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Efficient Low-Redundancy Codes for

Correcting Multiple Deletions
Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky

Abstract—We consider the problem of constructing bi-
nary codes to recover from k–bit deletions with efficien-
t encoding/decoding, for a fixed k. The single deletion
case is well understood, with the Varshamov-Tenengolts-
Levenshtein code from 1965 giving an asymptotically opti-
mal construction with ≈ 2n/n codewords of length n, i.e.,
at most log n bits of redundancy. However, even for the case
of two deletions, there was no known explicit construction

with redundancy less than nΩ(1).

For any fixed k, we construct a binary code with ck log n
redundancy that can be decoded from k deletions in
Ok(n log4 n) time. The coefficient ck can be taken to be
O(k2 log k), which is only quadratically worse than the
optimal, non-constructive bound of O(k). We also indicate
how to modify this code to allow for a combination of up
to k insertions and deletions.

We also note that among linear codes capable of correct-
ing k deletions, the (k+1)-fold repetition code is essentially
the best possible.

I. INTRODUCTION

A k-bit binary deletion code of length N is some set

of strings C ⊆ {0, 1}N so that for any c1, c2 ∈ C, the

longest common subsequence of c1 and c2 has length

less than N − k. For such a code, a codeword of C can

be uniquely identified from any of its subsequences of

length N−k, and therefore such a code enables recovery

from k adversarial/worst-case deletions.
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In this work, we are interested in the regime when k is

a fixed constant, and the block length N grows. Denoting

by del(N, k) the size of the largest k-bit binary deletion

code of length N , it is known that

ak
2N

N2k
6 del(N, k) 6 Ak

2N

Nk
(1)

for some constants ak > 0 and Ak < ∞ depending only

k [2]. New upper bounds on code size for a fixed number

of deletions that improve over [2] were recently obtained

in [3].

For the special case of k = 1, it is known that

del(N, 1) = Θ(2N/N). The Varshamov-Tenengolts

code [4] defined by
{

(x1, . . . , xN ) ∈ {0, 1}N |
N
∑

i=1

ixi ≡ 0 (mod (N + 1))
}

(2)

is known to have size at least 2N/(N + 1), and Leven-

shtein [2] shows that this code is capable of correcting a

single deletion. An easy to read exposition of the deletion

correcting property of the VT code can be found in the

detailed survey on single-deletion-correcting codes [5].

The bound (1) shows that the asymptotic number of

redundant bits needed for correcting k-bit deletions in an

N -bit codeword is Θ(k logN) (i.e., one can encode n =
N −Θ(k logN) message bits into length N codewords

in a manner resilient to k deletions). Note that the codes

underlying this result are obtained by an exponential time

greedy search — an efficient construction of k-bit binary

deletion codes with redundancy approaching O(k logN)
was not known, except in the single-deletion case where

the VT code gives a solution with optimal logN +O(1)
redundancy.

The simplest code to correct k worst-case deletions is

the (k + 1)-fold repetition code, which simply repeats

each bit (k + 1) times, mapping n message bits to

N = (k + 1)n codewords bits. It thus has k
k+1N

redundant bits. A generalization of the VT code for the

case of multiple deletions was proposed in [6] and later



proved to work in [7]. These codes replace the weight i
given to the i’th codeword bit in the check constraint of

the VT code (2) by a much larger weight, which even for

the k = 2 case is related to the Fibonacci sequence and

thus grows exponentially in i. Therefore, the redundancy

of these codes is Ω(N) even for two deletions, and

equals ckN where the constant ck → 1 as k increases.

Some improvements were made for small k in [8],

which studied run-length limited codes for correcting

insertions/deletions, but the redundancy remained Ω(N)
even for two deletions.

Allowing for Θ(N) redundancy, one can in fact

efficiently correct a constant fraction of deletions, as

was shown by Schulman and Zuckerman [9]. This

construction was improved and optimized recently in

[10], where it was shown that one could correct a fraction

ζ > 0 of deletions with O(
√
ζN) redundant bits in the

encoding. One can deduce codes to correct a constant k
number of deletions with redundancy Ok(

√
N)1 using

the methods of [10] (we will hint at this in Section I-B).

In summary, despite being such a natural and ba-

sic problem, there were no known explicit codes with

redundancy better than
√
N even to correct from two

deletions. Our main result, stated formally as Theorem 1

below, gives an explicit construction with redundancy

Ok(logN) for any fixed number k of deletions, along

with a near-linear time decoding algorithm.

For simplicity, the above discussion focused on the

problem of recovering from deletions alone. One might

want codes to recover from a combination of dele-

tions and insertions (i.e., errors under the edit distance

metric). Levenshtein [2] showed that any code capable

of correcting k deletions is in fact also capable of

correcting from any combination of a total of k insertions

and deletions. But this only concerns the combinatorial

property underlying correction from insertions/deletions,

and does not automatically yield an algorithm to recover

from insertions/deletions based on a deletion-correcting

algorithm. For our main result, we are able to extend

our construction to efficiently recover from an arbitrary

combination of worst-case insertions/deletions as long as

their total number is at most k.

A. Our result

In this work, we construct, for each fixed k, a binary

code of block length N for correcting k insertion-

s/deletions on which all relevant operations can be done

1We use the notation Ok to indicate that the constant may depend
on k.

in polynomial (in fact, near-linear) time and that has

O(k2 log k logN) redundancy. We stress that this is the

first efficient construction with redundancy smaller than

NΘ(1) even for the 2-bit deletion case. For simplicity of

exposition, we go through the details on how to construct

an efficient deletion code, and then indicate how to

modify it to turn it into an efficient deletion/insertion

code.

Theorem 1. Fix an integer k > 2, For all suffi-

ciently large n, there exists a code length N 6 n +
O(k2 log k log n), an injective encoding map Enc :
{0, 1}n → {0, 1}N and a decoding map Dec :
{0, 1}N−k → {0, 1}n ∪ {Fail} both computable in

Ok(n(log n)
4) time, such that for all s ∈ {0, 1}n and

every subsequence s′ ∈ {0, 1}N−k obtained from Enc(s)
by deleting k bits, Dec(s′) = s.

Note that the decoding complexity in the above result

has a FPT (fixed-parameter tractable) type dependence

on k, and a near-linear dependence on n.

Our encoding function in Theorem 1 is non-linear.

This is inherent; in Appendix A we give a simple

proof that among linear codes capable of correcting k
deletions, the (k + 1)-fold repetition code is essentially

the best possible.

B. Our approach

We describe at a high level the ideas behind our con-

struction of k-bit binary deletion codes with logarithmic

redundancy. The difficulty with the deletion channel is

that we don’t know the location of deletions, and thus

we lose knowledge of which position a bit corresponds

to. Towards identifying positions of some bits in spite

of the deletions, we can break a codeword into blocks

a1, a2, . . . , am of length b bits each, and separate them

by introducing dummy buffers (consisting of a long

enough run of 0’s, say). If only k bits are deleted, by

looking for these buffers in the received subsequence, we

can identify all but O(k) of the blocks correctly (there

are some details one must get right to achieve this, but

these are not difficult). If the blocks are protected against

O(k) errors, then we can recover the codeword. This

can be achieved by a “syndrome hash” of O(kb) bits

knowledge of which enables correction of those O(k)
block errors. In terms of redundancy, one needs at least

m bits for the buffers, and at least Ω(kb) > b bits to

correct the errors in the blocks. As mb = n, such a

scheme needs at least Ω(
√
n) redundant bits. Using this

approach, one can in fact achieve ≈
√
kn redundancy;

this is implicit in [10].
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To get lower redundancy, our approach departs from

the introduction of explicit buffers, as they use up too

many redundant bits. Our key idea is to use patterns

that occur frequently in the string themselves as implicit

buffers, so we have no redundancy wasted for introduc-

ing buffers. For example, if the substring “00110111”

occurs frequently in the string, we can use it as a

buffer to separate the string into short blocks. Since an

adversary could foil our approach by deleting a bit that

is part of an implicit buffer, we use multiple implicit

patterns and form a separate “hash” for each pattern

(the hash will protect the intervening blocks against

k errors). Since some strings have very few suitable

short patterns (such as the all 0’s string), we first use a

pattern enriching encoding procedure to ensure that there

are sufficiently many patterns. The number of implicit

patterns is enough so that less than half of them are

corrupted by an adversary for any choice of k deletions.

Then, we can decode the string using each pattern and

take the majority vote of the resulting decodings. The

final codeword bundles the pattern rich string, a hash

describing the pattern enriching procedure (allowing one

to recover the original string from the pattern rich string),

and the hash for each pattern.

The two hashes are protected with a less efficient k-bit

deletion code (with o(n) redundancy) and the decoding

procedure begins by recovering them correctly. Consider

a pattern p none of whose occurrences in the pattern

rich part of the codeword are affected by the k-bit

deletion pattern. Given the correct value of the hash

associated with this pattern p, one can correct the at most

k errors in the intervening blocks that are demarcated by

occurrences of p. The algorithm attempts such a recovery

procedure for every choice of p (of certain length), and

outputs the string s that occurs as the result in a majority

of such decodings; the existence of such a majority string

is guaranteed by the fact that more than half the patterns

tried do not incur any of the k deletions. This implies

that s must equal the correct pattern rich portion of

the codeword. Finally, the original message is recovered

by inverting the pattern enriching procedure on s using

knowledge of the corresponding portion of the hash.

C. Deletion codes and synchronization protocols

A related problem to correcting under edit distance is

the problem of synchronizing two strings that are nearby

in edit distance or document exchange [11]. The model

here is that Alice holds a string x ∈ {0, 1}n and Bob

holds an arbitrary string y at edit distance at most k
from x — for simplicity let us consider the deletions

only case so that y ∈ {0, 1}n−k is a subsequence of

x. The existential result for deletion codes implies that

there is a short message g(x) ∈ {0, 1}O(k logn) that Alice

can send to Bob, which together with y enables him to

recover x (this is also a special case of a more general

communication problem considered in [12]). However,

the function g takes exponential time to compute. We

note that if we had an efficient algorithm to compute

g with output length O(k log n), then one can also get

deletion codes with small redundancy by protecting g(x)
with a deletion code (that is shorter and therefore easier

to construct). Indeed, this is in effect what our approach

outline above does, but only when x is a pattern rich

string. Our methods don’t yield a deterministic protocol

for this problem when x is arbitrary, and constructing

such a protocol with no(1) communication was open until

Belazzougui [13] constructed a deterministic protocol

with O(k2+k log2(n)) redundancy. See the next section

for more details.

If we allow randomization, sending a random hash

value h(x) of O(k log n) bits will allow Bob to cor-

rectly identify x among all possible supersequences

of y; however, this will take nO(k) time. Randomized

protocols that enable Bob to efficiently recover x in near-

linear time are known, but these require larger hashes of

size O(k log2 n log∗ n) [14] or O(k log(n/k) log n) [15].

Very recently, a randomized protocol with a O(k2 log n)
bound on the number of bits transmitted was given

in [16]. But the use of randomness makes these syn-

chronization protocols unsuitable for the application to

deletion codes in the adversarial model.

D. Subsequent Work

After posting of the preliminary version of this pa-

per [1], new results in the field of deletion codes have

been found which either improve upon or complement

our work.

Belazzougui [13] found a determiinstic polynomial

time algorithm for the document exchange problem for

k deletions with a message of length O(k2+k log2(n)).
Most significantly, in this protocol, the number of dele-

tions k can be as large a O(n1/3). The protocol is

essentially a derandomization of the message length

O(k log2(n)) protocol of [15]. The hashes are deran-

domized using a deterministic sampling procedure of

Vishkin [17]. By tacking onto the original string this

message (protecting it with the (k+1)-repetition code),

achieves an efficient deterministic insertion/deletion code

with message length of O(k3 + k2 log2(n)).
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Quite recently, Belazzougui and Zhang [18] found

near-optimal efficient randomized constructions for a

variety of problems related to the deletion channel

when k = O(nc) for some constant c > 0. For the

document exchange problem, their procedure only needs

O(k(logO(1)(k)+log(n)) bits. There results also extend

into the “sketching” problem, where Alice and Bob

both generate hashes and send them to a third party

which then computes all the necessary edits between

the two strings, and the “streaming problem,” where the

edit distance is to be computed with as little memory

as possible under the condition Alice’s string and then

Bob’s string are read in a stream. In particular, each of

models these use (k log(n))O(1) communication.

Since these latter constructions are randomized, our

result is still the best-known deterministic deletion code

in the regime k is a constant.

E. Organization

In Section II, we define the notation and describe

some simple or well-known codes which will be used

throughout the paper. Section III demonstrates how to

efficiently encode and decode pattern rich strings against

k-bit deletions using a hashing procedure. Section IV

describes how to efficiently encode any string as a

pattern rich string. Section V combines the results of

the previous sections to prove Theorem 1. Section VI

describes how to modify the code so that it works

efficiently on the k-bit insertion and deletion channel.

Section VII suggests what would need to be done to

improve redundancy past O(k2 log k log n) using our

methods. Appendix A proves that essentially the best

linear k-bit deletion code is the (k+ 1)-repetition code.

II. PRELIMINARIES

A subsequence of a string x is any string obtained

from x by deleting one or more symbols. In contrast, a

substring is a subsequence made of several consecutive

symbols of x.

Definition 1. Let k be a positive integer. Let σk :
{0, 1}n → 2{0,1}

n−k

be the function which maps a

binary string s of length n to the set of all subsequences

of s of length n − k. That is, σk(s) is the set of all

possible outputs through the k-bit deletion channel.

Definition 2. Two n-bit strings s1 and s2 are k-

confusable if and only if σk(s1) ∩ σk(s2) 6= ∅.

We now state and develop some basic ingredients that

our construction builds upon. Specifically, we will see

some simple constructions of hash functions such that

the knowledge hash(x) and an arbitrary string y ∈ σk(x)
allows one to reconstruct x. Our final deletion codes

will use these basic hash functions, which are either

inefficient in terms of size or complexity, to build hashes

that are efficient both in terms of size and computa-

tion time. These will then be used to build deletion

codes, after protecting those hashes themselves with

some redundancy to guard against k deletions, and then

including them also as part of the codeword.

We start with an asymptotically optimal hash size

which is inefficient to compute. For runtimes, we adopt

the notation Ok(f(n)) to denote that the runtime may

depend on a hidden function of k.

Lemma 2. Fix an integer k > 1. There is a hash function

hash1 : {0, 1}n → {0, 1}m for m 6 2k log n + O(1),
computable in Ok(n

2k2n) time, such that for all x ∈
{0, 1}n, given hash1(x) and an arbitrary y ∈ σk(x),
the string x can be recovered in Ok(n

2k2n) time.

Proof. This result follows from an algorithmic modifi-

cation of the methods of [2]. It is easy to see that for

any n-bit string x, |σk(x)| 6 nk. Additionally, for any

(n − k)-bit string y, the number of n-bit strings s for

which y ∈ σk(s) is at most 2k
(

n
k

)

6 2nk. Thus, any

n-bit string x is confusable with at most 2n2k others

strings. We view this as a graph on {0, 1}n, with an

edge between two strings if they are confusable. We just

showed that this graph has maximum degree at most

2n2k. Using the standard greedy procedure, one can

(2n2k + 1)-color these strings in Ok(n
2k2n) time. We

can define hash1(x) to be the color of x.

Given such a hash and a (n − k) bit received subse-

quence y ∈ σk(x), the receiver can in time Ok(n
2k2n)

determine the color of all strings s for which y ∈ σk(s).
By design, exactly one of these stings s has the color

hash1(x); that is when s = x. So the receiver will be

able to successfully decode x, as desired.

We now modify the above result to obtain a larger

hash that is however faster to compute (and also allows

faster recovery from deletions).

Lemma 3. Fix an integer k > 1. There is a hash function

hash2 : {0, 1}n → {0, 1}m for m ≈ 2kn log log n/ log n
computable in Ok(n

2(log n)2k) time, such that for all

s ∈ {0, 1}n, given hash2(s) and an arbitrary y ∈ σk(s),
the string s can be recovered in Ok(n

2(log n)2k) time.

Proof. We describe how to compute hash2(s) for an

input s ∈ {0, 1}n. Break up the string into consecutive
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substrings s1, . . . , sn′ of length ⌈log n⌉ except possi-

bly for sn′ which is of length at most ⌈log n⌉. For

each of these strings, by Lemma 2 we can compute

in Ok(n(log n)
2k) time the string hash1(si) of length

∼ 2k log log n. Concatenating each of these hashes, we

obtain a hash of length ∼ 2kn log log n/ log n which

takes Ok(n
2(log n)2k) time to compute. The decoder can

recover the string s′ in Ok(n
2(log n)2k) time by using

the following procedure. For each of i ∈ {1, . . . , n′} if

ji and j′i are the starting and ending positions of si in s,

then the substring between positions ji and j′i − k in s′

must be a subsequence of si. Thus, applying the decoder

described in Lemma 2, we can in Ok(n(log n)
2k) time

recover si. Thus, we can recover s in Ok(n
2(log n)2k)

time, as desired.

We will also be using Reed-Solomon codes to correct

k symbol errors. For our purposes, it will be convenient

to use a systematic version of Reed-Solomon codes, stat-

ed below. The claimed runtime follows from near-linear

time implementations of unique decoding algorithms for

Reed-Solomon codes, see for example [19].

Lemma 4. Let k < n be positive integers, and q be

a power of two satisfying n + 2k 6 q 6 O(n). Then

there exists a map RS : F
n
q → F

2k
q , computable in

Ok(n(log n)
4) time, such that the set {(x,RS(x)) | x ∈

F
n
q } is an error-correcting code that can correct k errors

in Ok(n(log n)
4) time. In particular, given RS(x) and an

arbitrary z at Hamming distance at most k from x, one

can compute x in Ok(n(log n)
4) time.

III. DELETION-CORRECTING HASH FOR MIXED

STRINGS

In this section, we will construct a short, efficiently

computable hash that enables recovery of a string x from

k-deletions, when x is typical in the sense that each

short pattern occurs frequently in x (we call such strings

mixed).

A. Pattern-rich strings.

We will use n for the length of the (mixed) string to be

hashed, and as always k will be the number of deletions

we target to correct. The following parameters will be

used throughout:

d = ⌊20000k(log k)2 log n⌋ and (3)

m = ⌈log k + log log(k + 1) + 5⌉ . (4)

It is easy to see that the choice of m satisfies

2m > 2k(2m− 1) . (5)

Indeed, we have

2m > 32k log(k + 1)

> 2k(15 log(k + 1))

> 2k(2 log k + 2 log log(k + 1) + 11)

> 2k(2m− 1) .

We now give the precise definition of mixed strings.

Definition 3. Let p and s be binary strings of length m
and n, respectively, such that m < n. Define a p-split

point of s be an index i such that p = sisi+1 . . . si+m−1.

Definition 4. We say that a string s ∈ {0, 1}n is k-mixed

if for every p ∈ {0, 1}m, every substring of s of length

d contains a p-split point. Let Mn be the set of k-mixed

strings of length n.

B. Hashing of Mixed Strings.

The following is our formal result on a short hash for

recovering mixed strings from k deletions.

Theorem 5. Fix an integer k > 2. Then for all large

enough n, there exists b = O(k2 log k log n) and a

hash function Hmixed : Mn → {0, 1}b and a deletion

correction function Gmixed : {0, 1}n−k × {0, 1}b →
{0, 1}n ∪ {Fail}, both computable in Ok(n(log n)

4)
time, such that for any k-mixed s ∈ {0, 1}n, and any

s′ ∈ σk(s), we have Gmixed(s
′, Hmixed(s)) = s.

Definition 5. If s ∈ {0, 1}n, s′ ∈ σk(s), and p ∈
{0, 1}m, we say that s′ is p-preserving with respect to s
if there are some 1 6 i1 6 . . . 6 ik 6 n such that s′ is

obtained from s by deleting si1 , . . . , sik and:

1) no substring of s equal to p contains any of the

bits at positions ij
2) s and s′ have an equal number of instances of

substrings equal to p

Intuitively, s′ is p-preserving with respect to s if we

can obtain s′ from s by deleting k bits without destroying

or creating any instances of the pattern p.

We first prove the following lemma.

Lemma 6. Fix an integer k > 2. Then for sufficiently

large n, there exists a hash function

hpattern : Mn × {0, 1}m → {0, 1}2k(⌈logn⌉+1) and

deletion correction function

gpattern : {0, 1}n−k × {0, 1}2k(⌈logn⌉+1) ×
{0, 1}m → {0, 1}n ∪ {Fail},

both computable in Ok(n(log n)
4) time, such that for

every pattern p ∈ {0, 1}m, every k-mixed s ∈ {0, 1}n,
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and an arbitrary s′ ∈ σk(s) that is p-preserving with

respect to s, one has

gpattern(s
′, hpattern(s, p), p) = s .

Proof. We first define the hash function hpattern as fol-

lows. Assume we are given a mixed string r ∈ Mn

and a pattern p ∈ {0, 1}m. Let a1, . . . , au be the p-

split points of r. Then we let strings w0, . . . , wu be

defined by w0 = r0 · · · ra1−1, wu = rau
· · · rn−1, and

for 1 6 i 6 u− 1, wj = raj
· · · raj+1−1. Thus {wj} are

the strings that r is broken into by splitting it at the split

points. By the definition of a mixed string, each wj has

length at most d (as defined in (3)).

We let ℓj be the length of wj , let vj be wj padded

to length d by leading 0’s, and let yj = hash2(vj) as

defined in Lemma 3, with the binary representation of

the length of ℓj appended. We can compute yj in time

Ok((log n)
2(log log n)2k) and yj has length v satisfying

v = O

(

2k(k log k)2 log n
log log log n

log log n
+ ⌈log d⌉

)

(6)

< log n

for large enough n.

Let xj be the number whose binary representation is

yj . Then based on the length of yj , we have that xj < n.

Let q be the smallest power of 2 that is at least n+ 2k.

We then apply lemma 4 to x = (x1, . . . , xn) ∈ F
n
q (with

all those that are not defined being assigned value 0) to

obtain (y1, . . . , y2k) = RS(x) ∈ F
2k
q . For 1 6 j 6 2k,

let Sj be the binary representation of yk, padded with

leading 0’s so that its length is ⌈log n⌉+ 1.

Finally, we define the hash value

hpattern(s, p) = S1 · · ·S2k .

Clearly, the length of hpattern(s, p) equals 2k(⌈log n⌉+
1).

To compute gpattern(s
′, h̃, p), where s′ is a subse-

quence of s that is p-pattern preserving with respect to

s, we split h̃ into 2k equal-length blocks, calling them

S1, . . . , S2k. We compute (x′
1, . . . , x

′
n) from s′ in the

same way that we computed (x1, . . . , xn) from s when

defining hpattern(s, p). Now, assuming h̃ = hpattern(s, p),
there are at most k values of j such that x′

j 6= xj ,

since there are at most k deletions. We can use Lem-

ma 4 and S1, . . . , S2k to correct these k errors. From

a corrected value of xj , we can obtain the value of

w′
j and ℓj . Since ℓj is the length of wj , we can use

it to remove the proper number of leading zeroes from

w′
j and obtain wj . Thus we can restore the original s

in Ok(n(log n)
4 + n(log n)2(log log n)2k) time. Since

(log log n)2k 6 Ok(1)+O(log n),2 the overall decoding

time is Ok(n(log n)
4).

With the above lemma in place, we are now ready to

prove the main theorem of this section.

Proof. (of Theorem 5) Given a mixed string s ∈
Mn, the hash Hmixed(s) is computed by computing

hpattern(s, p) from Lemma 6 for each pattern p ∈ {0, 1}m
and concatenating those hashes in order of increasing p.

For the decoding, to compute Gmixed(s
′, Hmixed(s)) for

a s′ ∈ σk(s), we run gpattern from Lemma 6 on each of

the 2m subhashes corresponding to each p ∈ {0, 1}m,

and then take the majority (we can perform the majority

bitwise so that it runs in Ok(n) time). When deleting

a bit from s, at most (2m − 1) patterns p are affected

(since at most m are deleted and at most m − 1 are

created). Thus k deletions will affect at most k(2m− 1)
patterns of length m. Since m was chosen such that

2m > 2k(2m− 1), we have that s′ is p-preserving with

respect to s for a majority of patterns p. Therefore, we

will have gpattern(s
′, hpattern(s, p), p) = s for a majority

of patterns p, and thus Gmixed reconstructs the string s
correctly.

IV. ENCODING INTO MIXED STRINGS

The previous section describes how to protect mixed

strings against deletions. We now turn to the question

of encoding an arbitrary input string s ∈ {0, 1}n into a

mixed string in Mn.

Definition 6. Let µ : {0, 1}n × {0, 1}L → {0, 1}n be

the function which takes a string s of length n and a

string t, called the template, of length L, and outputs

the bit-wise XOR of s with t concatenated ⌈n/L⌉ times

and truncated to a string of length n.

We will apply the above function with the parameter

choice

L = ⌈m2m(log(n2m)+1)⌉ 6 ⌈10000k(log k)2 log n⌉−1 .
(7)

2For instance, (log logn)2k 6 O(22k
2

+ logn), because ei-

ther log logn 6 2k in which case (log logn)2k 6 22k
2

, or
(log logn)2k 6 (log logn)2 log log logn 6 O(logn).
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Equation 7 follows since for k > 2

⌈m2m(log(n2m) + 1)⌉ 6 (log k + log log(k + 1) + 6)

(64k log(k + 1))(log n+m+ 1)

6 (8 log k)(128k log k)(2 log n)

6 ⌈10000k(log k)2(log n)⌉ − 1

Notice that for all s ∈ {0, 1}n and t ∈ {0, 1}L,

µ(µ(s, t), t) = s. Notice also that µ is computable in

O(n) time. It is not hard to see that for any s ∈ {0, 1}n,

the string µ(s, t) for a random template t ∈ {0, 1}L
will be k-mixed with high probability. We now show

how to find one such template t that is suitable for s,

deterministically in near-linear time.

Lemma 7. There exists a function T : {0, 1}n →
{0, 1}L such that for all s ∈ {0, 1}n, µ(s, T (s)) ∈ Mn.

Also, T is computable in O(k3(log k)3 n log n) =
Ok(n log n) time.

Proof. For a given string s and template t, let r =
µ(s, t). We say that a pair (i, p) ∈ {0, 1, . . . , ⌊n/L⌋ −
1} × {0, 1}m is an obstruction if the substring of

riL+1 · · · riL+L does not include the pattern p as a

substring. We will construct t = T (s) so that r has no

obstructions, and then r is mixed.

We will choose T (s) algorithmically. For 0 6 j 6

⌊L/m⌋ − 1, at the beginning of step j we will have bj
potential obstructions. Clearly, b0 = ⌊n/L⌋2m. At step

j, we will specify the values of tjm+1 · · · tjm+m. If we

chose these bits randomly, then E[bj+1] = (1− 2−m)bj .

Thus we can check all of the 2m possibilities and find

some way to specify the bits so that bj+1 6 (1−2−m)bj .

This will then give us that

b⌊L/m⌋ 6 (1−2−m)⌊L/m⌋(⌊n/L⌋2m) 6 e−⌊L/m⌋2−m

n2m

which is less than 1 by our choice of L in (7).

Thus we can find a template T (s) with no obstructions

in ⌊L/m⌋ steps. The definition of an obstruction tells us

that every substring of r = µ(s, T (s)) of length 2L 6

⌊20000k(log k)2 log n⌋ = d contains every pattern of

length m, so the string r ∈ Mn.

Let us estimate the time complexity of finding T (s).
Fix a step j, 0 6 j < ⌊L/m⌋. Going over all

possibilities of tjm+1 · · · tjm+m takes 2m time, and

for each estimating the reduction in number of po-

tential obstructions takes O(n2m) time. The total run-

time is thus O(n4mL/m) = O(n8m log(n2m)) =
O(k3(log k)3n log n).

V. THE ENCODING/DECODING SCHEME: PROOF OF

THEOREM 1

Combining the results from Sections III and IV, we

can now construct the encoding/decoding functions Enc

and Dec which satisfy Theorem 1. But first, as a warm-

up, we consider a simple way to obtain such maps

for codewords of slightly larger length N 6 n +
O(k3 log k log n) (i.e., the redundancy has a cubic rather

than quadratic dependence on k). Let s be the message

string we seek to encode. First compute t = T (s) and

r = µ(s, t) as per Lemma 7. Then, define the encoding

of s as

Enc(s) = 〈r, repk+1(t), repk+1(Hmixed(r) 〉 ,

where Hmixed(·) is the deletion-correcting hash function

for mixed strings from Theorem 5, and repk+1 is the

(k + 1)-repetition code which repeats each bit (k + 1)
times. Since Hmixed(r) is the most intensive computation,

Enc(s) can be computed in Ok(n(log n)
4) time and its

length is

n+ (k + 1)L+ (k + 1)|Hmixed(r)|
6 n+ (k + 1)O(k log2 k log n)+

+ (k + 1)O(k2 log k log n)

6 n+O(k3 log k log n).

We now describe the efficient decoding function Dec.

Suppose we receive a subsequence s′ ∈ σk(Enc(s)),
First, we can easily decode t and Hmixed(r), since we

know the lengths of t and Hmixed(r) beforehand. Also

the first n − k symbols of s′ yield a subsequence r′

of r of length n − k. Then, as shown in Theorem 5,

r = Gmixed(r
′, Hmixed(r)) and this can be computed

in Ok(n(log n)
4) time. Finally, we can compute s =

µ(r, t), so we have successfully decoded the message s
from s′, as desired.

Now, we demonstrate how to obtain the improved

encoding length of n + O(k2 log k log n). The idea is

to use Lemma 3 to protect t and Hmixed(r) with less

redundancy than the naive (k + 1)-fold repetition code.

Proof. (of Theorem 1) Consider the slightly modified

encoding

Enc(s) = 〈r, t, repk+1(hash2(t)), Hmixed(r), (8)

repk+1(hash2(Hmixed(r))) 〉 .

The resulting codeword can be verified to have length

O(k2(log k)(log n)) for large enough n; the point is that

hash2() applied to t and Hmixed(r), which are Ok(log n)
long strings, will result in strings of length ok(log n),
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so we can afford to encode them by the redundancy

(k + 1) repetition code, without affecting the dominant

Ok(log n) term in the overall redundancy.

Since we know beforehand, the starting and end-

ing positions of each of the five segments in the

codeword (8), we can in O(n) time recover sub-

sequences of r, t, repk+1(hash2(t)), Hmixed(r), and

repk+1(hash2(Hmixed(r)) with at most k deletions in

each. By decoding the repetition codes, we can recover

hash2(t) and hash2(Hmixed(r)) in O(n) time. Then,

using the algorithm described in Lemma 3, we can

recover t and Hmixed(r) in Ok(n
′2(log n′)2k) time where

n′ = max(L, |Hmixed(r)|) = O(k2 log k log n). Once t
and Hmixed(r) are recovered, we can proceed as in the

previous argument and decode s in Ok(n(log n)
4) time,

as desired.

VI. EFFICIENT ALGORITHM FOR CORRECTING

INSERTIONS AND DELETIONS

By a theorem of Levenshtein [2], we have that our

code works not only on the k-bit deletion channel but

also on the k-bit insertion and deletion channel. The

caveat though with this theorem is that the decoding

algorithm may not be as efficient. In this section, we

demonstrate a high-level overview of a proof that, with

some slight modifications, the code we constructed for k
deletions can be efficiently decoded on the k-bit insertion

and deletion channel. Although the redundancy will be

slightly worse, its asymptotic behavior will remain the

same.

To show that our code works, we argue that suitable

modifications of each of our lemmas allow the result to

go through.

• Lemma 2 works for the k-bit insertion and dele-

tion channel by Levenshtein’s result [2]. Since

encoding/decoding were done by brute force the

efficiency will not change by much.

• To modify Lemma 3 we show that the code which

corrects 3k deletions can also correct k insertions

and k deletions nearly as efficiently. If the codeword

transmitted is s1, . . . , sn′ where each si is of length

at most ⌈log n⌉ then in the received word, if si was

supposed to be in positions ia to ib, then positions

ia + k to ib − k must contain bits from si except

possibly for k spurious insertions. Using Lemma

2 modified for insertions, we can restore si using

brute force, and thus we can restore the original

string with about the same runtime as before.

• Lemma 4 and Lemma 6 do not change because the

underlying error-correcting code does not depend

on deletions or insertions.

• Theorem 5 extends because the number of patterns

p which are preserved (in the sense of Definition 5)

with respect to a specific pattern of k insertions and

deletions is roughly the same as with k deletions.

And, for such a preserved pattern, the associated

hash function hpattern allows for correction of arbi-

trary bounded number of errors in strings between

the p-split points, and it doesn’t matter if those

errrors are created by insertions or deletions.

• Lemma 7 does not change.

• Theorem 1 needs some modifications. The encoding

has the same general structure except we use the

hash functions of the modified lemmas and we use

a (3k+1)-fold repetition code instead of a (k+1)-
fold repetition code. That is, our encoding is

φ(s) = 〈r, t, rep3k+1(hash2(t)), Hmixed(r),

rep3k+1(hash2(Hmixed(r)))〉 .
In the received codeword we can identity each

section with up to k bits missing on each side and

k spurious insertions inside. In linear time we can

correct the (3k + 1)-repetition code by taking the

majority vote on each block of length 3k+1. Thus,

we will have hash2(t) and hash2(Hmixed(r)) from

which we can obtain t, Hmixed(r), and finally r and

s in polynomial (in fact, near-linear) time as in the

deletions-only case.

Thus, we have exhibited an efficient code encoding n
bits with O(k2 log k log n) redundancy and which can

be corrected in near-linear time against any combination

of insertions and deletions totaling k in number.

VII. CONCLUDING REMARKS

In this paper, we exhibit a first-order asymptotical-

ly optimal efficient code for the k-bit deletion chan-

nel. Note that to improve the code length past n +
O(k2 log k log n), we would need to modify our hash

function Hmixed(r) so that either it would use shorter

hashes for each particular pattern p or it would require

using fewer patterns p. The former would require dis-

tributing the hash information between different patterns,

which may not be possible since the patterns do not syn-

chronize with each other. An approach through the latter

route seems unlikely to improve past n + O(k2 log n)
since an adversary is able to “ruin” k essentially inde-

pendent patterns because the string being transmitted is

k-mixed.
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Another interesting challenge is to give a deterministic

one-way protocol with poly(k log n) communication for

synchronizing a string x ∈ {0, 1}n with a subsequence

y ∈ σk(x) (the model discussed in Section I-C). The

crux of our approach is such a protocol when the string

x is mixed, but the problem remains open when x can

be an arbitrary n-bit string.

Another intriguing question is whether there is an

extension of the Varshamov-Tenengolts (VT) code for

the multiple deletion case, possibly by using higher de-

gree coefficients in the check condition(s) (for example,

perhaps one can pick the code based on
∑n

i=1 i
axi for

a = 0, 1, 2, . . . , d for some small constant d). Note that

this would also resolve the above question about a short

and efficient deterministic hash for the synchronization

problem. However, for the case of two deletions there are

counterexamples for d 6 4, and it might be the case that

no such bounded-degree polynomial hash works even for

two deletions.
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APPENDIX

In this section, we generalize the work of [20] (who

did the k = 1 case) to demonstrate that the best asymp-

totic rate achievable by a linear k-bit binary deletion

code is 1/(k + 1). Note that this is achieved by the

(k+1)-fold repetition code that repeats each bit (k+1)
times in the codeword.

Theorem 8. Let C be a n-bit linear code for the k-bit

deletion channel. Then, dim(C) 6 n/(k+1)+(k+1)2.

Proof. Define C0 = C,C1, . . . Ck to be subspaces of

F
n
2 of dimension dim(C) such that

Ci = {(xi+1, . . . , xn, x1, . . . , xi) | (x1, . . . , xn) ∈ C}.
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Lemma 9. For all 0 6 i < j 6 k,

dim(Ci ∩ Cj) 6 gcd(j − i, n).

Proof. If z ∈ Ci ∩ Cj , then there exists x, y ∈
C such that z = (xi+1, . . . , xn, x1, . . . , xn) =
(yj+1, . . . , yn, y1, . . . , yj).

Since j > i, we have that (xi+1, . . . xn−j+i) =
(yj+1, . . . , yn). Thus, when x and y are passed through

the k-deletion channel, they could output the same result

since k > j. Thus, x = y. Hence, xℓ = xℓ+j−i (indices

modulo n) for all ℓ ∈ {1, . . . , n}. Thus, there are at

most 2gcd(j−i,n) choices for x, so dim(Ci ∩ Cj) 6

gcd(j − i, n).

From the lemma, we can see that

n > dim

(

k
∑

i=0

Ci

)

> (k + 1) dim(C)−
k
∑

i=0

k
∑

j=i+1

dim(Ci ∩ Cj)

> (k + 1) dim(C)−
k
∑

i=0

k
∑

j=i+1

(j − i)

> (k + 1) dim(C)− (k + 1)3.

Thus, dim(C) 6 (k + 1)2 + n/(k + 1), as desired.

Remark. If we let n be a prime, then dim(Ci ∩ Cj) 6
gcd(j − i, n) = 1. Furthermore, the only possible non-

trivial intersection is 11 . . . 1. Thus, the sum of these

k + 1 vector spaces would have to have dimension at

least (k + 1)(dim(C)− 1) + 1, from which we can get

that dim(C) 6 (n+ k)/(k + 1).
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