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Large Prandtl number asymptotics in
randomly forced turbulent convection
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Abstract. We establish the convergence of statistically invariant states for
the stochastic Boussinesq equations in the infinite Prandtl number limit
and in particular demonstrate the convergence of the Nusselt number
(a measure of heat transport in the fluid). This is a singular parameter
limit significant in mantle convection and for gasses under high pres-
sure. The equations are subject to a both temperature gradient on the
boundary and internal heating in the bulk driven by a stochastic, white
in time, gaussian forcing. Here, the stochastic source terms have a strong
physical motivation for example as a model of radiogenic heating. Our
approach uses mixing properties of the formal limit system to reduce the
convergence of invariant states to an analysis of the finite time asymp-
totics of solutions and parameter-uniform moment bounds. Here, it is
notable that there is a phase space mismatch between the finite Prandtl
system and the limit equation, and we implement methods to lift both
finite and infinite time convergence results to an extended phase space
which includes velocity fields. For the infinite Prandtl stochastic Boussi-
nesq equations, we show that the associated invariant measure is unique
and that the dual Markovian dynamics are contractive in an appropriate
Kantorovich–Wasserstein metric. We then address the convergence of so-
lutions on finite time intervals, which is still a singular perturbation. In
the process we derive well-posed equations which accurately approximate
the dynamics up to the initial time when the Prandtl number is large.
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1. Introduction

Buoyancy driven convection plays a central role in a wide variety of physical
processes: from Earth’s climate system to the internal dynamics of stars. As
such it is of fundamental importance to identify and predict robust statistical
quantities in these complex flows and to connect such statistics with the basic
equations governing their dynamics, for example the Boussinesq equations. In
particular characterizing pattern formation, mean heat transport, and small
scale dynamics as a function of physical parameters and boundary conditions
remains a topic of intensive research theoretically, numerically, and experimen-
tally; see e.g. [3,5,32,34] for a broad overview of recent developments.

It has long been understood that statistically invariant states of the non-
linear partial differential equations of fluid dynamics provide mathematical ob-
jects which are expected to contain various robust statistical quantities found
in turbulent fluid flows. An ongoing challenge is therefore to address the exis-
tence, uniqueness, ergodicity, and dependence of these measures on parameters
in a variety of specific contexts. While one may certainly pose such questions for
deterministic equations [cf. [19]] the stochastic setting can be more tractable
given the regularizing effect of noise on the associated probability distribu-
tion functions. Moreover, energy may be supplied to the system through both
boundary or within the bulk of a fluid, the latter setting for instance models
radioactive decay processes in the earth’s mantle; see [4,24,33,39,41,51]. Both
sources can therefore have an essentially stochastic character in situations of
physical interest.

In this and a companion work, [21], we study statistically invariant states
of the stochastically driven Boussinesq equations

1
Pr

(∂tu + u · ∇u) − Δu = ∇p + Rak̂T, ∇ · u = 0, (1.1)

dT + u · ∇Tdt = ΔTdt +
N∑

k=1

σkdW k, (1.2)

for the (non-dimensionalized) velocity field u = (u1, u2, u3), pressure p, and
temperature T of a buoyancy driven fluid. The system (1.1)–(1.2) evolves in
a three dimensional domain (x, y, z) = (x, z) ∈ D = [0, L]2 × [0, 1] and is
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supplemented with the boundary conditions

u|z=0 = u|z=1 = 0, T|z=0 = R̃a, T|z=1 = 0,

u, T are periodic in x = (x, y).
(1.3)

The unitless physical parameters in the problem are the Prandtl number Pr
and Rayleigh numbers Ra and R̃a; see Remark 2.3 and [21] for further details
concerning this choice of nondimensionalization. The unit vector k̂ = (0, 0, 1)
points in the direction of the gravitational force. The driving noise in (1.2)
is given by a collection of independent white noise processes dW k = dW k(t)
acting spatially through the functions σk = σk(x, y, z) which form a complete
orthogonal basis of eigenfunctions (ordered with respect to eigenvalues) of the
Laplace operator on D supplemented with homogeneous Dirichlet boundary
conditions for z = 0, 1 and periodic in x = (x, y). The stochastic terms in (1.2)
have been normalized so that

N∑

k=1

‖σk‖2
L2(D) = 1 , (1.4)

with the strength of the body forcing expressed in terms of the physical pa-
rameters Ra and R̃a; see (2.7) below.

Our principal aim here is to establish convergence properties of statisti-
cally invariant states of (1.1)–(1.3) to invariant measures of the active scalar
equation

− Δu = ∇p + Rak̂T, ∇ · u = 0, (1.5)

dT + u · ∇Tdt = ΔTdt +
N∑

k=1

σkdW k (1.6)

in the Large Prandtl number limit, that is, when Pr in (1.1) diverges to ∞.
Here (1.5)–(1.6) is complemented with boundary conditions as in (1.3). Note
that u and p are determined by T according to (1.5). We write this functional
dependence as u = M(T ) and denote L(T ) = (M(T ), T ).

The analysis of convection in the large Prandtl number limit is of basic
interest in a variety of physical contexts, most notably in modeling certain
portions of the earth’s mantle and for convection in gasses under high pressure,
where the Prandtl number can reach the order of 1024, see [8,14,37]. It is
worth emphasizing that the system (1.5)–(1.6) has very complex dynamics
even without stochastic forcing when the Rayleigh number(s) are sufficiently
large; see [3,5,6,8,14,32,37,38,44].

Overview of the main results

Let us now present a heuristic version of our main results; for the precise
formulation see Theorem 2.2 below. Recall that for any function F and measure
μ, the push-forward of μ under F is given by Fμ := μ ◦ F−1.

Theorem 1.1. Fix any Ra, R̃a > 0 and consider (1.1)–(1.3) and (1.5)–(1.6)
with N independently forced directions in the temperature equation. If N =
N(Ra, R̃a) is sufficiently large, then (1.5)–(1.6) possesses a unique ergodic
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invariant measure μ∞. Let {μPr}Pr≥1 be any sequence of statistically invariant
states associated to (1.1)–(1.3) satisfying a uniform exponential moment bound
(see (2.13) below noting that ε := 1

Pr).
1 Then μPr converges to L#μ∞ in a

suitable metric. In particular, for any sufficiently regular observable φ on the
(u, T ) phase space,

∣∣∣∣
∫

φ(u, T )dμPr −
∫

φ(L(T ))dμ∞

∣∣∣∣ ≤ C(Pr)−q , (1.7)

where C = C(φ,Ra, R̃a), q = q(Ra, R̃a) > 0 are independent of Pr and q is
independent of φ.

The proof of Theorem 1.1 contains several further results of independent inter-
est. Firstly, we show that the Markovian dynamics of probability laws for the
infinite Prandtl system, (1.5)– (1.6) is contractive in a suitable Wasserstein
distance; see Theorem 2.2, (2.29) below. Secondly, we demonstrate that the
finite time dynamics converge in the limit as Pr → ∞.

Note that our results do not rely on the well-posedness of (1.1)–(1.2) or
make any assertions concerning the convergence of (1.1)–(1.2) to the formal
limit (1.5)–(1.6) for small times. On the other hand, as notable biproduct of
our convergence analysis, we derive a well posed approximation of (1.1)–(1.2)
up to the initial time t = 0 which is valid for large values of Pr. See Sect. 5.3
and Theorem 5.1 below for further details.

It is also worth emphasizing that our proof of Theorem 1.1 applies es-
sentially verbatum to the two-dimensional version of (1.1)–(1.3), where the
horizontal variable x is one-dimensional. Here all the statistically invariant
states of the full system satisfy the uniform moment bound (2.13). Further-
more, in collaboration with Whitehead [21], the authors have established that
with N = ∞ and Pr = Pr(Ra, R̃a) > 0 sufficiently large, the 2D version of
(1.1)–(1.3) possesses a unique ergodic invariant measure μPr.

An empirical quantity of particular interest in convection is the Nusselt
number Nu, a ratio of convective to conductive heat transfer, which is defined
in terms of a statistical average (e.g. a time average) of the observable φNu =∫

D u2T dx.2 However, in the deterministic case, even in the turbulent regime
of Ra 	 1, Nu depends on initial condition, both at finite and infinite values
of Pr and it is unclear that Nu is continuous at Pr = ∞. We show that the
addition of a stochastic perturbation avoids these concerns.

Corollary 1.1. For fixed Ra, R̃a > 0 and any Pr = Pr(Ra, R̃a) sufficiently
large, the system (1.1)–(1.3) posed in two space dimensions with N = ∞ and

1Note that usual fundamental difficulties concerning the well-posedness of 3D Navier–Stokes
apply to (1.1)–(1.2) and so, following [17], we consider only weak solutions whose laws do not
change in time. The uniform exponential moment condition is analogous to a finite energy
criterion for weak solutions of the 3D Navier–Stokes equations. In [21] we have established

the existence of such states μPr, see Proposition 2.1 below for a precise restatement. In
particular we cannot rule out the existence of a collection {μPr}Pr∈N which does not satisfy
(2.13). Observe that none of these difficulties arise in the 2D case.
2Here u2 represents the vertical velocity component for the 2D version of (1.1)–(1.3).
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(1.4) possesses a unique ergodic invariant measure μPr, and the Nusselt num-
ber Nu given by

Nu = (Nu)Pr := 1 +
1

R̃a|D|

∫ ∫

D
u2T dx dμPr(u, T ) (1.8)

satisfies

lim
Pr→∞

(Nu)Pr = (Nu)∞ .

Note that (Nu)∞ is defined by (1.8) relative to the unique ergodic invariant
measure μ∞ of (1.5)–(1.6).

It should be emphasized that, because μPr is ergodic for large Pr, our
Nusselt number has an equivalent formulation in terms of time and noise av-
eraged solutions. That is, for μPr-almost every initial condition (u0, T0), the
number Nu given by (1.8) satisfies

Nu = 1 + lim
t→∞

1
R̃a|D|E

(
1
t

∫ t

0

∫

D
u2T (x, s) dx ds

)
, (1.9)

where (u, T ) is the solution of (1.1)–(1.3) with initial condition (u0, T0). The
same statement can be made with respect to the Nusselt number for the infinite
Prandtl system (1.5)–(1.6). Note that, if the Nusselt number given by (1.9)
is reformulated without the infinite time limit, then convergence as Pr → ∞
follows as a consequence of convergence of solutions on finite time intervals (see
Theorem 2.1 below). The reader is advised to consult [21, Theorem 1.4] for
more details regarding the Nusselt number for (1.1)–(1.3), including bounds
relative to the Rayleigh numbers.

Theorem 1.1 and Corollary 1.1 may be seen as complementary to a series
of recent works [43–48] which address large Prandtl number asymptotics for
the Boussinesq system in a deterministic framework. Here, we show that the
addition of stochastic terms allows for stronger convergence results, but the
proofs require a different framework. In particular, Corollary 1.1 resolves a
conjecture of Wang [48] by confirming that stochastic forcing stabilizes the
Nusselt number in the infinite Prandtl number limit.

Methods of analysis

The starting point of our analysis is to establish a strict contraction property
for the Markov semigroup {P 0

t }t≥0 associated to the formal limit system (1.5)–
(1.6). We show that for some t∗ > 0 sufficiently large and for any probability
measures μ, μ̃ on the phase space associated with the T component of (1.5)–
(1.6), one has

ρ(μP 0
t∗ , μ̃P 0

t∗) ≤ 1
2
ρ(μ, μ̃), (1.10)

where ρ is an appropriately chosen Kantorovich–Wasserstein metric. See (2.19)
and Theorem 2.2, (i) for a precise formulation.

The bound (1.10) is crucial since it allows us to reduce the proof of the
convergence of statistically invariant states in the infinite Prandtl limit to the
convergence of solutions on finite time intervals. Indeed, suppose that μ0 is
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the (unique) invariant measure for (1.5)–(1.6) and for ε > 0 let με be the T
component of any stationary solution of (1.1)–(1.2) with ε := 1/Pr. Utilizing
the invariance of μ0 and (1.10) we find

ρ(με, μ0) = ρ(με, μ0P
0
t∗) ≤ ρ(με, μεP

0
t∗) + ρ(μεP

0
t∗ , μ0P

0
t∗)

≤ ρ(με, μεP
0
t∗) +

1
2
ρ(με, μ0) , (1.11)

and consequently

ρ(με, μ0) ≤ 2ρ(με, μεP
0
t∗) .

By properties of the Wasserstein metric, specifically (2.21), and using the sta-
tionarity of the solutions corresponding to με we therefore obtain the estimate

ρ(με, μ0) ≤ 2Eρ(T ε(t∗), T 0,ε(t∗)). (1.12)

We have thus bounded the distance between invariant states by the mean dis-
tance between solutions at a fixed finite time t∗. Note that these two solutions
satisfy identical initial conditions which are distributed as με.

Recently the strategy leading to (1.12) has proven effective for establish-
ing the convergence of statistically invariant states for a variety of problems;
see [7,22,25,27,31]. However, in order to implement this approach, one typi-
cally faces several major challenges. A first challenge is to prove the contrac-
tion estimate (1.10), where the semigroup {P 0

t }t≥0 corresponds to (1.5)–(1.6).
Moreover, in our setting, it is desirable to lift this contraction property to the
extended phase space involving both the velocity u and temperature compo-
nents T of our system. This is particularly relevant in view of the physical
significance of the Nusselt number, a quantity involving both u and T as in
(1.8). A second challenge is to show that Eρ(T ε(t∗), T 0,ε(t∗)) → 0 as ε → 0
in order to take advantage of (1.12). This task requires suitable ε = Pr−1

uniform moment bounds on the stationary statistics με and finite time conver-
gence results for solutions in the limit as Pr → ∞. As we describe presently
the results established here require new ideas in comparison to the aforemen-
tioned related works. This is partially due to the presence of non-homogeneous
boundary conditions for (1.5)–(1.6) and to the singular nature of the limit from
(1.1)–(1.2) to (1.5)–(1.6).

Regarding the first challenge, guided by the classical Doob–Khasminskii
Theorem [11,15,30] and as encompassed by the more recent developments in
[25,27,29], one can establish a contraction of the type (1.10) when the Markov
semigroup is smoothing, suitable moment bounds hold, and there is some form
of irreducibility in the dynamics. The question of smoothing for the Markov
semigroup can be translated to a control problem; see (B.10) below. In our
setting, when the number of forced directions N = N(Ra, R̃a) is sufficiently
large, an appropriate control can be found through Foias–Prodi type consid-
erations [18]. Since (1.5)–(1.6) may be seen as an advection diffusion system
with u being two derivatives smoother than T , such a strategy largely repeats
the approach used in previous works on the 2D stochastic Navier–Stokes equa-
tions [26,27,31,50]. On the other hand establishing suitable moment bounds
is more delicate due to the non-homogenous boundary conditions imposed
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in (1.3) and requires a careful use of the maximum principle along with ex-
ponential martingale estimates. These bounds have been carried out in our
companion work [21]. The main obstacle to proving (1.10) is to establish irre-
ducibility, which does not follow from the approach set out in previous works,
e.g. [10,20,22,26,49]. This is because the system (1.5)–(1.6) with its stochastic
terms removed can have highly non-trivial dynamics, see [8,14,37,38,44]. We
show that, despite this complication, the support of every invariant measure of
(1.5)–(1.6) contains the basic conductive state. Indeed we establish with the
use of another Foias–Prodi bound that a Girsanov shift of (1.5)–(1.6) converges
to the conductive state with positive probability. We then employ moment es-
timates and stopping time arguments to translate this non-zero probability
back to the original system (1.5)–(1.6) yielding the desired irreducibility.

In order to establish convergence of invariant states on the extended
phase space, we adapt a methodology from recent joint work of the authors
with Friedlander [22] which enhances (1.10) to a “lifted” contraction property
with respect to a carefully chosen metric (see Lemma 3.1 below). By invoking
this lifted contraction property, and appropriately modifying the argument
in (1.11)–(1.12), the convergence of invariant states as Pr → ∞ reduces to
establishing the convergence of solutions of (1.1)–(1.2) to those of (1.5)–(1.6)
at a fixed time t∗ > 0, independent of ε, when the initial conditions have the
same distribution in temperature only.

The second major challenge regards the convergence of solutions of (1.1)–
(1.2) on finite time intervals as Pr → ∞ for which we develop a suitable as-
ymptotic analysis. This is a non-trivial task since the small parameter 1/Pr
lies in front of the time derivative terms in (1.1). Moreover, the convergence
analysis in [43–48] for a deterministic analogue of (1.1)–(1.2) requires signifi-
cant modification. In particular these references crucially use higher temporal
regularity properties which are missing in our stochastic setting. As a substi-
tute we derive a stochastic evolution equation for the velocity component and
use martingale properties of associated Itō integrals. Our analysis then takes
advantage of uniform moment estimates from [21], some previously unobserved
cancellations in certain error terms and delicate stopping time arguments.

Analogous to the results in [43–48] we derive an ‘intermediate system’,
which we refer to as the ‘corrector’. We show rigorously that this system ap-
proximates the finite Prandtl system in the velocity equation over bounded
time intervals up the initial time; cf Theorem 5.1. While this corrector system
is of independent interest we also provide a somewhat simpler and more direct
analysis of the convergence of (1.1)–(1.2) to (1.5)–(1.6) which well approxi-
mates the infinite Prandtl system after an O(1/Pr) time transient. Indeed,
this more direct approach is sufficient for the upper bound in (1.12) since this
bound only involves a fixed time t∗ > 0.

Manuscript organization

The manuscript is organized as follows. In Sect. 2 we introduce the rigorous
mathematical setting of the stochastic Boussinesq equations, (1.1)–(1.3), which
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serves as a foundation for the rest of the analysis. We also introduce the formal-
ities of the Kantorovich–Wasserstein metric in Sect. 2.2, and provide a rigorous
formulation of our main results in Sect. 2.3. Section 3 describes core of our
strategy that reduces the question of convergence to finite time asymptotics
and uniform moment bounds. Section 4 is devoted to establishing the contrac-
tion (1.10) for the infinite Prandtl system (1.5)–(1.6). In Sect. 5 we carry out
the finite time convergence analysis. The section concludes with a derivation
and analysis of the intermediate corrector system. In Sect. 6 we establish con-
vergence of the Nusselt number. Finally two Appendices recall various elements
essentially contained in previous works that we have used in our analysis. Ap-
pendix A is devoted to details for various moment estimates from [21] for a
class of drift-diffusion equations which we use to bound (1.5)–(1.6). In Appen-
dix B we outline gradient estimates on the Markov semigroup corresponding
to (1.5)–(1.6) which are carried out in a similar fashion to e.g. [26].

2. Mathematical preliminaries and main results

We begin our analysis of the stochastic Boussinesq equations by recalling some
details of their mathematical setting. The section concludes with a mathemati-
cally precise restatement of Theorem 1.1. Here and below we implicitly assume
that C, c, C0 etc. are constants depending on the domain D with any other de-
pendency indicated explicitly.

For the forthcoming analysis it is convenient to consider an equivalent
homogeneous, form of the stochastic Boussinesq equations. Introducing the
‘small parameter’ ε = Pr−1 > 0 and making the change of variable θε =
T − R̃a(1 − z) we rewrite (1.1)–(1.2) as3

ε(∂tuε + uε · ∇uε) − Δuε = ∇p̃ε + Rak̂θε, ∇ · uε = 0, (2.1)

dθε + uε · ∇θεdt = R̃a · uε
3dt + Δθεdt +

N∑

k=1

σkdW k, (2.2)

supplemented with the homogenous boundary conditions
uε

|z=0 = uε
|z=1 = 0, θε

|z=0 = θε
|z=1 = 0,

uε, θε are periodic in x = (x, y).
(2.3)

Here, in reference to the R̃a ·uε
3 term in (2.2) recall that uε = (uε

1, u
ε
2, u

ε
3). The

corresponding infinite Prandtl system (ε = 0) is given by

−Δu0 = ∇p̃ + Rak̂θ0, ∇ · u0 = 0, (2.4)

dθ0 + u0 · ∇θ0dt = R̃a · u0
3dt + Δθ0dt +

N∑

k=1

σkdW k, (2.5)

again with initial conditions θ0(0) = θ0
0 and boundary conditions as in (2.3).

3Note that we have implicitly modified the pressure in (2.1) by RaR̃a(z − 1
2
z2) since (1− z)

k̂ = ∇(z − 1
2
z2).
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Remark 2.1. Notice that we do not prescribe an initial condition for u0 in
(2.4)–(2.5) as this component does not satisfy an independent evolution equa-
tion. Indeed, (2.4)–(2.5) can be rewritten as

dθ0 + (Mθ0) · ∇θ0dt = R̃a(Mθ0)3dt + Δθ0dt +
N∑

k=1

σkdW k, (2.6)

where the constitutive law M recovers u from θ according to (2.4) as in (2.9)
below.

Remark 2.2. The systems (2.1)–(2.2) and (2.4)–(2.5) can be reformulated in
terms of T = θε + R̃a(1 − z), which satisfies (1.1)–(1.2) or (1.5)–(1.6), respec-
tively, and has boundary conditions (1.3). Our analysis makes use of both of
these formulations.

Remark 2.3. As noted above, parameters in the problem are the Prandtl (Pr =
ε−1) and Rayleigh numbers (Ra, R̃a), which are unit-less. In terms of basic
physical quantities of interest we have that

ε−1 = Pr =
ν

κ
, Ra =

gαγh5/2

νκ3/2
, R̃a =

√
κh(Tb − Tt)

γ
, (2.7)

where ν is the kinematic viscosity, κ the thermal diffusivity, g the gravitational
constant, α the coefficient of thermal expansion, h the distance between the
confining plates, Tb −Tt the temperature differential, and γ = H/ρc the inten-
sity H of the volumetric heat flux normalized by the density ρ and specific heat
c of the fluid. We refer the interested reader to [21], where the dimensionless
form of the stochastically driven Boussinesq equations is derived.

2.1. Functional setting of the Boussinesq equations

We next define the phase space for the Boussinesq equations, which is very
close to the classical framework for the Navier–Stokes equations; see e.g. [9,40]
for further details.

We define H := H1 × H2 as the phase space for (2.1)–(2.3), where

H1 := {u ∈ (L2(D))3 : ∇ · u = 0,u · n|z=0,1 = 0,u is periodic in x},

H2 := {θ ∈ L2(D) : θ is periodic in x}
and we denote by H = H2 the phase space for (2.4)–(2.5). The spaces H and
H are endowed with the standard L2-norm and we denote each of them by ‖·‖
as the appropriate meaning will be clear from the context.4 All other norms
are written as ‖ · ‖X below for a given space X. We define H1 type spaces as

V1 := {u ∈ (H1(D))3 : ∇ · u = 0,u|z=0,1 = 0,u is periodic in x},

V2 := {θ ∈ H1(D) : θ|z=0,1 = 0, θ is periodic in x}.

4Below will also consider the weighted metrics (2.22), (2.24) which generate an equivalent
topology on H and H but are more suitable for the convergence of measures in the associated
Wasserstein metric.
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Let V = V1 × V2 and V = V2. We will sometimes consider the Lp(D) spaces
of p-integrable functions for p ∈ [1,∞] and endow these spaces with their
standard norms.

In what follows we frequently project or lift the dynamics to account for
the phase space mismatch between (2.1)–(2.2) and (2.4)–(2.5). We define

Π : H → H2 to be the projection onto the θ component of H. (2.8)

Associated with the limit system (2.4)–(2.5) we have the constitutive law

M(θ) = RaA−1Pθk̂, (2.9)

where A is the Stokes operator and P the Leray projector. In other words
u = M(θ) is the solution of

−Δu = ∇p̃ + Rak̂θ, ∇ · u = 0;

see Sect. 5.1 and in particular (5.1) below. We define the ‘lifting map’ L : H →
H from the temperature component to the extended phase space

L(θ) = (M(θ), θ). (2.10)

Finally, we denote Pr(X) as the space of Borel probability measures on
a given complete metrizable space X, typically H,H etc. For μ ∈ Pr(H), we
take Πμ(·) = μ(Π−1(·)) to be the push-forward of μ by Π. Similarly Lμ is the
push-forward of μ by L when μ ∈ Pr(H).

We have the following general results concerning the existence and unique-
ness of solutions of (2.1)–(2.3) and (2.4)–(2.5):

Proposition 2.1. (Existence, Uniqueness, and Continuous Dependence) Fix
any values Ra, R̃a > 0.

(i) For every ε > 0 and any given μ0 ∈ Pr(H) with
∫

(‖u‖2+‖θ‖2)dμ0(u, θ) <
∞ there exists a stochastic basis S = (Ω,F , {Ft}t≥0, P,W ) upon which
is defined an H-valued stochastic process (uε, θε) with the regularity

(uε, θε) ∈ L2(Ω;L2
loc([0,∞);V) ∩ L∞

loc([0,∞);H)),

which is weakly continuous in H, adapted to {Ft}t≥0, satisfies (2.1)–(2.2)
weakly and such that (uε(0), θε(0)) is distributed as μ0. We say that such
a pair (S, (uε, θε)) is a weak-martingale solution of (2.1)–(2.3). If, for
some p ≥ 2, and η > 0,

∫

H

exp(η(‖u‖2 + ‖θ‖2
Lp))dμ0(u, θ) < ∞, (2.11)

there exists η0 > 0 and a weak martingale solution (S, (uε, θε)) such that

E exp

(
η0

(
sup

s∈[0,t]

(‖uε‖2 + ‖θε‖2
Lp) +

∫ t

0

(‖∇uε‖2 + ‖∇θε‖2)ds

))

≤ C < ∞ (2.12)

for each t > 0, where C > 0 is a constant independent of ε ∈ (0, 1].
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(ii) Additionally, for any ε > 0, there exists a martingale solution (S, (uε
S , θε

S))
of (2.1)–(2.2) which is stationary in time, meaning that the law of the
solution is independent of time. These stationary solutions (S, (uε

S , θε
S))

may be chosen in such a way that, for any p ≥ 2 there is an η =
η(p,Ra, R̃a) > 0, for which

sup
1≥ε>0

∫

H

exp(η(‖u‖2 + ‖θ‖2
Lp))dμε(u, θ) = C0 < ∞, (2.13)

where με(·) = P((uε
S(t), θε

S(t)) ∈ ·) for any fixed t ≥ 0.
(iii) Now consider the case when ε = 0. Fix a stochastic basis S and any F0-

measurable random variable θ0 ∈ L2(Ω,H). Then there exists a unique
process θ0 with

θ0 ∈ L2(Ω;L2
loc([0,∞);V ) ∩ C([0,∞);H)), (2.14)

which is Ft-adapted, weakly solves (2.4)–(2.5), and satisfies the initial
condition θ0(0) = θ0.

(iv) For a given stochastic basis S and each θ0 ∈ H denote θ0(·, θ0,W ) as the
unique corresponding stochastic process satisfying (2.4)–(2.5) with (2.14).
We have that θ0 
→ θ0(t, θ0,W ) is Fréchet differentiable in θ0 ∈ H for
any t ≥ 0 and any fixed realization W (·) = W (·, ω). On the other hand
W 
→ θ0(t, θ0,W ) is Fréchet differentiable in W from C0([0, t], RN ) to H
for each fixed θ0 ∈ H and t > 0.

These results are standard for a systems like (2.1)–(2.3) and (2.4)–(2.5);
see e.g. [12,13,17,23]. The only novelty in view of existing methods is the
uniform moment bound (2.13). The existence of such a collection of solutions
is established using the maximum principle and exponential moment bounds
in the companion work [21]; cf. Appendix A below.

The Markovian framework for (2.4)–(2.5) is defined as follows. The tran-
sition functions are given by

P 0
t (θ0, A) := P(θ0(t, θ0) ∈ A), t ≥ 0, θ0 ∈ H,A ∈ B(H), (2.15)

where B(H) denotes the Borel sets of H, and the associated semigroup is given
by

P 0
t φ(θ0) := Eφ(θ0(t, θ0)), t ≥ 0, φ ∈ Mb(H), (2.16)

where Mb(H) is the set of bounded measurable functions on H. In view of the
continuous dependence on initial conditions the semigroup {P 0

t }t≥0 is Feller,
that is, it maps the set of continuous bounded functions on H, Cb(H), to itself.
This semigroup acts on Borelian probability measures μ according to

μP 0
t (A) =

∫

H

P 0
t (θ,A)dμ(θ), A ∈ B(H). (2.17)

A measure μ ∈ Pr(H) is said to be invariant with respect to {P 0
t }t≥0 if

μP 0
t = μ for all t ≥ 0. Recall that in three space dimensions the Markovian

framework for the full system with ε > 0 cannot be implemented due to a lack
of global well-posedness.
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As an immediate consequence of bounds in Appendix A and the Krylov–
Bogolyubov averaging technique we have

Lemma 2.1. Under the assumptions of Proposition 2.1 and for any Ra, R̃a
there exists an invariant measure μ0 of the Markov semigroup P 0

t . Moreover
for any such measure

∫

H

exp(η‖θ‖2
Lp)dμ0(θ) ≤ C0 < ∞, (2.18)

for any p ≥ 2 and any suitably small η = η(p,Ra, R̃a).

2.2. Wasserstein distance, weighted metrics and associated observables

We next recall the general setting of the Kantorovich–Wasserstein distance
in which we establish our convergence results. We then introduce weighted
metrics on H and H along with some associated classes of observable which
are used to measure distances between measures in the analysis below.

Let (X, ρ) be a complete metric space and take Pr1(X, ρ) to be the set of
Borel probability measures μ on X with

∫
ρη(0, θ)dμ(θ) < ∞. On Pr1(X, ρ) we

define the Kantorovich–Wasserstein metric, relative to ρ, equivalently as5

ρ(μ, μ̃) := sup
‖φ‖Lip,ρ≤1

∣∣∣∣
∫

X

φ(θ)dμ(θ) −
∫

X

φ(θ)dμ̃(θ)
∣∣∣∣

= inf
Γ∈C(μ,μ̃)

∫

X×X

ρ(θ, θ̃)dΓ(θ, θ̃),
(2.19)

where

‖φ‖Lip,ρ := sup
θ 	=θ̃

|φ(θ) − φ(θ̃)|
ρ(θ, θ̃)

(2.20)

for φ : X → R, and C(μ, μ̃) is the collection of Borel probability measures
Γ in Pr(X × X) with μ, μ̃ as its marginals. Hence, the last term in (2.19) is
equivalent to

ρ(μ, μ̃) = inf Eρ(X,Y ) , (2.21)

where the infimum is taken over all X-valued random variables X,Y distributed
as μ, μ̃ respectively. See e.g. [16,42] for further background on these metrics.

Specializing to our current setting, the following metrics on H and H
prove useful for measuring the distance between the laws of solutions of (2.1)–
(2.2) and (2.4)–(2.5). Following e.g. [27] we introduce, for η > 0, the weighted
metric on H as

ρη(θ, θ̃) = inf
γ∈C1([0,1];H)

γ(0)=θ,γ(1)=θ̃

∫ 1

0

exp(η‖γ‖2)‖γ′(s)‖ds, (2.22)

for any θ, θ̃ ∈ H. Notice that

‖θ − θ̃‖ ≤ ρη(θ, θ̃) ≤ exp(2η(‖θ‖2 + ‖θ̃‖2))‖θ − θ̃‖ , (2.23)

5Here note slight abuse of notation wherein we denote both the underlying metric and its
Wasserstein by ρ; the meaning of ρ will be clear from context in what follows.
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for θ, θ̃ ∈ H. For the extended phase space H, similarly to our recent work
[22], we take

ρ̃η((u, θ), (ũ, θ̃)) = ‖u − ũ‖H1 + ρη(θ, θ̃), (2.24)

again defined for any η > 0.
For the statement of the main results we consider the following class of

‘observables’

V(H) = Vη(H) :=
{
φ ∈ C1(H) : [φ]η < ∞} ,

where the semi-norm [·]η is given by

[φ]η :=

sup
(u,θ)∈H

[
sup

ζ∈H,‖ζ‖=1

|∇uφ(u, θ) · ζ| + exp(−η‖θ‖) sup
ξ∈H,‖ξ‖=1

|∇θφ(u, θ) · ξ|
]

.

Note that, as in [27, Proposition 4.1],

‖φ‖Lip,ρ̃η
≤ C[φ]η, (2.25)

for any φ ∈ C1(H) with the constant C independent of φ.

2.3. Statement of the main results

We now precisely formulate the main results of this work on the convergence of
solutions when Pr → ∞. We begin with the following finite time convergence
result:

Theorem 2.1. For each ε ∈ (0, 1), let (uε, θε) with its associated stochastic
basis S be a martingale solution of (2.1)–(2.2) in the sense of Proposition 2.1.
Relative to this S, let θ0 be a solution of (2.4)–(2.5). Suppose there exists
C0, η > 0 such that6

sup
ε>0

E
[
exp(η(‖uε(0)‖2 + ‖θε(0)‖2

L3 + ‖θ0(0)‖2
L3))

] ≤ C0 < ∞, (2.26)

and suppose that (uε, θε) maintains (2.13). Then, for each t > 0, there exists
γ0 > 0, C > 0 such that

E

(
sup

s∈[0,t]

‖θε(s) − θ0(s)‖p +
∫ t

0

‖uε(s) − M(θ0)(s)‖2
H1ds

)

≤ C
(
εγ +

(
E‖θε(0) − θ0(0)‖2 + εE‖uε(0) − M(θ0)(0)‖2

)γ)
,

(2.27)

for each 0 < γ ≤ γ0 and any p > γ. Here, the constants C = C(p, η,Ra, R̃a, C0,

‖σ‖L3 , t) and γ0 = γ0(η,Ra, R̃a, C0, ‖σ‖L3 , t) are independent of ε > 0 and
depends on the initial conditions only through C0.

The proof of Theorem 2.1 is established in Sect. 5.2.

6Although we can relax the assumption on the initial velocity field to qth moment bounds
for some q ≥ 4, we have opted to impose an exponential moment condition for simplicity of
presentation.
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Remark 2.4. It is worth noting that since (uε, θε) are only martingale solutions
the associated stochastic bases S are not unique and could in fact vary as a
function of ε; that is, we cannot assume that these solutions are all defined
relative to the same stochastic basis. Similar remarks apply to the bound (2.30)
below. However, crucially, in both (2.27) (2.30) the constants do not depend
on the choice of basis. Thus, since this subtlety does not cause any trouble
in what follows, we shall henceforth suppress this technical point in order to
avoid notational confusion.

We next state our results regarding the convergence of statistically in-
variant states to the unique invariant measure of the formal limit system (cf.
Theorem 1.1).

Theorem 2.2. Let {P 0
t }t≥0 be the Markov semigroup associated to (2.4)–(2.5)

defined in (2.16). There exists N0 > 0 and η0 > 0 depending only on Ra and
R̃a such that if N ≥ N0, where N is the number of stochastically forced modes
in (2.4)–(2.5), then the following bounds hold:

(i) For some γ,C > 0 depending only on Ra and R̃a

ρη(μP 0
t , μ̃P 0

t ) ≤ C exp(−γt)ρη(μ, μ̃), (2.28)

for any μ, μ̃ ∈ Pr1(H, ρη), η ∈ (0, η0) and every t ≥ 0, where ρη is defined
in (2.19). In particular, there exists a unique ergodic invariant measure
μ0 ∈ Pr1(H, ρη) of (2.4)–(2.5).

(ii) Suppose that {με}ε>0 is any collection of measures corresponding to sta-
tionary martingale solutions of (2.1)–(2.3) and satisfying the uniform
bound (2.13) for any η ∈ (0, η0) and some p ≥ 3. Let μ0 be the unique
invariant measure of (2.4)–(2.5). Then, there exists q̃ = q̃(Ra, R̃a), C̃ =
C̃(Ra, R̃a), independent of ε > 0, such that

ρ̃η(με, Lμ0) ≤ C̃εq̃ (2.29)

for every ε > 0. Consequently, for the stationary processes (uε
S , θε

S) and
θ0

S, distributed as με and μ0, respectively,

|E(φ(uε
S , θε

S) − φ(Lθ0
S))| ≤ C̃[φ]ηεq̃ (2.30)

for any φ ∈ V(H).

The proof of (i) is carried out in Sect. 4 with some technical details relegated
to Appendices A and B. In Sect. 3 we describe a general strategy which shows
that, under the conditions of Theorem 2.2, (2.29) follows from (2.28) and
(2.27).

We conclude this section by making several important remarks.

Remark 2.5. (i) Assertions of Theorem 2.2 also hold in two space dimen-
sions and in addition one can show that (2.1)–(2.3) has a well defined
Markov semigroup. Thus, any statistically invariant state corresponds to
an invariant measure of the associated semigroup. This allows us to show
in [21] that the ε-independent exponential moment bounds in (2.13) hold
for all invariant measures.
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(ii) In 3D, the existence of a sequence of statistically invariant states of (2.1)–
(2.3) satisfying the uniform moment bound (2.13) is established in the
companion work [21]. However we have not been able to show that every
sequence of invariant states have such (uniform) exponential moments.

(iii) In Sect. 5 we also derive a ’corrector’ system which well approximates the
dynamics of the velocity field of the full system (2.1)–(2.2) up to the initial
time for large values of Pr or equivalently small ε > 0. See Theorem 5.1
below for further details. Note however that this more refined version of
(2.27) is not needed in order to achieve (2.29), (2.30).

3. Reduction to finite time dynamics

In this section we describe a general strategy for reducing the convergence of
measures to finite time asymptotics and uniform moment bounds when the
formal limit system satisfies a suitable mixing condition as in (2.28). To fix
ideas we assume the conditions of Theorem 2.2 throughout this section. Also,
we assume that both (2.28), (2.27) hold; we establish these bounds rigorously
below in Sects. 4, 5 respectively. The reader should note that the presented
method is flexible and can be applied in a variety of settings. See, for example,
[22,25,27,31].

We adapt some ideas from our recent work [22, Section 5] to the present
setting. For η > 0 take

ρ∗
η(θ, θ̃) = ρ̃η(L(θ), L(θ̃)) ,

where ρ̃η is defined in (2.24) and recall that L is the lifting operator given in
(2.10). It is not hard to show that the metrics ρη and ρ∗

η are equivalent (see
[22] for details), and consequently the associated Wasserstein metrics on H
are also equivalent. Then from (2.28) we obtain the following result, see [22,
Corollary 5.4] and surrounding commentary for further details.

Lemma 3.1. Under the same conditions as Theorem 2.2 (i), we have

ρ̃η(L(μP 0
t ), L(μ̃P 0

t )) ≤ Ce−γtρ̃η(L(μ), L(μ̃)) (3.1)

for any μ, μ̃ ∈ Pr1(H, ρη), and every t ≥ 0.

Using (3.1) choose t∗ > 0 to guarantee that

ρ̃η(L(μP 0
t∗), L(μ̃P 0

t∗)) ≤ 1
2
ρ̃η(L(μ), L(μ̃)). (3.2)

By the invariance of μ0

ρ̃η(μ̃, Lμ0) ≤ ρ̃η(μ̃, L((Πμ̃)P 0
t+t∗)) + ρ̃η(L((Πμ̃)P 0

t+t∗), L(μ0P
0
t+t∗))

≤ ρ̃η(μ̃, L((Πμ̃)P 0
t+t∗)) +

1
2
[
ρ̃η(L((Πμ̃)P 0

t ), μ̃) + ρ̃η(μ̃, Lμ0)
]
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for any t ≥ 0 and any other measure μ̃ ∈ Pr(H). Here recall that Π is the
projection operator defined in (2.8). Rearranging, taking a time average we
obtain

ρ̃η(μ̃, Lμ0) ≤ 2
t∗

∫ t∗

0

[
ρ̃η(μ̃, L((Πμ̃)P 0

t+t∗)) + ρ̃η(μ̃, L((Πμ̃)P 0
t ))
]
dt

=
2
t∗

∫ 2t∗

0

ρ̃η(μ̃, L((Πμ̃)P 0
t ))dt . (3.3)

With (3.3) now in hand, we consider a sequence of stationary martingale
solutions {(uε

S , θε
S)}ε>0 and take {με}ε>0 ⊂ Pr(H) to be the corresponding

collection of stationary measures. We suppose that {με}ε>0 satisfies the uni-
form moment condition (2.13) as in Proposition 2.1, (ii). We also denote θ0,ε

S

(and M(θ0,ε
S )) the solution of (2.4), (2.5) with the initial condition θε(0) so

that, for every t > 0, the law of θ0,ε
S (t) is (Πμε)P 0

t . Consequently, (2.21), (2.24)
yield

ρ̃η(με, L((Πμε)P 0
t )) ≤ E‖uε

S(t) − M(θ0,ε
S (t))‖H1 + Eρη(θε

S(t), θ0,ε
S (t)), (3.4)

where we recall M is defined as in (2.9). By (2.23) one has, for any q > 0,

Eρη(θε
S(t), θ0,ε

S (t)) ≤ E

(
exp(2η(‖θε

S(t)‖2 + ‖θ0,ε
S (t)‖2))‖θε

S(t) − θ0,ε
S (t))‖

)

≤ CE

(
exp(3η(‖θε

S(t)‖2 + ‖θ0,ε
S (t)‖2))‖θε

S(t) − θ0,ε
S (t)‖q/2

)

≤ C
(
E exp(12η‖θε

S(t)‖2) · E exp(12η‖θ0,ε
S (t)‖2))

)1/4

·
(
E‖θε

S(t) − θ0,ε
S (t)‖q

)1/2

.

Using (A.4) with p = 2 we obtain

Eρη(θε
S(t), θ0,ε

S (t))

≤ C
(
E exp(96η‖θε

S(0)‖2)
)1/2
(
E‖θε

S(t) − θ0,ε
S (t)‖q

)1/2

. (3.5)

Finally combining (3.3) with (3.4), (3.5) we obtain

ρ̃η(με, Lμ0) ≤ CE

∫ 2t∗

0

‖uε
S(t) − M(θ0,ε

S (t))‖H1dt

+ C
(
E exp(96η‖θε

S(0)‖2)
)1/2

sup
t∈[0,2t∗]

(
E‖θε

S(t) − θ0,ε
S (t)‖q

)1/2

, (3.6)

which holds for any t∗ > 0 such that (3.2) holds.
With (3.6) established we conclude this section by detailing the proof of

Theorem 2.2, (ii) up to the supporting results proven in Sects. 4 and 5.

Proof of Theorem 2.2, (ii). The inequality (2.28) implies (3.1) which in turn
implies the bound (3.6). Applying (2.27) with (uε, θε) = (uε

S , θε
S) and θ0 = θ0,ε

S ,
noting θ0,ε

S (0) = θε(0), and recalling the assumed bound (2.13) we infer (2.29).
To prove (2.30), let C be as in (2.25). Since the Lipschitz norm, with metric
ρ̃η of ψ := φ/C[φ]η is at most one, then, by (2.19)
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|E(ψ(uε
S , θε

S) − ψ(Lθ0
S))| =

∣∣∣∣
∫

H

ψ(u, θ)με(u, θ) −
∫

H

ψ(u, θ)L(μ0)(u, θ)
∣∣∣∣

≤ ρ̃η(με, Lμ0) , (3.7)

and the result follows from (2.29). The proof is complete. �

4. Contraction in the Wasserstein distance for the infinite
Prandtl system

In this section we establish some properties of the infinite Prandtl system
(2.4)–(2.5), which provide a sufficient condition for proving Theorem 2.2 (i) as
a consequence of a general result in [27, Theorem 3.4]. These properties are
summarized as follows:

Proposition 4.1. There exist η0 > 0 and N0, depending only on Ra, R̃a, such
that for any 0 < η < η0, whenever the number of forced modes N exceeds N0,
we have
(a) Lyapunov structure: For all t∗ > 0, there exists C1 = C1(t∗, η) such that

for each θ0
0 ∈ H and every t ∈ [0, t∗],

E
(
exp(η‖θ0(t, θ0

0)‖2)(1 + ‖J0,t‖)
)

≤ C1 exp(η(1 + 4RaR̃a)e−t/2‖θ0
0‖2) , (4.1)

where the operator J0,t is the Fréchet derivative of θ0(t, θ0) with respect
to initial condition θ0

0; see (B.1) and (B.8) below.
(b) Gradient Bound for Markov semigroup: for any φ ∈ C1

b (H), and every
t ≥ 0, θ ∈ H

‖∇P 0
t φ(θ)‖ ≤ C exp(η‖θ‖2)

(√
P 0

t (|φ(θ)|2) + δ(t)
√

P 0
t (‖∇φ(θ)‖2)

)
, (4.2)

where δ(t) → 0 as t → ∞. Here again δ : [0,∞) → [0,∞) and C > 0
depend only on Ra, R̃a, and η.

(c) Irreducibility condition: for any M > 0, ε > 0 there is a t∗ = t∗(M, ε, η)
such that for each t ≥ t∗

inf
‖θ0‖,‖θ̃0‖≤M

sup
Γ∈C(δθ0P 0

t ,δθ̃0
P 0

t )

Γ{(θ, θ̃) ∈ H × H : ρη(θ, θ̃) < ε} > 0, (4.3)

where, as above in (2.19), C(δθ0P
0
t , δθ̃0

P 0
t ) denotes the collection of all

couplings of the measures δθ0P
0
t and δθ̃0

P 0
t .

Proving the first item, (a), essentially reduces to establishing a moment
bound which follows from estimates found in [21], and which we recall below in
Appendix A (see Proposition A.2). The second condition, (4.2), can be trans-
lated to a control problem through the use of Malliavin calculus which in our
setting amounts to proving a relatively straightforward Foias-Prodi type esti-
mate. Once again (b) can be established by methods essentially contained in
previous works and we relegate further details to Appendix B. As already men-
tioned above, the principal novel challenge here is to prove the irreducibility
property (c) which we turn to next.
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4.1. Irreducibility

In previous related works the proof of irreducibility essentially relies on the fact
that the governing equations without stochastic forcing have a trivial attractor
which is stable under small force perturbations; see e.g. [10,20,26,49]. In our
present situation, (2.4)–(2.5), the dynamics without body forces can be highly
non-trivial.7 Our approach to proving (4.3) is based on a control argument
and Foias-Prodi type estimates. With these estimates in place, by invoking the
Girsanov theorem and stopping time arguments, (4.3) is established following
previous proofs of support theorems for SPDEs with additive noise, see e.g.
[11, Theorem 7.4.1]. For clarity and precision of exposition, we provide a self-
contained proof of irreducibility.

As a preliminary step we show that (4.3) follows from a simpler bound.

Lemma 4.1. For a given N ≥ 0 consider (2.4)–(2.5) with N independently
forced directions. If for every M, ε > 0 there is a t∗ = t∗(M, ε) > 0 such that

inf
‖θ0‖≤M

P(‖θ0(t, θ0)‖ < ε) > 0, for each t ≥ t∗ , (4.4)

then (4.3) holds for such an N and any η > 0.

Proof. For any θ0, θ̃0 ∈ H consider the element Γ̃ ∈ C(δθ0P
0
t , δθ̃0

P 0
t ) defined

on cylindrical sets as

Γ̃(A × B) = Pt(θ0, A) × Pt(θ̃0, B), A,B ∈ B(H).

For each t > 0 and any M,η, γ > 0 one has

inf
‖θ0‖,‖θ̃0‖≤M

sup
Γ∈C(δθ0Pt,δθ̃0

Pt)

Γ{(θ, θ̃) ∈ H × H : ρη(θ, θ̃) < γ}

≥ inf
‖θ0‖,‖θ̃0‖≤M

Γ̃
{

(θ, θ̃) ∈ B1 × B1 : ‖θ‖ + ‖θ̃‖ < γ exp(−4η)
}

≥
(

inf
‖θ0‖≤M

Pt

(
θ0,
{

θ ∈ H : ‖θ‖ < min{γ/2 · exp(−4η), 1}
}))2

=
(

inf
‖θ0‖≤M

P(‖θ(t, θ0)‖ < min{γ/2 · exp(−4η), 1})
)2

,

where we have used (2.23) in the first inequality. Applying (4.4) with ε =
min{γ/2 · exp(−4η), 1}) and the given M > 0 yields the desired result. �

In order to establish (4.3) the rest of the section is therefore devoted to

Proposition 4.2. There exists N0 = N0(Ra, R̃a) sufficiently large (cf. (4.9))
such that, for any N ≥ N0 and every M, ε > 0, there is a t∗ = t∗(M, ε) > 0
such that (4.4) is satisfied.

7Note that the geometric control methods developed in [1,2], and in [23] for the Boussinesq
system, would be difficult to apply, as these methods seemingly require a detailed under-
standing of the wave-number interactions in (2.4)–(2.5).
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Proof of Proposition 4.2. We first establish the analogue of (4.4) for the mod-
ified system

−Δū = ∇p̄ + Rak̂θ̄ , ∇ · ū = 0, (4.5)

dθ̄ + ū · ∇θ̄dt = (R̃a · ū3 + Δθ̄ − λNPN θ̄)dt +
N∑

k=1

σkdW k,

θ̄(0) = θ0 , (4.6)

when N is sufficiently large.8 As in (2.1)–(2.2) we supplement (4.5)–(4.6) with
the homogeneous boundary conditions (2.3). Denote ψ := θ̄ −∑N

k=1 σkW k =
θ̄ − σW which satisfies

∂tψ + ū · ∇ψ = R̃a · ū3 + Δψ − λNPNψ + (ΔσW − λNPNσW − ū · ∇(σW )),

ψ(0) = θ0.

Taking an inner product with ψ, using that ū is divergence free, the inverse
Poincaré inequality [see (B.14) below] and the bound

‖∇ū‖ ≤ Ra‖θ̄‖ ≤ Ra(‖ψ‖ + ‖σW‖) (4.7)

which follows from (4.5) we have

1
2

d

dt
‖ψ‖2 + λN‖ψ‖2 ≤ (R̃a‖ū‖ + ‖ΔσW‖ + λN‖σW‖ + ‖ū‖‖∇σW‖L∞)‖ψ‖

≤ C(R̃aRa(‖ψ‖ + ‖σW‖) + ‖ΔσW‖ + λN‖σW‖
+ Ra(‖ψ‖ + ‖σW‖)‖∇σW‖L∞)‖ψ‖.

For any t > 0, let ξt = sup{s ∈ [0, t] : ‖ψ(s)‖ = 0} with the convention that
the supremum of the empty set is zero. Thus, for any t > 0, on the interval
[ξt, t] it follows that

d

dt
‖ψ‖ + (λN − CRa(R̃a + ‖∇σW‖L∞))‖ψ‖

≤ C
(
(RaR̃a + λN + Ra‖∇σW‖L∞)‖σW‖ + ‖ΔσW‖

)
. (4.8)

Next, we use the fact that, with positive probability, each of ‖σW‖, ‖∇σW‖,
‖ΔσW‖ stays close to zero over finite time intervals. For γ > 0, t > 0, N > 0
consider the sets

Xγ,t,N :=
{

sup
s∈[0,t]

‖∇σW‖L∞ ≤ 1, sup
s∈[0,t]

‖ΔσW‖ ≤ γ

2C
,

sup
s∈[0,t]

‖σW‖ ≤ γ

(
1

2C(RaR̃a + λN + Ra)
∧ 1
)}

.

Since σ is spatially smooth we infer from standard properties of Brownian
motion that P(Xγ,t,N ) > 0 for any γ > 0, t > 0, and N > 0. On the other

8Here recall that PN denotes the projection onto the first N modes of −Δ [with boundary
conditions as in (2.3)] and λN is the corresponding largest eigenvalue in this collection.



43 Page 20 of 43 J. Földes, N. E. Glatt-Holtz, and G. Richards NoDEA

hand, on Xγ,t,N the differential inequality

d

dt
‖ψ‖ + (λN − CRa(R̃a + 1))‖ψ‖ ≤ γ

holds over the interval [ξt, t].
Hence, fixing N0 sufficiently large, we have for any N ≥ N0,

λN ≥ max{2CRa(R̃a + 1), 1}, (4.9)

and we infer that on Xγ,t,N ,

‖θ̄(t, θ0)‖ ≤ ‖ψ(t)‖ + ‖σW‖ ≤ 2γ + e−λN t/2‖θ0‖,

where note that ‖ψ(t)‖ = 0 on the set where ξt > 0. Therefore, for a given
M > 0, ε > 0, by choosing γ = ε/4 and t∗ = t∗(M, ε) such that e−λN t∗M ≤ ε

2 ,
we have for any t ≥ t∗

inf
‖θ0‖≤M

P(‖θ̄(t, θ0)‖ < ε) ≥ P(Xε/4,t,N ) > 0 . (4.10)

In order to now infer (4.4) from (4.10) we apply the Girsanov theorem and
make further bounds to a slightly modified version of (4.5)–(4.6). For K > 0
and θ0 ∈ H define θ̃K = θ̃K(·, θ0) as the solution of (4.5)–(4.6) with the term
−λNPN θ̄ replaced with −λNPN θ̃KχK(‖PN θ̃K‖). Here χK is a smooth, non-
negative cut-off function with χK ≡ 1 for |x| ≤ K and χK ≡ 0 for |x| ≥ K +1.
Consider the stopping times

τK(θ0) = inf
s≥0

{
‖PN θ̃K(s, θ0)‖ ≥ K

}
,

for any K > 0 and any θ0 ∈ H. It is not hard to see that for any K > 0 and
any θ0 ∈ H

P

(
θ̄(t ∧ τK(θ0), θ0) = θ̃K(t ∧ τK(θ0), θ0), for every t ≥ 0

)
= 1. (4.11)

On the other hand, for any θ0 ∈ H and K > 0, the law of θ̃K(·, θ0) is absolutely
continuous with respect to the law of the processes θ0(·, θ0) solving (2.4)–(2.5).
Indeed, for θ0 ∈ H and K > 0 define

Mθ0,K(t) = exp
(

−
∫ t

0

αθ0,KdW − 1
2

∫ t

0

|αθ0,K |2ds

)
, (4.12)

where

αθ0,K(s) = −λNσ−1PN θ̃K(s, θ0)χK(‖PN θ̃K(s, θ0)‖)

and take

dQθ0,K,t := Mθ0,K(t)dP .

Notice that, since |σ−1PN θ̃K(s, θ0)χK(‖PN θ̃K‖)| ≤ ‖σ−1‖·(K+1), the Novikov
condition is satisfied and for any ε > 0, t ≥ 0, K > 0, and θ ∈ H, the Girsanov
theorem yields

P(‖θ(t, θ0)‖ < ε) = Qθ0,K,t(‖θ̃K(t, θ0)‖ < ε) = E

(
Mθ0,K(t)11‖θ̃K(t,θ0)‖<ε

)
.



NoDEA Large Prandtl asymptotics in randomly forced convection Page 21 of 43 43

Hence, for any ε > 0, θ0 ∈ H, and for any ,K,ג t > 0, the Markov inequality
implies

P(‖θ(t, θ0)‖ < ε) ≥ Pג

(
‖θ̃K(t, θ0)‖ < ε,Mθ0,K(t) ≥ ג

)

≥ Pג
(‖θ̄(t, θ0)‖ < ε,Mθ0,K(t) ≥ ,ג τK(θ0) > t

)
,

where we used (4.11) for the final inequality. On the other hand

P
(‖θ̄(t, θ0)‖ < ε

) ≤ P
(‖θ̄(t, θ0)‖ < ε,Mθ0,K(t) ≥ ג

)
+ P (Mθ0,K(t) < (ג

≤ P
(‖θ̄(t, θ0)‖ < ε,Mθ0,K(t) ≥ ,ג τK(θ0) > t

)

+ P (Mθ0,K(t) < (ג + P(τK(θ0) < t) .

These two bounds yield

1
ג

inf
‖θ0‖≤M

P(‖θ(t, θ0)‖ < ε)

≥ inf
‖θ0‖≤M

P
(‖θ̄(t, θ0)‖ < ε

)

− sup
‖θ0‖≤M

(
P (Mθ0,K(t) < (ג + P(τK(θ0) < t)

)
, (4.13)

for any M, ε, t > 0 and for any K, ג > 0.
Since the first term on the the right-hand side of (4.13) is independent

of K > 0 and ג > 0, we finish the argument by showing that for every fixed
M,K, t > 0

sup
‖θ0‖≤M

P (Mθ0,K(t) < (ג → 0, as ג → 0, (4.14)

and for every given M, t > 0

sup
‖θ0‖≤M

P(τK(θ0) < t) → 0, as K → ∞. (4.15)

For the first bound (4.14), we have from (4.12) and Itō isometry

P (Mθ0,K(t) < (ג = P

(∫ t

0

αθ0,KdW +
1
2

∫ t

0

|αθ0,K |2ds > log(1−ג)
)

≤ 1
log(1−ג)

E

(∣∣∣∣
∫ t

0

αθ0,KdW

∣∣∣∣+
1
2

∫ t

0

|αθ0,K |2ds

)

≤ 2
log(1−ג)

E

(
1 + λ2

N‖σ−1PN‖2

∫ t

0

‖PN θ̃(t, θ0)‖2χK(‖PN θ̃K(t, θ0)‖)ds

)
,

≤ 2
(
1 + λ2

N‖σ−1PN‖2(K + 1)2t
)

log(1−ג)
,

valid for any ג ∈ (0, 1), K > 0, and any θ0 ∈ H. For the second bound, (4.15)
observe that, in view of (4.11),
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P(τK(θ0) < t) ≤ P

(
sup

s∈[0,t]

‖PN θ̄(s, θ0)‖ ≥ K

)

≤ 1
K2

E

(
sup

s∈[0,t]

‖θ̄(s, θ0)‖2

)
. (4.16)

From the Itō formula, and (1.4), it follows that

d‖θ̄‖2 + 2λN‖PN θ̄‖2dt + 2‖∇θ̄‖2dt =
(
2R̃a〈ũ3, θ̄〉 + 1

)
dt + 〈σ, θ̄〉dW.

Integrating in time and using (4.5), inverse Poincaré inequality [see (B.14)],
and (4.7) we infer for any s ≥ 0

‖θ̄(s)‖2+2λN

∫ s

0

‖θ̄‖2dr

≤ ‖θ0‖2 + 2RaR̃a

∫ s

0

‖θ̄‖2dr + s + 2 sup
r∈[0,s]

∣∣∣∣
∫ r

0

〈σ, θ̄〉dW

∣∣∣∣ .

Using the assumption (4.9) and the Birkholder–Davis–Gundy inequality we
infer

E

(
sup

s∈[0,t]

‖θ̄(s, θ0)‖2

)
≤ ‖θ0‖2 + 17t. (4.17)

Combining (4.16) and (4.17) thus yields the second bound (4.15).
Using (4.10), (4.13), (4.14), and (4.15), we conclude the proof as follows.

Given any ε > 0 and any M > 0, and with λN given as in (4.9), choose t∗
as in (4.10), that is, such that e−λN t∗M ≤ ε

2 . Fix any t ≥ t∗ and by (4.10)
we have a = a(M, ε, t) := inf‖θ0‖≤M P(‖θ̄(t, θ0)‖ < ε) > 0. Now, by (4.15),
we can pick K sufficiently large so that sup‖θ0‖≤M P(τK(θ0) < t) ≤ a/4,
and with K,M, t fixed, we can by (4.14) choose ג > 0 small enough so that
sup‖θ0‖≤M P (MK,θ0(t) < (ג ≤ a/4. Finally, by combining these choices with
(4.13) we obtain that

inf
‖θ0‖≤M

P(‖θ(t, θ0)‖ < ε) ≥ aג

2
> 0 .

The proof of Proposition 4.2 is thus complete. �

5. Finite time asymptotics

In this section we prove Theorem 2.1. We also derive a ’corrector’ system which
we show approximates the velocity component of the full system (2.1)–(2.2)
up to the initial time (see Theorem 5.1 below).

5.1. Preliminaries: the Stokes operator

Before proceeding further we recall (see e.g. [9,40]) some properties of solutions
of the Stokes equation

−Δu = ∇p + f , ∇ · u = 0, (5.1)
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supplemented with the mixed periodic-Dirichlet boundary conditions as in
(2.3). We can express (5.1) more abstractly as Au = P f , where A = −PΔ is
the Stokes operator. Here, P is the Leray projection on divergence free vector
fields P : (L2(D))3 → H1 with H1, the space of L2 divergence free vector
fields, defined in Sect. 2.1.9 As in the classical elliptic theory we have that for
any f ∈ (L2(D))3, there exists a unique u ∈ D(A) = V1 ∩ (H2(D))3 which
satisfies

‖u‖H2 ≤ C‖f‖, (5.2)

where C is independent of f . In what follows we frequently denote u = A−1P f .
Since A is a positive, self-adjoint operator which is unbounded on the

space H1 with a compact inverse, by Hilbert’s theorem there is a complete
orthonormal basis of eigenfunctions {ek}k≥1 of A with the associated non-
decreasing sequence of eigenvalues λ∗

k diverging to infinity. Take

PN to be the projection onto the subspace HN := span{e1, . . . , eN}. (5.3)

Here the regularity theory as found in, say [9,40], show that each ek is smooth
and hence in particular HN ⊂ V .

We also consider the associated linear evolution given as

∂tu − μΔu = ∇p + f , ∇ · u = 0, u(0) = u0, (5.4)

for any parameter μ > 0 and relative to the (sufficiently regular) data f , u0 sup-
plemented with the boundary conditions (2.3). Here, for any f ∈ L2

loc([0,∞);
H1) and u0 ∈ H1 there exists a unique solution u of (5.4) with u ∈ L2

loc([0,∞);
V1) ∩ C([0,∞);H1). Moreover, A is the generator of an analytic semigroup
which we denote as {exp(−μAt)}t≥0.

5.2. Finite time convergence estimates

We next turn to the proof of Theorem 2.1:

Proof of Theorem 2.1. Take φε = θε − θ0 and vε = uε −u0 with u0 = M(θ0),
where M is defined by (2.9). Referring to (2.1)–(2.3) and (2.4)–(2.5) we see
that φε satisfies

∂tφ
ε − Δφε = R̃a · vε

3 − vε · ∇θ0 − uε · ∇φε, φε(0) = θε(0) − θ0(0) := φε
0 .

Therefore, taking an L2 inner product with φε and using that ∇ · vε = 0 we
have

1
2

d

dt
‖φε‖2 + ‖∇φε‖2 =

∫
(R̃a · vε

3 − vε · ∇θ0)φεdx

≤ R̃a‖vε‖‖φε‖ + ‖vε‖L6‖∇φε‖‖θ0‖L3 .

Hence from standard Sobolev embeddings, Young’s inequality, and the Poincaré
inequality we obtain

d

dt
‖φε‖2 ≤ C

(
‖θ0‖2

L3 + R̃a
2
)

‖∇vε‖2 .

9 Equivalently Au = −Δu − ∇p, where p = p(u) the ‘pressure’ is the unique H1 function
satisfying Δp = −div(Δu) in the weak sense.
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Integrating in time we infer that

sup
s∈[0,t]

‖φε(s ∧ τ)‖2

≤ ‖φε
0‖2 + sup

s∈[0,t∧τ ]

(
‖θ0(s)‖2

L3 + R̃a
2
)∫ t∧τ

0

‖∇vε(t′)‖2dt′ (5.5)

for any t > 0 and any stopping time τ ≥ 0.
We now turn to derive an evolution equation for vε. Recalling that uε

and u0 satisfy respectively, (2.1) and (2.4) we find

ε(∂tuε + uε · ∇uε) − Δvε = ∇qε + Rak̂φε, (5.6)

where qε = p̃ε−p̃ is the difference in the pressures. On the other hand, recalling
that u0 = RaA−1(P (k̂θ0)), we have

du0 = −RaA−1P
(
k̂
(
u0 · ∇θ0− Δθ0 − R̃a · u0

3

))
dt

+ Ra

N∑

k=1

A−1P (k̂σk)dW k . (5.7)

Multiplying (5.6) by ε−1, subtracting the resulting system from (5.7) and
rearranging we obtain

dvε − 1
ε
Δvεdt =

1
ε

(
∇qε + Rak̂φε

)
dt

+
(
RaA−1P

(
k̂
(
u0 · ∇θ0 − Δθ0 + R̃a · u0

3

))
− uε · ∇uε

)
dt

− Ra

N∑

k=1

A−1P (k̂σk)dW k , (5.8)

with ∇ · vε = 0.
Using (5.8) we estimate vε as follows. The Itō formula and (5.9) yields

d‖vε‖2 +
2
ε
‖∇vε‖2dt

=
2
ε
Ra〈φε, vε

3〉dt

+ 2
〈
RaA−1P

(
k̂
(
u0 · ∇θ0 − Δθ0 − R̃a · u0

3

))
− uε · ∇uε,vε

〉
dt

+ Ra2
N∑

k=1

|A−1P (k̂σk)|2dt − 2Ra

N∑

k=1

〈A−1P (k̂σk),vε〉dW k

:=(T1 + T2 + T3 + T4 + T5 + T6)dt + SdW. (5.9)

With the Young and Poincaré inequalities we have

|T1| ≤ 1
4ε

‖∇vε‖2 +
4Ra2

ε
‖φε‖2. (5.10)
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For T2 we use that A−1 is self-adjoint on H, D(A) ⊂ H and that u0,vε are
divergence free to obtain

|T2| = 2Ra

∣∣∣∣
∫

u0 · ∇θ0(A−1vε)3dx

∣∣∣∣ = 2Ra

∣∣∣∣
∫

u0 · ∇(A−1vε)3 θ0dx

∣∣∣∣ ,

where (A−1vε)3 represents the third component of the vector field A−1vε.
Hence (5.2) and the imbedding H2 ↪→ L∞ imply

|T2| ≤ 2Ra‖u0‖‖θ0‖‖∇(A−1vε)‖L∞ ≤ CRa2‖θ0‖2‖∇vε‖
≤ 1

4ε
‖∇vε‖2 + εCRa4‖θ0‖4. (5.11)

For the terms T3 and T4 we use the regularity of the Stokes operator to obtain

|T3| + |T4| ≤ 1
4ε

‖∇vε‖2 + 4εRa2(‖θ0‖2 + R̃a
2‖u0‖2)

≤ 1
4ε

‖∇vε‖2 + εRa2(R̃a
2
Ra2 + 1)C‖θ0‖2 . (5.12)

The most delicate term is T5. Here we take advantage of an additional
cancellation to obtain extra regularity. Since uε = vε + u0 we find

|T5| = 2|〈uε · ∇u0,vε〉| = 2|〈uε · ∇vε,u0〉| ≤ 1
4ε

‖∇vε‖2 + 4ε‖u0‖2
L∞‖uε‖2

≤ 1
4ε

‖∇vε‖2 + εCRa2(‖θ0‖4 + ‖uε‖4), (5.13)

where we used the imbedding H2 ↪→ L∞ and (5.2) for the final bound. Finally
we observe |T6| ≤ CRa2.

Combining the bounds (5.10)–(5.13) and rearranging in (5.9) we find

d‖vε‖2+
1
ε
‖∇vε‖2dt

≤ 4Ra2

ε
‖φε‖2dt + εC(1 + Ra4)(1 + R̃a

2
)(‖θ0‖4 + ‖uε‖4 + 1)dt

+ CRa2dt − 2Ra
N∑

k=1

〈A−1P (k̂σk),vε〉dW k , (5.14)

where the constant C > 0 is independent of Ra, R̃a, and ε > 0. Consequently,
for any t ≥ 0 and any stopping time τ , we have
∫ t∧τ

0

‖∇vε‖2dt′ ≤ ε‖vε(0)‖2 + 4Ra2

∫ t∧τ

0

(‖φε‖2 + εC)dt′

+ ε2C(1 + Ra4)(1 + R̃a
2
)
∫ t∧τ

0

(‖θ0‖4 + ‖uε‖4 + 1
)
dt′

− εRa

N∑

k=1

∫ t∧τ

0

〈A−1P (k̂σk),vε〉dW k, (5.15)

where C is independent of ε > 0, Ra, R̃a, and τ .
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Next for any κ > 0 define the stopping times

τκ := inf
t≥0

{‖θ0(t)‖2
L3 ≥ κ

}
. (5.16)

From this definition and the bounds (5.5), (5.15) we now infer

E sup
s∈[0,t]

‖φε(s ∧ τκ)‖2

≤ E‖φε
0‖2 + 4Ra2

(
κ + R̃a

2
)∫ t

0

E

(
sup

s∈[0,t′]
‖φε(s ∧ τκ)‖2

)
dt′

+ ε
(
κ + R̃a

2
) (

E‖vε(0)‖2 + Ra2Ct
)

+ ε2C(κ + R̃a
4

+ 1)(Ra4 + 1)
∫ t

0

E
(‖θ0‖4 + ‖uε‖4 + 1

)
dt′,

which implies with the Gronwall inequality that

E sup
s∈[0,t]

‖φε(s ∧ τκ)‖2

≤ exp
(
C(Ra4 + 1)

(
κ + R̃a

4
+ 1
)

(t + 1)
) (

εMε(t) + E‖φε
0‖2
)
, (5.17)

where

Mε(t) := E‖vε(0)‖2 +
∫ t

0

[
εE
(‖uε‖4 + ‖θ0‖4

)
+ 1
]
dt′,

and the constant C is independent of κ, ε,Ra, R̃a, and t. By (2.26) and our
standing assumption that (2.12) holds, we observe that Mε is bounded inde-
pendently of ε > 0 and we obtain

E

(
sup

s∈[0,t]

‖φε(s)‖211τκ>t

)
≤ E sup

s∈[0,t]

‖φε(s ∧ τκ)‖2

≤ C1(ε + E‖φε
0‖2) exp (C1κ) , (5.18)

where the constant C1 = C(Ra, R̃a, t) is independent of ε > 0 and κ > 0.
Set Xε(t) := sups∈[0,t] ‖φε(s)‖2 and for each t ≥ 0, κ > 0, ε > 0 define

the sets

Et,κ,ε :=

{
sup

s∈[0,t]

‖θ0(s)‖2
L3 ≥ κ

}
= {τκ ≤ t}.

For each t > 0 one finds by the Markov inequality, Proposition A.1, and the
assumption (2.26) that for sufficiently small η1 = η1(R̃a, η) > 0,

P(Et,κ,ε) ≤ e−ηκ
E exp

(
η1 sup

s∈[0,t]

‖θ0(s)‖2
L3

)
≤ C2e

−ηκ, (5.19)
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where C2 = C2(C0, Ra, R̃a, ‖σ‖L3 , η, t) > 0 is independent of ε > 0 and κ > 0.
On the other hand, for any γ ∈ (0, 1) we have

EXε(t)γ =
∞∑

k=0

E

⎛

⎜⎝Xε(t)γ11
k≤
(

sup
s∈[0,t]

‖θ0(s)‖2
L3

)
<k+1

⎞

⎟⎠

=
∞∑

k=0

E
(
Xε(t)γ11τk≤t11τk+1>t

)

≤
∞∑

k=0

(
E(Xε(t)11τk+1>t)

)γ (P(Et,κ,ε))
1−γ

≤ C(ε + E‖φε
0‖2)γ

∞∑

k=0

exp(γC1(k + 1) − (1 − γ)ηk) , (5.20)

where we have used (5.18) and (5.19) for the final bound. Here, C = C(C0, Ra,

R̃a, ‖σ‖L3 , η, t) is independent of ε > 0, E‖φε
0‖2 and C1 is the constant appear-

ing in (5.18). Thus when γ < η
C1+η the series in (5.20) converges. Then for

any p > 0 and any γ < ( η
C1+η ) ∧ p we find

E sup
s∈[0,t]

‖φε(s)‖p

≤ C

(
E sup

s∈[0,t]

(‖θε(s)‖2(p−γ) + ‖θ0(s)‖2(p−γ))

)1/2(
E sup

s∈[0,t]

‖φε(s)‖2γ

)1/2

.

Combing this bound with (2.26) and (5.20) we now obtain the first part of
(2.27).

To address the second term in (2.27) we return to (5.15). Taking expected
values we obtain

E

∫ t

0

‖∇vε‖2dt ≤ε(E‖vε(0)‖2 + C) + CE

(
sup

s∈[0,t]

‖φε(s)‖2

)
,

where C = C(Ra, R̃a, t, C0) is independent of ε > 0. Combining this observa-
tion with the previous bound, the proof of Theorem 2.1 is now complete.

�

5.3. Approximation up to initial conditions: the corrector

We next formally derive and then rigorously analyze a refined approximation
of (2.1)–(2.2). By Theorem 2.1, the velocity component M(θ0) of the limit
system (2.4)–(2.5) well approximates the velocity field uε of the full system
(2.1)–(2.2) in the norm L2([0, t],H1(D)) for each fixed t > 0. Also Theorem 2.2,
(ii) shows that the invariant measure of the limit system approximates any
invariant state of the full system, which can be interpreted as a approximation
of laws of solutions as t → ∞. On the other hand, we do not expect (2.4)–
(2.5) to accurately describe the behavior of (2.1)–(2.2) up to t = 0 due to the
presence of a (initial time) boundary layer.
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We next derive the so called ‘corrector equation’ which provides effective
dynamics for (2.1)–(2.2) and which is globally well-posed and whose velocity
component remains close to the dynamics of (2.1)–(2.2) in L∞([0, T ], L2(D)),
that is, even up to time zero. Note that similar considerations motivate the
analysis in [45] which treats such small time approximations in the determin-
istic setting.

Formal derivation. In order to identify multiple time scales in (2.1)–(2.2) we
introduce an additional ‘slow time’ variable ς = εt. We then replace

∂t → ∂t +
1
ε
∂ς .

Under this ansatz the momentum equation (2.1) becomes

ε(∂tuε + uε · ∇uε) + ∂ςuε − Δuε = ∇p̃ε + Rak̂θε

Dropping the terms of order ε and using Duhamel’s formula we obtain

uε(ς) = e−Aςuε(0) +
∫ ς

0

e−A(ς−r)P (Rak̂θε)dr (5.21)

where as in Sect. 5.1, e−Aς denotes the semigroup whose generator is the Stokes
operator A.

The form of (2.1) suggests that uε fluctuates rapidly in comparison to
θε. Under the further ansatz that there is a clear separation of time scales
between the motion of uε and that of θε we suppose that θε is independent of
ς. From (5.21) this yields

uε(ς) = e−Aςuε(0) + A−1(P (Ra · k̂θ̃ε)) − e−AςA−1(P (Rak̂θε))

:= A−1(P (Ra · k̂θ̃ε)) + wε(ς) , (5.22)

where wε solves

∂ςwε − Δwε = ∇qε, wε(0) = uε(0) − yε

and − Δyε = ∇pε + Rak̂θε(0) (5.23)

and we have made the further approximation that θε(t) ≈ θε(0) relative to the
slow time scale ς.

Next, we return to the original time scale t and obtain the effective dy-
namics for (2.1)–(2.2) starting from any initial condition (θε

0,u
ε
0) ∈ H,

− Δũε = ∇pε + Ra · k̂θ̃ε + Δwε(t), ∇ · ũε = 0 , (5.24)

dθ̃ε +
(
ũε · ∇θ̃ε − Δθ̃ε

)
dt = R̃a · ũε

3dt +
N∑

k=1

σkdW k, θ̃ε(0) = θε
0, (5.25)

where wε solves

∂twε − 1
ε
Δwε =

1
ε
∇qε, ∇ · wε = 0, wε(0) = PNεuε

0 + yε,

and − Δyε = ∇pε + Ra · k̂θε
0, ∇ · yε = 0.

(5.26)

We supplement (5.24)–(5.26) with boundary conditions (2.3). Note that for
technical reasons we slightly modify the initial condition for wε compared to
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(5.23) by taking ũε(0) = PNεuε
0, where we recall that PNε is the projection

onto the first Nε modes of the Stokes operator A as in (5.27) and Nε satisfies

ε(λ∗
Nε)2 ∼ 1. (5.27)

This specification ũε(0) is only used to avoid regularity issues at the initial
time in (5.24) and as such, a number of other modifications can be employed.

5.3.1. Rigorous error estimates for the corrector. The following theorem as-
serts that (5.24)–(5.26) approximates (2.1)–(2.2) in the desired norms.

Theorem 5.1. Fix any ε > 0 choose Nε satisfying (5.27). Suppose we are given
a sequence {μ0,ε}ε∈(0,1) ⊂ Pr(H) such that

sup
0<ε≤1

∫

H

(‖∇u‖2 + exp(η‖u‖2 + ‖θ‖2
L3)
)
dμ0,ε(u, θ) < ∞. (5.28)

For each ε > 0 we consider a martingale solutions (uε, θε) of (2.1)–(2.3) as
in Proposition 2.1, (i). We suppose that each (uε, θε) has initial conditions
distributed according to the distribution μ0,ε and satisfies the uniform moment
bound (2.12). In particular, for each ε > 0 the corresponding martingale solu-
tion fixes a stochastic basis S and defines (θε

0,u
ε
0) := (θε(0),uε(0)). Then,

(i) up to the specification of the stochastic basis S and the initial conditions
(uε

0, θ
ε
0), there exists a unique, adapted

θ̃ε ∈ L2(Ω;L2
loc([0,∞);V ) ∩ C([0,∞);H))

solving (5.24)–(5.26).
(ii) For any t > 0 there is a γ0 = γ0(R̃a,Ra, t) such that, for any 0 < γ ≤ γ0,

p ≥ γ, and ε > 0,

E

(
sup

s∈[0,t]

‖θ̃ε(s) − θε(s)‖p

)
≤ Cεγ ,

E

(
sup

s∈[0,t]

‖ũε(s) − uε(s)‖p

)
≤ Cεγ/4 ,

(5.29)

where the constants C = C(R̃a,Ra, t, p) and γ0 and are both independent
of ε > 0.

Proof. As in Proposition 2.1, (iii), (iv) the well posedness of (5.24)–(5.26) is
standard and can be established along similar lines as one would for the 2D
Stochastic Navier–Stokes equations. To see this observe that, although we are
working in 3D, we have one more degree of smoothing in the constitutive
law, (5.24), producing ũε from θ̃ε compared to Biot-Savart in the Navier–
Stokes equation. We omit further details here again referring the reader to e.g.
[12,13,17].

To prove (5.29) we reuse many of the estimates from the proof of Theo-
rem 2.1. Taking ṽε = uε − ũε and φ̃ε = θε − θ̃ε, we have

∂tφ̃
ε − Δφ̃ε = R̃a · ṽε

3 − ṽε · ∇θ̃ε − uε · ∇φ̃ε, φ̃ε(0) = 0 ,
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and hence repeating the arguments leading to (5.5) we obtain the estimate

sup
s∈[0,t]

‖φ̃ε(s ∧ τ)‖2 ≤ sup
s∈[0,t∧τ ]

(
‖θ̃ε(s)‖2

L3 + R̃a
2
)∫ t∧τ

0

‖∇ṽε(t′)‖2dt′ (5.30)

for any t > 0 and any stopping time τ ≥ 0. By (5.24) and (2.1), ṽε satisfies

ε(∂tuε + uε · ∇uε) − Δṽε = ∇qε + Rak̂φ̃ε − Δwε, (5.31)

where wε solves (5.26). Referring to (5.24) we have

ũε = A−1(RaP (k̂θ̃ε)) − wε , (5.32)

and consequently (5.25) and (5.26) yield

dũε = −dwε+ RaA−1P (k̂dθ̃ε)

= −1
ε
(Δwε + ∇qε)dt

−RaA−1P
(
k̂
(
ũε · ∇θ̃ε− Δθ̃ε − R̃a · ũε

3

))
dt

+ Ra

N∑

k=1

A−1P (k̂σk)dW k . (5.33)

Multiplying (5.31) by ε−1, subtracting (5.33) and rearranging we obtain

dṽε − 1
ε
Δṽεdt =

1
ε

(
∇q̃ε + Rak̂φ̃ε

)
dt

+
(
RaA−1P

(
k̂
(
ũε · ∇θ̃ε − Δθ̃ε − R̃a · ũε

3

))
− uε · ∇uε

)
dt

− Ra
N∑

k=1

A−1P (k̂σk)dW k, ṽε(0) = (I − PN )uε
0, (5.34)

with ∇ · ṽε = 0. Here note the close similarity between (5.8) and (5.34); in
view of (5.32), (5.26) the primary distinction here is in the initial condition.

As above in (5.9), the Itō formula implies

d‖ṽε‖2+
2
ε
‖∇ṽε‖2dt

=
2
ε
Ra〈φ̃ε, ṽε

3〉dt

+ 2
〈
RaA−1P

(
k̂
(
ũε · ∇θ̃ε − Δθ̃ε − R̃a · ũε

3

))
− uε · ∇uε, ṽε

〉
dt

+ Ra2
N∑

k=1

|A−1P (k̂σk)|2dt − 2Ra

N∑

k=1

〈A−1P (k̂σk), ṽε〉dW k

:= (T1 + T2 + T3 + T4 + T5 + T6)dt + SdW. (5.35)

We now estimate (5.35) with bounds similar to (5.10)–(5.13). Here, bounds on
u0 need to be replaced with appropriate estimates for ũε. For the terms T2, T4

we simply treat ũε terms as
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‖ũε(t)‖2 ≤ C(Ra2‖θ̃ε(t)‖2 + ‖wε(t)‖2)

≤ C(Ra2‖θ̃ε(t)‖2 + ‖uε
0‖2 + Ra2‖θε

0‖2) . (5.36)

The estimate (5.13) on the term T5 involves an L∞ bound on ũε and thus
requires a bit more care. In this case

‖ũε(t)‖2
L∞ ≤ C‖ũε(t)‖2

H2 ≤ C(Ra2‖θ̃ε(t)‖2 + ‖wε(t)‖2
H2).

By standard properties of analytic semigroups, the inverse Poincaré inequality,
and the form of w(0) one has

‖wε(t)‖2
H2 = ‖eAt/εwε(0)‖2

H2 ≤ C‖wε(0)‖2
H2 ≤ CRa2‖θε

0‖2 + C‖PNε ũε
0‖2

H2

≤ CRa2‖θε
0‖2 + C(λ∗

Nε)2‖ũε
0‖2 , (5.37)

where C is independent of ε ∈ (0, 1). Combining these two estimate and again
taking advantage of the cancelation from uε = ṽε + ũε

|T5| ≤ 1
4ε

‖∇ṽε‖2 + 4ε‖ũε‖2
L∞‖uε‖2

≤ 1
4ε

‖∇ṽε‖2 + C(Ra2 + 1)(‖θε
0‖4 + ‖uε

0‖4 + ‖uε‖4). (5.38)

Observe that in comparison to (5.13), the additional power of ε is used to
cancel (λ∗

Nε)2.
Combining the analogues of (5.10)–(5.12) with (5.36) and using (5.36)

with (5.35) we obtain

d‖ṽε‖2+
1
ε
‖∇ṽε‖2dt

≤ CRa2

ε
‖φ̃ε‖2dt

+C(1+Ra4)(1+R̃a
2
)(‖θ̃ε‖4+ ‖θε

0‖4+ ‖uε
0‖4+ ‖uε‖4+ 1)dt

− 2Ra

N∑

k=1

〈A−1(P (k̂σk)), ṽε〉dW k , (5.39)

where the constant C > 0 is independent of Ra, R̃a, and ε > 0. We now use
(5.39) with (5.30) and repeat the stopping time argument as in (5.17)–(5.20)
to infer the first part of the (5.29).10

We turn next to the the convergence of the velocity fields, the second
part of (5.29). We obtain from (5.35) and the pointwise bounds yielding the
drift terms in (5.39) that

‖ṽε(t)‖2 ≤ exp
(

− t

ε

)
‖ṽε

0‖2

+ C

∫ t

0

exp
(

− t − s

ε

)(
Ra2

ε
‖φ̃ε(s)‖2 + Rε(s)

)
ds + Xε(t),

10Note that the loss of the ε in front of the second term after the inequality in (5.39) in
comparison (5.14) does not charge the ultimate outcome of this bound as we only required
an ε-independent upper bound for Mε in (5.18).
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≤ exp
(

− t

ε

)
‖ṽε

0‖2

+ CRa2 sup
s∈[0,t]

‖φ̃ε(s)‖2 + ε sup
s∈[0,t]

Rε(s) + Xε(t) , (5.40)

where

Rε(t) := C(1 + Ra4)(1 + R̃a
2
)(‖θ̃ε‖4 + ‖θε

0‖4 + ‖uε
0‖4 + ‖uε‖4 + 1)

and

Xε(t) := −2Ra

∫ t

0

exp
(

− t − s

ε

) N∑

k=1

〈A−1(P (k̂σk)), ṽε〉dW k

=:
∫ t

0

exp
(

− t − s

ε

)
g(s)dW.

Using the inverse Poincaré inequality and (5.27) one has

exp
(

− t

ε

)
‖ṽε

0‖2 ≤ ‖(I − PNε)uε
0‖2 ≤ C(λ∗

Nε)−1‖∇uε
0‖2

≤ Cε‖∇uε
0‖2 . (5.41)

Therefore combining (5.40) with (5.41), using the bound already obtained for
‖φ̃ε(s)‖ in (5.29) and the uniform bounds (2.12), (5.28)

E sup
s∈[0,t]

‖ṽε(t)‖p ≤ C(εp/2 + εγ) + CE sup
s∈[0,t]

|Xε(s)|p/2 (5.42)

for any p > 0, where γ = min{p, γ0} is obtained from the bound ‖φ̃ε(s)‖ and
the constant C = C(Ra, R̃a, t, p) is independent of ε > 0.

In order to estimate Xε observe that this process satisfies

dXε +
1
ε
Xεdt = gdW, Xε(0) = 0,

and hence, by the Itō lemma,

dX 2
ε +

2
ε
X 2

ε dt = g2dt + 2gXεdW .

Consequently,

E sup
s∈[0,t]

|Xε(s)|p/2 ≤ CE sup
s∈[0,t]

∣∣∣∣
∫ s

0

gXεdW

∣∣∣∣
p/4

+ CE

(∫ t

0

g2ds

)p/4

. (5.43)

With the Burkholder–David–Gundy inequality and Young’s inequality we have

E sup
s∈[0,t]

∣∣∣∣
∫ s

0

gXεdW

∣∣∣∣
p/4

≤ CE

(∫ t

0

g2X 2
ε ds

)p/8

≤ 1
2

E sup
s∈[0,t]

|Xε|p/2 + CE

(∫ t

0

‖ṽε‖2ds

)p/4

. (5.44)
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With (5.43), (5.44), the bound (5.45) now yields

E sup
s∈[0,t]

‖ṽε(t)‖p ≤ C(εp/2 + εγ) + CE

(∫ t

0

‖ṽε‖2ds

)p/4

. (5.45)

On the other hand, from (5.39), using for a second time the existing bounds
on ‖φ̃ε(s)‖ in (5.29) and (2.12), we have

E

∫ t

0

‖∇ṽε‖2dt ≤ εE‖ṽε
0‖2 + CRa2

∫ t

0

E‖φ̃ε‖2ds + εE

∫ t

0

Rεds

≤ C(ε + εγ), (5.46)

where the constant C depends on t, Ra, R̃a but again is independent of ε > 0.
When p ≤ 4 the second portion of the desired inequality (5.29) now follows
from (5.45), (5.46), and Hölder’s inequality. On the other hand, when p > 4
then we estimate

E

(∫ t

0

‖ṽε‖2ds

)p/4

≤ E sup
s∈[0,t]

‖ṽε‖p−2 + E

∫ t

0

‖ṽε‖2ds

≤ sup
s∈[0,t]

‖ṽε‖p−2 + C(ε + εγ),

so that the second part of (5.29) follows in this later case with (5.46) and an
iterative argument. This completes the proof of Theorem 5.1, (ii). �

6. Convergence of the Nusselt number

In this final section we prove Corollary 1.1, note that this is not an immediate
consequence of Theorem 2.2. Indeed, the Nusselt number Nu (cf. (1.8)) is
defined as a statistical average of the observable

φNu(u, θ) =
∫

D
u2θdx, (6.1)

but (2.30) is not satisfied since φNu /∈ V (H). Nevertheless, Corollary 1.1 follows
from a combination of Theorem 2.2 with exponential moment bounds on the
unique invariant measures.

Proof of Corollary 1.1. In two space dimensions, with N = ∞ and Pr =
Pr(Ra, R̃a) large enough (or ε = Pr−1 small enough), [21, Theorem 1.3]
and Theorem 2.2 yields respectively unique invariant measures με of (2.1)–
(2.2) and μ0 for (2.4)–(2.5). We aim to show that limε→0(Nu)ε = (Nu)0. To
simplify the notation, write φ instead of φNu defined by (6.1).

Consider a smooth cut-off function ψ : [0,∞) → [0, 1] satisfying ψ ≡ 1 for
x ∈ [0, 1], ψ ≡ 0 for x ≥ 2, and |ψ′| ≤ 2 everywhere. Denote ψR(·) := ψ(·/R)
and write∣∣∣∣
∫

H

φ(u, θ)dμε(u, θ) −
∫

H

φ(L(θ))dμ0(θ)
∣∣∣∣

≤
∣∣∣∣
∫

H

φ(u, θ)ψR(‖u‖2 + ‖θ‖2)dμε(u, θ) −
∫

H

φ(L(θ))ψR(‖L(θ)‖2)dμ0(θ)
∣∣∣∣
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+
∣∣∣∣
∫

H

φ(u, θ)(1 − ψR(‖u‖2 + ‖θ‖2))dμε(u, θ)
∣∣∣∣

+
∣∣∣∣
∫

H

φ(L(θ))(1 − ψR(‖L(θ)‖2))dμ0(θ)
∣∣∣∣

=: I1 + I2 + I3.

We bound the first term by observing that φR(u, θ) := φ(u, θ)ψR(‖u‖2 +‖θ‖2)
satisfies

[φR]η ≤ C(R + 1), (6.2)

for a constant C > 0. It follows from (6.2) and Theorem 2.2 that I1 ≤ C̃(R +
1)εq̃. We control I2 using Markov’s inequality and (2.13), which yields, for any
η > 0 sufficiently small

με(Ec
R) ≤ e−ηR

∫

H

exp(η(‖u‖2 + ‖θ‖2))dμε(u, θ) ≤ C0e
−ηR.

uniformly in ε > 0, where ER = {‖u‖2 + ‖θ‖2 ≤ R}. Notice that 1 −
ψR(‖u‖2 + ‖θ‖2) ≤ 1Ec

R
, and observe that for fixed η > 0, on the set Ec

R

we have |φNu(u, θ)| ≤ exp(η(‖u‖2 + ‖θ‖2)/2) for R = R(η) sufficiently large.
By Hölder’s inequality we obtain

I2 ≤ C

(∫

H

exp(η(‖u‖2 + ‖θ‖2))dμε(u, θ)
)1/2

(με(Ec
R))1/2 ≤ CC

1/2
0 e−ηR/2.

We can control I3 similarly by using exponential moment bounds for the in-
variant measure μ0, and the estimate ‖L(θ)‖ ≤ C‖θ‖. Thus,

∣∣∣∣
∫

H

φNu(ε)(u, θ)dμε(u, θ) −
∫

H

φNu(0)(L(θ))dμ0(θ)
∣∣∣∣

≤ C((R + 1)εq̃ + e−ηR/2), (6.3)

and we can make this expression less than any δ > 0 by taking R = R(δ)
sufficiently large and then ε = ε(R, δ) sufficiently small. �

Remark 6.1. From the proof above we can easily infer that Corollary 1.1 will
also apply to any observable φ on the extended phase space that is locally
Lipschitz and sub-exponential at infinity (for a sufficiently small exponential
power η > 0 dictated by (2.13)). We have chosen the convergence of the Nusselt
number to emphasize the physical significance of our results.
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Appendix A: Moment bounds for stochastic drift-diffusion
equations

In this appendix we collect some moment bounds proved in [21] which have
been used in the analysis above.

As in [21] we consider the following class of stochastic divergence-free
drift diffusion systems

dξ + v · ∇ξdt = (R̃a · v3 + Δξ)dt +
N∑

k=1

σkdW k, ξ(0) = ξ0 (A.1)

evolving on the three dimensional domain D = [0, L]2 × [0, 1]. Here R̃a > 0 is
a fixed parameter and v = (v1, v2, v3) is any sufficiently regular and adapted,
divergence free vector field. Both v and ξ are supposed to satisfy the boundary
condition (2.3). Recall that by the change of variable T = ξ + R̃a(1 − z) we
may reformulate (A.1) as

dT + v · ∇Tdt = ΔTdt +
N∑

k=1

σkdW k,

T (0) = T0 = ξ0 + R̃a(1 − z) ,

(A.2)

where v and T satisfy boundary conditions (1.3). As such, bounds for ξ solving
(A.1) immediately translate to bounds for T .

In [21] we prove:

Proposition A.1. Suppose that v ∈ L2
loc([0,∞);V1 ∩ (H2(D))3)∩C([0,∞);H1)

a.s. and is Ft-adapted. Fix any p ≥ 2 and any initial condition ξ0 ∈ H ∩Lp(D)
which is F0-measurable with

E exp(η‖ξ0‖2
Lp) < ∞,

for some η > 0. Then there exists η0 = η0(σ, R̃a, p) > 0 such that for any t ≥ 0
and any positive η ≤ η0,

E exp

(
η

2p/2+2
sup

s∈[0,t]

‖ξ‖2
Lp

)

≤ C1E exp
(
η‖ξ0‖2

Lp + ηpt(‖σ‖2
Lp + 2p/2(4R̃a

2
+ 1))

)
(A.3)

for a constant C = C(R̃a, p) independent of t, η, ξ0, and v. Furthermore,

E exp
( η

2p/2+2
‖ξ(t)‖2

Lp

)
≤ CE exp

(
η(e−κt‖ξ0‖2)

)
, (A.4)
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where again C = C(R̃a, p, ‖σ‖Lp ,D) and κ = κ(R̃a,D) > 0 are independent
of t, η, ξ0, and v.

We now return to the infinite Prandtl system (2.4)–(2.5) and recall a
bound analogous to (A.4) but which uses more of the specific structure of the
velocity equation.

Proposition A.2. Fix an initial condition θ0
0 ∈ H which is F0-measurable, and

let θ0 = θ0(t, θ0
0) denote the corresponding solution to (2.4)–(2.5). There is a

universal constant η∗ > 0 such that for any t > 0 and η ∈ (0, η∗], there exists
C = C(Ra, R̃a) > 0 such that

E

(
exp
(

η‖θ0‖2 +
ηe−t/4

4

∫ t

0

‖∇θ0‖2ds

))

≤ C exp
(
η(1 + 4RaR̃a)e−t/2‖θ0

0‖2
)

.

The proof of Proposition A.2 can be found in [21].

Appendix B: Gradient estimates on the Markov semigroup

In this section we establish the gradient bound for the Markov semigroup
generated by (2.4)–(2.5) in order to prove (4.2). For this purpose we begin by
briefly recalling how (4.2) is translated to a control problem through the use of
Malliavin calculus. We refer to e.g. [36] or [35] for further general background
on this subject and to [20,26,28] for the application of this formalism in a
setting close to ours.

Define the random operators

J0,tξ := lim
ε→0

θ0(t, θ0 + εξ,W ) − θ0(t, θ0,W )
ε

(B.1)

for any ξ ∈ H and

A0,tw := lim
ε→0

θ0(t, θ0,W + ε
∫ ·
0
w) − θ0(t, θ0,W )
ε

(B.2)

for any w ∈ L2(Ω;L2([0, t]; RN )). Here A0,tw = 〈Dθ0, w〉, where the un-
bounded operator D : L2(Ω;H) 
→ L2(Ω;L2(0, t, RN ) ⊗ H) is the Malliavin
derivative and w is any element in the domain of the dual operator δ of D.

For our purposes it is sufficient to recall that any Ft-adapted process in
L2(Ω;L2([0, t]; RN )) belongs to the domain of δ and δ(w) corresponds to the
Itō integral of w so that

E〈DX,w〉 = E

(
X

∫ t

0

wdW

)
(B.3)

for any X ∈ Dom(D) and any Ft-adapted w. This is a special case of the
Malliavin integration by parts formula. We furthermore recall that D satisfies
a chain rule namely that if φ ∈ C1(H) and θ ∈ Dom(D) then φ(θ) ∈ Dom(D)
and

Dφ(θ) = ∇φ(θ)Dθ. (B.4)
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Combining (B.3)–(B.4) and making use of the Itō isometry we infer that,

∇P 0
t φ(θ0)ξ = E

(∇φ(θ0(t, θ0))J0,tξ
)

= E

(
φ(θ0(t, θ0))

∫ t

0

wdW

)
+ E

(∇φ(θ0(t, θ0)) (J0,tξ − A0,tw)
)

≤
√

P 0
t (|φ(θ)|2)

(
E

∫ t

0

|w|2ds

)1/2

+
√

P 0
t (‖∇φ(θ)‖2)

(
E‖J0,tξ − A0,tw‖2

)1/2
(B.5)

for any φ ∈ C1
b (H), θ0 ∈ H and any (adapted) w ∈ L2(Ω;L2([0, t]; RN )).

Our desired bound (4.2) follows from (B.5) if, for every ξ ∈ H with
‖ξ‖ = 1 there is (adapted) w = w(ξ) ∈ L2([0,∞); RN ) such that

E‖J0,tξ − A0,tw(ξ)‖2 ≤ C exp(2η‖θ0‖2)δ(t) , (B.6)

sup
‖ξ‖=1

E

∫ ∞

0

|w(ξ)|2dt ≤ C exp(2η‖θ0‖2) , (B.7)

where δ(t) → 0 as t → ∞ and C, η, and δ are independent of θ0.
To solve the control problem (B.6)–(B.7) we observe that (B.1) and (B.2)

admit explicit characterizations as linearizations of (2.4)–(2.5). For any ξ ∈ H0

we let ρ(t) = ρ(t, ξ) := J0,tξ, which satisfies

∂tρ + u0 · ∇ρ + v0 · ∇θ0 = R̃a · v0
3 + Δρ,

− Δv0 = ∇p + Rak̂ρ, ∇ · v0 = 0 , ρ(0) = ξ,
(B.8)

supplemented by boundary conditions as in (2.3).11 On the other hand, setting
ρ̃ := A0,tw for any w ∈ L2([0, t], RN ) we have

∂tρ̃ + u0 · ∇ρ̃ + ṽ0 · ∇θ0 = R̃a · v0
3 + Δρ̃ +

N∑

k=1

σkwk,

− Δṽ0 = ∇p + Rak̂ρ̃, ∇ · ṽ0 = 0 , ρ̃(0) = 0,

(B.9)

again with boundary conditions as in (2.3).
Denote ρ̄(t) = ρ̄(t, ξ, w) = ρ−ρ̃ and v̄ := v−ṽ for any w ∈ L2([0,∞); RN )

and ξ ∈ H. We now choose w as a function of ξ as follows. Let PN be the pro-
jection on the first N eigenfunctions of the Laplacian with boundary conditions
as in (2.3). Set w(t) := σ−1λPN ρ̄, where λ > 0 and N will be selected below.12

11 Notice that (B.8) can also be written as

∂tρ + (Lθ0) · ∇ρ + (Lρ) · ∇θ0 = R̃a(Lρ) + Δρ, ρ(0) = ξ,

where L = RaA−1P k̂ and A is the Stokes operator, P ; cf. (5.1) and (2.6) above. Similar

formulations can also be given for (B.9), (B.10).
12Of course the choice of N will determine the number of modes subject to stochastic

perturbation. Observe that w is well defined as {σk}N
k=1 is the set of the first N (nonzero)

eigenvectors of the Laplacian.
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Relative to this choice of w = w(ξ), ρ̄ satisfies

∂tρ̄ + u0 · ∇ρ̄ + v̄0 · ∇θ0 = R̃a · v̄0
3 + Δρ̄ − λPN ρ̄,

Δv̄0 = ∇p + Rak̂ρ̄, ∇ · v̄0 = 0, ρ̄(0) = ξ.
(B.10)

Testing (B.10) with ρ̄ and v̄0 respectively, and using that both u0 and v̄0 are
divergence free vector fields, we obtain

d

dt
‖ρ̄‖2 + 2‖∇ρ̄‖2 + 2λ‖PN ρ̄‖2 = 2

∫

D

(
R̃av̄0

3 − v̄0 · ∇θ0
)

ρ̄dx (B.11)

and

‖∇v̄0‖ ≤ Ra‖ρ̄‖. (B.12)

With standard Sobolev embeddings and (B.12) we have, for any η > 0,
∣∣∣∣
∫

D

(
R̃av̄0

3 − v̄0 · ∇θ0
)

ρ̄dx

∣∣∣∣ ≤ ‖v̄0‖L6‖∇θ0‖‖ρ̄‖L3 + R̃a‖v̄0‖‖ρ̄‖

≤ C̃‖∇v̄0‖‖∇θ0‖‖ρ̄‖1/2‖∇ρ̄‖1/2 + R̃a‖∇v̄0‖‖ρ̄‖
≤ C̃Ra‖∇θ0‖‖ρ̄‖3/2‖∇ρ̄‖1/2 + C̃RaR̃a‖ρ̄‖2

≤ ‖∇ρ̄‖2 + (C̃(Ra)4/3‖∇θ0‖4/3 + C̃RaR̃a)‖ρ̄‖2

≤ ‖∇ρ̄‖2 + (η‖∇θ0‖2 + C)‖ρ̄‖2 , (B.13)

where C = C(Ra, R̃a, η) = C̃Ra4

η2 + C̃RaR̃a and C̃ is a universal constant. Also
since PN and −Δ commute we have for QN := I − PN

‖∇ρ̄‖2 = −〈PN ρ̄,ΔPN ρ̄〉 − 〈QN ρ̄,ΔQN ρ̄〉 = ‖∇PN ρ̄‖2 + ‖∇QN ρ̄‖2

≥ ‖∇QN ρ̄‖2 ≥ λN‖QN ρ̄‖2 , (B.14)

where the last inequality follows from the generalized Poincaré inequality.
Choose 2λ = λN (with N to be chosen below) and combine (B.11) and (B.13)
to infer

d

dt
‖ρ̄‖2 + (λN − (η0‖∇θ0‖2 + C))‖ρ̄‖2 ≤ 0,

and hence, since ρ̄(0) = ξ,

‖ρ̄(t)‖2 ≤ ‖ξ‖2 exp
(

η0

∫ t

0

‖∇θ0‖2 dr + (C − λN )t
)

. (B.15)

Applying Proposition A.1 we conclude that, for any θ0
0 ∈ H, and η ∈ (0, η0],

E‖ρ̄(t)‖2 ≤ C‖ξ‖2 exp
(
η‖θ0

0‖2 + (C + η − λN )t
)

,

where C = C(Ra, R̃a) is independent of ξ and θ0
0 and t ≥ 0. By now choosing

N large enough such that λN > 2(C + η‖σ‖2) we obtain

E‖ρ̄(t)‖2 ≤ C‖ξ‖2 exp
(

η‖θ0
0‖2 − λN

2
t

)
, (B.16)

where C = C(Ra, R̃a) is independent of ξ and θ0
0 and t ≥ 0. This yields the

first bound (B.6).
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To obtain the second desired bound, (B.7), we use (B.16) to estimate

E

∫ ∞

0

|w(ξ)|2dt =‖σ−1‖2λ2
NE

∫ ∞

0

‖PN ρ̄‖2 dt ≤ C exp(η‖θ0
0‖2) ,

where C = C(λN , Ra, R̃a) is independent of θ0
0 yielding (B.7). The bound (4.2)

now follows.

Remark B.1. We can use the same argument leading to (B.15) to show that

‖ρ(t)‖2 ≤ ‖ξ‖2 exp
(

η

∫ t

0

‖∇θ0‖2 dr + Ct

)
,

that is, for any η > 0,

‖J0,t‖ ≤ exp
(

η

∫ t

0

‖∇θ0‖2 dr + Ct

)
, (B.17)

where, as above, C = C(Ra, R̃a) = C̃Ra4

η2 + RaR̃a.

Remark B.2. Using Proposition A.2 and (B.17) we can easily establish the
Lyapunov bound (4.1) with

C1 = exp
(

CRa4et∗/2

η2
+ RaR̃a

)
.
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