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ation, and morphogenesis. A major goal of tissue engineering is to identify which properties of the
pericellular space orchestrate these emergent cell behaviors and how. In this review, we highlight recent
studies at the interface of biomaterials and single cell biophysics that are lending deeper insight towards
this goal. Advanced methods have enabled the decoupling of architectural and mechanical features of the
microenvironment, revealing multiple mechanisms of adhesion and mechanosensing modulation by bio-
materials. Such studies are revealing important roles for pericellular space degradability, hydration, and
adhesion competition in cell shape, volume, and differentiation regulation.
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Cell volume Statement of significance

Cell fate and function are closely regulated by the local extracellular microenvironment. Advanced meth-
ods at the interface of single cell biophysics and biomaterials have shed new light on regulators of cell-
pericellular space interactions by decoupling more features of the complex pericellular milieu than ever
before. These findings lend deeper mechanistic insight into how biomaterials can be designed to fine-
tune outcomes like differentiation, migration, and collective morphogenesis.
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1. Introduction

The pericellular space is the region surrounding the cell by
about 100 um [1-4] and serves as a key source of chemical
and mechanical stimuli [5] (Fig. 1a). Cells begin to actively and
passively modify the pericellular space immediately after cell-
seeding through processes including degradation [6-8] and/or
extracellular matrix (ECM) deposition [9,10]. The initial stimuli
provided by the pericellular space and its susceptibility to
change both play important roles in directing cell behavior
through the regulation of adhesion formation and stability [11],
cytoskeletal polymerization and contractility [6,12], and changes
in ion channel activity [13,14]. The collective action of these fea-
tures determine the morphological landscape of cells [13]. Mor-

phology, which includes cell shape, volume, and the organization
of intracellular organelles, ultimately integrates mechanical and
molecular cues into macroscopic scale outcomes such as migra-
tion, differentiation, and morphogenesis (Fig. 1, b and c). Thus,
fundamental understanding of cellular behavior relies on knowl-
edge of these dynamic cell-pericellular space interactions and
their effect on morphology. Mechanistic understanding of these
processes is particularly relevant for understanding diseases
involving complex microenvironmental dysregulation, such as
cancer, osteolysis, arthritis, and fibrotic diseases which include
heart failure, pulmonary fibrosis, and cirrhosis [15]. Here, we
review recent efforts to study these interactions and discuss
the remaining challenges and promise of time dynamic studies
and quantitative modeling.
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Fig. 1. The cell resides in a complex 3D pericellular space. a. The pericellular space regulates cellular response. The extracellular matrix (ECM) architecture depends on the
fiber architecture and composition of the ECM [6,9,94]. Presentation, type and conformation of adhesive sites (blue) affects how the cell adheres and interacts with the matrix.
Cellular focal adhesions (yellow) are the binding site of the cell to the matrix. Depending on the architecture of the matrix, a cell may be more spread and have more focal
adhesions, or be more rounded and have fewer focal adhesions [6,158]. Degradable sites (red) similarly affect the ability of the cell to interact with the surrounding matrix,
degrade ECM, and therefore, generate cleaved ends and pieces of ECM fibers which serve as signals regulating many cellular functions [5]. Cells can secrete MMPS to degrade
the matrix. These features of the pericellular space regulate cytoskeletal components such as actin (dark green) as well as nuclear transcription [147]. All of these responses
together inform cellular morphology including cell circularity and volume. b. A representation of the circularity volume space. A cell’s morphology can be plotted as shown so
that cells have a specified shape and circularity, which are the result of processes such as adhesion, degradation and protrusion. c. Morphology is defined by cellular response
to the pericellular space. The shape of the cell represents the integration of intracellular and extracellular responses to the pericellular space. Cell shape can be defined using
cell volume and cell shape metrics such as cell circularity. The key features of the shape are initially driven by the features of the pericellular space including adhesivity,
degradability and architecture of the biomaterial. The cellular response to the biomaterial is includes short term effects such as regulation of contractility, transcription and
ECM deposition, as well as long term effects such as migration, multicellularity, cancer progression and stem cell differentiation. The question marks represent papers that
present potential links of the biomaterial feature to cellular response. List of references: 1. [44] 2.[6] 3.[7] 4. [8] 5.[57] 6.[58] 7.[59] 8.[55] 9. [40] 10. [42] 11.[34] 12.[147]
13. [43] 14.[44] 15. [45] 16. [13] 17.[14] 18.[9] 19. [75] 20. [62] 21. [10] 22. [73] 23.[12] 24.[111]
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1.1. Challenges in decoupling the features of the pericellular space

The pericellular space is the region directly surrounding the cell,
composed of ECM components, water, proteins, small and large
signaling molecules, and other cells [5]. The profound influence
of both the mechanical and chemical aspects of this milieu has
been recognized for more than a century. However, its complexity
makes it challenging to isolate individual features and determine
their contribution to regulating cell behaviors. Synthetic biomate-
rials are well-suited to address some of these complexities as they
can be engineered to mimic specific architectural features or
mechanical properties. On the other hand, the use of native ECM
polymers in vitro mimics native ligand presentation and may bet-
ter capture the complexity of physiologic ECM. Using both native

and synthetic polymers to mimic physiologic ECM is important
to build an understanding of cellular response to the pericellular
space. We discuss this further in the following section. To compare
these studies in context of one another and the pericellular space
of study, we utilize metrics of cell morphology, including cell shape
and cell volume as key readouts of cell-matrix interactions
(Section 1.2).

1.1.1. Synthetic and native biomaterials

Tissue engineering research in the last decade has seen a focus
on recreating mechanical and chemical properties of native ECM
from the bottom-up, using synthetic biomaterials such as poly-
ethylene glycol (PEG) and alginate (Fig. 2a) [16-19]. Synthetic bio-
materials provide both advantages and disadvantages. The major
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Fig. 2. In both native and synthetic ECM environments, the architecture can be manipulated to study features of cell structure and function. The cell also remodels the
pericellular space by bundling and aligning fibers. a. Native vs. Synthetic ECM: Native ECM provides a variety of adhesive and degradable ligands which are presented to the
cell in a specific architecture [159]. Synthetic biomaterials such as polyethylene glycol (PEG) and alginate [16-19] can be chemically modified to provide specific control over
the adhesion and degradation sites available to cells, as well as mechanical and physical control of the cell’s microenvironment. b. Methods to change architecture of native
ECM materials: Representative images of electrospinning of a composite laminin core-polydioxanone/collagen shell fibers. These can be oriented in a random or aligned
structure. Reproduced from Ref.[160] under the Creative Commons Attribution 4.0 International License. Decreasing polymerization temperature increases fiber length and
pore size. Reproduced from Ref. [11] under the Creative Commons Attribution 4.0 International License. Small molecular weight crowders such as 8 kDa PEG decreases the
fiber length and pore size in 2.5 mg/ml collagen gels. Reproduced from Ref. [6] with permission from The Royal Society of Chemistry. c. Degradability regulates confinement.
In a confined collagen gel formed using a molecular crowding agent, encapsulated cells are not able to degrade the matrix and are more confined (circular) as opposed to a cell
able to modify the matrix (spread) (phalloidin (actin, green) and DAPI (nuclei, blue). Scale bar is 25 pm.) Reproduced from Ref. [6] with permission from The Royal Society of
Chemistry. d. Cells bundle fibers to remodel the pericellular space. Matrix reorganization occurs through recruitment of fibers by endothelial cells and lateral bundling of
fibers between adhered cells and is accompanied by cell spreading and the formation of cell-cell contacts. Reproduced from Ref. [8] under the Creative Commons Attribution
4.0 International License. e. Cells align fibers in remodeling the pericellular space. Top row: tumor spheroids, dyed using CellTracker Red; second row: SHG images of collage
fibers showing alignment over 4 hrs. Reproduced from Ref. [7] under the Creative Commons Attribution 4.0 International License.
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advantages are that they can be chemically modified to provide
exquisite control over the composition and presentation of adhe-
sion and degradation sites available to cells. They also offer fine-
tuned mechanical control of the cell’s microenvironment (Fig. 2a)
(see Table 1 for methods to tune synthetic matrices). In synthetic
matrices, however, the conformation and presentation of the
ligand may not sufficiently mimic native ligand presentation. Stud-
ies using such biomaterials have observed that ligands must not
only be available, they must be presented properly for cells to “see”
them, ie. to bind and activate the corresponding receptor [20-25].
For example, one recent study used alginate gels covalently modi-
fied with arginine-glycine-aspartic acid (RGD) peptides attached
via varying length tethers and observed that increasing tether
length decreased cell adhesion and cell spread area [25]. These
results also echo lessons learned from the growth factor delivery
field, where method of presentation and conformation of the
growth factor affect ligand receptor activation [21,23]. Thus, the
reduced chemical and topographical complexity that some syn-
thetic ECMs provide also introduce new challenges of presentation.
Biophysical and biochemical measurement of cell-biomaterial
interactions, like adhesion, remain essential in confirming that
materials are performing in the way that they are designed to. This
has increasingly led to integrative research efforts spanning the
fields of biomaterials and single cell biophysics.

1.1.2. Matrix architecture

The problem of ligand conformation and presentation within
the scaffold has reinforced the idea that architectural features of
the native pericellular scaffold are just as important as its compo-
sition. For example, type I collagen, one of the most abundant scaf-
folding proteins in the human body, has multiscale architecture
that determines how adhesion and degradation sites are presented
[26,27]. Architecture encompasses biopolymer size, alignment,
crosslinking density, branching, and pore size (Table 1 for methods
to vary architecture). Both microscale (~1um) and mesoscale
(~100 um) architectural features direct cell behavior through reg-
ulation of adhesion formation and topographic guidance, and when
combined, mesoscale cues can enhance or compete against micro-
scale cues [28-30]. Nanoscale topography can also regulate cell
adhesion sensing [31].

Matrix architecture can be controlled across scales to some
extent in both reconstituted native ECMs and synthetic ECMs by
several established and newer methods (Table 1) (Fig. 2b). Pore
size, crosslink density, structural organization, viscoelastic proper-
ties and stiffness can be manipulated to study cellular sensation of
architecture [9,32,33]. For example, electrospinning can be used to
generate nanofibrous scaffolds from either natural or synthetic
biodegradable polymers with control over fiber size, pore size,
and alignment [8,34]. Collagen fibers can be tuned to different
lengths and thicknesses by changing polymerization temperature
[11] (Fig.2b) or introducing a crowding agent [6,10,35-39] or
using a microchannel to align the fibers with flow [40]. However,
specifying the architecture of a matrix usually has implications
for its mechanics and degradability as well. Matrix architecture
can regulate matrix degradability, modulating the degree to which
encapsulated cells are confined (Fig. 2¢) [6,9,41], or permitted to
modify their local architecture by cutting, bundling, and aligning
fibers [7,8,42]. Architecture can also influence local matrix stiff-
ness, affecting the balance between cell adhesive and contractile
forces [11]. Likewise, tuning the stiffness or tension in a scaffold
is usually accomplished by changing architecture, such that the
two cannot be decoupled. Much of the research literature has used
the term “stiffness” broadly as an independent variable, when the
experiments actually vary some chemical or architectural feature
that contributes to stiffness (e.g. cross-links). Crosslinking often
reduces degradability [43-45], so the phenotypic outcomes that

are correlated to one feature may actually mechanistically result
from another, related feature. Stiffness sensing by cells has been
heavily explored over the last decade and was recently reviewed
in detail [46-50]. Herein, we will discuss recently developed meth-
ods that now enable the decoupling of certain aspects of architec-
ture from mechanics. These studies have shed new light on the
underappreciated role of matrix degradability and hydration in
dominating early cell-matrix interactions, as well as the complex-
ity of biomaterial adhesive properties.

1.2. Cellular morphology as a readout of pericellular space interactions

A relatively new paradigm in the fields of biomechanics and
three-dimensional (3D) biomaterials is that cell shape and volume
serve as emergent properties, integrating multiple pericellular
space cues to orchestrate cell outcomes (Fig. 1, b and c). Here, we
use these two descriptors of cell morphology as a point of compar-
ison across studies using different materials, since they are fea-
tures that are easily measured from imaging data and used
frequently [6,51,52]. Cell shape is often measured as circularity,
which is a ratio of perimeter to area in a two-dimensional (2D) pro-
jection that effectively describes protrusion, cell spreading, and
membrane ruffling in a single quantity for a given cross-section.
It has recently been used to characterize and predict a wide variety
of cell outcomes, form epithelial-to-mesenchymal transition (EMT)
in cancer cells [53] to early stage lineage commitment in mes-
enchymal stem cell (MSC) differentiation [54]. Circularity has also
been used to characterize the effect of stress-relaxation on cell
shape [55]. While circularity captures a projection of the cell shape
in 2D, cell shape can also be measured in 3D using metrics such as
sphericity. Sphericity is the ratio of object volume and the surface
area and captures the flatness of the cell in addition to the features
of circularity. Sphericity has been used to develop a measure of
cells shape to predict invasive capability of different cell lines
[56]. Because of its inherent 3D nature, moving towards measures
like sphericity will more reliably represent 3D cell-pericellular
space interactions.

Another key metric of morphology, volume, can be measured
from confocal z-stack imaging and has been linked to significant
effects on cellular mechanics, osmotic balance, adhesion formation,
and cytoskeletal polymerization. Cell volume responds to cortical
tension [13], osmotic flux, intracellular signals, and environmental
constraints [12,55]. Herein, we visualize cell morphology as
regions in a circularity:volume space (Fig. 1b). Confinement and
cellular spreading emerge as roughly opposite morphological con-
ditions (Fig. 1a). We discuss recent studies that have identified
emerging [2,3] features of the pericellular space responsible for
modulating cell morphology, leading to phenotypic impacts
(Fig. 1c). Cell type and genetic makeup play significant roles in
these processes, so we include those details where appropriate
but do not focus heavily on them in order to identify potential gen-
eral design principles.

2. New insight into regulators of biomaterial adhesivity

If cells are able to adhere to a substrate, they will begin to
spread and regulate their tensile state. This process is coupled with
gene expression [57-59]. In the absence of adhesion, cells become
more spherical and often stressed [60-63]. Thus, the adhesivity of
the pericellular space is essential in the determination of cellular
morphology and function. Despite incredible advancements in
understanding the adhesion and spreading processes at the molec-
ular and cellular levels, a surprising number of open questions
remain [27,64-68]. Recent studies that couple synthetic and native



Table 1
Summary of select studies that analyze features of the pericellular space and their effects on cells.

Scaffold Material Pericellular Space Study Results Methods to modify ECM Cell/tissue types Ref
Feature
Native ECM Scaffolds
Collagen Fiber architecture, Pore Collagen matrices with small pores and short fibers Macromolecular crowding using PEG can be Fibrosarcoma cells (HT-1080), Mesenchymal [9]
size trigger a conserved transcriptional response and used to generate short fiber, small pore human foreskin fibroblasts (HFF-1),
subsequent motility switch in cancer cells which results matrices with equivalent density to large pore, Breast cancer cells (MDA-MB-231)
in the formation of multicellular network structures. The large fiber matrices. This method modifies the
transcriptional module associated with network structure of the collagen fibers within the gels
formation is enriched for migration and vasculogenesis-  without changing the final collagen
associated genes that predict survival in patient data concentration, therefore decoupling ligand
across nine tumor types. density and architecture
Protein deposition, Collagen type I gel promotes collagen type 4 deposition 3D encapsulation/confinement Adipocytes [10]
Confinement and brown adipogenesis.
Fiber architecture Macromolecular crowding can decouple fiber Macromolecular crowding Breast cancer cells MDA-MB-231 [6]
architecture and matrix stiffness to study cancer cell
morphology in confining environments.
Fiber architecture Decreasing polymerization temperature increases fiber Polymerization temperature Human foreskin fibroblasts (HFF) [11]
size and porosity and affects cell morphology, adhesion
and motility.
Viscoelasticity Collagen and fibrin gels stiffen with strain, but over time, Measurements of stress relaxation were N/A [121]
the gel undergoes stress relaxation and the stiffening is performed using an AR-G2 stress-controlled
reduced. rheometer
Degradability Switching from single-cell to collective invasion modes Collagen density Spheroids of MV3 melanoma and HT1080 [73]
is dependent on increasing collagen density and fibrosarcoma cells
proteolytic collagen breakdown but independent of
matrix stiffness.
Matrigel Stiffness Endothelial cell network formation depends on Glutaraldehyde crosslinking Endothelial cells [8]
thickness and stiffness of matrigel
Synthetic and Hybrid ECM Scaffolds
Poly ethylene Adhesivity Differentiation of iPSCs towards neural progenitor cell PEG-peptide-based hydrogels polymerized by Induced pluripotent stem cells (iPSCs) [16]
glycol (PEG) can be induced via integrin B1 binding motifs. photoinitiated step growth mechanisms
facilitate adhesive ligand incorporation.
Nano-architecture Nanostructure of PEG hydrogels can be controlled by PEG polymerization via step-growth or chain Human mesenchymal stem (hMSC) [17]
polymerization mechanism such that chain polymerized =~ growth mechanisms.
hydrogels are highly heterogeneous and step growth
networks exhibit more uniform structures. These
features affect cell proliferation and spreading; Step
growth mechanisms promote cell spreading.
Alginate Ligand presentation Controlling the spacer arm length of RGD ligand coupled  The length of spacer arms conjugated to Mouse bone marrow stromal cells (BMSCs) [18]
to alginate hydrogels changes differentiation. Increasing  alginate varied by varying the number of gly
spacer length promotes osteogenic and adipogenic peptides before the adhesive ligand.
differentiation of BMSCs but shows less enhancement of
chondrogenic differentiation.
Ligand presentation, Peptide mimics of bone morphogenetic protein 2 (BMP-  BMP-2 peptides synthesized by solid phase Mouse mesenchymal stem cells (mMSCs) [21]
Adhesivity 2) and adhesive ligands presented from both 2D surfaces Fmoc-peptide synthesis are covalently bound
and 3D alginate hydrogels, increase osteogenic activity to alginate hydrogels via multiple strategies.
in mMSCs.
Alginate Adhesivity, Stiffness, Interpenetrating networks of alginate and reconstituted  The stiffness of interpenetrating networks Breast cancer cell line MDA-MB-231 [19],[51]

Viscoelasticity

Basement Membrane (rBM) can simultaneously provide
tunable mechanics and native adhesive ligands [19].
These matrices demonstrate that cells migrate through
confining matrix if it exhibits sufficient mechanical
plasticity [[51] .

formed by mixing rBM and alginate can be
tuned by modulating the concentration of
calcium used to cross-link the alginate while
holding the concentration of rBM constant.
This method can decouple the stiffness of the
3D microenvironment from the cell adhesion
ligand concentration or pore size.

(continued on next page)
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Table 1 (continued)

Scaffold Material Pericellular Space Study Results Methods to modify ECM Cell/tissue types Ref
Feature
Viscoelasticity Gels with fastester strain relaxation enhance cell Two methods increase stress relaxation in 3D Mesenchymal stem cells (MSCs) [104]
spreading, proliferation, and osteogenic differentiation of alginate gels. Lowering the molecular weight
of MSCs. In gels with a fast stress relaxation, MSCs form  of alginate polymers crosslinked by calcium
a mineralized, collagen-1-rich matrix similar to bone. decreases entanglement and crosslinking of
the network. Another method to vary stress
relaxation is to couple small PEG spacers to
provide a steric spacing of crosslinking zones in
the alginate. Using both methods together
provides the fastest strain relaxation.
Stress relaxation, 2D RGD-modified alginate hydrogel substrates with Ionically crosslinking alginate with the Mouse myoblast [55]
Viscoelasticity varying initial elastic moduli and rates of relaxation divalent cation Ca2 + resulted in hydrogels
show that viscoelasticity and stress relaxation are key exhibiting stress-relaxation whereas
parameters affecting myoblast spreading and covalently crosslinking alginate with
proliferation carbodiimide chemistry produced hydrogels
with reduced stress-relaxation. Both types of
gels have variable elastic moduli depending on
crosslinking (2.8-49.5 kPa).
Hyaluronic Acid Degradability hMSCs within HA hydrogels of equivalent elastic moduli hMSCs encapsulated either into HA hydrogels Human mesenchymal stem (hMSC) [75]
(HA) that permit cell-mediated degradation exhibit high using Michael addition reactions between
degrees of cell spreading and high tractions, and favour =~ MeMaHA maleimides and MMP degradable
osteogenesis, while matrices that restrict cell-mediated peptides.
degradation exhibit low cell traction/spreading and
adipogenesis.
Protein deposition Local nascent protein deposition was investigated in 2 HA degradability tuned by crosslinking via a Human mesenchymal stem (hMSC) [103]
matrices of interest: proteolytically degradable, thiol-ene reaction with MMP-degradable
covalently crosslinked hyaluronic acid and dynamic dithiol peptide crosslinkers. HA viscoelasticity
viscoelastic hyaluronic acid hydrogels. Inhibiting can be tuned with a dynamic double-network
nascent protein deposition in these hydrogels reduces HA hydrogel system based on covalent and
mesenchymal stromal cell spreading and nuclear supramolecular guest-host crosslinking.
translocation of YAP/TAZ and results in a shift towards
adipogenic differentiation.
Dextran Degradability Matrix degradability is modified by inclusion of MMP DexMA macromers are crosslinked through Endothelial cells [44]
Methacrylate degradable peptides in the DexMA gel. Matrix Michael-type addition with matrix
(DexMA) degradability switches 3D endothelial cell invasion metalloproteinase (MMP) labile dicysteine
between single-cell migration and the multicellular, peptide sequences to study degradability
strand-like invasion required for angiogenesis. effects on multicellular migration patterns.
Fiber architecture Macroporous scaffolds with tunable stiffness, fiber Electrospun DexMA fibers can be Endothelial cells [8]
density and fiber modifiability demonstrates that functionalized with adhesive peptides using
cellular ability to bundle fibers improves endothelial cell ~ Michael-like addition to study endothelial cell
network formation. network formation.
Poly(glycerol Mechanical properties PGS is a biodegradable elastomer that exhibits tunable Photocurable thiol-ene click chemistry 3 T3 fibroblast cells [162]
sebacate) (PGS)  and fiber architecture mechanical properties and is a amenable to 3D controls PGS crosslinking. These PGS networks
bioprinting of complex scaffold geometries. exhibit tunable mechanical properties and
degradation rates in the presence of different
concentrations of crosslinker.
Porosity and Pore size Higher porosity of PGS scaffolds promote cell infiltration, ~ Porous elastomeric PGS scaffolds can be Primary human chondrocytes [163]

proliferation, and ECM production.

fabricated using salt leaching techniques.
Plasma treating the scaffold decreases
hydrophobicity and promotes cell infiltration,
proliferation, and ECM production, with the
greatest HA, sGAG, uronic acid, and collagen
contents for chondrocytes.

98

86-18 (610) 96 DYpLIIDWIOIG DIDY /D 13 1300 "IN



Poly(octanediol
citrate) (POC)

Polycaprolactone
(PCL)

Polylactic acid
(PLA)

Poly(lactic-co-
glycolic acid)
(PLGA)

Stiffness and protein
deposition

Pore shape and
permeability

Fiber architecture

Fiber architecture,
stiffness

Porosity, fiber
architecture

Fiber architecture

Degradability

Matrix architecture,
adhesivity, protein
deposition

Pore size, degradability

Osteogenic differentiation of MSCs is improved with
stiffer matrices as demonstrated by greater alkaline
phosphatase activity and cellular mineralization.

To study the effects of permeability of a matrix on
cartilage regeneration, POC matrices with different pore
sizes and shapes were designed. Lower permeability
with a spherical pore shape enhances matrix production
and chondrogenic mRNA gene expressions in vitro
compared to highly permeable scaffolds with a cubical
pore shape.

Electrospun scaffolds made of PCL mimic the
morphological architecture of native ECM by
recapitulating the micro- and nano-scale morphological
features of fibers with diameter equal to 3.22 + 0.42 pm
and surface roughness of 17.84 + 4.43 nm. These
features promote proliferation of healthy human
hepatocytes (HHH) over liver cancer cells (HEP-G2) in
co-culture in the fibrous mesh.

Providing biomemtic ECM components, by coating
electrospun ECM matrices in liver derived ECM, and
providing stiff PCL structure improves hepatic cell
adhesion and liver-like functions of hepatocytes .

Deep cell migration occurs after implantation in vivo in
PCL eletrospun scaffolds but does not occur in a gelatin
gel, likely due to the large pores of the PCL scaffold.
Varying PLA fiber length and concentration as a
reinforcement phase in a gelatin hydrogel matrix affects
mechanical properties and cellular responses. With
increasing fiber length and concentration, the ultimate
tensile strength, modulus, and toughness increased. Cell
viability is highest with the longest fibers (12.7 mm).
PLA, a biodegradable and bioactive thermoplastic
aliphatic polyester derived from renewable biomass, has
a prolonged degradation profile. This allows for
increased time for autologous cell colonization and
extracellular matrix deposition to occur with the
support of the PLA matrix. Electrospun arterial grafts
from PLA show normal tissue properties after 12 months
in vivo, including tissue ECM composition and matrix
deposition.

Macroporous substrates composed of PLGA and coated
with artificial ECM molecules, including collagen type 1
and HA or sulphated HA derivatives, facilitate dermal
colonization, decrease collagen type 1 mRNA expression,
and increase MMP activity relative to PLGA scaffold
alone.

PLGA pore size was varied in to determine optimal pore
size for cellular protein deposition and cell migration.
PLGA constitutes a synthetic, degradable matrix suitable
for implantation and in vitro models of intervertebral
disc regeneration.

Bioglass nanofiber composites are
incorporated into electrospun POC matrices to
increase overall modulus.

POC scaffolds with specialized geometries are
created by molding POC around a sacrificial
mold of HA.

Fibrous scaffolds were fabricated via
electrospinning. Fiber morphology was
adjusted using the voltage and time of
deposition.

The scaffold is constructed using liver-derived
ECM, gelatin, and PCL by electrospinning.

PCL scaffolds generated by electrospinning.

PLA fibers of various lengths and
concentrations are embedded into a gelatin
hydrogel using a wet-lay process. This process
disperses fibers in a solvent, transfers them to a
glass substrate, evaporates solvent and forms
gelatin hydrogel around fibers.

PLA scaffolds spun into porous nanofiber
conduits implanted as an arterial conduit in
mice.

Macroporous PLGA scaffolds are fabricated by
lipid templating, where solid lipid
microparticles are used as a porogen in PLGA
polymer and extracted via n-hexane. The PLGA
are coated in proteins via protein adsorption.

PLGA matrices with various pore sizes are
generated by salt leaching techniques. These
matrices were soaked in a small intestinal
small mucosa solution, cross-linked and
lyophilized to provide bioactivity.

Mouse bone marrow mesenchymal stem cells
(mBMSCs)

Primary porcine chondrocytes (pChon)

Human primary hepatocytes

Primary rat hepatocytes

Human fetal foreskin fibroblast cell line
(HFFF2)

Human mesenchymal stem cells (hMSCs)

Artificial grafts implanted into mouse infra-
renal artery

Human dermal fibroblasts (dFbs)

Nucleus pulposus (NP) cells
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Fig. 3. New insights into regulators of biomaterial adhesivity. a. Cooperative vs Antagonistic mechanisms guide determination of cell-cell and cell-matrix adhesions.
Cooperative adhesion: one mode of crosstalk between integrins and cadherins, is integrin-mediated increases in tension which can activate cadherin-based adhesions [69].
Antagonistic adhesion: In environments that promote cell-matrix adhesion, spreading, and increased intracellular tension, cells tend to remain as single cells even after cell
division. Conversely, in confining environments cells tend to adhere to each other, forming multicellular structures [6,9,44,73,75]. b. In environments of low adhesion, cells
deposit ECM. Collagen type 4 was deposited in confined environments. Immunofluorescence staining of a highly invasive breast cancer cell line, MDA-MB-231, cells for
collagen type 4 after 7 days of culture in 6 vs. 2.5 mg ml~". Scale bar 100 pm. Reproduced from Ref. [9] under the Creative Commons Attribution 4.0 International License. c.
Cell adhesion could be regulated by nascent protein deposition. Fluorescent images of nascent proteins including fibronectin, laminin o5 and collagen type 1 and type 4 of
human mesenchymal stem cells seeded in degradable hyaluronic acid matrices for 6 days (scale bars, 20 um). Reproduced with permission from Ref. [103] from Nature
Materials d. Macromolecular crowding (MMC) activates ECM deposition. MMC in 2D culture media by addition of 18% Ficoll was able to induce significant increases in
collagen type 4 deposition of MSCs undergoing adipogenesis, and the collagen type 4 (red) displays an intricate architecture. Z-projection images show nuclei (blue), collagen
type 4 (red), and lipid droplets (green). Scale bar: 20 pm Reproduced from Ref. [10] under the Creative Commons Attribution 4.0 International License. e. Outside in vs. Inside
out. A model for actin-dependent integrin activation. Reproduced from Ref. [161] under the Creative Commons Attribution 4.0 International License.

biomaterials to cell biophysics are revealing that multiple factors
contribute to biomaterial adhesivity.

2.1. Cooperation versus competition in cell adhesion

When multiple cells share a pericellular space, two classes of
adhesion molecules can be engaged simultaneously, facilitating

cell-cell adhesion and cell-ECM adhesion. Controlling the balance
between these two adhesion processes is essential to achieving
functional outcomes such as differentiation and morphogenesis.
Synergistic interactions between these two adhesion types is well
established and has been reviewed in great detail [69,70] (Fig. 3a).
In particular, crosstalk between integrins and cadherins is known
to arise from integrin-mediated increases in tension, which can
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activate cadherin-based adhesions [69]. Elevations in the magni-
tude of integrin-mediated traction forces are accompanied by
increases in myosin-dependent tension at cadherin-based adhe-
sions [71]. Conversely, interfering with mechanotransduction at
sites of cell-cell adhesion increases the degree of stiffening of cells
in response to integrin ligands [72].

However, another mechanism of antagonistic interaction
between cell-cell and cell-matrix adhesion is emerging (Fig. 3a).
In environments that promote cell-matrix adhesion, spreading,
and increased intracellular tension, cells tend to remain as single
cells even after cell division [6,44,73,74]. Conversely, in confining
environments where cells often exhibit reduced adhesion and trac-
tion with the ECM [75] and decreased cytoskeletal tension
[6,11,76-80], cells tend to adhere to each other, forming multicel-
lular structures [6,9,44,73-75]. In some cases, confinement has
been shown to induce the expression of cell-cell adhesion genes,
even prior to physical contact with neighboring cells [6,62]. Recent
work by Siret et al. provides molecular insight into adhesion com-
petition between cell-cell and cell-matrix interactions. Using 2D
substrates to explore the impact of altered expression of cell-cell
adhesion molecules (cadherins) and cell-extracellular matrix pro-
teins (integrins) in melanoma cells, they found that in addition
to localizing at sites of cell-ECM contact, a subset of «21 integrin
differentially localized with N-cadherin and E-cadherin. Interac-
tion of o281 integrin with type-I collagen disrupted E-cadherin
localization at sites of cell-cell contact and promoted melanoma
cell invasion and migration. On the other hand, blocking «21 inte-
grin interactions with type-I collagen promoted E-cadherin local-
ization to cell-cell contacts and strong cell-cell adhesion [81].
These results reveal an interesting dichotomy, where on one hand,
integrins are contributing to strong cell-cell adhesion and on the
other hand, integrins are promoting cell-matrix adhesion and
migration, depending on the type of adhesions available. These
studies suggest that “tug-of-war” can exist between cell adhesion
to the ECM and other cells [82].

This concept was originally explored by Foty and Steinberg in
the context of cell-cell adhesion competition [83-85]. Their differ-
ential adhesion hypothesis (DAH) for cell-cell adhesion is based on
a physical phenomena where different types of fluids have differ-
ent surface tensions, which dictate the way they self-assemble into
structures such as microspheres [86]. In this hypothesis, cells are
modeled as fluids with specific surface tensions. Cellular popula-
tions with similar surface tensions therefore aggregate by moving
away from cells with differing surface tensions. This concept was
originally shown to explain cell sorting in development. In the
developing embryo, cells with higher cortical tensions were shown
to aggregate at the core of structures, while lower cortical tension
pushed cells outward [83]. Similarly, it is known that cells can fine
tune their adhesion to facilitate maintenance of a tensile state [87].
Extending this concept to cell-ECM adhesion suggests that a cell in
a low-adhesive environment is like a water drop on a hydrophobic
surface: if it encounters another water drop (cell), they will quickly
aggregate and remain separated from the hydrophobic surface
(low adhesion matrix). Conversely, a water drop (cell) interacting
with a hydrophilic surface (high adhesion matrix) will increase
its contact area and spread. Cells able to adhere to the surrounding
ECM, will achieve equilibrium with the tension in the surrounding
ECM by translating the tension of the ECM through cellular adhe-
sions and the cytoskeleton and will be less likely to aggregate to
other cells [58,59,87]. Interestingly, compressive stresses promote
cell spreading and strengthen cell-ECM adhesion as well [88]. Col-
lective cell behaviors are promoted in confining or low adhesive
environments, reinforcing the analogy of cells to water droplets
on hydrophobic substrates [[6,9,44,73-75]]. However, underlying
molecular mechanisms continue to be elucidated. It appears that
cells balance cell-ECM contact versus cell-cell contact through

the regulation of binding affinities and relative tensions [89,90].
These results have important implications on the mechanisms of
morphogenesis in both normal and pathologic physiologic
processes.

Both cooperative and antagonistic mechanisms of cell-cell and
cell-matrix adhesions are important in stem cell fate (Fig. 3a).
The mechanical properties of the cell and ECM drive developmen-
tal patterning by modifying cell shape and structural integrity [91].
Goodwin et al. demonstrate a cooperative mechanism of cell-cell
adhesion, by demonstrating that loss of cell-ECM adhesion (in dro-
sophila integrin-null mutants) results in abnormal E-cadherin
localization and stability, showing that cell-ECM adhesion regu-
lates cell-cell adhesion [92]. One recent example of antagonistic
cell-ECM and cell-cell interactions comes from a study on epithe-
lial cell differentiation. In this study, Miroshnikova et al. find that
cell division can lead to a cell crowding phenotype, and that cell
crowding tends to increase intracellular tension and cell-cell adhe-
sion via E-cadherin. Crowded cells tend to push away from the sub-
strate, delaminating from the basal layer. Cells that are the most
delaminated also display the greatest markers for epithelial differ-
entiation [91], suggesting that the switch to high cell-cell adhesion
plays a key role in epithelial differentiation and corresponds to
increases in tension. Not only is the type of cell-cell adhesion
and tension tightly regulated, but timing is critical. Barone et al.
postulates that cells actually have a “memory”, noting that the
amount of cell-cell contacts over the course of a cell’s lifetime
effects its path of differentiation [93]. Cells with less cell-cell con-
tacts over time have reduced nodal signaling and tend to differen-
tiate into endoderm specification. Cells with greater E-cadherin-
mediated cell-cell adhesion elicit increased nodal signaling which
reinforces cell-cell contacts and tends to promote prechordal plate
specifications. From these studies on adhesion in stem cells, it
becomes clear that cell-cell and cell-ECM contact dynamics
directly influence cell fate. It will be valuable to further investigate
how biomaterials can be used regulate these cooperative and
antagonistic adhesion modes in time-dynamic ways.

2.2. Cell-deposited ECM

Although substrates can be designed to present specific adhe-
sive sites to cells, the ability of the cell to deposit ECM within bio-
material scaffolds complicates these systems. Proteins secreted by
the cell or present in the culture medium adsorb and integrate
with the biomaterial matrix, making it unclear which material
the cell is adhering and therefore responding to. For example,
our recent work shows that confinement of cells within a collagen
type 1 matrix induces collagen type 4 upregulation and deposition
relative to non-confining conditions in multiple cell types (Fig. 3b)
[9]. Likewise, work by Loebel et al. emphasizes the importance of
nascent protein deposition in cellular interactions with tissue-
engineered matrices. In this study, deposition of fibronectin, lami-
nin o5, collagen type 4 and collagen type I by stem cells was
observed within a variety of 3D engineered proteolytically degrad-
able and dynamic viscoelastic hyaluronic acid (HA) hydrogels
(Fig. 3c). Inhibiting nascent protein deposition in these gels
decreased stem cell spreading and YAP/TAZ nuclear localization.
This demonstrates that even in the presence of adhesive ligands,
some cells depend primarily on nascent protein deposition for
adhesion. Another study found that magnetically confining MSCs
led to increased collagen deposition and secretion of other ECM
such as glycosaminoglycans (GAGs), which supported chondrogen-
esis [94]. To resolve the relative contributions of the biomaterial
scaffold and cell-deposited ECM to cell behavior, it will be neces-
sary to conduct time-resolved functional experiments tracking
cell-biomaterial interactions and matrix deposition simultaneously
(see Table 1 for methods to study protein deposition). Tools such as
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matrix-labeling techniques for real-time and inferred location
(M—TRAIL) as well as real-time biophysical analyses like 3D trac-
tion force microscopy (TFM) could be useful in such an endeavor
[3,75,95,96].

Confinement of cells in 3D biomaterials may contribute to ECM
deposition in a similar manner as macromolecular crowding
(MMC) in 2D cell cultures. MMC techniques use high concentra-
tions of macromolecules in the culture medium to reduce the vol-
ume of solvent available for other molecules in the solution
[10,36-39,97]. This increases their effective concentrations and
can promote nucleation and polymerization of ECM proteins
[98,99]. MMC is used as a tool to promote ECM production in
fibroblasts [99,100] and investigate cellular ECM deposition in
stem cell differentiation and disease modeling [38]. For example,
MMC in 2D culture media by addition of 18% Ficoll was able to
induce significant increases in collagen type 4 deposition of MSCs
undergoing adipogenesis, which had a fine meshwork architecture
and induced many small focal adhesions (Fig.3d). Interestingly,
this led to brown fat formation instead of white fat [10]. For cells
confined in 3D biomaterials, high concentrations of the biomaterial
in the immediate pericellular space may similarly crowd cell-
secreted molecules, promoting interactions that facilitate their
precipitation out of solution and positive signaling feedback to
the cell.

Alternatively, since 3D confinement has been associated with a
low-adhesion and low-contractility phenotype (Fig.3a), cell-
deposited ECM could reflect a response to low-adhesion stress
[6,74,101]. In suspension culture (no adhesion), cells can assemble
a fibronectin matrix that promotes integrin-mediated cellular
aggregation, compaction, and cohesion; inhibition of this fibronec-
tin matrix assembly results in cell dispersal [102]. Likewise, in
their study on protein deposition, Loebel et al. compared the inten-
sity profile of focal adhesion proteins (paxillin) relative to the loca-
tion of nascent protein secretion and found that they were aligned
[103]. This result lends support to the conclusion that cells may not
be adhering to the engineered matrix but to their own deposited
ECM. Furthermore, the nascent protein deposition may be masking
or supplementing cues from engineered materials.

Protein deposition is one key mechanism by which cells can not
only interact with but also modify the pericellular space. Other
matrix properties including degradability and viscoelasticity affect
protein deposition. Increasing viscoelasticity for example, can
affect protein deposition [104,105]. Loebel et al. observe that
hydrogels that allowed either proteolytic degradation via matrix
metalloproteinases (MMPs) or viscoelastic dynamic remodeling
increased cell spreading. Blocking either nascent protein adhesion
or remodelling of the matrix reduced spreading and downstream
consequences on YAP/TAZ signalling and human mesenchymal
stem cells (hMSC) differentiation [103]. The interplay of features
affecting protein deposition in the pericellular space provides an
example of how the cells ability to dynamically sense and modify
the pericellular space over time contributes to downstream fea-
tures and cell fate.

2.3. An update on outside-in versus inside-out regulation

To characterize the adhesivity of a biomaterial, it is also impor-
tant to know how ready the cell’s receptors are to “see” ECM bind-
ing sites (Fig.3e). Cytoplasmic signals, e.g. GTPase mediated
recruitment and binding of talin and kindlin to beta integrin cyto-
plasmic tail, are known to modulate increased affinity of integrin
head domain for ECM binding sites [106]. However, it is unclear
whether the effects of 3D culture, specifically in terms of confine-
ment or cell shape restrictions, impact inside-out integrin activa-
tion signaling. Evidence from G-protein coupled receptor (GPCR)
signaling experiments and modeling suggest that cell shape has

dramatic impacts on cell signaling [107]. Physical confinement of
the cell in a rounded shape has been associated with lower adhe-
sion and cytoskeletal contractility [6,75]. However, contractility
does not appear to be required for integrin activation and cluster-
ing in 3D fibrilar geometry [11].

By the same token, it is important to understand how binding
sites are presented to the cell. Perhaps simplest example of this
comes from studies using the collagen mimetic peptide RGD in a
range of peptide lengths and structures (linear versus cyclic),
where each promotes different strengths of adhesion [108,109].
Other studies have highlighted the importance of ECM spatial orga-
nization on the concept of adhesion competition, discussed above
in Section 2.1, whereby cell-cell junctions are stabilized in subcel-
lular locations void of ECM [110]. In native ECMs, architecture lar-
gely regulates presentation. Knowledge of binding site
presentation in natural ECMs relies on models built from X-ray
fiber diffraction, scanning electron microscopy (SEM), and atomic
force microscopy (AFM) measurements. One model of the collagen
type I fibril leaves high affinity recognition sequences for collagen-
binding integrins buried and inaccessible, while another model
proposes an alternative orientation with the opposite face exposed
that would make these sites more accessible [27]. Since critical
interaction domains may be buried within native ECM fibrils,
how do biological processes that depend on these interactions
occur? Is this an important feature to replicate in synthetic mate-
rials to direct cell behavior? One parameter that could control the
cell’s ability to access buried ligands is its ability to degrade and
remodel the pericellular space. In the following section, we discuss
new studies that highlight the importance of degradability on cell
behavior [44,75]).

3. The underappreciated role of degradability

While the earliest events of cell spreading on a substrate have
been historically characterized by passive adhesion and cell defor-
mation [64-68], the degradability of the pericellular space is
emerging as a predominant biomaterial property upstream of this
process. New evidence comes in part from studies in 2D geometry
using collagen-coated substrates, where MMP activity was found
to be necessary for cell adhesion [111]. Inhibition of MMP activity
led to loss of cell spreading and migration, suppression of traction
forces, and cortical softening. These effects were associated with
altered localization and expression of integrins and decreased
phosphorylated focal adhesion kinase (FAK). Pre-conditioning the
substrates with MMPs rescued cell spreading in the presence of
MMP inhibitors. So, in this context, degradation must happen
before a cell can sense other physical properties like substrate
rigidity, at least through integrin-based mechanotransduction.

Recent studies using 3D native and synthetic materials also
show that decreases in the degradability of a 3D scaffold often cor-
relate with increases in cell circularity and decreases in phospho-
rylated myosin light chain (pMLC) levels and cell traction, a
combination of contractility and adhesion (Fig.4a) [6,44,75]. In
natural ECM scaffolds, this effect may be the result of integrin
binding sites being hidden prior to matrix degradation [27], or high
internal strain within fibrils which protects from degradation
[112-115]. In synthetic scaffolds, bundling and remodeling of the
pericellular space through degradation could be important to
enable aggregation of binding domains and adhesion maturation/
stability. Alternatively, a lack of matrix remodeling capability
seems to trap the cell in a rounded shape, impacting its intracellu-
lar tension [6,74]. This spatial confinement of cells after embedding
in 3D scaffolds could affect inside-out adhesion regulation through
cell shape and/or volume dependent mechanisms. For example, the
inability to develop tension with the surrounding matrix while
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Fig. 4. Degradability is an important feature in regulating cell shape and multicellularity. a. Confinement increases circularity and decreases contractility. Confinement
correlates with increases in cell circularity and decreases in phosphorylated myosin light chain (pMLC) levels and cell traction, a combination of contractility and adhesion
(phalloidin (actin, green) and DAPI (nuclei, blue). Scale bar is 25 um.) Reproduced from Ref. [6] with permission from The Royal Society of Chemistry. b. Degradability
modulates adhesion, traction, and differentiation. Representative 3D traction force microscopy (TFM) images average drift-corrected bead displacements within 15 pm of the
cell surface. Circularity is a measure of roundness of the cell ranging from 0 to 1 and in this case is calculated as a measure of the deviation of a point on the surface of the cell
to the center of mass of the cell from TFM image. Reproduced from Ref. [75] with permission from The Nature Publishing Group. c. Degradability determined collective versus
single cell phenotypes. Human umbilical vein epithelial cells (HUVECs) invading into dextran methacrylate (DexMA) gels crosslinked with degradable (right) and low
degradable (left) peptide sequences. Reproduced from Ref. [44] under the Creative Commons Attribution 4.0 International License. d. Low degradability induces transition to
multicellular phenotype. Representative brightfield micrographs of cells in crowded matrices with the concentration of crowder increasing from top left to bottom right after
1 week of culture. Increasing the amount of molecular crowder decreases degradability of the matrix [6]. Arrows indicate the multicellular smooth structure phenotype in
confined conditions and graph shows frequency of phenotypes observed in each matrix construct. Reproduced from Ref. [6] with permission from The Royal Society of
Chemistry.

tible to passive degradation by hydrolysis while crosslinking it
through norbornene-tetrazine click-chemistry independently
tunes its initial stiffness [118]. Likewise, hyaluronan-tyramine
hydrogels can be cross-linked to achieve the same effective stiff-
ness either by light exposure, which creates non-degradable link-
ages, or by horseradish peroxidase, which creates passively
degradable linkages [119]. Modulating the susceptibility of the

simultaneously being confined could mimic cell-crowding. Inter-
estingly, cell-crowding in development locally distorts cell shape
and stress, reducing cortical tension and increasing cell-cell adhe-
sion [91]. Perhaps cells in confining matrices follow a similar
mechanism to upregulate cell-cell adhesion and collective
behaviors.

3.1. Decoupling degradability from crosslinking and stiffness

Early approaches to control degradability in synthetic biomate-
rials involved modulating crosslinking [116,117]. However, in the
context of 3D culture, changes in crosslinking density not only
impact degradability but also matrix stiffness. To tease apart the
relative contributions of degradability and stiffness, new materials
have been developed by modifying the chemistry of crosslinking.
For example, oxidation of an alginate backbone renders it suscep-

crosslinker sequence to MMP cleavage is another method in which
the degradation rate of the gel can be tuned without altering stiff-
ness. This can be achieved by replacing the standard sequence
taken from the cleavage site of natural collagen with a similar
sequence containing a single amino acid mismatch that lowers
MMP binding affinity [44,120]. Photopolymerizable RGD-
modified methacrylated hyaluronic acid (MeHA) hydrogels can
also be used. In this case, hydrogel moduli are tuned by MeHA
macromer concentration, degradability is enabled by the
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introduction of proteolytically cleavable crosslinks, and degrad-
ability is independently tuned by introducing polymer chains that
impede proteolytic degradation [75] (see Table 1 for methods to
study degradability).

Studies using these various methods of tuning degradability
independently of stiffness have revealed that synthetic hydrogel
structural cues resulting from different crosslinking methods
(covalent versus ionic) and dimensionality (2D versus 3D culture)
modulate cell adhesion and differentiation distinctly [44,118-
120]. In 3D geometries, degradability modulates adhesion, traction,
and differentiation independently of stiffness and cell spreading
(Fig. 4b) [44,74,75]. These methods have also revealed the impor-
tance of degradability in regulating collective cell behaviors. In
low-degradable matrices, endothelial cells seeded as spheroids or
in tubes molded from hydrogels invade the matrix and migrate col-
lectively, forming long, strand-like networks required for angio-
genesis (Fig.4c) [44]. In high-degradable matrices, endothelial
cells invade and migrate as single cells.

Similarly, degradability is associated with collective migration
and morphogenesis of cancer cells in 3D collagen hydrogels, where
cells are seeded as single cells and subsequently transition to col-
lective behaviors (Fig. 4d) [6,9]. In these studies, slight modifica-
tions to collagen architecture through temporary macromolecular
crowding are used to dramatically change degradation rates with
little to no change in stiffness [6,9]. Cells in high-degradable gels
(e.g. 2.5 mg/mL Col1 (PO) in Fig. 4d) tend to remain as single cells,

but cells in low-degradable gels (e.g. 2.5 mg/mL Col1 + 10 mg/mL
PEG (P10) in Fig. 4d) tend to form cell-cell adhesions and organize
into multicellular structures. Interestingly, reduced degradability
was associated with increased cell circularity and reduced pMLC,
(Fig. 4a) prior to the upregulation of cell-cell adhesion and transi-
tion into collective behaviors. This is reminiscent of the cell-
crowding effects observed during development, which were dis-
cussed above [91]. Together, these studies suggest that degradabil-
ity is a key feature regulating cell behavior in covalently
crosslinked native and synthetic 3D scaffolds.

The increase in adhesion and contractility that correspond to
increased degradability may impact cell function in part by reduc-
ing cell volume. Although one may expect the increased area avail-
able to the cell through degradation would yield a higher cell
volume, studies show that cell spreading is typically associated
with a decrease in volume (Fig. 5a) [13,14]. Increased spreading
increases chloride ion channel activity which ultimately results
in water efflux and lower volume. Lower water content increases
internal molecular crowding, stiffens the cell and nucleus, and
leads to increased mechanical stability, which could explain differ-
entiation responses such as osteogenesis in MSCs (Fig. 4b) [13,75].

It is important to mention that cells can also remodel the peri-
cellular space via protease-independent mechanisms. The suscepti-
bility of the ECM to remodeling by cell-generated forces, which are
typically associated with blebbing and protrusive pushing, can be
captured in the metric of viscoelasticity. Viscoelastic materials are
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malleable. Their mechanical properties are characterized by a more typically elastic [104]. Methods to vary viscoelasticity can
dependence on the rate of strain, stress-strain hysteresis after load- be found in Table 1 [103]. Viscoelasticity tends to enhance the cell’s

ing, and often permanent deformation. Many native ECM biopoly- ability to spread in the matrix [103,122]. Interestingly, viscoelastic-
mers exhibit viscoelasticity [121], while synthetic hydrogels are ity coupled with nascent protein deposition increases MSC
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osteogenic differentiation and cell spreading. Material viscoelastic-
ity has been shown to influence cell behavior, with faster stress
relaxation or later onset of stress stiffening leading to enhanced
ligand clustering/matrix bundling and MSC osteogenesis
[104,123]. In these matrices with an initial elastic modulus of
17 kPa, MSCs form a mineralized, collagen type 1 enriched matrix
similar to bone. These results again show an example of cellular
interaction with the matrix correlating with protein deposition.
Further time resolved studies are needed to mechanistically under-
stand how cells sense and respond to the dynamic matrix remodel-
ing that results from properties like degradability and
viscoelasticity.

4. Hydration and cell volume regulation

Hydration of the pericellular space is another important feature
that can directly impinge on cell volume and thereby cell fate. Cells
transport water and ions across their membrane to maintain osmo-
tic balance with the pericellular space. This transport can alter the
concentration of intracellular material and the extent of molecular
crowding in the cell, having numerous important consequences on
cell mechanics by increasing stiffness [124], on protein folding and
transport [125], and on regulation of chromatin condensation
[125].

Several features of the pericellular space regulate hydration. For
example, collagen fibers can hold differing amounts of water
depending on their conformation (Fig.5b) [126,127]. GAGs are
another component of the ECM that control the hydration of the
pericellular space by binding large amounts of water [128]. Joerges
et al. found that when the GAG hyaluronan is added to cells in cul-
ture, its attraction to water influenced the cell membrane poten-
tial. This effect draws water out of the cell to maintain the
osmotic pressure of the pericellular space. Thus, the cells exhibited
a hyaluronan concentration-dependent volume change [128]. In
addition, the structural elements of the ECM limit the space avail-
able and can exclude soluble macromolecules from the pericellular
space [129]. Changes to ECM structure that affect hydration and
therefore cell volume are especially important to understand in
developing drug testing models, as the ECM itself may be crowding
the drug and changing the apparent concentration to the cell [129].

Cell-ECM adhesion also plays an important role in hydration
response to the pericellular space. As a cell adheres and spreads
on a stiff 2D substrate, cytoskeletal tension increases, activating
ion channels that lead to water efflux and volume reduction
[13,14]. The cell also exhibits increased stiffness and decreased
nuclear volume [13]. This relationship of volume regulation by
varying rigidity is identical to that elicited by cell confinement
on patterned substrates, suggesting the phenomena is fundamen-
tally cell-shape dependent (Fig. 5a) [13]. That is, membrane curva-
ture can directly link local cell shape to volume regulation through
ion channel activity. Piezo proteins were identified in 2010 as
important components of excitatory mechanosensitive ion chan-
nels [130]. Piezo1 relates membrane curvature to ion efflux and
volume regulation, therefore integrating features of cell shape to
volume in several cell types [131-133]. As discussed above, cell
shape can be regulated by a number of biomaterial features in
3D scaffolds. It would be interesting to directly evaluate the effect
of 3D biomaterial properties like confinement on the activity and
expression of ion channels.

Utilizing an interesting technique to study the effects of cell
shape and cell volume separately, a recent study used microcon-
tact printing to create 3D microniches of varying volume and shape
[12]. These 3D microniches are comprised of an array of polyacry-
lamide (PA) wells of different shapes and heights. The surface of
the PA is modified and coated with fibronectin, then hMSCs are

seeded, and a PA lid is applied to cover the microniche array. This
system revealed that cellular features indicative of intracellular
tension, such as actin stress fiber formation, myosin levels, focal
adhesion formation, and nuclear YAP/TAZ localization, were maxi-
mized at intermediate cell volumes. These results were mostly
independent of cell shape (slightly more prominent in angled or
elongated geometries than for rounded or symmetric geometries),
indicating the importance of distinguishing between the effects of
cell shape and volume in the pericellular space (Fig. 5c) [12]. 3D
microniches were also used to study whether cells with different
volumes have different responses to matrix stiffness [134]. Inter-
estingly, stress fibers and focal adhesions formed in soft, interme-
diate, and stiff (5, 12, and 23 kPa) matrices in the optimal volume,
but stress fiber and focal adhesion formation was reduced in small
or large cells, indicating that cell volume is a key feature regulating
cellular mechanosensing.

5. Biophysical modeling of cell shape and volume regulation

In addition to the different experimental techniques described
above, theoretical and computational modeling of cell shape and
volume regulation in response to environmental cues from the
pericellular space can enable the identification of general princi-
ples of cellular morphology in response to the physical features
of the ECM (Fig. 6a) [135-138]. Recently, there have been several
studies that have developed models that (1) relate cell size and
shape to biochemical signal transduction (Fig. 6b) [107,138-141],
(2) cell shape and membrane tension (Fig. 6¢) [142,143], and (3)
membrane tension and mechanosensation (Fig. 6d) [144]. These
efforts span a range of cell types from hIPScs [145] to red blood cell
[146]. From the wide variety of models and their application, it is
becoming increasingly clear that close collaborations between
experimentalists and the modeling community can enable deeper
insights into time-dynamic biological processes comprising inter-
actions between cells and their ECM.

Most mechanical models begin with a force balance on the cell
membrane or the cell cortex and use viscoelastic models to repre-
sent the stress-strain response of cellular components. Contribu-
tions to the force balance arise from pressure within the cell,
membrane/cortical tension, contractile forces due to myosin activ-
ity [147-149], and ion and water channel activity on the plasma
membrane) [150-152]. Specifically, such models have identified
that active regulation of cellular contractility through myosin cou-
pled with osmotic regulation can control cell size [153]; that ten-
sion can couple the activity of RhoGTPases to modulate cell
behavior ranging from contracted to relaxed states [154]; and that
volume regulation of cell shape can result in altered nuclear mor-
phology [155]. In some models that describe features of cell adhe-
sion, including membrane tension or contact angle, cell volume is
assumed to be constant or is ignored [156]. However, volume is a
critical variable that changes in response to adhesion [13]. Impor-
tantly, none of these efforts have, to our knowledge, considered the
interaction between the pericellular space and cellular morphology
quantitatively. There is little doubt that models can complement
experimental analyses and give rise to new hypotheses. The next
frontier for the field is to develop mechanochemical models that
are tightly constrained by experimental data from single cell inter-
actions with the pericellular space. This will enable quantitative
predictions to be made and tested. Additionally, there is a need
for multiscale modeling tool development to effectively capture
the interactions between cells and the ECM and between different
cells. For example, consideration of the ECM architecture needs a
representation that goes beyond the tortuosity and porosity of
the matrix; a framework that captures ligand presentation, fiber
orientation, and plasma membrane curvature locally is necessary.
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These geometries can be informed by 3D reconstructions using vol-
ume electron microscopy or from Z-stacks obtained from confocal
imaging [157] and simulations constrained by high-resolution
imaging data from experiments (stochastic optical reconstruction
microscopy (STORM), enhanced number and brightness (eN&B)
analyses etc.). Simulations in these realistic representations can
bridge the gap between phenomenological models and experimen-
tal measurements.

6. Conclusions and perspectives

A major opportunity for advancing tissue engineering lies in the
adoption and advancement of 3D biophysical and biochemical
analyses of cell-pericellular space interactions and their integra-
tion into predictive models. Investigating local cellular responses
to biomaterials in a spatial and time-resolved manner will be crit-
ical to the development of quantitative models that reliably predict
cellular outcomes. Our ability to design improved scaffolds for tis-
sue regeneration and disease modeling will rely on the mechanistic
insight gained through such studies.
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