0)=¢. '

Testing (B.10) with p and v° respectively, and using that both u® and v° are
divergence free vector fields, we obtain

d -
P+ 2190 2 Papl? =2 [ (Ra§ =9 v6°) o (B1)
D
and
IV°|| < Rap]]. (B.12)
With standard Sobolev embeddings and (B.12) we have, for any n > 0,

| (Faig =50 96°) pa| < [0 [90° ]2 + 5”11

< CIVVINVe a2V al 2 + Ral V¥°ll|all
< CRa|[V&°|[IlI*”?[IV ||/ + C RaRal|||?

< ValI? + (C(Ra)**|V6°|*/* + CRaRa)|p]|?

< IVal* + (Ve l* + O)liall?, (B.13)

where C' = C(Ra, Ra,n) = % +CRaRa and C is a universal constant. Also
since Py and —A commute we have for Qn :=1 — Py

IVAll? = —(Pnp, APxp) — (Qnp, AQnp) = VPRI + [VQN A
> [VQnal? = An|@npll?, (B.14)

where the last inequality follows from the generalized Poincaré inequality.
Choose 2A = Ay (with N to be chosen below) and combine (B.11) and (B.13)
to infer

d, _
21217+ O = (o[ VO°I1* + €)1l < 0,

and hence, since p(0) = &,

¢
1P < 1I€N1* exp (770/0 IV6°)* dr + (C — ANV) : (B.15)
Applying Proposition A.1 we conclude that, for any 3 € H, and n € (0, 0],
Ellp®)[I* < ClI&l* exp (ll601* + (C +n = An)t)
where C' = C(Ra, Ra) is independent of ¢ and 63 and ¢ > 0. By now choosing
N large enough such that Ay > 2(C + n||o?) we obtain

_ A
El0)1” < CllelP exp (nl6g]? - ') | (8.16)

where C' = C(Ra, R~a) is independent of ¢ and 63 and ¢ > 0. This yields the
first bound (B.6).
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To obtain the second desired bound, (B.7), we use (B.16) to estimate
B[ o©)de=lo PARE [ |Pualat < CesalI).

where C' = C(\y, Ra, Ra) is independent of 6] yielding (B.7). The bound (4.2)

now follows.

Remark B.1. We can use the same argument leading to (B.15) to show that

t
1012 < [1€] exp (n / ||V90||2dr+0t) |
0

that is, for any n > 0,

t
o]l < exp <n / ve°||2dr+ct) 7 (B.17)
0

where, as above, C' = C(Ra, Ra) = 052“4 + RaRa.

Remark B.2. Using Proposition A.2 and (B.17) we can easily establish the
Lyapunov bound (4.1) with

CRa* t*/2 ~
C1 = exp (CL: + RaRa) .
n
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