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Abstract 

In the healthy lung, bronchi are tethered open by the surrounding parenchyma; for a uniform 

distribution of these peri-bronchial structures, the solution is well known. An open question 

remains regarding the effect of a distributed set of collapsed alveoli, as can occur in disease. 

Here we address this question by developing and analyzing micro-scale finite-element models 

of systems of heterogeneously inflated alveoli to determine the range and extent of 

parenchymal tethering effects on a neighboring collapsible airway. This analysis demonstrates 

that micromechanical stresses extend over a range of approximately 5 airway radii, and this 

behavior is dictated primarily by the fraction, not distribution, of collapsed alveoli in that region. 

A meso-scale analysis of the micro-scale data identifies an effective shear modulus, Geff, that 

accurately characterizes the parenchymal support as a function of the average transpulmonary 

pressure of the surrounding alveoli. We demonstrate the use of this formulation by analyzing a 

simple model of a single collapsible airway surrounded by heterogeneously inflated alveoli (a 

‘pig-in-a-blanket’ model), which quantitatively demonstrates the increased parenchymal 

compliance and reduction in airway caliber that occurs with decreased parenchymal support 

from hypo-inflated obstructed alveoli. This study provides a building block from which models of 

an entire lung can be developed in a computationally tenable manner that would simulate 

heterogeneous pulmonary mechanical interdependence. Such multi-scale models could provide 

fundamental insight towards the development of protective ventilation strategies to reduce the 

incidence or severity of ventilator-induced lung injury, VILI. 
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New & Noteworthy 

A destabilized lung leads to airway and alveolar collapse that can result in catastrophic 

pulmonary failure. This study elucidates the micromechanical effects of alveolar collapse and 

determines its range of influence on neighboring collapsible airways. A meso-scale analysis 

reveals a master relationship that can that can be used, in a computationally efficient manner, to 

quantitatively model alveolar mechanical heterogeneity that exists in acute respiratory distress 

syndrome (ARDS), which predisposes the lung to volutrauma and/or atelectrauma. This 

analysis may lead to computationally tenable simulations of heterogeneous organ-level 

mechanical interactions that can illuminate novel protective ventilation strategies to reduce VILI. 

 

Keywords: Shear modulus, parenchymal tethering, reduced-dimension model, acute respiratory 

distress syndrome, mechanical ventilation 
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1. Introduction 

The mammalian lung is an extraordinary example of a physiological organ whose function 

depends upon microfluidic principles. Despite its high mechanical compliance, the healthy lung 

is remarkably stable because of two interdependent mechanical processes: 

1) Mechanical interdependency exists between the alveoli and airways, with the alveoli 
functioning as a foam-like structure that provides parenchymal tethering support of 
compliant airways, and  

2) Pulmonary surfactant physicochemical properties reduce and dynamically modify the 
lining fluid surface tension during respiration. This stabilizes the lung by modifying the 
elastic recoil as a function of the history of interfacial expansion/compression (18), and 
counteracts the interfacial instabilities that can lead to airway and alveolar obstructions 
that would reduce gas exchange. 

These two effects are linked, because surface tension modulates parenchymal tethering and 

can influence airway stability from fluid-structure interactions related to the Plateau-Rayleigh 

instability (9-11, 14, 15). This, in turn, can detrimentally affect gas-flow to the subtended alveoli, 

further reducing parenchymal tethering with potentially devastating effects. These are prime 

examples of multi-scale interactions that span from the molecular-scale (surfactant), to sub-

submillimeter-scale (single- and multi-cellular) to millimeter-scale (alveolar) mechanical 

interactions. Thus, small-scale interactions function in concert to stabilize the large-scale organ.  

Parenchymal tethering plays a crucial role in maintaining airway patency (17, 25, 31). Lai-

Fook et al.(19) investigated the mechanical interdependency between bronchial pressure-

volume behavior and the parenchyma shear modulus (G) as a function of the transpulmonary 

pressure (PTP) in a uniformly inflated lung. That study demonstrates that increasing the lung 

volume significantly increases the peri-bronchial stress, which helps to sustain airway patency 

and stabilize the lung. Positive-end-expiratory-pressure (PEEP) ventilation is a useful protocol 

that takes advantage of this principle to maintain lung stability. 

Unfortunately, in acute respiratory distress syndrome (ARDS), pulmonary stability can break 

down. Liquid obstruction of airways impairs gas exchange and results in heterogeneous 

ventilation. Ventilator-induced lung injury (VILI) can occur from either over-distension 
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(volutrauma) or repetitive closing and reopening of compliant airways and alveoli (atelectrauma) 

(12), though recent studies indicate that atelectrauma predisposes the lung to volutrauma(13).  

Venegas and Winkler et al.(29) developed a network model of airway/parenchyma 

interactions that suggests that the progression of poorly ventilated regions increase  

catastrophically if local tethering is heterogeneous. Clearly, then, heterogeneous tethering 

should be included in any multi-scale lung model if one intends to simulate the abnormal 

pulmonary mechanical phenomena associated with ARDS. Organ-level models that could 

investigate the full repertoire of patho-physiological micro-scale (alveolar-level) and macro-scale 

(lobular and full-organ) interactions would require computations of the interactions of over 108 

alveoli and associated airways in a 3-d compliant structure with heterogeneity due to lung 

geometry, gravity, tissue properties, and disease progression. This approach is simply 

untenable with today’s computing environments; nevertheless, if possible these simulations 

could forecast protective modes of ventilation that could reduce VILI.  

While a complete organ-level multiscale model of the lung is not feasible, we hypothesize 

that it is possible to develop insight from micro-scale models that, with appropriate volume 

averaging, can reveal meso-scale properties that can create the link between small- and large-

scale structures. At the micro-scale, Denny et al.(3) and Fujioka et al.(6) developed finite 

element models (FEM) of connected, compartmentalized alveoli to elucidate the mechanical 

properties of lung parenchyma under a variety of mechanical loading scenarios. We seek to 

extend these models to the meso-scale, which reflects the parenchymal tethering effects 

relevant to an airway. This is an important step in creating multi-scale models of the entire lung.  

Therefore, in the present study we explore FEM models associated with obstructed and 

unobstructed alveoli in the neighborhood of a compliant airway to establish the mechanical 

properties that affect the peri-bronchial stress that influence airway stability under 

pathophysiological conditions. We use this highly detailed micro-scale FEM model to provide 

data from which we establish an equivalent meso-scale continuum mechanics construct, the 
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effective shear modulus (Geff), that can faithfully represent the influence of heterogeneously 

obstructed alveoli and their effect on parenchymal tethering of compliant pulmonary airways. 

This goal is a critical step towards the development of a computationally tractable multi-scale 

model of the full lung that uses first-principles to simulate pulmonary mechanical interactions.  

 

Conceptual Framework 

Parenchyma is modeled by a 3-d network of interacting micro-scale alveoli surrounding an 

airway. The alveolar model is based upon Fujioka et al(6), and is simulated using high 

performance computing (HPC) approaches, from which the physical relationships are derived 

following Fujioka et al(7). We focus on identifying parenchymal tethering effects of non-uniformly 

recruited alveoli surrounding a small compliant airway, since these interactions influence organ-

level behavior. We seek to re-express key results in a reduced-dimension parametric 

formulation that is deduced from a rational mechanics analysis of the meso-scale system. If 

successful, such a formulation could be used to accurately simulate the complex mechanical 

interactions within the lung using a strategy following Ryans et al (27). 

To establish the reduced-dimension empirical relationships, we utilize FEM models to 

investigate the mechanical relationship between the airway and its surrounding parenchyma. 

We then define the equivalent interactions in a continuum mechanics framework, from which we 

estimate Geff. For instance, consider the scenario illustrated in Figure 1, where an airway 

obstruction results in the presence of obstructed (red) alveoli with other patent pathways leading 

to aerated (blue) alveoli surrounding an airway.  

We assume that the obstructed alveoli are air-filled, but remain inflated with a pressure, 

POBS, that deviates from aerated alveoli, (PALV)open. POBS ¹ (PALV)open because the obstruction acts 

as a pressure-relief valve due to a yield-pressure phenomenon wherein the liquid blockage 

moves only if a critical pressure drop (Pyield) is exceeded (8, 26, 32). In the analysis that follows, 
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we assume that Pyield = 8g/R = 4 cmH20, as would be appropriate for the closure of a 1mm 

diameter airway with surface tension g = 25 mN/m.  

We investigate systems with either  

a) hypo-inflated obstructed alveoli (POBS = (PALV)open - Pyield) that would occur when 
airway closure occurs at end-expiration, or  

 
b) hyper-inflated obstructed alveoli (POBS = (PALV)open + Pyield) that can occur due to the 

elastic recoil of the obstructed alveolus leading to an increase in the gas pressure 
within the obstructed alveolus.  

 
In all cases we assume that the obstructed alveolus remains gas-filled from tethering effects of 

neighboring alveoli, and neglect absorption atelectasis.  

 

Figure 1: Representative illustration of airway obstruction resulting in the presence of aerated 
(blue) and obstructed (red) alveoli surrounding separate conducting airways. 

 

The cross-sectional view in Figure 1represents the distribution of aerated and obstructed alveoli 

surrounding the airway – this distribution results in regions with significantly different alveolar 

pressures that can heterogeneously influence airway tethering. From this discrete 
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representation, we seek a continuum model that can represent the relationship between the 

peri-bronchial pressure exerted on the airway by the parenchyma, and the inflation states of the 

alveoli. To do so, we seek to establish the relationship between the effective shear modulus 

(Geff) defined in Eqn (1) below, and the alveolar pressure distribution.  

Clearly many permutations of the heterogeneous alveolar distribution exist, and it is not 

feasible to create a model to account for every scenario. In lieu of that, we investigate statistical 

variations of this distribution (Figure 2) by assuming that obstructed alveoli are randomly 

dispersed within the parenchyma while retaining the ratio of obstructed/unobstructed alveoli (the 

‘sprinkled donut’ model). 

 

Figure 2: Approximation of heterogeneous tethering using a uniformly random distribution of 
obstructed alveoli (‘sprinkled donut’). 

 
Computational experiments are conducted with these random distributions to identify the 

relationships between Geff of the parenchyma, the percentage of impaired alveoli present, and 

the sensitivity of Geff to the distribution of collapsed alveoli. We seek to answer two questions: 

1. What region of influence surrounding the airway (RROI) determines the relevant effective 
shear modulus of the surrounding parenchyma? 
 

2. Is the effective shear modulus with a uniform random distribution of closed alveoli 
equivalent mechanically to the effective shear modulus with localized regions of closure 
if the same fractions of alveoli are collapsed? 
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If we can identify a suitable RROI, and if we find that Geff is only a function of the fraction of 

collapsed alveoli (insensitive to the distribution), we can then be confident that an empirical 

relationship of this meso-scale representation of the parenchymal mechanics can provide the 

foundation for a reduced-dimension model that can be efficiently implemented to model 

airway/parenchymal interactions in the entire lung.  

 

2. Methods 

2.1. The Finite-Element Model 

We investigate an annular region of parenchyma surrounding a cylindrical “hole” following 

the work of Lai-Fook et al.(20) This investigation will elucidate the mechanical properties of the 

parenchyma alone, and further analysis (Discussion) will incorporate these results into the peri-

airway pressure component of the transmural pressure for a compliant airway.  

Our analysis is based upon a finite element model (FEM) that was developed to establish 

the relationship between the effective shear modulus (Geff) of parenchyma surrounding an 

airway, and the transpulmonary pressures of the corresponding alveoli (6). In that model, the 

lung parenchyma is comprised of individual alveolar chambers modeled by truncated 

octahedrons. This displacement-based FEM model is utilized to analyze the deformations of the 

alveolar system as a function of the pressure in each alveolus, the outer pressure, and the fiber 

constitutive relationships. 

Each face consists of septal border fiber bundles that lie on the perimeter of the face and 

cross-linking fiber bundles that lie across the face. Each alveolus sustains the force balance 

through elastin and collagen fibers arranged on the alveolar membrane – these membranes are 

under tension from neighboring elements and a pressure-difference across the membrane, 

providing a normal-stress on the membrane. A thin surfactant-laden liquid layer exists in the 

alveolus where the surface tension (𝛾) is a function of the interfacial surfactant concentration 

(Γ).  
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To model the effect of surface tension, we consider a sphere of the same volume as the 

truncated octahedron model of the alveolus (see Figure 2), Valv, and define the radius of the 

equivalent sphere to be 𝑅%&' = (3𝑉%&'/4𝜋)//0. The pressure jump across the liquid lining is 

assumed to be ∆𝑃 = 2𝛾/𝑅%&'. Assuming a uniform surfactant concentration, Γ = 𝑀567/𝑆567, 

where MALV is the mass of surfactant, and SALV is the surface area of an alveolus. A linear 

equation of state is used to calculate 𝛾(Γ), with MALV and the slope of the equation of state 

determined such that 𝛾 = 30	𝑑𝑦𝑛/𝑐𝑚 at TLC, and 𝛾 = 5	𝑑𝑦𝑛/𝑐𝑚	at 𝑇𝐿𝐶 3⁄ . 

The boundary conditions for the FEM annulus surrounding the parenchymal hole allow the 

alveolar elements to expand and contract freely. This is accomplished by defining the stresses 

at the faces of the domain as illustrated in Figure 3, where the boundaries support zero 

tangential stresses. Each face has a normal stress/strain conditions where the fixed face (red) 

of the annulus restricts movement in the positive z-direction (uz =0), along the cylindrical face 

(blue), the normal stress is the negative of the surrounding pleural pressure  (𝜏FF = 	−𝑃H6), and 

the opposing free-moving face (green) has normal stress 𝜏II = 	−𝑃H6. The hole is external to the 

domain of the finite-element model, and provides stress to the parenchyma through application 

of PPA (see Figure 4). 

Simulations proceed to mechanical equilibrium at the micro-scale by varying the nodal 

positions until ∑𝛿𝐹 < 10OP𝑑𝑦𝑛 at each node, where 𝛿𝐹 = 𝐹Q − 𝐹R, with 𝐹Q representing the 

equivalent vertex forces due to the pressures and 𝐹R are the forces resulted from the extension 

of fibers. 

 

 



	 10		

 

Figure 3: Boundary conditions of FEM model on the fixed face (red), cylindrical face (blue), and 
free-moving face (green). The interior hole is assumed to be at a constant pressure (PPA) as 
shown in Figure 4. 

We investigate perturbations from this state to identify meso-scale characteristics (Geff) that 

describe the mechanical features of non-uniformly inflated alveoli as a function of the mean 

transpulmonary pressure following Wilson (30). Deformations are computed for the parenchyma 

as alveolar pressures are modified to represent inflation, deflation or upstream closure. As we 

will show below, perturbations of the peri-airway pressure (PPA) induce modifications of a 

parenchymal hole lumen cross-sectional area, and this deformation provides the data necessary 

to identify Geff. We use this process to calculate Geff from both localized and random 

distributions of obstructed alveoli.  

 

2.2. Model Mechanics 

Model mechanics are driven by the interactions between the adjoining alveoli and the 

distending peri-airway pressure (PPA) induced in the model. The airway-parenchyma model 

shown in Figure 3 and Figure 4 depict a collection of alveoli surrounding a hole in the 
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parenchyma. The effective shear modulus (Geff) is analyzed following the analytical formulation 

for changes in radius for infinitely long cylindrical tubes in a homogeneous isotropic material as 

 ,     (1) 

where PPA is the peri-airway pressure, and PPL is the pleural pressure. Eqn (1) follows from 

Mead et al.(22), Lai-Fook et al.(19), and Fredberg and Kamm (5), where PPA was referred to as 

the peri-bronchial pressure. In their analyses, this pressure (the pressure from the parenchyma 

on the outside of the airway) was found to equal the negative of the distending stress acting just 

outside of the airway wall from the surrounding intact parenchyma.  

The mechanical fundamentals are described in Figure 4, with PPL< 0 indicating a positive 

radial stress (trr>0). Figure 4A demonstrates an equilibrium uniform stress state PPA = PPL with 

PALV = 0, and this defines the uniform-stress hole radius, RH,U. In Figure 4B, a non-uniform 

stress is imposed by a slight change in PPA so that PPA ¹ PPL, and the hole radius changes to RH. 

Eqn (1) defines the shear modulus (G) with ∆T
T
= (𝑅U −	𝑅U,V)/𝑅U,V	  representing the fractional 

change in the hole radius (RH) from the uniform stressed state RH,U when PPL is slightly modified. 

While Figure 4 describes the situation for homogeneous alveolar pressures, we apply 

this approach for non-homogeneous alveolar pressures (as might occur with upstream closure), 

and represent the fractional change in hole radius as ∆T
T
= (𝑅U −	𝑅U,W)/𝑅U,W	, where RH,E is the 

hole radius at an equilibrium state when PPA = PPL  but a fraction (fOBS) of the alveolar pressures 

are modified from PALV = 0. RH is the hole radius when PPA ¹ PPL. We apply Eqn 1 to evaluate an 

effective shear modulus Geff.  

   

ΔR
R

=
PPA−PPL

2Geff
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Figure 4 (A) Parenchyma in equilibrium uniform stressed state. (B) Change in hole lumen with 
change in peri-airway pressure, PPA, from the uniform stress condition PPL. 

 
2.3. Simulation Conditions 

To investigate parenchymal tethering mechanics, we conducted a series of FEM simulations 

in which the pressures within individual alveoli were selected randomly (using a uniform 

distribution) to have an internal pressure associated with: 1) a normally functioning alveolus, or 

2) an obstructed alveolus. We assume that a normally functioning alveolus sustains 

 – this represents atmospheric pressure and a direct connection to the mouth 

in a static (breath-hold) situation. In contrast, an obstructed alveolus is set to an internal 

pressure of either POBS = -4 cmH2O (hypo-inflated), or POBS = +4 cmH2O (hyper-inflated), as 

explained above.  For any simulation, all obstructed alveoli had the same pressure, though we 

   PALV = 0 cmH2O
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acknowledge that a distribution of inflation pressures could exist. The pleural pressure (PPL) was 

held constant at either PPL = -5 cmH2O, -10 cmH2O, or -15 cmH2O. For a given PPL, the stressed 

equilibrium state (RH,E) was identified, and then Geff, was measured by perturbing PPA over the 

range , where DP =0.2 cmH20. The effective hole radius RH was 

calculated by averaging the Euclidean distance from the midpoint (mx,my) to each of the interior 

node points of the hole (xi,yi) 

    (2) 

where the midpoint is the geometric center of the locus of points that describe the perimeter of 

the hole. The change of effective radius DR vs. DP yields the shear modulus as determined by 

Eqn (1). 

 

2.3.1. Computational Costs 

The models we investigate are computationally large. Two issues are prominent – 1) the 

total memory size, and 2) the total CPU time. Simulations were conducted on Tulane’s Cypress 

supercomputer (based upon a Dell Z9500 with Intel Xeon E5-2680 Sandy Bridge architecture). 

The code was constructed in C++ and utilized the MPI library, PETSC(1) and Hypre(4) for linear 

algebra optimization, and ParMETIS(16) for model partitioning. Using this software/hardware 

combination, benchmark studies demonstrated that the total computational time was inversely 

related to the number of processers. Thus, our computational model was highly scalable. 

The memory usage as a function of the size of the model is approximately  

  . (3) 

Simulations were completed using two nodes, each with 20-cores.  

  

  PPL−ΔP < PPA < PPL +ΔP

   
RH =

(xi −mx )2 + (yi −my )2

i=1

(xN ,yN )

∑
N

  [Total Memory (MByte)] = 0.3 x [# of Alveoli] + 1500
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2.3.2. Identification of RROI 

To investigate the parenchymal region of interest (RROI) that defines the necessary 

domain size to faithfully represent the solution of an infinite domain with the same fraction of 

obstructed alveoli, simulations were conducted with random alveolar pressure distributions with 

50% obstructed alveoli. In these calculations, the outer surface (r = ROUTER/RH) is modeled as 

being supported by the pleural pressure (following Mead). We sequentially increase ROUTER/RH  

to estimate the dependence of Geff on the domain size for a given fraction of obstructed 

(unaerated) alveoli. These were studied for 2 ≤ TYZ[\]
T^

≤ 9, with PPL = -5 cmH2O. To identify the 

statistical variance, numerical experiments were conducted with  different uniformly 

random distributions. RROI is identified by the percentage deviation of Geff from the asymptotic 

value for an infinite domain, G∞. Once the region of influence was established, RROI was used 

for all further simulations. 

 

2.3.3. Establishment of Validity of the Random Distribution Model 

To investigate the effects of localized alveolar pressure distributions for comparison with 

random distributions, simulations were conducted with localized obstruction distributions with 

the fraction of obstructed/total alveoli equal to fOBS = 0.25, 0.5, or 0.75 through the addition of 

quadrants of collapsed alveoli. Likewise, simulations for uniform random distributions with 

equivalent fOBS of were conducted. In these simulations,  and POBS = -2.5 

cmH20 (hypo-inflated). We performed n=5 independent trials.  

 

2.3.4. Parenchymal Tethering Mechanics – Evaluation of Geff 

 After establishing ROI, we explored the functional relationship between Geff and the 

distribution of obstructed alveoli at specific values of PPL = -5 cmH2O, -10 cmH2O, or -15 

cmH2O, with the fraction of obstructed/total alveoli, fOBS = 0.2, 0.4, 0.6, 0.8, 1.0. Each 

   n = 5

   PPL =−5 cmH2O
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computational experiment was conducted with five independent trials (n = 5) to identify the 

statistical variance between trials.  

 

3. Results 

3.1. Identification of Region of Interest, RROI 

 We estimate the region of influence (RROI) for the parenchyma surrounding an airway by 

Geff as a function of the domain size. From Figure 5, it is clear that Geff converges to a finite 

value (G∞) with increasing RROI, which we estimate by the non-linear regression based on the 

deformation of an annular disc of isotropic material: 

𝐺 = 𝐺a b1 − 𝐴 d
TYZ[\]
T^

e
Of
g.           (4) 

For PALV=0, and PPL=-5 cmH20, we find G∞ = 5.836 ± 0.015 cmH20, and A = 1.153 ± 0.02. From 

this result, we estimate the computational accuracy as a function of ROUTER/RH (see inset of 

Figure 5. 
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Figure 5: Calculation of the effective shear modulus, Geff, as a function of the region of interest 
(ROI) scaled by the ‘hole’ radius (RH). 

In addition to accuracy, computational costs are important for considering the 

appropriate domain size. Table 1 presents the total memory usage and total CPU time (Total 

Wall Clock Time * 40 processors) for simulations as a function of the region of interest for the 

parenchymal domain. 
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Table 1: Number of alveoli, memory usage, and computational cost associated with the domain 
size 

 

We identified ROUTER/RH = 5 as a judicious choice for the dimensionless region of influence 

(RROI/RH) since it provides estimates within approximately 5% of G∞ at a tenable computational 

cost. Future full-scale models of the lung could therefore use this RROI to accurately model 

parenchyma tethering effects surrounding collapsible airways. 

 The model depth (z – direction) for the ROI studies was set to 1.5RH. Further 

convergence analysis was conducted by evaluating Geff  as a function of depth. Doubling the 

depth resulted in only a slight increase of Geff of 3.5%, and so all further calculations were 

conducted with the model depth equal to 1.5RH. 

 

3.2. Establishment of the Validity of the Random Distribution Model 

 With RROI established, the effect of obstructed alveoli localization was examined with PPL 

= -5 cmH20, (PALV)OPEN = 0 cmH20 and POBS = -2.5 cmH20. Simulations were conducted to 

compare Geff between uniformly random distributions and localized distributions of alveoli with 

upstream closure. Five distinct trials with different realizations of the same uniform random 

distribution (n=5) were investigated to estimate the simulation variability.  

RROI/RAW
Total

Memory (GB)
Total CPU

Time (hours)
# of Alveoli

(x103)

2 6 3.4 0.3
346.6173

4
5
6
7
8
9

32 11 115
1901751

75 24 311
44432103

135 42 634
79753172
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Figure 6: Comparison of localization of obstructed alveoli and heterogeneous distribution. Error 
bars represent the standard deviation. 

These results illustrate that there is only a very small difference in Geff between localized and 

random distribution models (<1%). A two-way ANOVA was conducted (p < 0.05) and Sidak 

multiple comparison tests were performed to show that there was no significant difference in Geff 

in each group.  

These results support our hypothesis that a random distribution of obstructed alveoli 

faithfully represents the large-scale parenchymal mechanics. In addition, the standard error is 

extremely small (<<1%), which further demonstrates the robustness of the random modeling 

approach. Since the models with localized obstructed alveoli demonstrate equivalent Geff as the 

randomly distributed models, this justifies the use of the derived values of Geff for predictions of 

mechanical interactions that can occur in ARDS. 
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3.3. Evaluation of Geff 

With our two fundamental questions satisfied, we seek to explore the overall mechanical 

properties of systems with a subset of obstructed alveoli with PPL = -5, -10, or -15 cmH2O. We 

explore this behavior as a function of the transpulmonary pressure (PTP), where, 

, with (PALV)open = 0, with obstructed alveoli in either the hyper-inflated 

state (POBS = +4 cmH20) or hypo-inflated state (POBS = -4 cmH20). The fraction of obstructed 

alveoli was varied over 0 ≤ 𝑓ijk ≤ 1 in increments of 0.2. 

Data from these simulations are shown in Figure 7(A) and indicate that hyper-inflated 

obstructed alveoli cause an increase in Geff, while hypo-inflation causes a reduction of Geff. The 

degree of change in Geff is monotonically related to fOBS. We note that increasing the ratio of 

hypo-inflated obstructed alveoli causes local distension of nearby open alveoli, which causes 

those alveoli to slightly stiffen. Nevertheless, the increase in hypo-inflated alveoli causes the 

size of the entire domain to reduce since the domain is not a fixed size (the external boundary 

condition is defined by PPL). This results in a net softening of the parenchyma, leading to a 

meso-scale reduction of Geff. The opposite is true for hyper-inflated alveoli, leading to a meso-

scale increase of Geff. 

   
PTP = (PALV )open−PPL
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Figure 7: (A) Geff as a function of PTP with (PALV)open = 0, and hyper-inflated obstructed alveoli POBS = +4cmH20  
(shaded blue), or hypo-inflated obstructed alveoli POBS = -4cmH20  (shaded green) for PPL = -5cmH20 (D), PPL = -
10cmH20 (Ñ), and PPL = -15cmH20 (O). Fraction of obstructed alveoli varies over 𝟎 ≤ 𝒇𝒐𝒃𝒔 ≤ 𝟏.   
 
(B) Geff based on the volume-average transpulmonary pressure of surrounding alveoli, which demonstrates a master-
curve. Shaded regions in sub-panels guide towards the location of hypo- and hyper-inflated data for each PPL- The 
dashed line represents the experimental data from Lai-Fook et al.16 
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3.4. Geff as a Function of the Mean Alveolar Pressure  

We seek a representation that will collapse the data from Figure 7A to a single 

relationship to facilitate incorporation into a reduced-dimension model of the lung. To explore 

this behavior, we investigated Geff as a function of the weighted average transpulmonary 

pressure ( ) 

,     (5) 

where PPL is the pleural pressure and  is the average of the all the alveolar pressures 

within the parenchyma, 

.      (6) 

Figure 7B re-expresses the data from Figure 7B, demonstrating that  effectively 

collapses the data to a master curve. These data were fit to an exponential function, 

																								𝐺rRR = 𝐴	𝑒j	H[tuuuuuuv	,      (7) 

where A = 4.75 ± 0.12 cmH20, and B = 5.17x10-4 ± 4.9 x10-6 cmH20-3, which provides a 

coefficient of determination of .  

 

4. Discussion 

The analysis above demonstrates that a single master curve exists that can be used to 

estimate Geff as a function of the fraction of alveoli and the pressures within obstructed and 

unobstructed alveoli in proximity to the airway. This result can be used to estimate the 

parenchymal tethering mechanics of embedded collapsed airways without resorting to a 

complete FEM model that would otherwise require an extraordinary computational expense (see 

Table 1). The meso-scale empirical behavior from these reduced-dimension results allows for 

 PTP

  PTP = PALV −PPL

 PALV

   
PALV = (1− fOBS )(PALV )open + fOBS(POBS )

 PTP

   R2 = 0.99



	 22		

the incorporation of parenchymal mechanics into a model of a heterogeneous distribution of 

obstructed alveoli within the parenchyma using feasible computational resources. 

Figure 7B compares our predictions of Geff to estimates from experiments by Lai-Fook et 

al(19), which were conducted to analyze the mechanical properties of isolated dog lobes. These 

simulations demonstrate that agreement is best over the range 

 6 < 𝑃xHuuuuu < 12	𝑐𝑚𝐻f𝑂. At smaller values of 𝑃xHuuuuu, our simulations over-estimate Geff, though both 

the simulations and experiments indicate a similar reduction in slope. We speculate that our 

over-estimate of Geff is due to either a surfeit of fibers over that which exists physiologically, or 

alveolar structural collapse that was not simulated. Our model includes a realistic reduction of 

surface tension with alveolar volume, and so we do not attribute the deviation to be due to 

surfactant effects. For 𝑃xHuuuuu > 12	𝑐𝑚𝐻f𝑂,	the non-linear increase in Geff results from a highly non-

linear stiffness characteristic of collagen, which becomes more significant as the pre-stress 

increases with 𝑃xHuuuuu. This behavior is similar to that described by Denny and Schroter(3). In this 

range, the overall system may be stiffer than experimentally observed because of cross-linked 

fibers that exist at the faces of our alveolar elements. As described by the excellent review 

article by Stamenovic (28), this may explain some of the non-linear increase in Geff. 

Furthermore, it has also been suggested by Fredberg and Kamm (5), following the work of 

Budiansky and Kimmel(2), that differences in micro-scale stiffness from the macro-scale could 

deviate in a non-affine manner as a result of structural connectedness and prestress within the 

structural matrix. We note that our models were developed with fiber densities following the 

studies of Mercer and Crapo(23). Though they were not tuned, it would be possible to change 

these values to better fit the experiments by Lai-Fook et al (19). Furthermore, fiber properties 

may change in disease, and it therefore would be valuable to predict Geff equations of state for a 

range of diseases from fibrosis to emphysema.  
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4.1. Application - Parenchymal Tethering Analysis in Simple Airway Model 

To demonstrate the implementation of the reduced-dimension mechanics of the 

parenchyma, a simplified model was constructed with a single airway surrounded by 

parenchyma using the ‘pig-in-a-blanket’ model illustrated in Figure 8, with an airway laminated 

inside the parenchymal hole that was used to calculate Geff.  

 

Figure 8: Simple airway model of conducting airway surrounded by parenchyma with 

heterogeneously distributed obstructed alveoli. 

In this application, the airway transmural pressure is influenced by the peri-airway pressure 

induced by the parenchymal tethering mechanics, and the liquid lining that reduces the internal 

pressure by the Law of Laplace. This relationship is provided by  

    (8) 

where PTM is the transmural pressure, PAW is the airway pressure, Geff is the effective shear 

modulus,	∆T
T
= (𝑅U −	𝑅U,W)/𝑅U,W	, PPL is the pleural pressure, 𝛾	is the surface tension, and h is 

the liquid lining. The change in the airway radius is governed by a tube law of the form proposed 

    PTM = PAW −2Geff (ΔR R)−PPL−γ (RAW −h)
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by Lambert et al.(21), and schematically illustrated in Figure 9. Additionally, this model assumes 

that the airway wall has no thickness, so 𝑅5| = 𝑅U.  

A series of simulations were conducted on this single airway model following the 

protocol implemented by Ryans et al.(27) In this analysis we investigate only the 

interrelationship of the parenchymal tethering and the transmural pressure of the airway to 

observe the effects on airway caliber. We neglect the pressure difference between the airway 

and alveoli that could drive flow, and thus this is a non-equilibrium analysis.  

 

Figure 9: Tube law at the trachea (z=o) and an airway at the 16th generation (z=16). 

 

We consider the effect of parenchymal tethering of a highly compliant 16th generation 

airway incorporating parenchyma with (fOBS = 0, 1) of obstructed alveoli in a hypo-inflated state, 

POBS = -2.5 cmH20, with PPL = -5 cmH2O. As a simple model of ARDS we investigate a high 

surface tension case with	𝜸 = 𝟓𝟎 𝒅𝒚𝒏
𝒄𝒎
, and a ‘wet lung’ with , where Vliq and 

VAW are the liquid lining volume and airway volume at the maximally inflated state. 

PTM

�=A/A0

z=0
z=16

   
Vliq VAW( )

min
= 0.05
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RAW was investigated as PAW was reduced from the maximally inflated pressure 

correlating to . In this analysis, we predict the stability from the dimensionless 

liquid-lining thickness, . As the airway radius decreases with reduced PAW, h 

increases due to conservation of mass, and therefore ε increases. We assume that the airway 

becomes unstable to fluid-structure instabilities when , leading to the formation of a 

liquid-bridge obstruction that would cause the acinus for this airway to enter an obstructed state 

(9-11, 14, 15). In multiple airway systems this would, in-turn, influence Geff for the parenchyma 

surrounding airways in which the RROI intersected that acinus, possibly leading to large-scale 

effects by reducing the tethering behavior of those airways, and so on. 

Figure 10 demonstrates the airway radius under conditions of:  

a) The limiting case of a completely untethered airway; 

b) An airway surrounded by parenchyma with completely open alveoli (0% 

obstruction), and  

c) An airway surrounded by hypo-inflated obstructed alveoli (100% upstream 

obstruction, POBS = -2.5 cmH20). 

 

   RAW = RAW ,max

   ε= h RAW

    εcrit = 0.12
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Figure 10: Simulation of a collapsible 16th generation airway without parenchymal support (solid 
line), with parenchymal support (dashed), and with parenchymal support from hypo-inflated 
obstructed alveoli (POBS = -2.5 cmH20, fOBS=1, doted). PPL = - 5 cmH20, 𝜸 = 𝟓𝟎 𝒅𝒚𝒏

𝒄𝒎
. 

 
These results show that an airway without surrounding parenchyma collapses at much greater 

PAW than an airway surrounded by either unobstructed or obstructed alveoli. This limiting case 

demonstrates effects related to the complete lack of parenchyma and shows the intuitive result 

that an increase in PAW increases stability. Following intuition, parenchyma has a stabilizing 

effect, with airway patency retained for  when all alveoli are unobstructed; 

however, stability only exists for  if all alveoli are hypo-inflated, since Geff is 
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greater when alveoli sustain an inflated state. Interestingly, when , we show 

that parenchyma restrains the expansion of the airway, implying that the airway is pushing 

against the surrounding alveoli when the non-equilibrium airway-to-alveolar pressure distribution 

exists.  

These results demonstrate the importance of increasing PAW when tethering is reduced. 

Positive-end-expiratory-pressure ventilation (PEEP) accomplishes this by retaining  

, and increases the tethering effects due to an increase in Geff by increasing 

alveolar volume. Our model predicts that the non-linear increase in Geff that occurs with  

induces an added protective effect that could reduce the incidence of airway closure. 

 

Limitations 

 As with all models, limitations exist owing to model assumptions. For example, we 

assumed that alveolar membranes that make up the parenchymal tissue act isotropically. While 

this is an accurate representation for uniformly inflated alveoli(30), this property is violated when 

collapse occurs; nevertheless, we evaluate Geff following a continuum approach assuming 

perturbations from the base state. Furthermore, the lung exhibits a viscoelastic behavior(24) 

that is not modeled. We have also explored only a limited parameter space; when comparing 

randomly distributed obstructions and comparing to local distributions, we could have 

investigated configurations other than quadrants. Additionally, a larger range of PPL and POBS 

could have been studied to establish the robustness of the generalization proposed herein. As 

described above, we ignore fluid flow and dynamic processes such as surfactant 

physicochemical hydrodynamics that induces hysteresis in the pressure-volume relationship 

that can be significant in atelectrauma and will be investigated in follow-up models. We also 

ignore variation in lung stiffnesses due to differences in airway wall properties – this would be 

incorporated through a change in the tube law demonstrated in Figure 9. We also ignore the 

   PAW > 0 cmH2O

   PAW > 0 cmH2O

 PTP
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septal thickness associated with parenchymal tethering, which is generationally dependent. The 

mechanical effects of wall buckling are ignored aside from the change in area associated with 

the tube-law. To include buckling at the microscale is inconsistent with our reduced-dimension 

modeling approach.  

This study only assumed that obstructed alveoli were air-filled with an upstream 

obstruction, and that this obstruction reduced the volume of the alveolus (hence reducing the 

volume of the entire model). Alternatively, these structures could be fluid filled, which would 

change their elastic behavior and tethering mechanics (likely increasing Geff). We were also 

constrained to investigate alveoli that had not completely collapsed when, in fact, alveoli may 

collapse from low internal pressures caused by absorption atelectasis. Finally, we also note that 

we have investigated an idealized configuration of a compliant airway surrounded by alveoli; we 

have not investigated alveolar ducts, and we also assume that neighboring airways are not 

within the ROI. 

Nevertheless, this study has demonstrated the development of multi-scale computational 

model of parenchyma that can be used to evaluate the meso-scale parenchymal tethering 

properties on highly compliant airways. Analyses of the computational data demonstrate that a 

single empirical relationship exists when Geff is represented as a function of the volume-average 

transpulmonary pressure of the surrounding alveoli. This empirical relationship can be used to 

computationally model multi-scale phenomena under conditions of obstructive lung disease. 

These simulations could provide information related to volutrauma or atelectrauma during 

mechanical ventilation, and thus could help to forecast the efficacy of novel protective ventilation 

scenarios.  
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Table of Figures  

Figure 1: Representative illustration of airway obstruction resulting in the presence of aerated 
(blue) and obstructed (red) alveoli surrounding separate conducting airways. 
 
Figure 2: Approximation of heterogeneous tethering using a uniformly random distribution of 
obstructed alveoli (‘sprinkled donut’). 
 
Figure 3: Boundary conditions of FEM model on the fixed face (red), cylindrical face (blue), and 
free-moving face (green). The interior hole is assumed to be at a constant pressure (PPA) as 
shown in Figure 4. 
 
Figure 4 (A) Parenchyma in equilibrium uniform stressed state. (B) Change in hole lumen with 
change in peri-airway pressure, PPA, from the uniform stress condition PPL. 
 
Figure 5: Calculation of the effective shear modulus, Geff, as a function of the region of interest 
(ROI) scaled by the ‘hole’ radius (RH). 
 
Figure 6: Comparison of localization of obstructed alveoli and heterogeneous distribution. Error 
bars represent the standard deviation. 
 
Figure 7: (A) Geff as a function of PTP with (PALV)open = 0, and hyper-inflated obstructed alveoli 
POBS = +4cmH20  (shaded blue), or hypo-inflated obstructed alveoli POBS = -4cmH20  (shaded 
green) for PPL = -5cmH20 (D), PPL = -10cmH20 (Ñ), and PPL = -15cmH20 (O). Fraction of 
obstructed alveoli varies over 0 ≤ fobs ≤ 1. 
 
Figure 8: Simple airway model of conducting airway surrounded by parenchyma with 
heterogeneously distributed obstructed alveoli. 
 
Figure 9: Tube law at the trachea (z=o) and an airway at the 16th generation (z=16). 
 
Figure 10: Simulation of a collapsible 16th generation airway without parenchymal support (solid 
line), with parenchymal support (dashed), and with parenchymal support from hypo-inflated 
obstructed alveoli (POBS = -2.5 cmH20, fOBS=1, doted). PPL = - 5 cmH20, γ = 50	mN/m. 
 
 
 


