Efficient Low-Redundancy Codes for
Correcting Multiple Deletions

Joshua Brakensiek,

Abstract—We consider the problem of constructing bi-
nary codes to recover from k-bit deletions with efficien-
t encoding/decoding, for a fixed k. The single deletion
case is well understood, with the Varshamov-Tenengolts-
Levenshtein code from 1965 giving an asymptotically opti-
mal construction with ~ 2" /n codewords of length n, i.e.,
at most log n bits of redundancy. However, even for the case
of two deletions, there was no known explicit construction
with redundancy less than M,

For any fixed &, we construct a binary code with c; logn
redundancy that can be decoded from £k deletions in
Ox(nlog*n) time. The coefficient ¢, can be taken to be
O(k*logk), which is only quadratically worse than the
optimal, non-constructive bound of O(k). We also indicate
how to modify this code to allow for a combination of up
to k insertions and deletions.

We also note that among linear codes capable of correct-
ing k deletions, the (k+ 1)-fold repetition code is essentially
the best possible.

I. INTRODUCTION

A k-bit binary deletion code of length IV is some set
of strings C' C {0,1}"V so that for any c;,cy € C, the
longest common subsequence of c¢; and ¢, has length
less than N — k. For such a code, a codeword of C can
be uniquely identified from any of its subsequences of
length N —k, and therefore such a code enables recovery
from k adversarial/worst-case deletions.

This paper was presented at the 2016 ACM-SIAM Symposium on
Discrete Algorithms (SODA), January 2016 [1].

J. B is with the Department of Mathematical Sciences,
Carnegie Mellon University, Pittsburgh, PA 15213, USA. Email:
josh.brakensiek@gmail.com. Research supported in part by
REU supplements to NSF CCF-0963975 and CCF-1422045.

V. G is with Computer Science Department, Carnegiec Mellon
University, Pittsburgh, USA. guruswami@cmu.edu. Research sup-
ported in part by the US National Science Foundation grants CCF-
1422045 and CCF-1563742.

S. Z was with the Department of Mathematical Sciences, Carnegie
Mellon University, Pittsburgh, PA 15213, USA, when this work was
done. Email: zbarskysam@gmail.com.

Copyright (© 2017 IEEE. Personal use of this material is per-
mitted. However, permission to use this material for any other pur-
poses must be obtained from the IEEE by sending a request to
pubs-permissions@ieee.org

Venkatesan Guruswami,

and Samuel Zbarsky

In this work, we are interested in the regime when k is
a fixed constant, and the block length N grows. Denoting
by del(N, k) the size of the largest k-bit binary deletion
code of length N, it is known that
N 2N
< del(N,k) < Ay (M

for some constants a; > 0 and A < oo depending only
k [2]. New upper bounds on code size for a fixed number
of deletions that improve over [2] were recently obtained
in [3].

For the special case of £ = 1, it is known that
del(N,1) = ©O(2%/N). The Varshamov-Tenengolts
code [4] defined by

{(xl,.

N
D iri=0 (mod (N + 1))} 2)

Ak N2k

cxn) € {0, 13|

is known to have size at least 2"V /(N + 1), and Leven-
shtein [2] shows that this code is capable of correcting a
single deletion. An easy to read exposition of the deletion
correcting property of the VT code can be found in the
detailed survey on single-deletion-correcting codes [5].

The bound (1) shows that the asymptotic number of
redundant bits needed for correcting k-bit deletions in an
N-bit codeword is ©(klog N) (i.e., one can encode n =
N — ©(klog N) message bits into length N codewords
in a manner resilient to k deletions). Note that the codes
underlying this result are obtained by an exponential time
greedy search — an efficient construction of k-bit binary
deletion codes with redundancy approaching O(k log N)
was not known, except in the single-deletion case where
the VT code gives a solution with optimal log N + O(1)
redundancy.

The simplest code to correct k worst-case deletions is
the (k + 1)-fold repetition code, which simply repeats
each bit (k 4+ 1) times, mapping n message bits to
N = (k + 1)n codewords bits. It thus has 2N
redundant bits. A generalization of the VT code for the

case of multiple deletions was proposed in [6] and later

proved to work in [7]. These codes replace the weight @
given to the ¢’th codeword bit in the check constraint of
the VT code (2) by a much larger weight, which even for
the £ = 2 case is related to the Fibonacci sequence and
thus grows exponentially in 7. Therefore, the redundancy
of these codes is (V) even for two deletions, and
equals c; N where the constant ¢y — 1 as k increases.
Some improvements were made for small £ in [8],
which studied run-length limited codes for correcting
insertions/deletions, but the redundancy remained Q (V)
even for two deletions.

Allowing for ©(N) redundancy, one can in fact
efficiently correct a constant fraction of deletions, as
was shown by Schulman and Zuckerman [9]. This
construction was improved and optimized recently in
[10], where it was shown that one could correct a fraction
¢ > 0 of deletions with O(y/CN) redundant bits in the
encoding. One can deduce codes to correct a constant k
number of deletions with redundancy Oy (v/N)! using
the methods of [10] (we will hint at this in Section I-B).

In summary, despite being such a natural and ba-
sic problem, there were no known explicit codes with
redundancy better than /N even to correct from two
deletions. Our main result, stated formally as Theorem 1
below, gives an explicit construction with redundancy
Oy (log N) for any fixed number k of deletions, along
with a near-linear time decoding algorithm.

For simplicity, the above discussion focused on the
problem of recovering from deletions alone. One might
want codes to recover from a combination of dele-
tions and insertions (i.e., errors under the edit distance
metric). Levenshtein [2] showed that any code capable
of correcting k deletions is in fact also capable of
correcting from any combination of a total of k insertions
and deletions. But this only concerns the combinatorial
property underlying correction from insertions/deletions,
and does not automatically yield an algorithm to recover
from insertions/deletions based on a deletion-correcting
algorithm. For our main result, we are able to extend
our construction to efficiently recover from an arbitrary
combination of worst-case insertions/deletions as long as
their total number is at most k.

A. Our result

In this work, we construct, for each fixed k, a binary
code of block length N for correcting k insertion-
s/deletions on which all relevant operations can be done

'We use the notation Oy, to indicate that the constant may depend
on k.

in polynomial (in fact, near-linear) time and that has
O(k?log klog N) redundancy. We stress that this is the
first efficient construction with redundancy smaller than
NOM even for the 2-bit deletion case. For simplicity of
exposition, we go through the details on how to construct
an efficient deletion code, and then indicate how to
modify it to turn it into an efficient deletion/insertion
code.

Theorem 1. Fix an integer k > 2, For all suffi-
ciently large n, there exists a code length N < n +
O(k?logklogn), an injective encoding map Enc
{0,1}" — {0,1} and a decoding map Dec
{0,1}N=F — {0,1}" U {Fail} both computable in
Ok(n(logn)*) time, such that for all s € {0,1}" and
every subsequence s' € {0,1}N~F obtained from Enc(s)
by deleting k bits, Dec(s’) = s.

Note that the decoding complexity in the above result
has a FPT (fixed-parameter tractable) type dependence
on k, and a near-linear dependence on n.

Our encoding function in Theorem 1 is non-linear.
This is inherent; in Appendix A we give a simple
proof that among linear codes capable of correcting k
deletions, the (k + 1)-fold repetition code is essentially
the best possible.

B. Our approach

We describe at a high level the ideas behind our con-
struction of k-bit binary deletion codes with logarithmic
redundancy. The difficulty with the deletion channel is
that we don’t know the location of deletions, and thus
we lose knowledge of which position a bit corresponds
to. Towards identifying positions of some bits in spite
of the deletions, we can break a codeword into blocks
ai,asg,...,a, of length b bits each, and separate them
by introducing dummy buffers (consisting of a long
enough run of 0’s, say). If only k bits are deleted, by
looking for these buffers in the received subsequence, we
can identify all but O(k) of the blocks correctly (there
are some details one must get right to achieve this, but
these are not difficult). If the blocks are protected against
O(k) errors, then we can recover the codeword. This
can be achieved by a “syndrome hash” of O(kb) bits
knowledge of which enables correction of those O(k)
block errors. In terms of redundancy, one needs at least
m bits for the buffers, and at least Q(kb) > b bits to
correct the errors in the blocks. As mb = n, such a
scheme needs at least 2(y/n) redundant bits. Using this
approach, one can in fact achieve ~ v/kn redundancy;
this is implicit in [10].

To get lower redundancy, our approach departs from
the introduction of explicit buffers, as they use up too
many redundant bits. Our key idea is to use patterns
that occur frequently in the string themselves as implicit
buffers, so we have no redundancy wasted for introduc-
ing buffers. For example, if the substring “00110111”
occurs frequently in the string, we can use it as a
buffer to separate the string into short blocks. Since an
adversary could foil our approach by deleting a bit that
is part of an implicit buffer, we use multiple implicit
patterns and form a separate “hash” for each pattern
(the hash will protect the intervening blocks against
k errors). Since some strings have very few suitable
short patterns (such as the all 0’s string), we first use a
pattern enriching encoding procedure to ensure that there
are sufficiently many patterns. The number of implicit
patterns is enough so that less than half of them are
corrupted by an adversary for any choice of k deletions.
Then, we can decode the string using each pattern and
take the majority vote of the resulting decodings. The
final codeword bundles the pattern rich string, a hash
describing the pattern enriching procedure (allowing one
to recover the original string from the pattern rich string),
and the hash for each pattern.

The two hashes are protected with a less efficient k-bit
deletion code (with o(n) redundancy) and the decoding
procedure begins by recovering them correctly. Consider
a pattern p none of whose occurrences in the pattern
rich part of the codeword are affected by the k-bit
deletion pattern. Given the correct value of the hash
associated with this pattern p, one can correct the at most
k errors in the intervening blocks that are demarcated by
occurrences of p. The algorithm attempts such a recovery
procedure for every choice of p (of certain length), and
outputs the string s that occurs as the result in a majority
of such decodings; the existence of such a majority string
is guaranteed by the fact that more than half the patterns
tried do not incur any of the k deletions. This implies
that s must equal the correct pattern rich portion of
the codeword. Finally, the original message is recovered
by inverting the pattern enriching procedure on s using
knowledge of the corresponding portion of the hash.

C. Deletion codes and synchronization protocols

A related problem to correcting under edit distance is
the problem of synchronizing two strings that are nearby
in edit distance or document exchange [11]. The model
here is that Alice holds a string € {0,1}" and Bob
holds an arbitrary string y at edit distance at most k
from = — for simplicity let us consider the deletions

only case so that y € {0,1}"* is a subsequence of
x. The existential result for deletion codes implies that
there is a short message g(x) € {0,1}°(*1°87) that Alice
can send to Bob, which together with y enables him to
recover z (this is also a special case of a more general
communication problem considered in [12]). However,
the function g takes exponential time to compute. We
note that if we had an efficient algorithm to compute
g with output length O(klogn), then one can also get
deletion codes with small redundancy by protecting g(x)
with a deletion code (that is shorter and therefore easier
to construct). Indeed, this is in effect what our approach
outline above does, but only when = is a pattern rich
string. Our methods don’t yield a deterministic protocol
for this problem when x is arbitrary, and constructing
such a protocol with n°(Y) communication was open until
Belazzougui [13] constructed a deterministic protocol
with O(k? 4+ klog®(n)) redundancy. See the next section
for more details.

If we allow randomization, sending a random hash
value h(z) of O(klogn) bits will allow Bob to cor-
rectly identify = among all possible supersequences
of y; however, this will take n°*) time. Randomized
protocols that enable Bob to efficiently recover z in near-
linear time are known, but these require larger hashes of
size O(klog® nlog* n) [14] or O(klog(n/k) logn) [15].
Very recently, a randomized protocol with a O(k? logn)
bound on the number of bits transmitted was given
in [16]. But the use of randomness makes these syn-
chronization protocols unsuitable for the application to
deletion codes in the adversarial model.

D. Subsequent Work

After posting of the preliminary version of this pa-
per [1], new results in the field of deletion codes have
been found which either improve upon or complement
our work.

Belazzougui [13] found a determiinstic polynomial
time algorithm for the document exchange problem for
k deletions with a message of length O(k? + klog?(n)).
Most significantly, in this protocol, the number of dele-
tions k can be as large a O(n'/3). The protocol is
essentially a derandomization of the message length
O(klog®(n)) protocol of [15]. The hashes are deran-
domized using a deterministic sampling procedure of
Vishkin [17]. By tacking onto the original string this
message (protecting it with the (k + 1)-repetition code),
achieves an efficient deterministic insertion/deletion code
with message length of O(k® + k2 log?(n)).

Quite recently, Belazzougui and Zhang [18] found
near-optimal efficient randomized constructions for a
variety of problems related to the deletion channel
when k& = O(n°) for some constant ¢ > 0. For the
document exchange problem, their procedure only needs
O(k(1og®™ (k) +1log(n)) bits. There results also extend
into the “sketching” problem, where Alice and Bob
both generate hashes and send them to a third party
which then computes all the necessary edits between
the two strings, and the “streaming problem,” where the
edit distance is to be computed with as little memory
as possible under the condition Alice’s string and then
Bob’s string are read in a stream. In particular, each of
models these use (klog(n))°(") communication.

Since these latter constructions are randomized, our
result is still the best-known deterministic deletion code
in the regime £ is a constant.

E. Organization

In Section II, we define the notation and describe
some simple or well-known codes which will be used
throughout the paper. Section III demonstrates how to
efficiently encode and decode pattern rich strings against
k-bit deletions using a hashing procedure. Section IV
describes how to efficiently encode any string as a
pattern rich string. Section V combines the results of
the previous sections to prove Theorem 1. Section VI
describes how to modify the code so that it works
efficiently on the k-bit insertion and deletion channel.
Section VII suggests what would need to be done to
improve redundancy past O(k?logklogn) using our
methods. Appendix A proves that essentially the best
linear k-bit deletion code is the (k + 1)-repetition code.

II. PRELIMINARIES

A subsequence of a string x is any string obtained
from x by deleting one or more symbols. In contrast, a
substring is a subsequence made of several consecutive
symbols of x.

Definition 1. Let £ be a positive integer. Let oy :
{0,1}" — 2(013"™" be the function which maps a
binary string s of length n to the set of all subsequences
of s of length n — k. That is, oy(s) is the set of all
possible outputs through the k-bit deletion channel.

Definition 2. Two n-bit strings s; and sy are k-
confusable if and only if o (s1) N ok (s2) # 0.

We now state and develop some basic ingredients that
our construction builds upon. Specifically, we will see

some simple constructions of hash functions such that
the knowledge hash(z) and an arbitrary string y € oy (z)
allows one to reconstruct x. Our final deletion codes
will use these basic hash functions, which are either
inefficient in terms of size or complexity, to build hashes
that are efficient both in terms of size and computa-
tion time. These will then be used to build deletion
codes, after protecting those hashes themselves with
some redundancy to guard against & deletions, and then
including them also as part of the codeword.

We start with an asymptotically optimal hash size
which is inefficient to compute. For runtimes, we adopt
the notation Ok (f(n)) to denote that the runtime may
depend on a hidden function of k.

Lemma 2. Fix an integer k > 1. There is a hash function
hashy : {0,1}" — {0,1}™ for m < 2klogn + O(1),
computable in Oy(n?*2") time, such that for all x €
{0,1}", given hashy(x) and an arbitrary y € oy (z),
the string x can be recovered in Oy (n?*2") time.

Proof. This result follows from an algorithmic modifi-
cation of the methods of [2]. It is easy to see that for
any n-bit string z, |0, (z)| < n*. Additionally, for any
(n — k)-bit string y, the number of n-bit strings s for
which y € o(s) is at most 2%(}) < 2n*. Thus, any
n-bit string x is confusable with at most 2n?* others
strings. We view this as a graph on {0,1}", with an
edge between two strings if they are confusable. We just
showed that this graph has maximum degree at most
2n2k, Using the standard greedy procedure, one can
(2n2* + 1)-color these strings in Ok (n?¥2") time. We
can define hash;(x) to be the color of z.

Given such a hash and a (n — k) bit received subse-
quence y € oy (), the receiver can in time Oy (n?¥2")
determine the color of all strings s for which y € o (s).
By design, exactly one of these stings s has the color
hashy (z); that is when s = x. So the receiver will be
able to successfully decode z, as desired. O

We now modify the above result to obtain a larger
hash that is however faster to compute (and also allows
faster recovery from deletions).

Lemma 3. Fix an integer k > 1. There is a hash function
hashy : {0,1}" — {0,1}"™ for m ~ 2knloglogn/logn
computable in Oy (n?(logn)?*) time, such that for all
s € {0,1}™, given hashy(s) and an arbitrary y € oy(s),
the string s can be recovered in Oy (n?(logn)?*) time.

Proof. We describe how to compute hashy(s) for an
input s € {0,1}"™. Break up the string into consecutive

substrings si,...,s, of length [logn] except possi-
bly for s, which is of length at most [logn]. For
each of these strings, by Lemma 2 we can compute
in Oy (n(logn)?*) time the string hash;(s;) of length
~ 2kloglogn. Concatenating each of these hashes, we
obtain a hash of length ~ 2knloglogn/logn which
takes Oy, (n?(logn)?*) time to compute. The decoder can
recover the string s’ in Oy (n?(logn)?*) time by using
the following procedure. For each of i € {1,...,n'} if
ji and j! are the starting and ending positions of s; in s,
then the substring between positions j; and j; — k in s
must be a subsequence of s;. Thus, applying the decoder
described in Lemma 2, we can in Ox(n(logn)?*) time
recover s;. Thus, we can recover s in Oy (n?(logn)?¥)
time, as desired. O

We will also be using Reed-Solomon codes to correct
k symbol errors. For our purposes, it will be convenient
to use a systematic version of Reed-Solomon codes, stat-
ed below. The claimed runtime follows from near-linear
time implementations of unique decoding algorithms for
Reed-Solomon codes, see for example [19].

Lemma 4. Let k < n be positive integers, and q be
a power of two satisfying n + 2k < q < O(n). Then
there exists a map RS : Fy — ng, computable in
Ok(n(logn)*) time, such that the set {(z,RS(z)) | = €
Iy } is an error-correcting code that can correct k errors
in O(n(logn)*) time. In particular, given RS(x) and an
arbitrary z at Hamming distance at most k from x, one
can compute x in O (n(logn)?) time.

III. DELETION-CORRECTING HASH FOR MIXED
STRINGS

In this section, we will construct a short, efficiently
computable hash that enables recovery of a string x from
k-deletions, when x is typical in the sense that each
short pattern occurs frequently in & (we call such strings
mixed).

A. Pattern-rich strings.

We will use n for the length of the (mixed) string to be
hashed, and as always & will be the number of deletions
we target to correct. The following parameters will be
used throughout:

d = |20000k(log k)*logn| and 3)
m = [logk + loglog(k + 1) + 5] . 4)
It is easy to see that the choice of m satisfies

2™ > 2k(2m — 1) . (5)

Indeed, we have
2™ > 32klog(k + 1)
> 2k(151og(k + 1))
> 2k(2logk + 2loglog(k + 1) 4+ 11)
>2k(2m —1) .
We now give the precise definition of mixed strings.

Definition 3. Let p and s be binary strings of length m
and n, respectively, such that m < n. Define a p-split
point of s be an index ¢ such that p = 5;8;11 ... Sitm—1-

Definition 4. We say that a string s € {0, 1} is k-mixed
if for every p € {0,1}™, every substring of s of length
d contains a p-split point. Let M, be the set of k-mixed
strings of length n.

B. Hashing of Mixed Strings.

The following is our formal result on a short hash for
recovering mixed strings from & deletions.

Theorem 5. Fix an integer k > 2. Then for all large
enough n, there exists b = O(k*logklogn) and a
hash function Hpixeq : My — {0,1}* and a deletion
correction function Gumixed : {0,1}77% x {0,1}* —
{0,1}™ U {Fail}, both computable in O (n(logn)*)
time, such that for any k-mixed s € {0,1}", and any
s" € op(s), we have Gmixed(s', Hmixed (8)) = s.

Definition 5. If s € {0,1}", s’ € oy(s), and p €
{0,1}™, we say that s’ is p-preserving with respect to s
if there are some 1 < i; < ... <4, < n such that s’ is
obtained from s by deleting s;,,...,s; and:

1) no substring of s equal to p contains any of the
bits at positions ¢;

2) s and s’ have an equal number of instances of
substrings equal to p

Intuitively, s’ is p-preserving with respect to s if we
can obtain s’ from s by deleting & bits without destroying
or creating any instances of the pattern p.

We first prove the following lemma.
Lemma 6. Fix an integer k > 2. Then for sufficiently
large n, there exists a hash function
hpattern : Mn X {O, 1}771 — {07 1}2k(ﬂog7ﬂ+1) and
deletion correction function
pattern {O7 1}n7k % {0’ 1}2k(]’10gn—|+1) %
{0,1}™ — {0,1}™ U {Fail},

both computable in Oy,(n(logn)*) time, such that for
every pattern p € {0,1}™, every k-mixed s € {0,1}",

and an arbitrary s' € oy(s) that is p-preserving with
respect to s, one has

gpattern(sla hpattern(sap)vp) =S5.

Proof. We first define the hash function hpattern as fol-
lows. Assume we are given a mixed string r € M,
and a pattern p € {0,1}™. Let aq,...,a, be the p-
split points of r. Then we let strings wo,...,w, be
defined by wg = 1o Tgqy—1, Wy = Tq, " Tn—1, and
for 1 <i<u—1,wj =74, 7Ta;,,—1. Thus {w;} are
the strings that r is broken into by splitting it at the split
points. By the definition of a mixed string, each w; has
length at most d (as defined in (3)).

We let /; be the length of wj, let v; be w; padded
to length d by leading 0’s, and let y; = hashy(v;) as
defined in Lemma 3, with the binary representation of
the length of ¢; appended. We can compute y; in time
Ok ((logn)?(loglog n)?*) and y; has length v satisfying

+ [log d])

(6)

log log 1
v=0 2k’(k:logk)210gnw
loglogn

<logn

for large enough n.

Let z; be the number whose binary representation is
;. Then based on the length of y;, we have that x; < n.
Let g be the smallest power of 2 that is at least n + 2k.
We then apply lemma 4 to x = (1, ...,2,) € Fy (with
all those that are not defined being assigned value 0) to
obtain (y1,...,y2x) = RS(z) € F2*. For 1 < j < 2k,
let S; be the binary representation of y;, padded with
leading 0’s so that its length is [logn] + 1.

Finally, we define the hash value

hpattern(syp) =51+ So .

Clearly, the length of hpattern (s, p) equals 2k([logn] +
1).

To compute gpattem(s',iz,p), where s’ is a subse-
quence of s that is p-pattern preserving with respect to
s, we split h into 2k equal-length blocks, calling them
S1y...,S2;. We compute (zf,...,z,) from s’ in the
same way that we computed (1, ...,7,) from s when
defining Apattern (s, p). Now, assuming & = hpattern (S, D),
there are at most k values of j such that x; # xj,
since there are at most k deletions. We can use Lem-
ma 4 and Si,...,S; to correct these k errors. From
a corrected value of x;, we can obtain the value of
wj and {;. Since ¢; is the length of w;, we can use
it to remove the proper number of leading zeroes from

w; and obtain w;. Thus we can restore the original s
in O (n(logn)* + n(logn)?(loglogn)?*) time. Since
(loglogn)? < O (1) +O(logn),? the overall decoding
time is Oy (n(logn)?). O

With the above lemma in place, we are now ready to
prove the main theorem of this section.

Proof. (of Theorem 5) Given a mixed string s €
M,,, the hash Hyixed(s) is computed by computing
hpattern (s, p) from Lemma 6 for each pattern p € {0,1}™
and concatenating those hashes in order of increasing p.
For the decoding, to compute Gmixed(s’, Hmixed($)) for
a s’ € op(s), we run gpattern from Lemma 6 on each of
the 2™ subhashes corresponding to each p € {0,1}™,
and then take the majority (we can perform the majority
bitwise so that it runs in Oy (n) time). When deleting
a bit from s, at most (2m — 1) patterns p are affected
(since at most m are deleted and at most m — 1 are
created). Thus k deletions will affect at most k(2m — 1)
patterns of length m. Since m was chosen such that
2™ > 2k(2m — 1), we have that s’ is p-preserving with
respect to s for a majority of patterns p. Therefore, we
will have gpattern (8, Apattern (S, D), p) = s for a majority
of patterns p, and thus Gpixed reconstructs the string s
correctly. O

IV. ENCODING INTO MIXED STRINGS

The previous section describes how to protect mixed
strings against deletions. We now turn to the question
of encoding an arbitrary input string s € {0,1}" into a
mixed string in M,,.

Definition 6. Let ; : {0,1}" x {0,1}Y — {0,1}" be
the function which takes a string s of length n and a
string ¢, called the femplate, of length L, and outputs
the bit-wise XOR of s with ¢ concatenated [n/L] times
and truncated to a string of length n.

We will apply the above function with the parameter
choice

L = [m2™(log(n2™)+1)] < [10000k(log k)? logn]—1 .
(7

2For instance, (loglogn)?* < 0(22’“2 + logn), becaus; ei-
ther loglogn < 2F in which case (loglogn)?* < 2257, or
(loglogn)?F < (loglogn)?logloslosn < O(logn).

Equation 7 follows since for k > 2

[m2™ (log(n2™) + 1)] < (logk + loglog(k + 1) + 6)

(64klog(k + 1))(logn +m + 1)

< (8logk)(128klog k)(21logn)
< [10000k(log k)*(logn)] — 1

Notice that for all s € {0,1}" and t € {0,1}%,
w(p(s,t),t) = s. Notice also that p is computable in
O(n) time. It is not hard to see that for any s € {0,1}",
the string 4(s,t) for a random template ¢t € {0,1}F
will be k-mixed with high probability. We now show
how to find one such template ¢ that is suitable for s,
deterministically in near-linear time.

Lemma 7. There exists a function T : {0,1}" —
{0,1}E such that for all s € {0,1}", u(s,T(s)) € M.
Also, T is computable in O(k3(logk)® nlogn) =
Opg(nlogn) time.

Proof. For a given string s and template ¢, let r =
u(s,t). We say that a pair (¢,p) € {0,1,...,|n/L] —
1} x {0,1}™ is an obstruction if the substring of
TiL+1 - TiL+1 does not include the pattern p as a
substring. We will construct ¢ = T'(s) so that r has no
obstructions, and then r is mixed.

We will choose T'(s) algorithmically. For 0 < j <
|L/m| — 1, at the beginning of step j we will have b,
potential obstructions. Clearly, by = |n/L]|2™. At step
7, we will specify the values of tj,,41 - - tjmym. If we
chose these bits randomly, then E[b;11] = (1 —27™)b;.
Thus we can check all of the 2™ possibilities and find
some way to specify the bits so that b; 1 < (1-27)b;,.
This will then give us that

bLL/mJ < (1_2_7”)LL/MJ(Ln/LJQm) < o LL/mj2=m om

which is less than 1 by our choice of L in (7).

Thus we can find a template 7'(s) with no obstructions
in | L/m] steps. The definition of an obstruction tells us
that every substring of r = pu(s,T'(s)) of length 2L <
|20000k(log k)?logn| = d contains every pattern of
length m, so the string r € M,,.

Let us estimate the time complexity of finding 7'(s).
Fix a step j, 0 < j < [L/m]. Going over all
possibilities of %41 - tjm+m takes 2™ time, and
for each estimating the reduction in number of po-
tential obstructions takes O(n2™) time. The total run-
time is thus O(nd™L/m) = O(n8™log(n2™)) =
O(k3(log k)2nlogn). O

V. THE ENCODING/DECODING SCHEME: PROOF OF
THEOREM 1

Combining the results from Sections III and IV, we
can now construct the encoding/decoding functions Enc
and Dec which satisfy Theorem 1. But first, as a warm-
up, we consider a simple way to obtain such maps
for codewords of slightly larger length N < n +
O(k3log klogn) (i.e., the redundancy has a cubic rather
than quadratic dependence on k). Let s be the message
string we seek to encode. First compute ¢ = T'(s) and
r = p(s,t) as per Lemma 7. Then, define the encoding
of 5 as

Enc(s) = (r, repk+1(t), repk+1(Hmixed(T))

where Hpixed () is the deletion-correcting hash function
for mixed strings from Theorem 5, and rep . is the
(k + 1)-repetition code which repeats each bit (k + 1)
times. Since Hixed (7) is the most intensive computation,
Enc(s) can be computed in O (n(logn)?) time and its
length is

n+ (k+ 1)L+ (k+ 1) Hmixed ()]
<n+ (k+1)0(klog? klogn)+
+ (k + 1)O(k*log k log n)
<n+O(k*logklogn).

We now describe the efficient decoding function Dec.
Suppose we receive a subsequence s’ € oy (Enc(s)),
First, we can easily decode ¢ and Hmixed(r), since we
know the lengths of ¢ and Hxed(r) beforehand. Also
the first n — k symbols of s’ yield a subsequence r’
of r of length n — k. Then, as shown in Theorem 5,
7 = Gmixed("', Hmixed(r)) and this can be computed
in O(n(logn)?*) time. Finally, we can compute s =
wu(r,t), so we have successfully decoded the message s
from s’, as desired.

Now, we demonstrate how to obtain the improved
encoding length of n + O(k%logklogn). The idea is
to use Lemma 3 to protect ¢ and Hpyixed(r) with less
redundancy than the naive (k + 1)-fold repetition code.

Proof. (of Theorem 1) Consider the slightly modified
encoding

Enc(s) = (r, t, repy(hasha(t)), Hmixed(r), (8)
repy, 1 (hasha (Hmixed(7)))) -

The resulting codeword can be verified to have length
O(k?*(log k)(logn)) for large enough n; the point is that
hashs () applied to ¢ and Hpixed (1), Which are Oy (log n)
long strings, will result in strings of length oy (logn),

so we can afford to encode them by the redundancy
(k + 1) repetition code, without affecting the dominant
Oy (logn) term in the overall redundancy.

Since we know beforehand, the starting and end-
ing positions of each of the five segments in the
codeword (8), we can in O(n) time recover sub-
sequences of 7, t, rep (hasha(t)), Hmixed(r), and
repy 1 (hashy (Hmixed(r)) with at most k deletions in
each. By decoding the repetition codes, we can recover
hasha(t) and hashg(Hmixed()) in O(n) time. Then,
using the algorithm described in Lemma 3, we can
recover ¢ and Hppixed (1) in O (n/?(logn')?*) time where
n’ = max(L,|Hmixed(1)]) = O(k?log klogn). Once t
and Hixed(r) are recovered, we can proceed as in the
previous argument and decode s in O (n(logn)*) time,
as desired. O

VI. EFFICIENT ALGORITHM FOR CORRECTING
INSERTIONS AND DELETIONS

By a theorem of Levenshtein [2], we have that our
code works not only on the k-bit deletion channel but
also on the k-bit insertion and deletion channel. The
caveat though with this theorem is that the decoding
algorithm may not be as efficient. In this section, we
demonstrate a high-level overview of a proof that, with
some slight modifications, the code we constructed for k
deletions can be efficiently decoded on the k-bit insertion
and deletion channel. Although the redundancy will be
slightly worse, its asymptotic behavior will remain the
same.

To show that our code works, we argue that suitable
modifications of each of our lemmas allow the result to
go through.

o Lemma 2 works for the k-bit insertion and dele-
tion channel by Levenshtein’s result [2]. Since
encoding/decoding were done by brute force the
efficiency will not change by much.

o To modify Lemma 3 we show that the code which
corrects 3k deletions can also correct k insertions
and k deletions nearly as efficiently. If the codeword
transmitted is s1, ..., S, Where each s; is of length
at most [logn] then in the received word, if s; was
supposed to be in positions i, to i3, then positions
iq + k to i, — k must contain bits from s; except
possibly for k£ spurious insertions. Using Lemma
2 modified for insertions, we can restore s; using
brute force, and thus we can restore the original
string with about the same runtime as before.

o Lemma 4 and Lemma 6 do not change because the
underlying error-correcting code does not depend
on deletions or insertions.

o Theorem 5 extends because the number of patterns
p which are preserved (in the sense of Definition 5)
with respect to a specific pattern of k insertions and
deletions is roughly the same as with k& deletions.
And, for such a preserved pattern, the associated
hash function Apattern allows for correction of arbi-
trary bounded number of errors in strings between
the p-split points, and it doesn’t matter if those
errrors are created by insertions or deletions.

e Lemma 7 does not change.

¢ Theorem 1 needs some modifications. The encoding
has the same general structure except we use the
hash functions of the modified lemmas and we use
a (3k + 1)-fold repetition code instead of a (k+1)-
fold repetition code. That is, our encoding is

@(s) = (r, t, repsy,q(hasha(t)), Hmixed(r),
I‘ep3k+1(haShZ(Hmixed(T))» :

In the received codeword we can identity each
section with up to k bits missing on each side and
k spurious insertions inside. In linear time we can
correct the (3k + 1)-repetition code by taking the
majority vote on each block of length 3k + 1. Thus,
we will have hashy(t) and hasho(Hmixed()) from
which we can obtain ¢, Hpixed(r), and finally r and
s in polynomial (in fact, near-linear) time as in the
deletions-only case.

Thus, we have exhibited an efficient code encoding n
bits with O(k? log klogn) redundancy and which can
be corrected in near-linear time against any combination
of insertions and deletions totaling k& in number.

VII. CONCLUDING REMARKS

In this paper, we exhibit a first-order asymptotical-
ly optimal efficient code for the k-bit deletion chan-
nel. Note that to improve the code length past n +
O(k*log klogn), we would need to modify our hash
function Hpixed(r) so that either it would use shorter
hashes for each particular pattern p or it would require
using fewer patterns p. The former would require dis-
tributing the hash information between different patterns,
which may not be possible since the patterns do not syn-
chronize with each other. An approach through the latter
route seems unlikely to improve past n + O(k?logn)
since an adversary is able to “ruin” k essentially inde-
pendent patterns because the string being transmitted is
k-mixed.

Another interesting challenge is to give a deterministic
one-way protocol with poly(klogn) communication for
synchronizing a string 2 € {0,1}" with a subsequence
y € or(z) (the model discussed in Section I-C). The
crux of our approach is such a protocol when the string
z is mixed, but the problem remains open when x can
be an arbitrary n-bit string.

Another intriguing question is whether there is an
extension of the Varshamov-Tenengolts (VT) code for
the multiple deletion case, possibly by using higher de-
gree coefficients in the check condition(s) (for example,
perhaps one can pick the code based on >, i®z; for
a=0,1,2,...,d for some small constant d). Note that
this would also resolve the above question about a short
and efficient deterministic hash for the synchronization
problem. However, for the case of two deletions there are
counterexamples for d < 4, and it might be the case that
no such bounded-degree polynomial hash works even for
two deletions.

ACKNOWLEDGMENT

The second author thanks Michael Saks for valuable
discussions about the problem of recovering from mul-
tiple deletions and in particular about the possibility of
finding a VT-like code for correcting two deletions.

REFERENCES

[1]1 J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient
low-redundancy codes for correcting multiple deletions,”
in Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, ser. SODA ’16.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2016, pp. 1884-1892. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2884435.2884567 1, 3

[2] V. L. Levenshtein, “Binary Codes Capable of Correcting Dele-
tions, Insertions and Reversals,” Soviet Physics Doklady, vol. 10,
p. 707, 1966. 1, 2, 4, 8

[3] D. Cullina and N. Kiyavash, “An improvement to Levenshtein’s
upper bound on the cardinality of deletion correcting codes,”
IEEE Trans. Information Theory, vol. 60, no. 7, pp. 3862-3870,
2014. [Online]. Available: http://dx.doi.org/10.1109/TIT.2014.
2317698 1

[4] R. R. Varshamov and G. M. Tenengol’ts, “Codes which correct
single asymmetric errors,” Autom. Remote Control, vol. 26, no. 2,
pp. 286-290, 1965. 1

[51 N.J. A. Sloane, “On single-deletion-correcting codes,” in Ohio
State University, 2001, pp. 273-291. 1

[6] A. S. J. Helberg and H. C. Ferreira, “On multiple inser-
tion/deletion correcting codes,” IEEE Transactions on Informa-
tion Theory, vol. 48, no. 1, pp. 305-308, 2002. 1

[7] K. A. S. Abdel-Ghaffar, F. Paluncic, H. C. Ferreira, and W. A.
Clarke, “On Helberg’s generalization of the levenshtein code for
multiple deletion/insertion error correction,” IEEE Transactions
on Information Theory, vol. 58, no. 3, pp. 1804-1808, 2012.
[Online]. Available: http://dx.doi.org/10.1109/TIT.2011.2174961
2

[8] F. Paluncic, K. A. Abdel-Ghaffar, H. Ferreira, and W. Clarke, “A
multiple insertion/deletion correcting code for run-length limited
sequences,” IEEE Transactions on Information Theory, vol. 58,
no. 3, pp. 1809-1824, March 2012. 2

[9] L. J. Schulman and D. Zuckerman, “Asymptotically good codes

correcting insertions, deletions, and transpositions,” IEEE Trans-

actions on Information Theory, vol. 45, no. 7, pp. 2552-2557,

Nov 1999. 2

V. Guruswami and C. Wang, “Deletion codes in the high-noise

and high-rate regimes,” IEEE Trans. Information Theory, vol. 63,

no. 4, pp. 1961-1970, 2017. 2

G. Cormode, M. Paterson, S. C. Sahinalp, and U. Vishkin, “Com-

munication complexity of document exchange,” in Proceedings of

the 11th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2000, pp. 197-206. 3

A. Orlitsky, “Interactive communication of balanced distributions

and of correlated files,” SIAM J. Discrete Math., vol. 6, no. 4,

pp. 548-564, 1993, preliminary version in FOCS’91. 3

D. Belazzougui, “Efficient Deterministic Single Round Document

Exchange for Edit Distance,” ArXiv e-prints, Nov. 2015. 3

H. Jowhari, “Efficient communication protocols for deciding edit

distance,” in 20th Annual European Symposium on Algorithms,

2012, pp. 648-658. 3

U. Irmak, S. Mihaylov, and T. Suel, “Improved single-round

protocols for remote file synchronization,” in Proceedings of 24th

Annual Joint Conference of the IEEE Computer and Communi-

cations Societies (INFOCOM), 2005, pp. 1665-1676. 3

D. Chakraborty, E. Goldenberg, and M. Koucky, “Streaming

algorithms for embedding and computing edit distance in the

low distance regime,” in Proceedings of the 48th Annual ACM

SIGACT Symposium on Theory of Computing, ser. STOC 2016.

New York, NY, USA: ACM, 2016, pp. 712-725. [Online].

Available: http://doi.acm.org/10.1145/2897518.2897577 3

U. Vishkin, “Deterministic sampling—a new technique for fast

pattern matching,” SIAM Journal on Computing, vol. 20, no. 1,

pp. 22-40, 1991. [Online]. Available: http://dx.doi.org/10.1137/

0220002 3

D. Belazzougui and Q. Zhang, “Edit distance: Sketching, stream-

ing and document exchange,” in Proceedings of the 57th Annual

IEEE Symposium on Foundations of Computer Science (FOCS),

2016, pp. 51-60. 4

S. Gao, “A new algorithm for decoding Reed-Solomon codes,” in

Communications, Information and Network Security, V.Bhargava,

H.V.Poor, V.Tarokh, and S.Yoon. Kluwer, 2002, pp. 55-68. 5

K. A. Abdel-Ghaffar, H. C. Ferreira, and L. Cheng, “On linear

and cyclic codes for correcting deletions,” in Information Theory,

2007. ISIT 2007. IEEE International Symposium on, June 2007,

pp. 851-855. 9

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

APPENDIX

In this section, we generalize the work of [20] (who
did the £ = 1 case) to demonstrate that the best asymp-
totic rate achievable by a linear k-bit binary deletion
code is 1/(k + 1). Note that this is achieved by the
(k + 1)-fold repetition code that repeats each bit (k+ 1)
times in the codeword.

Theorem 8. Let C be a n-bit linear code for the k-bit
deletion channel. Then, dim(C) < n/(k+1)+ (k+1)%

Proof. Define C° = C,C",...C* to be subspaces of
F% of dimension dim(C) such that

Ci:{(l’i+17...,l‘n,{131,...,1’i)|($1,...,I71) GC}

Lemma 9. For all 0 <i < j <k,
dim(C* N C7) < ged(j — i,n).

Proof. If z € (% N (Y, then there exists x,y €
C such that z = (Tiy1,...,&Tp,T1,...,&y) =
(Yit1s - Yy Y1, - -+ Yj)-

Since j > 4, we have that (zjt1,...%Zp—jt+i) =
(Yj+1,---,Yn). Thus, when x and y are passed through
the k-deletion channel, they could output the same result
since k£ > j. Thus, x = y. Hence, x; = x¢4;_; (indices
modulo n) for all £ € {1,...,n}. Thus, there are at
most 28°4U=%7) choices for x, so dim(C* N C9) <
ged(j — i, n). O

From the lemma, we can see that

k
n > dim Z C?
i=0

k k

> (k+1)dim(C) — Z Z dim(C* N CY)
Z:O _]=]Z€+1

> (k+1)dim(C) - > S (1)
i=0 j=i+1

> (k+1)dim(C) — (k+1)3.
Thus, dim(C) < (k+1)2 +n/(k + 1), as desired. O

Remark. If we let n be a prime, then dim(C? N CY) <
ged(j — ¢,n) = 1. Furthermore, the only possible non-
trivial intersection is 11...1. Thus, the sum of these
k + 1 vector spaces would have to have dimension at
least (k + 1)(dim(C) — 1) + 1, from which we can get
that dim(C) < (n+ k)/(k + 1).

Joshua Brakensiek is an undergraduate at Carnegie Mellon University.
His research interests include hardness of approximation, constraint
satisfaction, and graph isoperimetry. He was a Putnam Fellow (one
of the five highest ranking participants) in the 77th William Lowell
Putnam Mathematical Competition held in 2016.

Venkatesan Guruswami received his Bachelor’s degree from the
Indian Institute of Technology at Madras in 1997 and his Ph.D. in
Computer Science from the Massachusetts Institute of Technology in
2001. He is currently a professor in the Computer Science Department
at Carnegie Mellon University.

Prof. Guruswami’s research interests include coding and informa-
tion theory, complexity of approximate optimization, pseudorandom-
ness, and computational complexity. He serves as the Editor-in-Chief
of the ACM Transactions on Computation Theory, and an editor of the
Journal of the ACM. He was previously an Associate Editor for the
IEEE Transactions on Information Theory. He served as the program
committee chair for the 2012 IEEE Conference on Computational
Complexity (CCC) and the 2015 IEEE Symposium on Foundations
of Computer Science (FOCS), and is one of the TPC co-chairs for the
2018 IEEE International Symposium on Information Theory (ISIT).

Prof. Guruswami was an invited speaker in the International
Congress of Mathematicians 2010 on the topic of “Mathematical
Aspects of Computer Science.” He was one of two winners of the
2012 Presburger Award, and his earlier honors include the Packard
and Sloan Fellowships (2005), NSF Career award (2004), the ACM
Doctoral Dissertation Award (2002), and the IEEE Information Theory
Society Paper Award (2000).

Samuel Zbarsky received his undergraduate degree from Carnegie
Mellon University in 2017. He is currently a math graduate student at
Princeton University, interested principally in Analysis and PDEs. He
was a Putnam Fellow (one of the five highest ranking participants) in
the 77th William Lowell Putnam Mathematical Competition held in
2016.

	Introduction
	Our result
	Our approach
	Deletion codes and synchronization protocols
	Subsequent Work
	Organization

	Preliminaries
	Deletion-correcting hash for mixed strings
	Pattern-rich strings.
	Hashing of Mixed Strings.

	Encoding into Mixed Strings
	The Encoding/Decoding Scheme: Proof of Theorem 1
	Efficient Algorithm for Correcting Insertions and Deletions
	Concluding remarks
	References
	Appendix
	Biographies
	Joshua Brakensiek
	Venkatesan Guruswami
	Samuel Zbarsky

