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INTRODUCTION: Perceptual experiences in
mammals may arise from patterns of neural
circuit activity in cerebral cortex. For example,
primary visual cortex (V1) is causally capable
of initiating visual perception; in human neu-
rosurgery patients, V1 electrical microstimu-
lation has been reported to elicit basic visual
percepts including spots of light, patterns,
shapes, motions, and colors. Related phenome-
na have been studied in laboratory animals
using similar electrical stimulation procedures,
although detailed investigation has been diffi-
cult because studies of percept initiation in
cortex have not involved groups of neurons
individually selected for stimulation. There-
fore, it is not clear how different percepts
arise in cortex, nor why some stimuli fail to

generate perceptual experiences. Answering
these questionswill requireworkingwith basic
cellular elements within cortical circuit archi-
tecture during perception.

RATIONALE: To understand how circuits in
V1 are specifically involved in visual percep-
tion, it is essential to probe, at the most basic
cellular level, how behaviorally consequential
percepts are initiated andmaintained. In this
study, we developed and implemented sev-
eral key technological advances that together
enable writing neural activity into dozens of
single neurons in mouse V1 at physiological
time scales. These methods also enabled us to
simultaneously read out the impact of this
stimulation on downstream network activity

across hundreds of nearby neurons. Success-
ful training of alert mice to discriminate the
precisely defined circuit inputs enabled sys-
tematic investigation of basic cortical dynam-
ics underlying perception.

RESULTS:We developed an experimental ap-
proach to drive large numbers of individually
specified neurons, distributed across V1 volumes
and targeted on the basis of natural response-
selectivity properties observed during specific
visual stimuli (movies of drifting horizontal or
vertical gratings). To implement this approach,
we built an optical read-write system capable of
kilohertz speed, millimeter-scale lateral scope,
and three-dimensional (3D) access across su-

perficial to deep layers of
cortex to tens or hundreds
of individually specified
neurons. This systemwas
integratedwithanunusual
microbial opsin gene iden-
tified by crystal structure–

based genomemining: ChRmine, named after
the deep-red color carmine. This newly identi-
fied opsin confers properties crucial for cellular-
resolution percept-initiation experiments:
red-shifted light sensitivity, extremely large
photocurrents alongside millisecond spike-
timing fidelity, and compatibility with simulta-
neous two-photonCa2+ imaging.UsingChRmine
together with custom holographic devices to
create arbitrarily specified light patterns, we
were able tomeasure naturally occurring large-
scale 3D ensemble activity patterns during vi-
sual experience and then replay these natural
patterns at the level of many individually spe-
cified cells. We found that driving specific
ensembles of cells on the basis of natural
stimulus-selectivity resulted in recruitment
of a broad network with dynamical patterns
corresponding to those elicited by real visual
stimuli and also gave rise to the correctly se-
lective behaviors even in the absence of visual
input. This approach allowed mapping of the
cell numbers, layers, network dynamics, and
adaptive events underlying generation of be-
haviorally potent percepts in neocortex, via
precise control over naturally occurring, widely
distributed, and finely resolved temporal pa-
rameters and cellular elements of the corre-
sponding neural representations.

CONCLUSION:The cortical population dynam-
ics that emerged after optogenetic stimulation
both predicted the correctly elicited behavior
and mimicked the natural neural representa-
tions of visual stimuli.▪
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1   A fast, sensitive, red opsin for
     single-neuron optical control

4  Mice discriminate optogenetic stimuli as true
     visual percepts
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Optogenetically eliciting specific percepts. (1) Sequence-based phylogeny: major known
opsin categories and ChRmine. (2) Neurons naturally selective for oriented-grating stimuli
(left) define volume-spanning populations to be activated optogenetically (right). Green,
vertical-preferring cells; red, horizontal-preferring cells. (3) Trial-averaged population responses
to vertical or horizontal stimuli (green or red, respectively) recruited by visual or optogenetic
stimulation, excluding directly stimulated cells. Black dots, trial onset; colored dots, frame
following stimulus onset. (4) Mice robustly discriminate visual or optogenetic stimuli.
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Perceptual experiences may arise from neuronal activity patterns in mammalian
neocortex. We probed mouse neocortex during visual discrimination using a
red-shifted channelrhodopsin (ChRmine, discovered through structure-guided
genome mining) alongside multiplexed multiphoton-holography (MultiSLM),
achieving control of individually specified neurons spanning large cortical volumes
with millisecond precision. Stimulating a critical number of stimulus-orientation-
selective neurons drove widespread recruitment of functionally related neurons, a
process enhanced by (but not requiring) orientation-discrimination task learning.
Optogenetic targeting of orientation-selective ensembles elicited correct behavioral
discrimination. Cortical layer–specific dynamics were apparent, as emergent
neuronal activity asymmetrically propagated from layer 2/3 to layer 5, and smaller
layer 5 ensembles were as effective as larger layer 2/3 ensembles in eliciting
orientation discrimination behavior. Population dynamics emerging after optogenetic
stimulation both correctly predicted behavior and resembled natural internal
representations of visual stimuli at cellular resolution over volumes of cortex.

V
isual perception inmammals is correlated
with neural circuit activity emerging in
visual cortex, but it is not knownwhy some
activity patterns give rise to perceptual ex-
periences and others do not. Although

visual cortex could play a causal role in initiating
percepts (1–6), it has not been technologically
possible to causally test the precise influence
on perceptually driven behavior of groups of
individually specified cells—either stimulated
sequentially or as synchronously activated multi-
neuron ensembles distributed across anatomical
layers or volumes.
Anatomical knowledge of rodent visual cor-

tex at the cellular level may provide a founda-
tion to guide investigation of the neural circuits
mediating perception. Prior work has revealed
clear relationships between visual encoding
of single neurons and cellular interconnectivity
patterns—both within layer 2/3 of primary visual

cortex (V1) (7–11), and reciprocally between V1
and higher visual areas (12, 13).Within V1,mono-
synaptic connectivity, synaptic weights, and re-
ciprocal connectivity are heightened between
nearby layer 2/3 pyramidal neurons that share
similar visual tuning in response to oriented
visual stimuli. In combination with inhibitory
mechanisms, this arrangement may help selec-
tively amplify or suppress specific signals that
are important for visual processing (14–18) and
may emerge via activity-dependent plasticity
(10, 17, 19–21). The functional relationship be-
tween these architectures and the circuit dy-
namics that give rise to perceptually guided
behaviors remains unclear.
Single-neuron–resolution optogenetic control

in vivo (22) could provide a critical new dimen-
sion, building upon the foundations of circuit
anatomy and physiology to elucidate how cellu-
lar ensembles elicit perceptually guided behaviors.
However, despite considerable progress devel-
oping cellular-resolution optogenetic control
(14, 23–26), it has not yet been possible to elicit
behaviorally defined percepts via optogenetic con-
trol of individually defined neurons in any sensory
cortex of behaving mammals. In this study, we
have developed and applied tools suitable for
fast optogenetic control over ensembles ofmany
neurons spanning large volumes of cortex during
visually guided behavior in mice, finding that
natural dynamics and associated behavior can
be elicited by optogenetic recruitment of a critical
number of individually defined percept-specific
neurons.

Results
Marine organism–based genomic screen
for new classes of microbial opsin

We screened the genomes of >600 marine mi-
crobial organisms for potential channelrhodop-
sins that jointly exhibit large photocurrents, high
light-sensitivity, and spectral compatibility with
robust fluorescent activity reporters. Screening
based on crystal structure–derived knowledge of
residues forming the cation-conducting channel-
rhodopsin (CCR) pore revealed ~1000 suitable
previously unknown CCR-like sequences (27)
(Fig. 1A). We optimized these sequences for
mammalian expression and performedwhole-cell
patch clamp in cultured hippocampal neurons.
From this screen, we discovered a promising
marine opsin gene (here named ChRmine, after
the deep-red color carmine; from Tiarina fusus).
ChRmine exhibited little similarity to previously

known CCRs and more similarity to anion-
conducting channelrhodopsin (ACR) and proton-
pumping proteorhodopsin (PR) genes (Fig. 1B
and fig. S1). Expression in cultured neurons gave
rise to ~4 nA inward (excitatory) photocurrents
driven by 585-nm light (Fig. 1C, comparisonwith
other opsins in figs. S2 and S3, A and B). The
reversal potential of −5.64 ± 1.39 mV (Fig. 1D)
revealed robust Na+/K+ permeability ideal for
driving spikes in neurons under typical phys-
iological ion balance conditions, and recovery
from desensitization in darkness was found to
be an order of magnitude faster than for other
red-shifted opsins (half-recovery time 0.63 ±
0.08 s) (fig. S2A). Along with increased effective
power density (EPD50) for ChRmine (0.03 ±
0.01 mW/mm2) (fig. S2B), these properties
resulted in ChRmine being able to drive sus-
tained spiking up to 40Hzwith red-shifted light
(fig. S2C). ChRmine reliably induced spiking even
with short red-shifted light pulses and at low
irradiance values (100% spike success rate at
1 ms, 0.08mW/mm2) (Fig. 1, E to G, and fig. S3C).

Simultaneous optogenetics and imaging
in cultured neurons

To probe ChRmine’s suitability for all-optical
experiments, we characterized its compatibility
with GCaMP6m in cultured neurons using wide-
field one-photon stimulation and imaging (28).
We observed much larger orange light–evoked
GCaMP6m fluorescence signals in ChRmine-
expressing neurons compared with other ChR-
expressing cells at the same light-exposure dura-
tion (Fig. 1, H and I). ChRmine evoked faster rise
and decay of GCaMP6m signals at both orange
(585 nm) (Fig. 1, H and J) and red (635 nm) (fig.
S2D)wavelengths.We also tested the pHdepen-
dence of opsin-mediated genetically encoded cal-
cium indicator (GECI) signals at external pH 7.0,
7.2, and 7.4. CsChrimson use was associated with
pH-dependent Ca2+ transients (29, 30). In con-
trast, no such effectwas observedwith ChRmine
(fig. S2E).
Wenext performedwhole-cell recording during

ChRmine stimulation via two-photon (2P) spi-
ral scanning over the soma. Both laser power
(Fig. 1K) and illumination wavelength (Fig. 1L)
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characterization revealed ChRmine photocur-
rents suitable for 2P all-optical experiments. Ad-
ditionally, we could reliably drive spike trains up
to 30 Hz (Fig. 1, M and N). A key concern of
using red-shifted ChRs is persistent blue-light-
driven cellular excitation occurring during im-
aging. We therefore characterized ChRmine
responses to blue light. With one-photon illu-
mination, spikes were not elicited by 470-nm
light, even over a broad range of light powers
that reliably drove spiking at 585 nm (up to
100 mW/mm2) (Fig. 1G); likewise, the 2P imaging
laser (at 920 nm) did not elicit spiking over a
broad range of powers (Fig. 1, M and N, and
fig. S3, E and F). Lastly, we observed submilli-
second spike jitter of 2P light-evoked spikes
(0.99 ± 0.26 ms) (Fig. 1O).

Kilohertz control and readout of 3D
ensembles over square-millimeter
domains in vivo

The precise temporal response and low ir-
radiance requirements of ChRmine motivated
new optical hardware to leverage this opportu-
nity for eliciting meaningful circuit dynamics
of behavior. To gain optical access across large
volumes of cortex for single-cell photostimula-
tion and leverage kilohertz temporal precision,
we designed, fabricated, and optimized a high-
pixel-density (1536 pixels × 1536 pixels) spatial
light modulator (SLM) for high-fidelity near-
infrared hologram generation at high speed
(MacroSLM; ~85% diffraction efficiency in 2 ms
at wavelength l = 1064 nm; see materials and
methods in the supplementary materials). We
integrated this SLM into a microscope with cus-
tom optical elements and developed precise
temporal sequencing protocols to address large
volumes of cortex during single-cell, ensemble-
scale photostimulation while simultaneously im-
aging local neural activity dynamics (materials and
methods). To achieve temporal resolution in the
kilohertz regime,we incorporatedmultiple SLMs
along the same photostimulation path, enabling
temporally multiplexed ensemble stimulation
(MultiSLM) (Fig. 2A and figs. S4 to S7) (seemate-
rials and methods and supplementary text).
Mouse V1 was transduced with a single inte-

grated ChRmine/GCaMP6m virus (AAV8-CaMKIIa-
GCaMP6m-p2a-ChRmine-TS-Kv2.1-HA;materials

and methods) (31). This dual opsin/GECI con-
struct achieved homogeneous, highly reliable
coexpression of actuator and reporter in cell
bodies across layers 2/3 and 5, with very little
expression in layer 4 (Fig. 2B). Using a 210-ms
spiral photostimulation protocol, we achieved
kilohertz ensemble stimulation over 1 mm2 of
superficial layer 2/3 in V1, with comparable ef-
ficiency across the entire imaging field of view
(Fig. 2, C and D, and fig. S4A). Sequential ad-
dressing of neuronal ensembles at 1-kHz reso-
lution was readily feasible with high success
rates (Fig. 2, E and F, and figs. S4H and S5, I
and J) and without apparent off-target mod-
ulation of neighboring neurons (Fig. 2G and
fig. S5, K and L). This all-optical technology
also allowed generation of three-dimensional
(3D) constellations of targets to simultaneously
excite many neurons distributed across layers
2/3 and 5 (25, 26, 32) (Fig. 2, H and I, and fig. S4,
B, C, and J). Thus, MultiSLM enabled high-
speed read-write access to large groups of single
neurons (N > 100), distributed over millimeter
spatial scales and multiple cortical layers.

Selective visual network recruitment by
functional ensemble stimulation

We used ChRmine and MultiSLM to selectively
activate visually tuned ensembles in V1 while
recording from the surrounding neural popula-
tion across layers 2/3 and 5 of cortex. Mice were
head-fixed and ran on a floating ball (Fig. 3A).
In this behaviorally naïve cohort (n = 4 mice),
there was no task-specific training before ses-
sions of combined visual stimulus presentation,
in vivo imaging, and optogenetic stimulation.
Mice transduced in V1 with the opsin/GECI

virus viewed drifting sine-wave gratings [verti-
cal (0°) or horizontal (90°), and with varied con-
trast (2, 12, 25, or 50%)] (Fig. 3B) while Ca2+

signals were recorded (Fig. 3, A to C, materials
and methods). In each mouse, orientation-tuned
ensembles were identified across layers [30 ±
6.8 neurons (mean ± SD)]; two control en-
sembles were defined to match the number of
cells in each orientation-tuned ensemble, but
with member neurons randomly selected from
the surrounding population (Fig. 3C, materials
and methods). On randomly interleaved trials
(Fig. 3D), either sine-wave gratings were pres-

ented, or one of the cellular ensembles was
photostimulated (tuned or random ensemble
with comparable photostimulation efficacy) (fig.
S10C, materials and methods). Visual stimulation
was never paired with optogenetic stimulation
within the same trials. Ensemble optogenetic
stimulation drove time-locked responses match-
ing temporal onset and offset of activity in the
naturally occurring (visual stimulus–evoked)
ensembles (Fig. 3E); coactivation of nonstimu-
lated neurons thatweremore likely to be similarly
tuned than orthogonally tuned to the targeted
ensemble was also observed in the surrounding
volume (Fig. 3F and fig. S12A; left, P = 0.025, c2

two-tailed test, n = 20 sessions, n = 4mice). This
indicates that cortically initiated activity in V1
defined by natural visually evoked activity pref-
erentially recruits the corresponding, broader
visual stimulus–tuned network.
To further examine the patterns of neural re-

cruitment in the surrounding network follow-
ing visual or optical stimulation, we developed a
neural decoding approach involving both prin-
cipal components analysis (PCA) and binary
classification (sparse logistic regression) (Fig. 3G;
materials and methods; figs. S10 and S11). From
each experimental animal, we conservatively
identified a subset of the held-out neurons, called
unstimulated neurons, that had never been opto-
genetically stimulated under any experimental
circumstances and also were not within spatial
proximity to any stimulated neuron (materials
and methods; this exclusion protocol was also
applied for Fig. 3F and fig. S12A). This approach
excludedmany neurons [1885 ± 232 (mean ± SD)
neurons, or 46 ± 4% of all neurons in each data-
set, from n = 4 mice) (fig. S10A) but minimized
any risk of including neurons directly stimulated
only by virtue of proximity to optogenetic targets
(figs. S5 and S6). We next examined the single-
trial activity in these unstimulated neurons in
response to each visual stimulus. Only these visu-
ally evoked data from the unstimulated neurons
were used to identify principal component (PC)
vectors and to separately train binary classifiers to
predict stimulus (0° or 90°) from the unstimulated
neurons. These visual-trained PCs and classifiers
were then used to predict stimulus type for all
experimental conditions (visual and tuned or
random optogenetic).
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Fig. 1. ChRmine: Discovery from a marine environment of a class of
opsin suitable for high-fidelity read-write experiments. (A) Genome
mining procedure. (B) Left: type-I opsin genes. Right: opsin subfamilies
(scale bar denotes fractional change in amino acid sequence). (C) Left:
voltage-clamp traces of red-shifted ChRs responding to 1 s of orange light
(585 nm, 0.7 mW/mm2) or red light (650 nm, 0.7 mW/mm2) in cultured
neurons. Right: action spectra in cultured neurons (0.7 mW/mm2; n = 5 to
7 cells/condition, one-way ANOVA with Tukey correction). (D) ChR I-Vcurves,
−70 mV to +60 mV, in HEK cells (n = 5 to 7 cells/condition). (E) Spike
probability versus light-pulse width (at 5 Hz for 2 s, 0.7 mW/mm2; n = 5 to
7 cells/condition, one-way ANOVA, Tukey correction). (F) Spike probability
versus light intensity (at 5 Hz for 2 s, pulse width 5 ms; n = 5 to 7 cells/
condition, one-way ANOVA, Tukey correction). (G) Top: current-clamp
traces. Bottom: ChRmine spike fidelity in response to orange or blue
(438 nm) light (n = 5 cells). (H) Orange light stimulation (ticks) in cultured

neurons expressing GCaMP6m and ChRmine (left), CsChrimson (middle),
or bReaChES (right) at pHext = 7.4. Light-pulse width varied as shown in
blue shades. (I) Peak GCaMP6m responses to light pulses of varied
duration [585 nm light, as in (H)]. (J) Trial-averaged kinetics of three opsins
(n = 5 to 7 cells/condition, one-way ANOVA, Tukey correction). (K) Two-
photon power spectrum of ChRmine across 0 to 30 mW at l = 1035 nm.
(L) Two-photon action spectrum of ChRmine (n = 6 cells, 20 mW,
12 rotations/spiral, 25-mm diameter spirals, 4-ms duration, 80-MHz laser
repetition rate). (M) Left: current-clamp trace showing spike fidelity versus
laser pulse frequency at l = 1035 nm. Right: spike fidelity versus laser
pulse frequency at l = 920 nm (2.8 Hz/frame). (N) Summary of (M), n = 6
cells for stimulation and n = 5 for imaging. (O) Jitter across 10 overlaid
2P-elicited ChRmine spikes (aligned to 2P stimulus timing; l = 1035 nm,
20 mW, 12 rotations, 4-ms exposure). All plots show mean ± SEM unless
otherwise noted. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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The PCA results can be seen in Fig. 3H for two
representative mice (analyzed independently;
top and bottom row). Each individual line in
this panel represents the average 19-frame (6.92-s)
trajectory traversed by the unstimulated neu-
ron population during 0° (blue) and 90° (red)
trial conditions on each experimental day. Fol-
lowing stimulus onset (denoted by bold red or
blue dots), trajectories diverge as a function of
visual stimulus type (left column). Neural tra-
jectories were similar between visual stimulus
and tuned-ensemble optogenetic stimulation
conditions for both 0° and 90° trial types (first
two columns). In contrast, there was no appar-
ent segregation of neural trajectories arising
from random-ensemble stimulation (cells not
selective for either the 0° or 90° visual stimulus;
third column), nor in the absence of stimulation
(fourth column). This segregation of trajectories
among unstimulated-cell ensembles in different
stimulus conditions was reproducible within
individual mice and across mice: the top two
PCs explained most of the variance (76.21 ±
2.09%) in the visually evoked data (fig. S10B;
top four explained 89.96 ± 0.46%). We do not
attribute the different effects of random and
tuned optogenetic stimulation to photoac-
tivation efficacy; we found no significant dif-
ference between the potency of stimulation of
random versus tuned ensembles (P = 0.48, n =
4 mice, paired t test) (fig. S10C; materials and
methods).
The unstimulated neuron population activ-

ity thus encodes the stimulus similarly during
tuned-ensemble stimulation and visual stimu-
lation but not random-ensemble stimulation.
This finding was developed in more quantita-
tive detail with binary classifiers. The classi-
fiers were able to find a sparse set of weights
for the unstimulated neurons to cleanly sep-
arate visual conditions (0° or 90°) (fig. S10, D
to K). By subtracting the trial-averaged fluo-
rescence responses of these neurons during
the 0° visual conditions from those during
the 90° visual conditions, we resolved distinct
groups of cells that exhibited differential re-
cruitment during each visual stimulus (Fig. 3I,
first column). This pattern was largely repro-
duced with tuned optogenetic stimulation (Fig.
3I, second column) but was not seen during
either random-ensemble stimulation or unstimu-
lated activity (Fig. 3I, third and fourth columns;
fig. S11). Together, these results indicate that
population responses among the unstimulated
neurons following tuned-ensemble optogenetic
stimulation resemble those observed during
visual stimulation but are distinct from those
seen during random-ensemble optogenetic
stimulation (Fig. 3J). By examining classifier
prediction accuracy, we found no significant
difference between random-ensemble stim-
ulation and the unstimulated condition (P =
0.46,n = 20 total conditions of each type, pooled
across four mice and five conditions per mouse;
Wilcoxon signed-rank test) (Fig. 3K), whereas
data taken from tuned-ensemble stimulation
conditions yielded predictions superior to those
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Fig. 2. MultiSLM: Large-volume, temporally precise all-optical microscope. (A) Custom multi-
photon 3D imaging and optogenetic stimulation microscope (MultiSLM). Inset: large field-of-view spatial
light modulator (MacroSLM). See materials and methods for abbreviation definitions. (B) Neurons
expressing both GCaMP6m and ChRmine from a single bicistronic virus (green: anti-GFP; magenta:
anti-HA, as HA is conjugated to ChRmine-TS-Kv2.1; co-expression observed in 610 of 610 soma across
nine 40-mm V1 sections from n = 3 mice). (C) Simultaneous imaging and photoexcitation across a
1mm2 field-of-view (160 total targets in six groups of neurons, 90 stimulation pulses at 29 Hz, 20 to
30 mW per target, 10 mm diameter, five revolutions). (D) Photostimulation of two cells (identified
as C1 and C2, mean ± SD), separated by 1.164 mm. (E) Temporal interleaving paradigm for high-speed
photostimulation of multiple neural ensembles. (F) Six nonoverlapping ensembles of 25 to 27 neurons
stimulated every 1 ms, in a 1 kHz sequence (in total, 124 of 160 cells were successfully targeted at this
speed in 5.2 ms, success criteria: mstim − mbaseline > 2sbaseline). (G) Targeting precision; a single neuron
(target iv) can be stimulated in isolation (middle column), or in an ensemble targeted in other trials
(right column). Images share common colorscale, and activity traces are mean ± SD. (H) 3D imaging
with simultaneous optogenetic control across cortical layers; cellular region of interest labels are
enlarged for visualization. (I) Simultaneous excitation of 27 of 30 total targets located across cortical
layers 2/3 and 5 in V1 (30 total targets, 90 stimulation pulses at 30 Hz, 10 to 20 mW/target, single
0.63-ms exposure, 15-mm diameter spiral, eight revolutions). (F) and (I) on common z-score scale.

RESEARCH | RESEARCH ARTICLE
on N

ovem
ber 7, 2019

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


seen with random-ensemble stimulation (P <
0.001, n = 20 conditions of each type, Wilcoxon
signed-rank test) (Fig. 3K).

Recruiting specific percepts at cellular
resolution: Behavioral and physiological
readouts

We trained a separate cohort of mice (n = 7) to
high performance on a Go/No-Go visual dis-
crimination task (Fig. 4, A and B). Each mouse

learned to reliably discriminate high-contrast
(12 to 50%), but not low-contrast (2%), oriented
visual stimuli (Fig. 4C). Neurons responding to
either the Target (0°, Go) or Distractor (90°,
No-Go) stimulus (orientation selectivity index,
OSI > 0.5) were identified in the context of our
task using the same criteria as before. Consistent
with an increase in size, tuning sharpness and/or
reliability of the population representation (33, 34),
this identical procedure resulted in slightly more

neurons in each ensemble compared with the
untrained cohort [39.9 ± 8.5 (mean ± SD)
neurons per trained mouse ensemble versus
30 ± 6.8 neurons per untrained mouse en-
semble, P < 0.05 two-tailed t test].
Two random ensembles (matched in size to

the Go andNo-Go ensembles, respectively) were
defined with the same criteria as for the naïve
cohort. We used the same ensembles on each
subsequent day of the experiment, for each
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Fig. 3. Selective visual network recruitment
by functionally defined–ensemble
stimulation. (A) Schematic of experimental
apparatus. (B) Top row: visual stimuli.
Bottom two rows: neural responses
to visual stimuli were used to define tuned
ensembles for optogenetic stimulation.
(C) Spatial location of neuronal ensembles
identified for stimulation. There are two
tuned ensembles (green, 0° cells; red,
90° cells) and size-matched random
ensembles (magenta, “0°” cells; cyan, “90°”
cells). (D) After ensemble identification,
each group was stimulated without a visual
stimulus present (0% contrast). Ensemble
stimulation trials were randomly interleaved
alongside visual stimulus trials without
optogenetic stimulation. (E) Mean
normalized Ca2+ responses for all neurons
within each selective or random ensemble
during optogenetic stimulation trials
(colored horizontal bars indicate stimulation
time). (F) Locations of tuned neurons
stimulated and recruited for one experimental
session overlaid on average images from
each imaging plane in the volume.
(G) Classifier and neural trajectory analysis
scheme. (H) Unstimulated neurons from
different experimental conditions (visual-only,
tuned-optogenetic only, random-optogenetic
only, or no stimulation) projected into
PC space defined on visual-only data.
Black dots, trial start; red and blue dots,
first frame after visual or optogenetic stimulus
onset. (I) Top two rows: mean 0° and 90°
fluorescence responses in unstimulated neurons,
for one mouse. Left column shows classifier
weight of each neuron. Third row: first row
(0° trials) − second row (90° trials). (J) Top row:
mean fluorescence response of all neurons
included in the classifier analysis during 0°
(lighter lines) and 90° (darker lines) conditions
multiplied by their classifier weights. Error bars
indicate SEM. Bottom row: weighted mean
responses for four mice. Vertical lines indicate
the time interval for training the classifier.
(K) Percent correct prediction performance
of classifiers trained on visual data.
***P < 0.001, ****P < 0.0001; ns, not significant.
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mouse. In each session, 75% of trials were high-
contrast visual stimuli (1 3= as visual-only and 2

3=
as visual-with-optogenetic stimulus) to pro-
mote task engagement and prevent extinction
of the behavioral task. Of the remaining trials,
either no stimulus was presented, or a tuned or
random ensemble was optogenetically stimu-
lated as the sole stimulus (Fig. 4, D to F). On the
optogenetic-stimulation–only trials, mice were
rewarded or punished in an identical manner
to that in the visual-only trials. In this way, lick-
ing behavior during tuned- or random-ensemble
stimulation was consistently rewarded or pun-

ished according to each ensemble’s associated
visual percept.
One of seven mice (mouse 3) correctly dis-

criminated the two tuned-ensemble optogenetic
stimuli (without any visual stimulation) during
the first session (P<0.05, two-tailed Fisher’s exact
test, hit rate versus false alarm rate, n= 22 trials,
d′ sensitivity index = 2.2). For the remaining
animals, we gradually increased the visual con-
trast of the paired visual and optogenetic condi-
tion from 2 to 5% contrast over the course of
several sessions. In these mice, concomitant
optogenetic stimulation of orientation-specific

ensembles succeeded in improving behavioral
discrimination across the contrast ramp, includ-
ing at the perceptual threshold of the animals
(Fig. 4G) [P < 0.05, two-way analysis of variance
(ANOVA), main effect of optogenetic stimula-
tion type, P < 0.01 tuned ensemble stimulation
with visual versus visual-only Tukey post hoc
test, n = 6 of 6 mice that proceeded through
the contrast ramp]. After the conclusion of this
contrast ramp,mice achieved high-performance
discrimination of tuned-ensemble optogenetic
stimulation alone (i.e., with no visual stimula-
tion; P < 0.0001, n = 6 mice, before versus after
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Fig. 4. Eliciting a specific visual percept
through targeting of individually identified
neurons. (A) Experimental apparatus with
reward port. (B) Mice learn to discriminate
vertical versus horizontal gratings in a
Go/No-Go task. (C) Visual discrimination
performance of one mouse (with ≥12% con-
trast, P < 0.05 Fisher’s exact tests, Target
versus Distractor conditions for each
session). (D) Chosen neural ensembles were
stimulated alone and/or with visual stimuli.
(E and F) Top row: normalized mean visual
responses (50% contrast) for Target (0°) and
Distractor (90°) selective ensembles.
Bottom two rows: optogenetic responses for
neurons within tuned (E) and random
ensembles (F). (G) Discrimination performance
during visual stimuli alone (black), paired
with stimulation of random ensembles (blue) or
with tuned ensembles (red) (P < 0.05, two-way
ANOVA, main effect of stimulation type,
P < 0.01 tuned and visual stimulation versus
visual only, Tukey post hoc test, n = 6 mice).
Logit fits are for visualization purposes
only. (H) Discrimination performance of tuned
ensembles before and after the contrast
ramp, the following day (day 2; or third session
for mouse that did not go through the ramp),
and to new ensembles (P > 0.05 all unmarked
pairwise comparisons, ANOVA Tukey post hoc
test; data from n = 7 mice included for each
condition on the basis of availability of data in
each mouse). (I) Format matches (H) for
random ensembles [P > 0.05 all unmarked
pairwise comparisons; dotted lines indicate
chance; tuned, random, and no-stimulation
trials were randomly interleaved within each
session; the same no-stimulation data were
used in both (H) and (I)]. (J and K) Recruitment
in held-out populations during optogenetic-only
stimulation before contrast ramp training
(tuned ensemble stimulation: P < 0.05, c2 two
tailed test, n = 6 sessions in five mice; random:
P > 0.1, c2 two-tailed test, n = 6 sessions in
five mice). (L and M) Held-out recruitment
during optogenetic stimulation after contrast
ramp training (tuned: P < 0.0001, iso versus
orthogonally tuned, c2 two-tailed test, n = 15
sessions in five mice; random: P < 0.0001,
c2 two-tailed test, n = 13 sessions in five mice).
(N) Held-out iso-tuned recruitment during optogenetic stimulation after versus before contrast ramp for tuned and random ensembles (P < 0.0001,
all c2 two-tailed). *P < 0.05, **P < 0.01, ****P < 0.0001, error bars indicate mean ± SEM in (G).
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contrast ramp; and tuned ensemble after ramp
versus no optogenetic stimulation, P < 0.0001
overall effect across stimulation conditions in
Fig. 4H, ANOVA with Tukey post hoc tests; six
of sixmice significantly discriminated the tuned
ensembles to at least P < 0.05 two-tailed Fisher’s
exact test in the first two sessions; four of six
mice were significant P < 0.01 on the first day
after the ramp). Tuned-ensemble discrimina-
tion behavior was stable on the second day af-
ter the contrast ramp (P < 0.0001, n = 5 mice,
including the thirdmouse 3 session, day 2 versus
no optogenetic stimulation and versus after ramp,
ANOVA with Tukey post hoc tests).
The observed high-performance discrimina-

tion of optogenetic ensembles defined on the
basis of visual-response properties raises the
question of whether discrimination perform-
ance might generalize upon stimulation of other,
similarly defined, ensembles. To test this, we
sampled a unique V1 population (changing the
origin of our z axis byDz = 30 mm) and identified
new populations of tuned-ensemble cells (de-
fined according to their 0° and 90° responses,
exactly following the original criteria). These
ensembles had never been directly optogeneti-
cally stimulated in previous experiments but
did share the same visual-tuning characteristics
of the original ensembles. We designated new
sets of random ensembles to match these tuned
ensembles and advanced immediately to the
ensemble and/or high-contrast visual discrimi-
nation task without an additional contrast ramp.
All mice that progressed through to this subse-
quent protocol (n = 3mice) were able to correctly
abstract the tuned-ensemble optogenetic stimu-
lus and discriminate these new ensembles (P <
0.0001 Fisher’s exact tests, n = 1 to 2 sessions).
We repeated our new ensembles experiment in
an additional mouse with one specific change
to the experimental protocol: never pairing the
optogenetic activation of the new tuned or ran-
dom ensembles with visual stimuli on any trial.
Our results when removing this pairing with any
visual conditions yielded similar results to those
seen in the other mice (P < 0.05 Fisher’s exact
test, n = 28 trials from n = 2 sessions). Overall,
mice could generalize tuned-ensemble stimu-
lation discrimination behavior with high per-
formance (Fig. 4H) (P < 0.0001, new ensemble
versus no stimulation; P > 0.99, day 2 and after
versus new ensembles; ANOVAwith Tukey post
hoc tests).
Results were more variable for random-

ensemble stimulation across mice, with only
one of six mice significantly discriminating ran-
dom ensembles immediately after the contrast
ramp (P < 0.0001 Fisher’s exact test; P = 0.14
after versus no stimulation, P = 0.37 after versus
before, n = 6 mice, P < 0.01 main effect of opto-
genetic stimulation type across all conditions
in Fig. 4I, ANOVA with Tukey post hoc tests;
mouse 3 could discriminate random ensembles
over the course of its second session, P < 0.0001
Fisher’s exact test, n = 22 trials). Tuned-ensemble
stimulation drove higher performance across
mice than did the random-ensemble stimulation

(P < 0.01, two-tailed paired t test, n = 7 mice).
This result might be partly explained by the
relative efficacy of random stimulation: here,
we found that, in contrast to the naïve cohort,
a higher fraction of neurons within tuned en-
sembles were confirmed to be activated by opto-
genetic stimulation than with random ensembles
(fig. S12D) (P < 0.001, paired t test, n = 3 mice,
materials and methods). In the next session (or
the third mouse 3 session), the population ef-
fect for random-ensemble discrimination was
significant compared with no stimulation and,
after the contrast ramp, driven by the subset of
mice that had learned the discrimination (Fig.
4I) (P < 0.01 and P < 0.05, respectively, n = 7
mice, ANOVA with Tukey post hoc test; a third
mouse out of seven eventually learned to dis-
criminate the random ensembles; P < 0.001
Fisher’s exact test data from n = 5 sessions).
Unlike behavior for new tuned ensembles (Fig.
4H, above), mice could not generalize their dis-
crimination performance from the trained ran-
dom ensembles to new random ensembles within
the same sessions (Fig. 4I) (P < 0.05 day 2 versus
new ensembles and P < 0.01 day 2 stimulation
versus no stimulation, P = 0.97 new ensembles
versus no stimulation, ANOVA with Tukey post
hoc tests, n = 4 mice, including two out of three
mice that learned to discriminate the first ran-
dom ensembles; new random-ensemble trials
interleaved with new tuned-ensemble trials in
same sessions).
Five of the seven mice advanced to additional

experiments (see below) and were used for all
neural analyses. We asked what effects the pair-
ing of visual stimuli with optogenetic ensemble-
stimulationmight have on specific visual circuit
dynamics (Fig. 4, J to N). To perform this anal-
ysis, we examined neurons for each experiment
day that were never stimulated (and thus were
not part of the original tuned ensemble from
day 1) but responded selectively to one of the two
visual stimuli (OSI > 0.5) on that day and also
responded reliably during ensemble-only stim-
ulation (Wilcoxon signed-rank test comparing
baseline and sample window periods, materials
and methods). This analysis defined iso-tuned
and ortho-tuned co-active populations based
on the relative tuning (or designated for 0° or
90° for the random ensembles) of the stimulated
ensemble. All of these local network recruitment
analyses used only data from each trial after
stimulus onset but before any reward or punish-
ment was delivered (materials and methods).
Whereas selective recruitment of iso-tuned pop-
ulations was observed for tuned-ensemble stim-
ulation before the contrast ramp in trained mice
(Fig. 4J) (P < 0.05, c2 two-tailed test, n = 6
sessions in fivemice), as in naïvemice (fig. S12A),
random-ensemble stimulation did not recruit
visual-percept–specific populations (Fig. 4K)
(P = 0.87, c2 two-tailed test, n = 6 sessions in
five mice). Comparing recruitment of tuned
networks in our trained versus naïve cohorts,
we observed that learning the visual task alone
enhanced specific network recruitment in re-
sponse to visual stimuli (fig. S12A, right) (P <

0.05; c2 two-tailed test, n = 20 sessions in four
naïve mice). After the contrast ramp experiments,
tuned ensemble stimulation much more power-
fully recruited the iso-tuned population (Fig. 4L)
(P < 0.0001, c2 two-tailed test: iso-tuned versus
orthogonally tuned, n = 15 sessions in five mice;
P < 0.0001, c2 two-tailed test before versus after
the contrast ramp, same sessions as random-
ensemble stimulation). Similarly, random-ensemble
stimulation after the ramp training preferentially
recruited the iso-tuned populations that they
were pairedwith during the ramp (Fig. 4M) (P <
0.0001, c2 two-tailed test versus orthogonally-
tuned). The magnitude of iso-tuned population
recruitment also increased after versus before
contrast ramp experiments (Fig. 4N) (P < 0.0001,
c2 two-tailed test), which is consistent with the
newly learned ability of specific mice to perform
random-ensemble discrimination (e.g., mouse 5,
orange points in Fig. 4, M and N, was the best
performer in Fig. 4I after ramp). Still, tuned-
ensemblesweremuchmore effective at recruiting
iso-tuned populations than random ensembles
(Fig. 4N) (P < 0.0001, c2 two-tailed test).
We explored the stability of behavioral per-

formance to both visual and optogenetic stimuli
after the contrast ramp in these same five mice
(Fig. 5 and figs. S12 to S14). Mice continued to
discriminate both visual and optogenetic stimuli
with high performance over the course of many
weeks (Fig. 5A) (109 of 112 visual and 107 of 112
tuned-ensemble sessions with P < 0.05 hit rate
versus false alarm rate, two-tailed Fisher’s exact
tests). Behavioral performance was nearly iden-
tical for discriminating visual orientations and
optogenetic ensembles (Fig. 5B) [91.12 ± 0.75%
correct versus 89.47 ± 0.78% correct (mean ±
SEM), respectively, P = 0.13, two-tailed paired
t test, n = 112 sessions across five mice].

Both naturally and optogenetically
recruited ensembles support behavior

Analyzing all sessions after contrast ramp, we
measured recruitment of iso-tuned and orthog-
onally tuned neurons and identified coactive
neurons among the unstimulated population
during optogenetic-only stimulus (Fig. 5C).
Iso-tuned neurons were much more likely to
be recruited than orthogonally tuned neurons
(Fig. 5D) (P < 0.0001, c2 two-tailed test, data
from n = 58 sessions in five mice). Iso-tuned
population recruitment also increased with
the number of neurons stimulated (Fig. 5E)
(Spearman’s r = 0.34, P < 0.001, n = 116 data
points across five mice). Recruitment of orthog-
onally tuned neurons, however, decreased in
probability as the number of stimulated neurons
increased (Fig. 5E) (Spearman’s r=−0.24, P <
0.01, n = 116 data points across five mice). Thus,
selective recruitment was generally much more
robust than orthogonal recruitment across all
conditions tested (Fig. 5E) (P < 0.0001, Fisher’s
z transformation).
We further analyzed the activity evoked in

unstimulated neurons (materials and methods;
fig. S12B; see Fig. 3G). As with the naïve cohort,
we identified PC vectors using data taken during
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the visual-only stimuli and used these PC dimen-
sions to project all of the experimental condition
types (Fig. 5F). The first two PCs explained the
majority of the variance (67.97 ± 4.56%, mean ±
SEM) (fig. S12C). Neural trajectories during both
visual and tuned-optogenetic stimulation closely
matched each other, with the Target and Dis-
tractor trajectories separating upon stimulation
onset (dark blue or red dot, imaging frame after
stimulus onset), and exhibited far less separa-
tion during random-ensemble stimulation (e.g.,

no separation detectable inmouse 1) (Fig. 5F, top
row, third column) and only slight separation in
mouse 3 (Fig. 5F, bottom row, third column)—a
mouse that, notably, learned to reliably discrim-
inate random ensembles.
The PCs that we used to plot our neural tra-

jectories appear to primarily describe visual in-
formation rather than behavioral state. This is a
critical distinction because behavioral task en-
gagement can modulate activity in V1 (35–37),
potentially confounding our interpretation. How-

ever, the neural trajectories from sessions where
the mouse performed the incorrect licking be-
havior >50% of the time were indistinguishable
from trajectories in sessions with high perform-
ance (see Fig. 5F, left two columns, dark blue and
red lines correspond to these low-performance
conditions). This result revealed the indepen-
dence of the V1 trajectories from strictly motor-
or action decision–related effects and supports
the interpretation that they represent sensory
or perceptual information.
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Fig. 5. Dynamics of tuned and behaviorally
potent visual ensembles. (A) Discrimination
performance during visual-only stimulation
(black) and tuned-ensemble stimulation (red)
over several weeks (mean ± SEM for up to five
mice per time point). (B) Discrimination
performance for tuned-ensemble stimulation
versus visual trials (12% visual contrast
behavior shown, left, P > 0.1 paired t test,
two-tailed, n = 112 sessions across five mice;
error bars indicate SD). (C) Locations of
tuned neurons stimulated and held-out
recruited neurons for one experimental session
(scale bars, 100 mm). (D) Recruitment in
held-out populations during optogenetic-only
stimulation across all experimental days
(iso- versus ortho-tuned, P < 0.0001, c2 two-
tailed test; n = 58 sessions in five mice; mice
are different colored dots). (E) Recruitment
in held-out populations as differently sized
ensembles were stimulated (n = 232 data points
from 58 sessions in five mice; iso-tuned in
green, mean ± SEM, Spearman’s r = 0.34,
P < 0.001, n = 116 data points; ortho-tuned in
magenta, mean ± SEM, Spearman’s r = −0.24,
P < 0.01, n = 116 data points). (F) Unstimulated
neurons from different experimental conditions
(visual-only, tuned-optogenetic only, random-
optogenetic only, or no stimulation) projected
into PC space defined on visual-only data. Black
dots, trial start; red and blue dots, first frame
after visual or optogenetic stimulus onset.
Dark, bold trajectories denote conditions with
erroneous licking behavior on average. (G) Top
two rows: Mean target (0°) and distractor
(90°) fluorescence responses in unstimulated
neurons, for one mouse. Left column shows
classifier weight of each neuron. Third row: first
row (target trials) − second row (distractor
trials). Bottom row: results from another mouse.
(H) Top row: mean fluorescence response of
all neurons included in the classifier analysis during
0° (lighter lines) and 90° (darker lines) conditions
multiplied by their classifier weights. Error bars
indicate SEM. Bottom row: weighted mean
responses for all five mice. Vertical lines indicate
time interval for training the classifier. (I) Behavioral
performance versus decoding performance of
classifiers trained on visual-only data. Error bars
indicate SEM across sessions.
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A binary classifier was trained on unstimu-
lated neuron data taken from two frames after
visual stimulus onset but before reward (fig. S12,
E to N). The learned classifier weights corre-
sponded to neurons with selective responses for
the 0° or 90° visual stimuli. These same neurons
were selectively recruited by their corresponding
optogenetic ensembles (Fig. 5G; three addi-
tional mice shown in fig. S13). This result is
consistent with a model where the similarity of
neural representations across visual-only and
tuned-ensemble stimuli reveals the formation
of a similar percept. The fact that the magnitude
of the recruited population response is larger
during tuned-optogenetic versus visual stim-
ulation is consistent with behavioral training
enhancing network recruitment of iso-tuned
neurons and may explain how random-ensemble
stimulation could yield population responses
that weakly discriminate condition type (Fig. 5,
F to H, bottom row, third column in each of those
three panels). In contrast, random-ensemble
stimulation never evoked a large population
response in naïve animals (Fig. 3, H to K, and
fig. S11).
We identified a high correlation betweenmouse

behavior and ensemble classifier performance
across mice and condition type (Fig. 5I) (squared
Pearson’s correlation, R2 = 0.66, P < 0.0001).
Both classifier and behavioral data operated near

saturation on real visual data, and on tuned-
ensemble stimulation conditions. In contrast,
random-ensemble stimulation resulted in lower
neural and behavioral discrimination.

Quantitative circuit architecture
underlying layer-specific perceptual
thresholds

In a subset of trials, we stimulated subsets of
neurons selected at random from the original
tuned ensembles, recapitulating our discrimi-
nation experiments as a function of ensemble
size and laminar position. Stimulating only layer
2/3 tuned ensembles led to selective recruitment
of iso-tuned neurons in both layer 2/3 and layer
5, with stronger recruitment occurring in layer
2/3 (Fig. 6A) (P < 0.0001 for all comparisons:
recruited iso-tuned versus ortho-tuned neurons,
and in layer 2/3 versus layer 5, c2 two-tailed
tests). Increasing the number of neurons stimu-
lated in layer 2/3 led to an increase in the frac-
tion of coactive iso-tuned cells in both layer 2/3
and layer 5 (Fig. 6B) (Spearman’s r =0.46,P<0.01,
n = 46 data points, in layer 2/3; r = 0.51, P <0.01,
n = 36 data points, in layer 5; P = 0.78 two-tailed
Fisher’s z transformation comparing r values).
In contrast, stimulating only layer 5 tuned

ensembles led to selective recruitment in layer
5 but did not lead to robust recruitment in
layer 2/3. Layer 5 to layer 2/3 recruitment was

not visual-percept selective (Fig. 6C) (P < 0.0001,
iso versus ortho tuned in layer 5, and layer 5
versus layer 2/3 iso tuned, c2 two tailed tests;
recruitment in layer 2/3 was not significantly
different between iso- and ortho-tuned pop-
ulations, P = 0.58, c2 two-tailed test). As the
number of neurons stimulated increased in
layer 5, a greater fraction of iso-tuned neurons
in the surrounding population was recruited in
layer 5 but not layer 2/3 (Fig. 6D) (Spearman’s
r = 0.62, P < 0.01, n = 24 data points for layer 5
recruitment; r = 0.19, P = 0.38, n = 24 data
points for layer 2/3 recruitment), and the cor-
relation was stronger for layer 5 than even the
weak positive trend for layer 2/3 (Fig. 6D) (P <
0.05, Fisher’s z transformation).
Stimulating the original tuned ensembles

across layers led to selective recruitment in
both layer 2/3 and layer 5, with the strongest
iso-tuned recruitment in layer 5 (fig. S15A, P <
0.0001 all comparisons shown between iso ver-
sus ortho tuned and layer 2/3 versus layer 5, c2

two tailed tests). Furthermore, increasing the
number of stimulated layer 5 neurons more
rapidly recruited higher proportions of iso-tuned
layer 5 neurons when compared with recruitment
of iso-tuned layer 2/3 neurons upon increasing
layer 2/3 neuron stimulation (fig. S15B) (P <
0.01, analysis of covariance, controlling for the
covariate of number stimulated).
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Fig. 6. Circuit architecture underlying layer-specific perceptual
thresholds. (A) Recruitment in held-out populations during optogenetic
stimulation of only tuned layer 2/3 neurons (c2 two-tailed test results
shown). (B) Recruitment in held-out iso-tuned populations as a
function of the number of layer 2/3 neurons stimulated (Spearman’s
r = 0.46, P < 0.001 for layer 2/3; Spearman’s r = 0.51, P < 0.0001
for layer 5; n = 46 experiments in five mice, P > 0.1, Fisher’s z
transformation comparing r values; logit fits for visualization only).

(C and D) Format matches (A) and (B) but during stimulation of
only tuned layer 5 neurons. (E and G) Psychometric functions fit to
predictions derived from classifiers trained on either neural or
behavioral data pooled over five mice. (F and H) Data from panels
(E) and (G) re-plotted for ensemble sizes used to compute two-way
ANOVA results, where comparable numbers of neurons were stimulated
(P < 0.01 for classifier data, P = 0.023 for behavioral data, main effect
of layer). *P < 0.05, **P < 0.01, ****P < 0.0001.
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These layer-specific results indicate selective
functional connectivity within layer 2/3, to a
greater extent within layer 5, and from layer 2/3
to layer 5. Strong functional connectivity ismark-
edly lacking from layer 5 to layer 2/3, and func-
tional effects of that projection appear nonspecific
in terms of the visual-percept information in-
vestigated here. Over all layer-specific and full,
original-ensemble stimulation conditions, we
found a strong, rapid increase in the fraction of
recruited iso-tuned neurons across the cortical
volume as the number of stimulated neurons
increased (fig. S16) (Spearman’s r = 0.71, P <
0.0001, n = 186 data points; combining data
shown in Fig. 5E and full-volume, across-layers
recruitment data corresponding to the experi-
ments shown in Fig. 6, A to D).
We next examined the relationship between

the size and laminar location of the tuned-
ensemble stimulus and its consequences on both
the recruited population and behavior. Using the
binary classifiers operating on unstimulated cells
revealed that, across subjects, there was a critical
number of stimulated neurons required for re-
cruiting a robust population response, driving
high discrimination performance (Fig. 6, E and
F; for psychometric curve fitting, see materials
and methods and fig. S15, C to G). Once ~20 iso-
tuned neurons were stimulated, we found that
classifier performance saturated at nearly 100%,
indicating that ensembles of this order drive
specific network dynamics that are above a
threshold necessary for high-performance dis-
crimination. Importantly, we found similar results
when analyzing aggregate behavioral perform-
ance (Fig. 6, G and H). Together, these results
suggest that beyond this threshold of activity
in only a few tens of neurons, network ampli-
fication mechanisms reliably carry signals outside
of V1 to drive specific behavior.
Comparison of the psychometric curves sug-

gested that layer 5 neurons may be more potent
at driving neural discrimination than layer 2/3
neurons. We therefore restricted our analysis to
experiments with comparable tuned-ensemble
sizes, comparing the effect of laminar position
on the ability to influence classifier perform-
ance (Fig. 6F) or animal behavior (Fig. 6H). In
each case, equivalent numbers of layer 5 neurons
were more successful at driving high perform-
ance (F1,49 = 8.11, P < 0.01 for the classifier data;
F1,49 = 5.47, P = 0.023 for behavioral data, main
effect of layer). To assess the minimum ensem-
ble size for discrimination, we carried out fur-
ther experiments in the two most sensitive mice.
Both mice could discriminate two neurons per
ensemble in layer 5 with high performance (d′ =
2.12 and d′ = 1.34, P = 0.037 and P = 0.036, two-
tailed Fisher’s exact test, n = 24 and 23 trials
for each mouse, respectively). We did not find
significant behavioral discrimination results
stimulating single neurons in any mice.

Discussion

We found that when small subsets of visual
stimulus–specific tuned ensembles were suffi-
ciently activated in mouse V1, selective but

widespread activation was observed across the
broader network and concomitant behavioral
performance resulted. The specific recruitment
of tuned ensembles was seen in naïve mice but
increased with learning of a visual task and
was further heightened by optogenetic drive of
percept-selective tuned subsets during discrim-
ination behavior. Optogenetic stimulation of
tuned ensembles in layer 5 was more potent
than that in layer 2/3 at eliciting percept-
selective network recruitment as well as the
correct behavior, with interlaminar recruit-
ment favored from superficial to deep layers.
With repeated optogenetic excitation of ran-
dom ensembles during behavioral training with
paired visual stimuli, nontuned cells could be-
come linked into the visual percept–specific
ensembles. These random ensembles could
subsequently drive the corresponding behav-
ior, consistent with candidate Hebbian mech-
anisms for circuit plasticity underlying learning
(19, 20, 38, 39). Behavioral and neural decoding
results (in both trained and naïve mice) suggested
the optogenetic excitation of each tuned ensem-
ble (0°/90°) triggered a percept closer to their cor-
responding visual stimulus than the opposing
one. This was supported by our finding that mice
could generalize and immediately discriminate
optogenetic excitation of held-out, visual percept–
selective ensembles and behave correctly.
The volumetric all-optical approach used

here revealed numerous cortical functional-
architecture insights relating to visual percep-
tion in the behaving mammal. Monosynaptic
and reciprocally connected subnetworks of sim-
ilarly tuned neurons in layer 2/3 of mouse V1
have been recently reported, using ex vivo paired
recording and electron microscopy connectomic
studies of nearby cells (7, 9–11). The specific
recruitment that we observe within layer 2/3
in vivo may depend on this wiring architecture.
A recent study of the relationship between ori-
entation tuning and monosynaptic input to
layer 2/3 V1 neurons (8, 40) also found that
layer 2/3 inputs to a layer 2/3 pyramidal cell tend
to be similarly tuned with the postsynaptic cell.
Conversely, inputs from layer 5 to the layer 2/3
cell were more likely, on average, to prefer a dif-
ferent orientation than the postsynaptic neuron
[also see (41)]—consistent with our findings that
layer 5–to–layer 2/3 recruitment was not tuning-
specific. Themore robust tuned-ensemble recruit-
ment of layer 5 versus layer 2/3 that we observed
may expose a circuit for recruiting corticocortical
and corticostriatal output neurons (42, 43) key
for behavior, perhaps leveraging high reciprocal
connectivity of striatum-projecting layer 5 neu-
rons that has been observed in other sensory
cortical areas (44).
Stimulation of a critical number of selectively

tuned V1 neurons both recruited a substantial
fraction of the iso-tuned ensemble and supported
high performance behavioral discrimination.
To further explore features of V1 architecture
that could permit critically excitable network
recruitment and avoid frequent spontaneous
widespread excitation (i.e., false percepts re-

sulting from spontaneous activity), we devel-
oped an analytic theory (see supplementary
text). We first estimated the minimum num-
ber of stimulated neurons that could trigger
widespread dynamics like those found here
to be associated with a percept under biolog-
ically plausible assumptions about the total size
of individual subnetworks that share common
orientation tunings, spontaneous firing rates,
and single-neuron integration times. This theo-
retical lower limit for this threshold revealed
that V1 circuitry may operate in a regime con-
sistent with our experiments that is as sensitive
as possible to external stimulation, while still
avoiding spontaneously driven false-positive
percepts. To provide proof-of-principle support
for this theory, we constructed a networkmodel
(see supplementary text, fig. S17) for an iso-
tuned ensemble of N excitatory and inhibitory
neurons, whose connectivity could be critically
tuned to achieve both high sensitivity to exter-
nal inputs, with external stimulation of only
Oð ffiffiffiffi

N
p Þ neurons required to yield a response

in O(N) neurons, yet still admit a stable state
of low spontaneous activity. Thus, our theory
builds on our experimental findings to reveal
that V1 might operate in a critically excitable dy-
namic regime that simultaneously enables highly
sensitive amplification of external stimulation,
low spontaneous activity rates, and low excita-
tion thresholds for reliably triggering percepts.
Our experimental results suggest that opto-

genetically evoked percepts likely resembled cor-
responding visual percepts sufficiently to recruit
the corresponding naturalistic visual-like neural
dynamics and support robust and generalizable
discrimination behavior. Nevertheless, mice ini-
tially required some training involving paired
optogenetic and visual stimuli before optogenetic
activation alone sufficed to drive behavioral dis-
crimination. Full natural visual percepts (espe-
cially beyond responses to simple drifting grating
stimuli) may require activation of diverse cortical
and subcortical brain areas (45–47), with patterns
that span greater retinotopic, functional, and/or
temporal dimensions than explored here. Under-
standing which patterns of V1 stimulation recruit
higher visual areas (48–52) and reverberating ac-
tivation of parietal and prefrontal cortical areas,
as hypothesized for visual perception (1–3), is also
a necessary next step.
Our results also revealed an intricate link be-

tween plasticity and performance on a learned
perceptually guided task, building on intrinsic
features of V1 seen in behaviorally naïve mice.
Future studies are thus needed to further ex-
plore the broad space of possible spatiotemporal
parameters that can be used to write in single-
neuron activity and of behavioral paradigms that
can be designed to further study perceptual and
learning-related mechanisms. These outcomes
will permit detailed studies of the plasticity
mechanisms underlying learning—and of the
elements of neural activity that are required to
drive specific perceptual experiences.
The MultiSLM approach readily allows ex-

panding the addressable field of view in tandem
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with wide-field mesoscopic imaging methods
[e.g., via spatial tiling; see supplementary text
and figs. S18 and S19; (53)]. Such investigation
of broader networks over multiple areas will be
further enabled by the sensitivity and potency
of ChRmine in allowing safe and effective op-
tical recruitment of large ensembles of individ-
ually defined cells. Improvements in temporal
resolution and signal-to-noise ratio of next-
generation optical sensors may help further
advance precise emulation of observed large-
scale network activity, leveraging the kilohertz
and millisecond resolution of MultiSLM and
ChRmine optogenetic stimulation. Integration
with advanced, deep cellular-resolution readouts
such as gradient-index lenses and Neuropixels
electrodes (54, 55) may also enable assessment
of relevant subcortical circuits. These findings
(54, 55), as well as the present study, reveal that
properly targeted optogenetics recruits natu-
ralistic cell ensembles and brain dynamics—
whether at the level of local microcircuits [(54)
and present study], regional circuits (present
study), or global brainwide dynamics (55).
Studying specific sensory experiences with

ensemble stimulation under different conditions
may help advance development of therapeutic
strategies, for neural prosthetics (56, 57) as well
as for neuropsychiatric symptoms such as hallu-
cinations or delusions. More broadly, the ability
to track and control large cellular-resolution en-
sembles over time during learning, and to se-
lectively link cells and ensembles together into
behaviorally relevant circuitry, may have impor-
tant implications for studying and leveraging
plasticity underlying learning and memory in
health and disease.

Materials and methods summary

All animal procedures followed animal care
guidelines approved by Stanford University’s
Administrative Panel on Laboratory Animal Care
(APLAC) and guidelines of the National Insti-
tutes of Health. ChRmine was discovered and
then characterized using structure-guided ge-
nome mining followed by single- and multi-
photon electrophysiology experiments. Mice
were injected with a single bicistronic virus
encoding both ChRmine and the Ca2+ indicator
GCaMP6m. The MultiSLM microscope was used
to read and write neural activity throughout a
volume of visual cortex. Both naïve mice and
mice trained on a Go/No-Go visual discrimi-
nation task were habituated on the MultiSLM.
Ca2+ imaging data obtained using the MultiSLM
were analyzed to identify neurons tuned to visual
cues. Mice performed the discrimination task
with visual-only cues and/or optogenetic stimu-
lation of the tuned ensembles. Unstimulated neu-
rons from the Ca2+ imaging data were processed
for neural circuit recruitment analyses. Detailed
procedures for the experiments and data analyses
are described in the supplementary materials.
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