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Abstract 
Focusing on how to quantify system observability in terms of different interested states, this paper 

proposes a modeling framework to systemically account for the multi-source sensor information in public 
transportation systems. By developing a system of linear equations and inequalities, an information space 
is generated based on the available data from heterogeneous sensor sources. Then, a number of projection 
functions are introduced to match the relation between the unique information space and different system 
states of interest, such as, the passenger flow/density on the platform or in the vehicle at specific time 
intervals, the path flow of each origin-destination pair, the earning collected from the tickets to different 
operation companies etc., in urban rail transit systems as our study object. Their corresponding 
observability represented by state estimate uncertainties is further quantified by calculating its maximum 
feasible state range in proposed space-time network flow models. All of proposed models are solved as 
linear programming models by Dantzig-Wolfe decomposition, and a k-shortest-path-based approximation 
approach is also proposed to solve our models in large-scale networks. Finally, numerical experiments are 
conducted to demonstrate our proposed methodology and algorithms. 
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1. Introduction 

The currently rapid innovations and developments of transportation system intelligence in multi-source 
sensing and information sharing continuously generate huge volumes of various data and information for 
planners and managers to better observe time-varying traffic conditions and accordingly propose adaptive 
travel demand management and supply (capacity) control strategies. However, the data sparsity problem 
still exists, because it is impossible to install fixed sensors on each link or to cover all links by point-to-point 
moving sensors. As a result, it surely requires new methodologies to recover the system-wide transportation 
conditions based on the limited observations (Zheng et al., 2014). It leads to a fundamental question; that 
is, how well the time-dependent transportation system states can be estimated or observed based on 
currently available heterogeneous source data. Further, it can be used to evaluate the value of current 
sensor networks and provides feedbacks to the future sensor network design, especially when current 
sensor data are incapable of offering enough key information for accurate system state estimates and also 
there are a number of different selections in sensor types, sensor amount and locations.  In a broader extent, 
as shown in Fig.1, the system observability problem is the key to incorporate continuous multi-source 
sensor information to estimate different level of system states (flow, density, travel time), covering from link 
level, route level, OD pair level to even the whole network level, as the fundamental inputs for any active 
travel demand management and system supply resource allocation. Meanwhile, the feedback loop between 
system states and optimal design/control keeps moving forward along the time horizon with any external 
new disturbances, such as, weather, incidence, special events, new land use, population changes, etc. 
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(Uncertainty Quantification of Estimated 

System States)
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1. Dynamic Origin-Destination Travel 

Demand

2. Dynamic Station-Station Travel Demand

3. Time-dependent road flow/density/speed
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Decisions
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Control
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Fig.1 Transportation system management under multi-source sensor data 

Daganzo (2007) pointed out some common challenges in deploying transportation network models. 
Particularly, requiring information on too many input parameters, such as dynamic origin-destination (OD) 
matrix and a wide range of dynamic traveler choice behavioral factors, could be major barriers for applying 
such models. However, the increasingly available multi-source big data and powerful computation capability 
are creating great opportunities to continuously provide accurate model inputs, capture individually 
complicated travel behaviors, and efficiently calculate the interested outputs. For example, the AFC data, 
mobile phone data and travel request mobile phone apps greatly improve the accuracy of observed OD 
travel demand, and the GPS-enabled devices enable us to record each passenger/vehicle’s high-resolution 
trajectory in real-time ways.  

Meanwhile, it should not be neglected that the overwhelming volume of data are also incurring new 
challenges on data use and transportation modeling. In the data use side: (i) Is the big data useful enough 
and what is the marginal value of the data? (ii) Under what goals, one kind of data is more useful than 
others’? (iii) How to fuse multi-source data to keep observation result consistency? On the other hand, in 
the transportation modeling side: (i) how to mathematically represent the available multi-source information 
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so that different system states can be estimated in a unified modeling framework; (ii) how to model the 
exact inner relation between the information and some interested system states, (iii) how to quantify the 
system observability (uncertainty of estimated states) for further optimal control and management, and (iv) 
how to design efficient and scalable algorithms for solving those models. Motivated by those general 
challenges stated above, this paper aims to explore the theoretical relation among sensor data, system 
states, and system observability in public transportation systems, especially taking the urban rail transit 
system as a starting point.  

1.1 Observability in traffic systems 

Observability is a concept introduced by Kalman for linear dynamic systems in control theory. It is a 
measure for how well internal states of a system can be inferred by knowledge of its external outputs. In 
other words, it aims to quantify or measure the uncertainty of estimated internal states based on the 
available external observations under a given sensor environment with sampling errors, sensor error and 
model errors. A comprehensive literature review can be found at the paper by Castillo et al. (2015). In the 
general transportation observability problems, a number of studies (Castillo et al., 2007; Castillo et al., 2008; 
Gentili and Mirchandani, 2012) modeled the problems as a system of linear equations and/or inequalities 
and then determine whether the system or one unknown variable is observable or not by analyzing the 
properties of its coefficient matrix. Meanwhile, in the system of linear inequalities, a general bound of 
unknown variables can be derived through the dual cone approach. However, those previous observability 
problems more cares about the list of variables to be observed rather than the specific system states 
uncertainty ranges. 

As for evaluating the estimation uncertainty or accuracy, origin-destination (OD) trip matrix estimation is 
a widely studied classical problem due to its under-determination attribute, which means that there is an 
infinite number of OD trips that can generate link flows consistent with the observations. Yang et al. (1991) 
first introduced the concept of Maximum Possible Relative Error (MPRE) to theoretically investigate the 
estimation uncertainty and reliability of the OD estimated trips obtained by the entropy model. Bianco et al. 
(2001) further explored the accuracy of estimated OD matrix bound under different sensor location 
strategies. Bierlaire (2002) proposed the novel concept of total demand scale as a new measure to examine 
the quality of estimated OD trip tables from link counts, by maximizing/minimizing the total travel demand 
satisfying all observations. In addition, Claudel et al. (2009) fused observed probe and fixed sensor data to 
identify the range of highway travel times by maximizing and minimizing the total number of vehicles present 
on the highway at the initial condition in their proposed linear programs. Further, based on viability theory, 
Claudel and Bayen (2010, 2011) and Canepa and Claudel (2017) proposed theoretical approaches to 
address the Hamilton–Jacobi Equation in the Lighthill-Whitham-Richards (LWR) traffic flow problems with 
heterogeneous sensor data to estimate the uncertainty of different traffic system states. Note that there are 
also a number of studies focusing on traffic state estimation, attempting to find the most likely one by least 
square methods or others. We, however, aims to find the exact estimated state range using min/max 
methods based on available external multi-source sensor information. 

1.2 State estimation and smart card applications in public transportation systems 

In public transportation systems, the automatic fare collection system (AFC) or smart card provides 
much more information on trip information. A comprehensive literature review about smart card data use 
can be found in the papers (Pelletier et al., 2011; Ma et al., 2013). Trépanier et al. (2007) estimate the 
alighting point for each passenger based on the smallest distance to the boarding stop of his/her next route 
from individually continuous riding records in smart card. Seaborn et al. (2009) proposed maximum elapsed 
time thresholds to identify transfers for bus-to-underground, underground-to-bus, and bus-to-bus to identify 
and assess multi-modal trips in London. Meanwhile, Munizaga and Palma (2012) estimated a multimodal 
transport OD matrix from smartcard and GPS data whiling consider unobserved trips by expansion factors 
in Santiago, Chile. Yuan et al. (2013) proposed a space alignment approach by aligning the monetary space 
and geospatial space with the temporal space to infer each passenger’s trajectory and the results improve 
the detection of uses’ home and work places. Nassir et al. (2015) applied the smart card data to detect 
activity and identify transfers to estimate the true origins and destinations. Under the situation that 
passenger’s boarding stop information is not recorded in smart cards, Ma et al. (2012) developed a Markov 
chain based Bayesian decision tree algorithm to estimate the sequential stops on the bus route and then 
match those stops with the recorded boarding time to infer passengers’ origin. Further, Ma et al. (2015) 
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improved their previous algorithms to increase the estimation accuracy and computation efficiency. In 
addition, in case that buses don’t have Automatic Vehicle Location data, Zimmerman et al. (2011) 
developed a system named Tiramisu that can estimate and predict the real-time bus arrival time by applying 
the crowd-sourcing data from commuters sharing their GPS-enabled mobile phones. 

In urban rail transit systems, a number of studies focus on the route choices and transfer patterns, which 
can be viewed as different system states required for estimation. Kusakabe et al. (2010) focused on the 
passengers’ train choice behavior by assuming that each passenger aims to minimize the total waiting time 
at the departure station, loss time at the arrival station, and the transfer frequency. Zhao et al. (2007) chose 
the logit discrete choice model, but the tight side constraints (e.g. strict vehicle capacity constraint) are still 
hard to include. Ceapa et al. (2012) mined the regular spatial-temporal trip relations from AFC data to 
estimate and predict the crowding level for providing more accurate personalized trip planning services. 
Sun and Xu (2012) estimated the path choice based on the observed overall probability density of journey 
time and the derived distribution of individual path travel time from the rail transit smart card. Kusakabe and 
Asakura (2014) proposed a data fusion methodology to consider both the smart card data and person trip 
survey data by Bayes probabilistic model to estimate behavioral attributes of trips in the smart card data. 
Based on passenger OD matrix information and vehicle stop time and location data, Zhu et al. (2017a; 
2017b) proposed probabilistic models to estimate the individual train loads, left behind probabilities, time-
dependent crowding levels at stations under tight vehicle capacity considerations. In addition, Nair et al. 
(2013) focused on a large-scale bicycle sharing system and analyzed the connection between bicycle 
usage and public transit systems. Recently, Shang et al. (2019) fused the passenger trip time information 
from smart card and passenger counts at key locations in urban rail transit systems to estimate the 
passenger flow by proposing a space-time-state hyper network.  

1.3 Potential contributions and structure of this paper 

Most recent studies mainly focused on most likely system state estimation rather than system 
observability quantification, so this paper aims to develop a modeling framework capable of incorporating 
multi-source sensor data to address the observability quantification problem in public transportation 
systems. The contributions of our work are specifically listed as follows. 

(i) The concept of information space is first adapted from the control theory to represent the multi-source 
sensor data and physical public transportation system by a system of linear equations and inequality 
constraints. (ii) Different system states are then connected by mapping the unique information space with 
the corresponding state projection functions, so the solution for quantifying the uncertainty of one state can 
be also used for other interested states. (iii) This paper presents a first set of analytical results for studying 
the observability problem in public transportation systems, and our proposed well-structured space-time 
network flow models can be decomposed as a number of subproblems by Dantzig-Wolfe decomposition 
for large-scale networks.  

The remainder of this paper is organized in the following manner. The following section conceptually 
illustrates the general relation between information and system states. Section 3 shows how to construct a 
space-time network to model the transportation systems, how to generate the information space based on 
available multi-source information and why Dantzig-Wolfe decomposition is selected to solve our space-
time network flow models. The state definitions and observability quantification are provided in Section 4, 
which also describes the general process of Dantzig-Wolfe algorithms for our specific models with 
considering measurement errors. Finally, numerical experiments are performed to demonstrate our 
proposed methodology in Section 5. 

2. Conceptual illustration 

Through applying some concepts from game theory and control theory into our problem (LaValle, 2012), 
a state space is defined as all possible internal system state based on the external physical transportation 
world, and an information space is a place where the internal states live when available external information 
is involved. As shown in Fig. 2, the information space is formed by the available information, and the states 
are tightly connected by different projection functions, which mathematically define the states according to 
the managers’ needs. The bound among all possible states represents the state uncertainty to reflect 
system observability under current available information. When the information space is generated as one 
single point, it can state that the system is observable; otherwise, a non-empty set or space leads to 
unobservable or partially observable system. In this section, we aim to build the connection between the 
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internal states and the external states (observation or information) by information space as a bridge or 
communication channel, and further quantify the corresponding uncertainty of states defined by users. 

Information/
observations

Information Space: Polyhedron

1-D State

Maximum
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Uncertainty Bound

Projection function 1

Projection function 2

H-D States

Projection function 1

Projection function 2

x

y

z

U
ncertainty Bound

 
Fig. 2 Relation among information, information space, and flexible states 

For illustrative purposes, Fig. 3(a) depicts a simple transportation network with four nodes and five links. 
The link travel time and capacity are also provided as physical network attributes. Let 𝑥1 , 𝑥2  and 𝑥3 
represent the path flow on paths 1, 2 and 3. Based on the tight capacity constraints, the following relation 
can be obtained: 0 ≤ 𝑥1 ≤ 2, 0 ≤ 𝑥2 ≤ 3, and 0 ≤ 𝑥3 ≤ 1, which defines the system state space shown as 
a blue cuboid in Fig. 3(b). 

1

2

4

3

(2, 2) (4, 2)

(7, 1)

(3, 3) (3, 3)

(link travel time, link capacity)

Path 1:

Path 2:
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(a) Physical transportation network (b) State space of path flow
 

Fig. 3 An illustrative transportation network and its state space 
Assume that the OD information is available through survey that there are four vehicles departing from 

node 1 to node 4. Then, one corresponding constraint will be 𝑥1 + 𝑥2 + 𝑥3 = 4. Fig. 4(a) displays the 
information space as the intersection of the red triangle and the blue cuboid based on the available OD 
information. Two scenarios are further designed as follows to analyze the relation between system states 
and available information. 

Scenario 1: Assume that there is one flow count detector on link (2, 4) and its link count is 1. The relation 

gets updated as follows: 1 + 𝑥2 + 𝑥3 = 4, 0 ≤ 𝑥2 ≤ 3, and 0 ≤ 𝑥3 ≤ 1, so the corresponding information 
space is reduced to be the intersection of the red triangle and the green rectangle shown in Fig. 4(b).  

Scenario 2: Suppose that the automatic vehicle identification (AVI) detectors are available at nodes 1 
and 4. One vehicle’s travel time is observed as 7min. Since only path 3’s travel time is 7 and its capacity is 
just 1, it implies that path flow 𝑥3 = 1. As a result, the relation changes as follows: 𝑥1 + 𝑥2 + 1 = 4, 0 ≤ 𝑥1 ≤
2, and 0 ≤ 𝑥2 ≤ 3. The corresponding information space becomes the intersection of the purple rectangle 
and the red triangle displayed in Fig. 4(c).  
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Fig. 4 Information spaces and its projected bound under different available information 

As shown in Fig. 4, the information spaces are generated as polyhedrons based on different available 
information. A projection function is defined to map the information space into one dimension state (total 
travel time). It should be remarked that, the projection functions could be defined based on different goals 
interested by the system managers, such as, the total system travel time, the number of vehicles in one 
area, etc. In Fig. 4(a), one projection function is defined as 𝑓(𝒙) = 6𝑥1 + 6𝑥2 + 7𝑥3, which means that the 
total system travel time is the analysis goal. Accordingly, different optimization models are solved by 
maximizing and minimizing 𝑓(𝒙) subject to different information spaces.  

As demonstrated in Fig. 4(a), the bound of total travel time formed by projection is [24,25]. When the 
link count data are added in Fig. 4(b), the information space is reduced, but the projected bound is still the 
same. It indicates that the new information from link count doesn’t contribute to reduce the uncertainty of 
this state estimation (or increase the observability of this state), even though a smaller information space 
is generated in Fig. 4(b). It reminds us that the value of “big data” is determined by not only “big volume” 
but also its usefulness of information to the system. 

In Fig. 4(c), the point-to-point Bluetooth data (end-to-end passenger id detector data) makes the 
projected bound converged to be one unique value, which implies that the point-to-point data is more 
powerful than the point detector for increasing the observability of system travel time in this case. Therefore, 
evaluating the values of different information should be based on which states the system manager really 
cares. One information that seems worthless for one goal may be much useful for other state estimation 
applications. Moreover, the information space in Fig. 4(c) is larger than that in Fig. 4(b), but the uncertainty 
of state estimate in Fig. 4(c) is 0 and less than that in Fig. 4(b). Thus, the volume of information space might 
not be the best criteria to judge the bound of state estimate uncertainty or system observability. Similarly, 
the network scale may not be the best criteria, either. 

Except for information from physical sensors, the previous travel experiences or currently published 
traffic information from transportation agencies could also take important roles in quantifying observability. 
For example, if everyone has  perfect information over the network attributes based on his/her experiences 
and intends to find the best route for his/her trip, which is usually entitled as Wardrop’s first principle, the 
information space will be redefined as, 𝑥1 + 𝑥2 = 4, 0 ≤ 𝑥1 ≤ 2, 0 ≤ 𝑥2 ≤ 3. Compared with these above two 
scenarios, the information space is further changed by this assumed and (potentially questionable) travel 
behavior. Therefore, one accurate travel behavior model could provide much different information to 
determine system states from the information space perspective.  

3 Problem Statement 

Table 1 lists the general indices, sets, parameters and variables in our proposed models appeared in 
Sections 3 and 4.  

Table 1 Indices, sets, parameters and variables 

Indices Definition 

𝑖, 𝑗 Index of nodes, 𝑖, 𝑗 ∈ 𝑁 
(𝑖, 𝑗) Index of physical link between two adjacent nodes, (𝑖, 𝑗) ∈ 𝐿 
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𝑎 Index of passenger group, 𝑎 ∈ 𝐴 

𝑜(𝑎) Index of origin node of group 𝑎 
𝑑(𝑎) Index of destination node of group 𝑎 

𝑡, 𝑠 Index of time intervals in the space-time network 

𝜏 Index of time period for the observed passenger flow  

𝑝 Index of paths, 𝑝 ∈ 𝑃 

𝑟 Index of transit companies 

Sets  
𝑁 Set of nodes in the physical transit network  

𝐿 Set of links in the physical transit network 

𝐴 Set of passenger groups 

𝑉 Set of vertices in the space-time network 

𝐸 Set of edges/arcs in the space-time network 

𝐺 Set of time period for the observed passenger flows 

𝑆𝑝,𝑎 Set of paths 𝑝 of group 𝑎 

𝐺(𝑖, 𝑗, 𝜏) Set of arcs on observed link (𝑖, 𝑗) at time period 𝜏  
Parameters  
𝛽1, 𝛽2 The weights on target passengers’ trip time and observed link/arc flows, respectively 

𝜇𝑎 The observed aggregated average trip time of group 𝑎 from smart card data 

𝜇𝑖,𝑗,𝜏 The observed aggregated total passenger count on link (𝑖, 𝑗) during time period 𝜏 

𝑤𝑝 The travel time of path 𝑝 

𝑐𝑝
𝑟 The earning collected on path 𝑝 of transit company 𝑟 

𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠 Capacity of traveling arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time network 

𝐷𝑇𝑎 The departure time of group 𝑎 
𝐴𝑇𝑎 The assumed arrival time of group 𝑎 

𝐷𝑎 The number of passengers in group 𝑎 

𝑐𝑖,𝑗,𝑡,𝑠 Travel cost of traveling arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time network 

𝑇 The time horizon in the space-time network 

𝛿(𝑖,𝑗,𝑡,𝑠)
𝑝,𝑎

 Path-link incidence index of route 𝑝 of group 𝑎 on arc (𝑖, 𝑗, 𝑡, 𝑠) 

𝑤𝑝 The path travel time of path 𝑝 
Variables  
𝑥𝑖,𝑗,𝑡,𝑠

𝑎  The number of passengers in group 𝑎  is assigned on traveling/waiting arc (𝑖, 𝑗, 𝑡, 𝑠) 
in the space-time network 

𝜃𝑎, 𝜃𝑖,𝑗,𝜏 Continuous positive deviation variables for group 𝑎’s trip time and link (𝑖, 𝑗) during 

time period 𝜏, respectively 

𝑥𝑎
𝑝
 The number of passengers of group 𝑎 choosing their feasible path 𝑝 

𝜇𝑎
∗  The preprocessed aggregated trip time of group 𝑎 from smart card data 

𝜇𝑖,𝑗,𝜏
∗  The preprocessed aggregated passenger count on link (𝑖, 𝑗) during time period 𝜏 

 

3.1 Space-time Network Construction in Public Transit Systems 

To properly account for the evolution of system dynamics over time, Ford and Fulkerson (1958) first 
introduced dynamic network flow models to solve the dynamic maximum flow problem in time extended 
networks. The space-time network flow models are then widely used in dynamic transportation systems, 
such as, dynamic system optimal with a point queue model (Zawack and Thompson, 1987), dynamic user 
equilibrium with a spatial queue model (Drissi-Kaıtouni and Hameda-Benchekroun, 1992), dynamic system 
optimal with departure time, route choice and congestion toll (Yang and Meng, 1998), dynamic user 
equilibrium with link travel time functions (Chen and Hsueh, 1998), and activity-based dynamic user 
equilibrium (Lam and Yin, 2001). Recently, in order to maximize network accessibility, Tong et al. (2015) 
proposed a space-time network flow model with binary decision variables, which actually derives a number 
of agent-based models in space-time networks later. 

There are a number of studies providing how to construct specific time-expanded networks for different 
transportation systems, such as, freeway network (Lu et al., 2016), road network with signal settings (Li et 
al., 2016), urban transit network (Liu and Zhou, 2016), bike-sharing network (Lu, 2016), road network with 
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activity requests (Liu et al., 2018), and vehicle trajectory network (Wei et al., 2017). In this section, we 
consider a physical urban rail transit network with a set of nodes (stops/stations) 𝑁 and a set of links 𝐿 as 
a starting point. Each link can be denoted as a directed link (𝑖, 𝑗) from upstream node 𝑖 to downstream node 

𝑗. A deterministic transit schedule is supposed to be obtained from Automatic Vehicle Location (AVL) data 

from vehicle tracking systems. Then, we construct a space-time network, where V is the set of vertices and 
𝐸 is the set of arcs. Node 𝑖 is extended to a set of vertices (𝑖, 𝑡) at each time interval 𝑡 in the study horizon, 

𝑡 = 1,2, … , 𝑇, where 𝑇 is the length of the optimization horizon. The transit schedule from node 𝑖 to node 𝑗 
from time 𝑡  to time 𝑠  can be represented by a travelling arc (𝑖, 𝑗, 𝑡, 𝑠)  where (𝑠 − 𝑡)  is the exact 
scheduled/running link travel time and should be integer multipliers of one time interval. The capacity of 
travelling arcs can be viewed as the transit vehicle’s carrying capacity. In addition, a waiting arc is built from 
(𝑖, 𝑡) to (𝑖, 𝑡 + 1) at node 𝑖 with waiting time of 1 unit of time and its capacity is defined as the station/platform 
storage capacity. 

In urban rail transit systems, individual passengers should have a trip record with origin, departure time, 
destination and arrival time from the smart card. However, transit agencies may just provide aggregated 
trip data for groups of passengers to protect the passengers’ privacy. Each group 𝑎 with 𝐷𝑎 passengers 

has a departure time 𝐷𝑇𝑎 at origin node 𝑜(𝑎) to its destination node 𝑑(𝑎). At each destination node, there 

is one assumed large arrival time 𝑇 for all groups so that the following proposed model will be one-origin-
one-destination problem in the space-time network. It should be noted that the travel cost of waiting arcs 
on the destination node of each passenger group is 0, which means that once the passengers in a group 
arrive at the destination, the waiting cost to the super-destination (at larger arrival time 𝑇) is 0. Finally, the 
estimated trip time in the model should be equal to the observed trip time, which will be presented in the 
following sections. 

In addition, one transfer node can be divided as multiple nodes, depending on how many transit lines 
intersect at this node. One illustrative example is shown in Fig. 5(a) where two lines intersect at node 2 and 
make it as a transfer station. Then node 2 is split to node 2′ and node 2" and the modified physical network 
is shown in Fig. 5(b). The travel time of transfer links could be the actual walking time, and its capacity is 
the maximum passenger throughput at transfer corridors. As a remark, based on the maximum transfer 
distance accepted by passengers, it is possible to connect different stops by transfer links or extended to 
multimodal networks. Fig. 5(c) shows the transfer process where all transfer time is assumed to be 1 unit 
of time. In addition, it is feasible to consider the uncertainty of walking time on transfer links or from station 
entry to the platform through constructing more service/travelling arcs with different arc travel times. 
Furthermore, in traffic networks, the road can provide its service at each time interval with a specific arc 
capacity, and the given signal timing rules whether those service arcs are open or closed, as shown in Fig. 
5(d) to show our unified modeling framework. 
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Fig. 5 space-time network construction 
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3.2 Information space generation based on multi-source sensor data 

Information space (LaValle, 2012) works as a communication channel to connect the external physical 
world and the internal system states. The external physical world is sensed by heterogeneous sensors in 
terms of different observations or information, which finally forms a corresponding information space. 
Meanwhile, the internal system states are reflected through the information space based on the specific 
state definitions. In addition to the physical transit lines and schedules as useful information, smart card in 
the urban transit systems can provide origin, boarding time, destination, and/or alighting time for each 
person or each passenger group. With the development of sensing technologies, more available sensor 
information from big data applications are being used in the public transportation systems, including 
aggregated passenger flow from video data, cellphone/GPS based point-to-point trajectory data, travel 
behavior data (e.g. preference) through survey, trip related information from social media. 

The specific modeling on generating information space based on those available sensor data is 
developed as follows. It should be remarked that, the first-in-first-out (FIFO) rule is not incorporated in our 
proposed space-time network, because it can be violated in transit networks and the multi-source 
information can better present travelers’ decision by reducing the feasible information space. Also, readers 
who are interested in FIFO in space-time networks can be referred to the details in the paper (Shang et al., 
2018). 

Taking the rail transit system as our modeling example, we have the following formulation. 
(i) According to the physical network, transit schedule, and dynamic OD information from smart card 

data, the standard flow balance constraint can be given as follows: 

 ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑖,𝑡:(𝑖,𝑗,𝑡,𝑠)∈𝐸 − ∑ 𝑥𝑗,𝑖,𝑠,𝑡
𝑎

𝑖,𝑡:(𝑗,𝑖,𝑠,𝑡)∈𝐸 = {
−𝐷𝑎 ∀𝑎, 𝑗 = 𝑜(𝑎), 𝑠 = 𝐷𝑇𝑎

𝐷𝑎 ∀𝑎, 𝑗 = 𝑑(𝑎), 𝑠 = 𝑇 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

(ii) Strict vehicle and station platform capacity constraint 
 ∑ 𝑥𝑖,𝑗,𝑡,𝑠

𝑎
𝑎 ≤ 𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀(𝑖, 𝑗, 𝑡, 𝑠) ∈ 𝐴 (2) 

(iii) The estimated trip time of each group in the model should be consistent with the observation 
(average trip time of each group) from smart card.  

 ∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠) ) = 𝐷𝑎 × 𝜇𝑎, ∀ 𝑎 (3) 

(iv) Estimated aggregated passenger flow count on link (𝑖, 𝑗) during time period 𝜏 is expected to be the 
observation from video data or counting by person. 

 ∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑡∈𝜏𝑎 = 𝜇𝑖,𝑗,𝜏, ∀(𝑖, 𝑗, 𝜏) (4) 

(v) Non-negative arc flow variables 
 𝑥𝑖,𝑗,𝑡,𝑠

𝑎 ≥ 0 (5) 

Compared with the existing space-time network models with tight arc capacity constraints and agent-
based bounded rationality constraint, the constraints on observed trip journey time and observed passenger 
flow counts are new and specific for this observability problem. It should be pointed out that the concept of 
capacity defined as the maximum number of passengers the facility can take is not easy to be calibrated 
and has its subjectivity. However, Automated Passenger Counter (APC) used for accurately recording 
passengers boarding and alighting activities (Furth et al., 2006) can be greatly helpful to capture the 
capacity value under saturated conditions when passengers have to wait for the next available vehicle due 
to the in-vehicle congestion. 

In addition, in practice, the transportation agencies usually have different levels of network models. 
When they focus on the regional analysis, all input elements in the whole regional area should be 
considered. On the other hand, when performing a subarea analysis, it requires to estimate the route 
behavior of all passengers related to the subarea, so the vehicle capacity will be adjusted to exclude the 
number of external passengers who utilize vehicles in the subarea. In another way without adjusting 
capacity, we can build external nodes connected with the subarea, and those external nodes represent the 
origins/destinations of aggregated external passengers. As a result, there will be four categories of OD 
pairs for the subarea (Zhou et al., 2006): external-internal OD, internal-external OD, internal-internal OD, 
and external-external OD where its passengers may pass though this subarea. Then, it needs to first solve 
an OD trip demand estimation problem for further transportation system observability, which will be 
considered in our future research. 

Note that, if a passenger is regarded as a group of passengers, 𝑥𝑖,𝑗,𝑡,𝑠
𝑎  will be a binary variable and the 

above modeling is still available, which is transformed in an agent-based model. Usually, agent-based 
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trajectory data can provide more point-to-point travel time information rather than just path choice. The 
above formulation presents an arc-based formulation for constructing the information space. In comparison, 
a path-based formulation based on the feasible path generation is offered as follows:  

(i) Flow balance constraint: 

 ∑ 𝑥𝑎
𝑝

𝑝 = 𝐷𝑎 , ∀𝑎  (6) 

(ii) Capacity constraint: 

 ∑ (𝛿(𝑖,𝑗,𝑡,𝑠)
𝑝,𝑎

× 𝑥𝑎
𝑝

) ≤ 𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀(𝑖, 𝑗, 𝑡, 𝑠) ∈ 𝐴(𝑝,𝑎)∈𝑆(𝑝,𝑎)
 (7) 

(iii) Trip time constraint: 

 ∑ 𝑥𝑎
𝑝

𝑝 ∗ 𝑤𝑝 = 𝐷𝑎 × 𝜇𝑎, ∀𝑎  (8) 

(iv) Aggregated passenger flow count constraint: 

 ∑ ∑ (𝛿(𝑖,𝑗,𝑡,𝑠)
𝑝,𝑎

× 𝑥𝑎
𝑝

)𝑡∈𝜏𝑎 = 𝜇𝑖,𝑗,𝜏 , ∀(𝑖, 𝑗, 𝜏) (9) 

(v) Non-negative path flow: 

 𝑥𝑎
𝑝

≥ 0 (10) 

Given the time-expanded space-time network constructed in advance, the general feasible path set for 
a passenger group with specific OD pair and a departure time can be generated by a forward label 
correcting algorithm from the vertex (origin and departure time) to its destination node based on the 
observed trip time of that group as a prism. In addition, we assume that the sensor data are currently 
measured in a perfect way without errors and noise. In section 4.1, we will address the issue of 
measurement errors, so the revised measurement representation could replace the observations in the 
models above. 

It should be remarked that when considering the bus transit systems, the smart card data usually only 
have the origin and departure time without passengers’ destination and arrival time information. To model 
this condition that dynamic OD trips are unknown, 𝐷𝑎 will be a variable in equation (1) and the summation 

of 𝐷𝑎 with same origin and departure time should be equal to the recorded total trip generation at this origin 
and departure time from smart card data. If the structure of each OD pair with departure time is given based 
on the historical OD information, the number of unknown OD variables will be greatly reduced.  In addition, 
from the data mining perspective, interesting readers can be referred to the paper (Ma et al., 2013) to find 
studies related to estimating destination probabilities. 

3.3 Dantzig-Wolfe decomposition for special flow-balance blocks 

As shown in the arc-based and path-based formulation in section 3.2, the flow balance constraint is a 
special block that can be solved by classical shortest path algorithms and further be incorporated by 
Dantzig–Wolfe decomposition. Actually, this kind of methods had been adopted for static traffic assignment 
(Larsson and Patriksson, 1992), side constrained traffic equilibrium (Larrson et al., 2004), time constrained 
shortest path problem (Desrosiers and Lubbecke, 2005), etc. The advantage of this decomposition allows 
us to solve the special blocks in parallel via independent computation threads to address large-scale 
networks, especially when the computer hardware has a rapid development in current days. It also has the 
re-optimization capability if the travel demand, arc performance function or network topology has any 
changes in future (Larsson and Patriksson, 1992).  

Specifically, Dantzig–Wolfe decomposition is originally proposed for solving linear programming 

problems with special structure. A general primal linear program can be represented as: min 𝑐𝑇𝒙, subject 
to, 𝐴𝒙 ≤ 𝒃, 𝐷𝒙 ≤ 𝒅, and 𝒙 ≥ 0. According to Minkowski-Weyl's Theorem, given the convex set 𝑋 = {𝑥 ∈
ℝ𝑛|𝐴𝑥 ≤ 𝑏} where 𝐴𝑥 ≤ 𝑏 is a special block, 𝑋 can be represented by the extreme points and extreme 

rays of 𝑋: 𝑋 = {𝑥 = ∑ 𝜆𝑖𝑥𝑖 + ∑ 𝜇𝑖𝑦
𝑗| ∑ 𝜆𝑖 = 1,𝑖𝑗𝑖 𝜆𝑖 ≥ 0, 𝜇𝑗 ≥ 0}. When 𝑋 is a bounded polyhedron, 𝑋 can be 

represented by the extreme points, 𝑋 = {𝑥 = ∑ 𝜆𝑖𝑥
𝑖| ∑ 𝜆𝑖 = 1𝑖 ,𝑖 𝜆𝑖 ≥ 0}. 

Substituting the expression above to the original model leads to the following Master Problem: 

 min ∑ 𝑐𝑇𝜆𝑖𝒙
𝑖

𝑖   (11) 

 Subject to, ∑ 𝐷𝜆𝑖𝒙
𝑖

𝑖 ≤ 𝒅, ∑ 𝜆𝑖 = 1𝑖  and 𝜆𝑖 ≥ 0 (12) 

Suppose that a subset of extreme points 𝑃 is available. The Restricted Master Problem (RMP) can be 

obtained by min ∑ 𝑐𝑇𝜆𝑖𝒙
𝑖

𝑖∈𝑃 , subject to, ∑ 𝐷𝜆𝑖𝒙
𝑖

𝑖∈𝑃 ≤ 𝒅, ∑ 𝜆𝑖 = 1𝑖∈𝑃  and 𝜆𝑖∈𝑃 ≥ 0. Assume that 𝜆∗ and (𝜋, 𝜔) 

is the optimal and dual solutions to the RMP, respectively. The reduced cost is defined as 𝛾(𝒙) = 𝑐𝑇𝒙 −
𝜋𝑇𝐴𝒙 − 𝜔 . Then, we solve the subproblem: min 𝑐𝑇𝒙 − 𝜋𝑇𝐴𝒙 − 𝜔 , subject to 𝐴𝒙 ≤ 𝑏  and 𝒙 ≥ 0 . If the 
reduced cost is non-negative, the solution is optimal; otherwise, the solution can be viewed as a new 
extreme point and added to the RMP until the reduced cost is non-negative. 
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With different objective functions related to different estimated states, our proposed models in section 
4.2 based on the generated information space in Section 3.2, will be solved under the framework of 
Dantzig–Wolfe decomposition in section 4.2. Specifically, based on the flow-balance constraint, the flow on 
a particular path (or path flow for a passenger group 𝑎) can represent one extreme point. A path flow 
uniquely corresponds to its path, so a particular path implicitly indicates a specific extreme point. This 

enables us to express the arc flow of group 𝑎 on arc (𝑖, 𝑗, 𝑡, 𝑠) as 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 = ∑ (𝛿(𝑖,𝑗,𝑡,𝑠)

𝑝(ℎ),𝑎
× 𝑥𝑎

𝑝(ℎ)
× 𝜆(𝑎,ℎ)ℎ ), where 

𝑥𝑎
𝑝(ℎ)

= 𝐷𝑎 for each generated extreme point ℎ, and ∑ 𝜆(𝑎,ℎ) = 1ℎ𝜖𝐻(𝑎) . Since variable 𝑥𝑖,𝑗,𝑡,𝑠
𝑎  is continuous 

rather than discrete, it should be a continuous combination of extreme points and 𝜆(ℎ,𝑎) ≥ 0 according to 

Minkowski-Weyl's Theorem. On the other hand, the link flow vector of each group 𝒙𝑖,𝑗,𝑡,𝑠
𝑎  can also be seen 

as one extreme point, as it is the result of one specific path flow vector. In addition, since the model is a 
linear program, it is possible to return an unbounded solution or non-unique solution, which has been 
studied in some classical linear programming literature (Dantzig, 1998). 

4. Observability quantification of different states under heterogeneous data sources 

The system observability reflected by state uncertainty mainly arises from two sources: one is lack of 
useful information, which results in the many-to-one mapping between the many possible system states 
and one partial observation, and the other is the possible measurement error due to the noise and 
disturbance in sensing systems. This section will address the measurement error issues and further quantify 
the uncertainty of state estimates. 

4.1 Data preprocessing for measurement errors 

The analyses on small card data (Trépanier et al., 2007; Barry et al., 2009) show that the data must be 
thoroughly validated and corrected prior to the practical use. Therefore, it might happen that no feasible 
solution exists when the observed data are directly used in built models due to its measurement errors. In 
addition, even each observation is tested in the model and can provide feasible solutions, but it is still 
possible to have infeasible solutions when heterogeneous sensor data are considered simultaneously, 
because the inconsistency among different kinds of sensor data may still exist. Hence, this situation leads 
to the measurement estimation problem, which aims to obtain estimations as close as possible to the 
corresponding measurements under real-world physical constraints. It is also recognized that there are 
other different approaches to clean and verify those measurements in advance. The approach adopted in 
this paper is the generalized least squares. Based on the proposed constraints in section 3.2, a nonlinear 
estimation model is presented as follows. 

 Min 𝛽1 ∑ (∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠) ) − 𝐷𝑎 × 𝜇𝑎)

2
𝑎 + 𝛽2 ∑ (∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠

𝑎
𝑡∈𝜏𝑎 − 𝜇𝑖,𝑗,𝜏)(𝑖,𝑗,𝜏)

2
  (13) 

Subject to constraints (1), (2) and (5). 
The objective function is to minimize the weighted total deviations between the estimated and observed 

measurements, where 𝛽1 and 𝛽2 are the weights reflecting different degrees of confidence on observations. 
Those weights can be viewed as the inverses of the variances of the heterogeneous sources of 
measurements adopted by Lu et al. (2013). 

Another technique used to measure the deviation is to quantify the absolute difference as least absolute 
deviations (LAD). The corresponding objective function will change to be 

 Min 𝛽1 ∑ |∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠) ) − 𝐷𝑎 × 𝜇𝑎|𝑎 + 𝛽2 ∑ |∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠

𝑎
𝑡∈𝜏𝑎 − 𝜇𝑖,𝑗,𝜏|(𝑖,𝑗,𝜏)  (14) 

Least absolute deviation treats all observation equally, but least squares gives more emphasis to large 
residuals by squaring the residuals, which could be a better choice when dealing with outliers in which 
estimated values are far from real-world sensor observations. Note that the least absolute deviations can 
be solved by linear programming through transforming the model. For example, the new model based on 
objective function (14) will be minimizing 𝛽1 ∑ 𝜃𝑎𝑎 + 𝛽2 ∑ 𝜃𝑖,𝑗,𝜏(𝑖,𝑗,𝜏)  while adding new constraints −𝜃𝑎 ≤

∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠) ) − 𝐷𝑎 × 𝜇𝑎 ≤ 𝜃𝑎 , −𝜃𝑖,𝑗,𝜏 ≤ ∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠

𝑎
𝑡∈𝜏𝑎 − 𝜇𝑖,𝑗,𝜏 ≤ 𝜃𝑖,𝑗,𝜏 , and 𝜃𝑎 ≥ 0, 𝜃𝑖,𝑗,𝜏 ≥ 0 . By 

assuming that the sensor has 1% relative errors 𝜃𝑎 as the worst case, Canepa and Claudel (2017) added 
the sensor errors in the hard constraints in their optimization problems. However, in our paper we assume 
that the ground-truth data will be closest to the sensor data while surely satisfying the physical constraints 
in transportation systems, which is similar to the data reconciliation problem. Therefore, the measurement 

values 𝜇𝑎 and 𝜇𝑖,𝑗,𝜏 in information space generation and uncertainty quantification in section 3.2 need to be 

replaced by 𝜇𝑎
∗  and 𝜇𝑖,𝑗,𝜏

∗  from our proposed preprocessing model. 
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The model is a linearly constrained quadratic programming model. Frank-Wolfe algorithm is usually 
used to solve the optimization problem where the objective function is convex differentiable real-valued 
function and the feasible region of side constraints is compact convex. Frank-Wolfe algorithm is explained 
at Appendix A in detail. 

4.2 Projection-function-based observability quantification 

As illustrated in Section 3.2, the generated information space can work as a channel to connect available 
observations with different states. This section will propose different projection functions as the mapping 
between the feasible information space and specific transit system states. Table 2 introduces our focused 
states. 

Table 2 Focused states and motivations 

Focused states Motivations 

(1) Arc flow/density state: passenger density on 
station platforms, in vehicles, and transfer corridors 

(i) identify possible dangerous spots for safety; 
(ii) make decisions on vehicle updates, 
line/timetable changes and stop location 
adjustment 

(2) Path flow state: the number of passengers 
taking one specific line segment 

(i) clear the total ticket fare to each company based 
on the service they provide; 
(ii) evaluate the current liquidation policy and 
quantify the unreasonable income bound for each 
company 

(3) Path flow state: the path flow range of each 
time-dependent OD pair 

(i) compare or verify the traditional logit route 
choice model for better understanding travel 
behavior 

(4) Network-level arc flow/density state: 
network-level time-dependent passenger 
flow/density states on serval key stations/vehicles 

(i) distribute the network-level transit condition and 
intelligent passenger trip guidance 
(ii) evaluate network-level control and policy 

The focused states and its uncertainty quantification are listed as follows. 

Projection function 1 for arc flow state: the number of passengers on one specific arc (𝑖, 𝑗, 𝑡, 𝑠) 

(station platform, vehicle, transfer corridor) in the space-time network is represented as ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑎 , so the arc 

flow uncertainty can be quantified by maximizing and minimizing ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑎 , subject to constraints (1) to (5).  

Projection function 2 for path flow state 1: the earnings that one transit company 𝑟 can obtain is 

represented as ∑ ∑ (𝑥𝑎
𝑝

𝑝𝑎 × 𝑐𝑝
𝑟), where 𝑐𝑝

𝑟 is the income of using the segment in company 𝑟’s operation area 

of path 𝑝. It can be calculated as a parameter in advance based on the ticket price and segment and path 

distance. Therefore, the earning bound is estimated by maximizing and minimizing∑ ∑ (𝑥𝑎
𝑝

𝑝𝑎 × 𝑐𝑝
𝑟) subject 

to constraints (6) to (10). 

Projection function 3 for path flow state 2: the flow rate on path 𝑝 is ∑ 𝑥𝑎
𝑝

𝑎 , so the uncertainty bound 

of path flow is measured by maximizing and minimizing ∑ 𝑥𝑎
𝑝

𝑎 , subject to constraints (6) to (10). 

Projection function 4 for network-level arc flow state: the passenger flow (density) states on key 
station platforms at one time index (e.g., at 7:30am) is a high-dimensional vector {𝒒(𝒊, 𝒕)} where 𝑖 is one of 

the key stations. For one specific station 𝑖, 𝑞(𝑖, 𝑡) = ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑎  is the number of passengers at station 𝑖 at 

time 𝑡. Since the state is not one dimension anymore, the concept of the Maximal Possible Relative Error 
(MPRE) first introduced by Yang et al. (1991) is adopted to quantify the state uncertainty of high-
dimensional variables. As shown in Fig. 6(a), the state solution (vector {𝒙𝒊,𝒋,𝒕,𝒔

𝒂 }) based on different projection 

functions for one-dimensional state above is one feasible solution in the information space, so each solution 
(vector {𝒙𝒊,𝒋,𝒕,𝒔

𝒂 }) can be mapped to high-dimensional states to generate new state points (vector 𝒒(𝒊, 𝒕)) 

illustrated in Fig. 6(b), which are used as sample points to approximately obtain the MPRE. Specifically, we 
need to calculate the average relative error between any two points, and find the maximal one as the MPRE. 

For example, the average relative error between point 1 and point 2 is calculated as follows (Yang et al., 
1991), where 𝒒𝟏(𝒊, 𝒕) and 𝒒𝟐(𝒊, 𝒕) are m-dimensional vectors recording 𝑚 stations’ passenger flow at time 𝑡. 

The relative deviation between point 1 and point 2 is 𝜆(1,2,𝑖,𝑡) =
𝑞1(𝑖,𝑡)−𝑞2(𝑖,𝑡) 

𝑞1(𝑖,𝑡)
 and the average relative 

deviation 𝐴𝑉(𝜆(1,2,𝑡)) = √
𝜙(𝜆(1,2,𝑡))

𝑚
, where𝜙(𝜆(1,2,𝑡)) = ∑ 𝜆(1,2,𝑖,𝑡)

2𝑚
𝑖=1 and 𝜆(1,2,𝑡) = {𝜆(1,2,1,𝑡), 𝜆(1,2,2,𝑡), … , 𝜆(1,2,𝑚,𝑡)}. 
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In addition, Yang et al. (1991) defined the concept of Estimation Reliability as a measure about the state 

uncertainty; that is, 𝑅𝑒 =
1

1+𝐴𝑉(𝜆)
, which shows that when the 𝐴𝑉(𝜆) is 0, the reliability of the estimated state 

is 1. In contrast, when 𝐴𝑉(𝜆) tends to infinity, there is almost no reliability guarantee. Therefore, this index 
is used to measure the possible estimated flow range rather than the specific flow rate. The result is just 
based on some sample points, so it is still an approximation approach. 

System observability is just the first step for future system controllability related to sensor network design 
and system optimal control. Therefore, the goal of this research is to inform planners whether the 
observations from currently available sensors are enough to well observe the system. In other words, if the 
state uncertainty range in some key locations is pretty large, it means that the current sensor information is 
not enough and the planners should add more useful sensors to better know what is happening in the 
system. 

Information Space

1-D State 1

1-D State 2

Maximum

Minimum

Maximum

Minimum

Projection function 1

Maximum

Minimum

1-D State 3

Maximum

Minimum

1-D State 4

Projection function 2
Projection function 3

Projection function 4

Projection function 

Information Space High-dimensional States

Point 1

Point 2

(a) the mapping of 1-D state’s boundary to information space (b) the mapping of sample points in information space to H-d states
 

Fig. 6 Relation of information space and different types of state 

4.3 The solution procedure of Dantzig-Wolfe decomposition 

From the perspective of Dantzig-Wolfe decomposition, based on the master problem in formulas (11) 

and (12), 𝒙𝑖 as one extreme point can be replaced by variable vector 𝒙𝒊,𝒋,𝒕,𝒔
𝒂  and variable 𝒙𝒂

𝒑
 for arc-based 

and path-based models above, respectively, and 𝑐𝑇 is the corresponding cost on each variable.  
Taking minimizing the flow on arc (𝑖, 𝑗, 𝑡, 𝑠) as an example, the general procedure of the algorithm is 

described as follows. 

Step 1: Initialization. Find one feasible passenger arc flow vector {𝒙𝒊,𝒋,𝒕,𝒔
𝒂,𝒌

} on the shortest path as the 𝑘𝑡ℎ 

extreme point for each passenger group 𝑎. It indicates that (𝑘 − 1) extreme points have been generated 
before finding one feasible solution, which will be explained after Step 3 as a remark. 

Step 2: Solve the restricted master problem to obtain the duals of side constraints. 

 Min ∑ ∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘 × 𝜆𝑎,𝑘)𝑎𝑘  (15) 

Subject to,  

 ∑ ∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘 × 𝜆𝑎,𝑘)𝑎𝑘 ≤ 𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀(𝑖, 𝑗, 𝑡, 𝑠) ∈ 𝐴 (16) 

 ∑ ∑ [(𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘 × 𝜆𝑎,𝑘) × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠) ]𝑘 = 𝐷𝑎 × 𝜇𝑎, ∀ 𝑎 (17) 

 ∑ ∑ ∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘 × 𝜆𝑎,𝑘)𝑡∈𝜏𝑎𝑘 = 𝜇𝑖,𝑗,𝜏, ∀(𝑖, 𝑗, 𝜏) (18) 

 ∑ 𝜆𝑎,𝑘𝑘 = 1, ∀ 𝑎 (19) 

 𝜆𝑎,𝑘 ≥ 0 (20) 

𝜋𝑖,𝑗,𝑡,𝑠, 𝜋𝑎, 𝜋𝑖,𝑗,𝜏 and 𝜔𝑎 are the duals of side constraints (16)-(19), respectively. 

Step 3: Solve each sub-problem as a time-dependent shortest path problem to calculate its reduced 
cost for each passenger group, which can be implemented by parallel computing techniques, such as, Multi 
Process Interface (MPI). 

Sub-problem for each passenger group 𝑎: 

 Min (𝑐𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑥𝑖,𝑗,𝑡,𝑠

𝑎,𝑘+1) − ∑ (𝜋𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1

(𝑖,𝑗,𝑡,𝑠) ) − 𝜋𝑎 × ∑ (𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1)(𝑖,𝑗,𝑡,𝑠) − ∑ (𝜋𝑖,𝑗,𝜏 ×(𝑖,𝑗,𝜏)

∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1

𝑡∈𝜏 ) − 𝜔𝑎   (21) 

Subject to 
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∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1

𝑖,𝑡:(𝑖,𝑗,𝑡,𝑠)∈𝐸 − ∑ 𝑥𝑗,𝑖,𝑠,𝑡
𝑎,𝑘+1

𝑖,𝑡:(𝑗,𝑖,𝑠,𝑡)∈𝐸 = {
−𝐷𝑎 𝑗 = 𝑜(𝑎), 𝑠 = 𝐷𝑇𝑎

𝐷𝑎 𝑗 = 𝑑(𝑎), 𝑠 = 𝑇 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (22) 

Actually, the reduced cost is (𝑐𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑥𝑖,𝑗,𝑡,𝑠

𝑎,𝑘+1) − ∑ (𝜋𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1

(𝑖,𝑗,𝑡,𝑠) ) − 𝜋𝑎 × ∑ (𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1)(𝑖,𝑗,𝑡,𝑠) −

∑ (𝜋𝑖,𝑗,𝜏 × ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1

𝑡∈𝜏(𝑖,𝑗,𝜏) ) − 𝜔𝑎. If it is negative, we add the solution of the sub-problem to the restricted 

master problem at step 2 and begin next iteration. When the reduced costs of all sub-problems are non-
negative, the optimal solution is achieved. 

In the initialization step, in order to find one feasible solution from the shortest path problem as initial 
extreme points, we can introduce artificial variables for those coupling constraints and solve the problem 
by the Dantzig-Wolfe decomposition again (Kalvelagen, 2003). For the maximum problem, we can 
transform it as a minimum problem by changing the positive arc costs to be negative. Since there is no 
circle in the space-time network along the time dimension, the label correcting algorithm can always be 
used to find the shortest path.  

In addition, if the k-best space-time paths can be found for each passenger group in advance, those k 
paths can be treated as k extreme points, and then we only need to solve a restricted master problem to 
obtain an approximated solution. This approximation approach can greatly reduce the complexity of this 
problem and is applicable for large-scale networks where the solvers don’t have the capability to directly 
solve the original models. The detailed k-shortest space-time path generation will be explained in section 
5.2.  

4.4 Discussions on real-time state uncertainty quantification 

The uncertainty of real-time system state increases the difficulty of real-time state prediction and optimal 
control. Compared with the offline state observability in this paper, the challenges in the real-time condition 
include (i) the real-time rail transit OD travel information is not available and (ii) the state transition along 
the time is highly required.  

(i) Real-time OD demand estimation: Based on day-to-day historical and accurate dynamic OD demands 

in urban rail transit systems, we can classify 𝑘 representatives 𝑂𝐷𝑜,𝑑,𝜏
𝑘 for each OD pair at different time 

periods, so the estimated real-time OD demand is 𝑂𝐷𝑜,𝑑,𝜏 = ∑ (𝑤𝑘 × 𝑂𝐷𝑜,𝑑,𝜏
𝑘 )𝑘 , where 𝑤𝑘 is a binary variable, 

which indicates that only one OD candidate 𝑘 will be chosen. As a result, the dynamic OD travel demand’s 
spatial structure can be well captured, compared with those OD estimation models which mainly optimize 
one departure time profile for all or one-class total static OD trips. In addition, the real-time trip generation 

at each station/origin with departure time is available from the smart card data, so ∑ 𝑂𝐷𝑜,𝑑,𝜏 = 𝑂𝐷𝑜,𝜏
𝑜𝑏𝑠

𝑑  

provides more information to generate the real-time information space. 
(ii) Real-time state transition: the rolling horizon approach has been widely chosen for real-time 

transportation operations and control (Peeta and Mahmassani, 1995; Zhou and Mahmassani, 2007; Meng 
and Zhou, 2011). Under this mechanism, when focusing on one time period, it needs a look-back period 
and a look-ahead period, because the generated passengers from the look-back period could still be in the 
network during our focused time period, and in the look-ahead period all passengers can arrive at their 
destination for our network modeling. Along the planning time horizon, once some trips are finished at our 
focused time period, their true OD information can be obtained in real time, so the corresponding estimated 
OD trips can be replaced by the real ones, which can also reduce the information space for our state 
observability quantification. 

5. Experiments 

5.1 Tests in a hypothetic network 

This section will demonstrate the proposed models and algorithms in Sections 4 and implement them in 
a general purpose optimization package GAMS. All source codes can be downloaded at the website: 
https://www.researchgate.net/publication/326020738_Observability_Scenarios_1-4.The experiments are 
performed in the following transit network shown in Fig. 7(a), where seven urban rail lines exist in the transit 
systems. In order to model the passenger count observation at transfer corridors, specific transfer links are 
built as shown in Fig. 7(b).  

https://www.researchgate.net/publication/326020738_Observability_Scenarios_1-4
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Fig. 7 Hypothetic urban rail transit network 

5.1.1 Given multi-source sensor data 

(1) Table 3 lists the existing transit service arcs based on the given timetable of the seven transit lines.  
(2) The origin, destination, departure time and aggregated trip time of each passenger group are listed 

in Table 4, and each group represents 100 passengers in this test.  
(3) The vehicle capacity of each line is assumed in Table 5, where it can be observed that the capacity 

of rail transit vehicles could have its adjustment at different time periods by increasing or decreasing the 
number of train units.  

(4) The passenger count data from video processed data at transfer corridor (7, 4) is available; that is, 
450 and 810 passengers are observed at time points 3 and 6. 

Table 3 Hypothetic transit service arcs lists 

Service Arc Start Time End Time Service Arc Start Time End Time 

(1,7) 0 3 (1,7) 3 6 

(7,4) 3 4 (7,4) 6 7 

(4,6) 4 6 (4,6) 7 9 

(1,6) 0 8 (1,6) 3 11 

(2,7) 0 3 (2,7) 3 6 

(2,5) 0 4 (2,5) 3 7 

(5,6) 4 7 (5,6) 7 10 

(3,8) 0 3 (3,8) 3 6 

(8,5) 3 4 (8,5) 6 7 

(3,6) 0 8 (3,6) 3 11 

 
Table 4 Trip attributes of each passenger group 

Group 
No 

OD Pair Departure 
Time 

Average Trip Time 
Group 

No 
OD Pair Departure 

Time 
Average Trip Time 

1 1 → 6 0 6 15 1 → 6 3 7.5 
2 1 → 6 0 7 16 1 → 6 3 7 

3 1 → 6 0 8 17 1 → 6 3 8 

4 1 → 6 0 6.5 18 2 → 6 3 6 
5 2 → 6 0 7 19 2 → 6 3 7 

6 2 → 6 0 7.5 20 2 → 6 3 6.5 

7 2 → 6 0 6.5 21 2 → 6 3 7.5 
8 2 → 6 0 6 22 2 → 6 3 8 

9 3 → 6 0 7 23 2 → 6 3 6.8 

10 3 → 6 0 7.5 24 3 → 6 3 7 

11 3 → 6 0 8 25 3 → 6 3 7.5 
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12 1 → 6 3 6 26 3 → 6 3 7.4 
13 1 → 6 3 7 27 3 → 6 3 7.8 

14 1 → 6 3 6.5 28 3 → 6 3 8 

 
Table 5 Vehicle capacity of transit lines 

Line No L1 L2 L3 L4 L5 L6 L7 

Capacity of vehicles departing at time 0 300 300 600 200 400 300 200 
Capacity of vehicles departing at time 3 400 400 800 300 600 400 300 

5.1.2 Focused states for observability quantification 

The states focused in this experiment are listed as follows. 
(1) Arc flow state: passenger count (congestion) in transfer corridor (8, 5) at time points 3 and 6, 

respectively. 
(2) Path flow state 1: the passenger flow departing at node 2 and time 0 to use line 1. 
(3) Path flow state 2: the earning collected in the ticket for company line 1 on its first vehicle. 
(4) Network-level arc flow state: the system-wide passenger count (congestion) on the running 

vehicles at time point 5. 

5.1.3 Scenario design 

As a short summary, based on the available supply and demand data, we aim to (i) preprocess the 
measurements as data reconciliation in step 1, and (ii) quantify the uncertainty of our focused states in step 
2. Five scenarios are designed to demonstrate the value of information based on our proposed models. 

Scenario 1 (S1: base case): the origin, destination, and departure time of each passenger group is 
given, and no other information is available. 

Scenario 2 (S2: base case + count): based on scenario 1, the passenger count data from video 
processed data at transfer corridor (7, 4) is available. 

Scenario 3 (S3: base case + end-to-end travel time): based on scenario 1, the averaged group trip 
time from smart card is available. 

Scenario 4 (S4: base case + end-to-end travel time + count): based on scenario 1, both the 
passenger count data and average group trip time data are available. 

Scenario 5 (S5: ground truth): since the observed data may have its measurement errors, we assume 
that a ground truth can be obtained and will be compared with other scenarios. The ground truth is assumed 
as the system conditions based on maximizing the arc flow at time point 3 in scenario 3. 

5.1.4 Result analysis 

In step 1, the measurement is preprocessed by the proposed model at section 4.1. In step 2, we compute 
the uncertainty range of states (1)-(3) by maximizing and minimizing the state goals, and state (4) is 
addressed based on the solutions from the previous three states as a sample-based approximation. Before 
analyzing different state results in different scenarios, it is important to clearly illustrate the conditions under 
which those results are obtained from our proposed models.  

(1) In scenario 1, there is no available sensor data, so the measurement doesn’t need to be 
preprocessed.  

(2) In scenario 2, the measurement is preprocessed for the passenger count data at transfer corridor (7, 
4). The estimated passenger counts at transfer corridor (7, 4) at time points 3 and 6 is 450 and 800, 
respectively, compared with the observed values of 450 and 810. The total absolute error for the observed 
passenger count is 10.  

(3) In scenario 3, the estimated average group trip time for each group is shown in Table 6. The total 
absolute error for the average group trip time is 2.58. 

(4) In scenario 4, in step 1, there are two different sensor data, so it will require weights on different 
measurements. As discussed by Lu et al. (2013), the weights should reflect the degrees of confidence on 
different observed data and can be represented by the inverses of the variances of the distinct sources of 
measurements. The total absolute errors for observed average group trip time and passenger count are 
3.83 and 273, which are greater than the absolute errors in scenario 1 and scenario 2, respectively. It 
indicates that the inconsistency among multi-source data forces the model to find a balance among those 
observations.  
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(5) In scenario 5, the preprocessed group trip time in step 1 is used as the input to maximize the 
passenger count in transfer corridor (8, 5) at time points 3, and the corresponding system condition is 
assumed as the ground truth in this dynamic transit system. 

Table 6 The observed and preprocessed average group trip time for each passenger group 

Passenger 
group 
No 

Observed 
values 

Preprocessed 
values in scenario 3 

Passenger 
group 
No 

Observed 
values 

Preprocessed 
values in scenario 3 

1 6 6 15 7.5 7.5 
2 7 7 16 7 7 
3 8 8 17 8 8 
4 6.5 6.5 18 6 6 
5 7 7 19 7 6.9 
6 7.5 7 20 6.5 6.4 
7 6.5 6.5 21 7.5 7 
8 6 6 22 8 7 
9 7 7 23 6.8 6.7 
10 7.5 7.5 24 7 7.08 
11 8 8 25 7.5 7.57 
12 6 6 26 7.4 7.47 
13 7 7 27 7.8 7.87 
14 6.5 6.5 28 8 8 

Fig. 8 shows that the estimated maximum and minimal flow rates on each focused arc under different 
scenarios. As available information is increased, the range of passenger flow uncertainty on transfer 
corridor (8, 5) is reduced. Meanwhile, both scenarios 3 and 4 can assert that their estimated state 
uncertainty is 0 and the state is completely observable. However, the different estimated unique states on 
arc (8,5,6,7) seem conflicted.  

Specifically, in scenario 3, the observed trip time is preprocessed due to its measurement error, and 
finally the estimated states on transfer corridor (8, 5) is consistent with the states in the ground truth in 
scenario 5. Note that the estimated states may not be totally consistent with the ground truth, even though 
the observed data is same as the corresponding data in ground truth, because the observation is only a 
partial reflection of the whole system condition. It is also possible that the corrected measurement is not 
consistent with that in this ground truth if other measurement correction approaches rather than the least 
square method are used in reality in step 1. 

In addition, in scenario 4, the inconsistency of observed link count data and observed trip time data 
makes the corrected measurement different from the corresponding data in the ground truth, so the final 
estimated unique state in step 2 cannot be the real-world condition anymore. Therefore, in reality, when the 
transportation system state is estimated by different sensor data, the data quality and assigned weight on 
each data source in step 1 is important and should be clearly stated. Note that how to balance each 
observation is beyond the scope of this paper. For more details on knowledge fusion, readers can be 
referred to the paper (Zheng et al., 2014).  
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Fig. 8 The estimated flow uncertainty range on each focused arc 

Focusing on the passenger flow departing at node 2 and time 0 to use line 1, it is actually the path flow 
of path (2,0) →(5,4)→ (6,7). The path flow uncertainty is shown in Fig. 9. The uncertainty range is similar 
to the arc flow above. The estimated unique state in scenario 4 is not consistent with the state value in 
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ground truth. In addition, if line 1 is managed by one company and other lines are managed by other 
companies, it needs to assign the fare to each company based on their service. However, the number of 
passengers using one specific line is uncertain in the transit system, so based on our proposed method, 
we can quantify the uncertainty and estimate the general fare earning for each company rather than just 
using some simple rules for fare clearing (Gao et al., 2011; Zhou, 2014). For example, one previously 
simple rule is to just calculate the shortest path and then assume that passengers will choose the shortest 
path as their selected lines.  
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Fig. 9 Estimated flow uncertainty range on the focused path 

In each scenario, we maximize and minimize the passenger flow on arc (8,5,3,4), arc (8,5,6,7), and path 
of line 1 as 6 cases, respectively, so six feasible solutions of 𝑥𝑖,𝑗,𝑡,𝑠

𝑎  can be obtained as sample points to 

quantify our defined system-level state observability. For state 4, the system-wide passenger count 
(congestion) on the running vehicles at time point 5 is be represented by the passenger flow on arcs 
(1,6,3,11), (1,6,0,8), (1,7,3,6), (2,5,3,7), (2,7,3,6), (3,6,3,11), (3,6,0,8), (3,8,3,6), (4,6,4,6), and (5,6,4,7). 
Based on the definitions of Maximal Possible Relative Error (MPRE) and Estimation Reliability (Re), the 
values of MPRE and Re are 16.38 and 5.753%, respectively.  

In scenario 2, with passenger count information, the corresponding values of MPRE and Re are 0.267 
and 78.93%, respectively. It shows that the estimation reliability gets significantly improved when passenger 
counts from one key location (transfer corridor) are available, which could avoid a large uncertainty range 
occuring in scenario 1. In Scenarios 3 and 4, the values of MPRE and Re are 0 and 100%, respectively, 
but it is still emphasized that the MRPR and Re should be clearly explained with its correspondingly different 
measurement preprocessing errors (assigned weights) and adopted approach.  

In addition, as discussed in section 4.1, one other approach to address the sensor errors is to check the 
possible relative errors of sensors, and then incorporate it in the hard observation constraints instead of 
performing the preprocess step. In order to observe the sensitivity of relative sensor errors, a number of 
experiments are conducted in the following. The ground truth trip time is the corrected data in Table 6. The 
uncertainty ranges of passenger flows on arc (8,5,3,4) are shown in Fig. 10 under different relative sensor 
error assumptions. With the increase of relative errors of all trip time data, the uncertainty range 
correspondingly increase as expected. In addition, even the relative error of all trip time sensors reaches 
5%, its estimation uncertainty is still smaller than the result of scenario 2 where only observed count data 
are available. Therefore, it is important not only to choose high-quality sensors, but also to select the right 
sensor types under different deployment contexts, for improving specific state observability. 
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Fig. 10 Sensitivity analysis of relative errors of trip time sensor 

5.1.5 Results from Frank-Wolfe algorithm and Dantzig-Wolfe decomposition 

In this section, we implement Frank-Wolfe algorithm in step 1 and Dantzig-Wolfe decomposition 
algorithm in step 2 in GAMS. The case of minimizing the passenger flow on arc (8,5,3,4) in scenario 4 is 
treated as an example to analyze the performance of those algorithms. The source code can be 
downloaded at this link (https://www.researchgate.net/publication/324809217_F-W_and_D-
W_Observability_Quantification). 

In section 5.1.4, the case is solved by the solver MINOS in GAMS directly. In step 1, the solved model 
is a non-linear programming model, and the minimal total generalized least square error in the objective 
function is 5.968. When the model is solved by Frank-Wolfe algorithm as a linear programming model, the 
result finally converges to 7.069 after 20 iterations. The gap is probably caused by the optimal step size, 
which is found as a constant value at each iteration rather than a constant value vector for each variable. 
The discussions on improving Frank-Wolfe algorithm can be found in previous literature on static traffic 
assignment (Fukushima, 1984). That will also be our future research to find better ways to solve quadratic 
programming models, such as, Alternating Direction Method of Multipliers (ADMM). 

In step 2, Dantzig-Wolfe decomposition is applied to generate extreme points for time-dependent OD 
pairs as subproblems, and the restricted master problem is solved by CPLEX. The solved minimal 
passenger flow is 142.5 based on the preprocessed measurements by Frank-Wolfe algorithm rather than 
by the NLP solver. However, if the preprocessed measurements in step 1 are directly obtained from the 
NLP solver, the final minimal passenger count on arc (8,5,3,4) from the Dantzig-Wolfe decomposition is 
150 as well.  

In addition, the total computational time of using Dantzig-Wolfe decomposition is 8 s and the average 
computation time for each subproblem of each passenger group is just 0.1 s. Meanwhile, it needs 0.4 s to 
directly solve the original problem. Since the subproblem in Dantzig-Wolfe decomposition is independent 
for each passenger group and has less constraints and variables, its advantage will be reflected when the 
solvers cannot directly solve the original problem in large-scale networks, which will be demonstrated in 
next section. In addition, if we focus on the real-time observability and controllability in future, especially in 
large-scale networks, the values of model complexity reduction and computation efficiency will be further 
highly respected. 

5.2. Tests in a large-scale network 

In this section, the public Google Transit Feed Specification (GTFS) data from Alexandria Transit 
Company in 2015 is used as our tested large-scale transit network (https://transitfeeds.com/p/alexandria-
transit-company). As shown in Fig.11, it has 12 routes, 1638 trips (866 trips on weekdays, 423 trips on 
Saturdays, 261 trips on Sundays, and 88 trips on the Christmas day), and 629 stops. In this experiment, 
the scheduled trips on weekdays are only considered as the provided schedule.  

 
Fig. 11. Alexandria transit network read from GTFS, in Virginia, USA 

In order to obtain the time-dependent transit travel demand, we map the traffic analysis zones in the city 
of Alexandria to the transit network as the activity locations. As a result, 42 OD pairs are matched. In 

https://transitfeeds.com/p/alexandria-transit-company
https://transitfeeds.com/p/alexandria-transit-company


21 
 

addition, the time period of 6:00am to 9:00am is divided by 36 time intervals, so the time-dependent OD 
demand is defined by each 5 minutes. Finally, 1485 time-dependent OD pairs are obtained based on the 
arc generation rules above. Then, 32,029 vertexes and 713,650 arcs are generated in the corresponding 
space-time network for one whole weekday. This space-time network includes 636 nodes (stops, passenger 
origin and destination nodes), and its operation time ranges from 6:00am (time minute interval 360) to 
10:20am (time minute interval 620). The arcs include vehicle running arcs, passengers’ walking arcs from 
origin to transit stops and from transit stops to destination, transfer arcs, and waiting arcs. The space-time 
arc generation rules contain (i) the trip (path) travel time is less than 120 minutes; (ii) the maximum number 
of transfer times is 3; (iii) the maximum transfer/walking time is 30 minutes; (iv) the maximum 
transfer/walking distance is 0.5 mile. 

For illustrating our modeling and algorithms and testing its computation efficiency in large-scale 
networks, we have the following assumptions on our data. (i) All transit vehicle capacity is 35 and the 
walking, waiting and transfer arc capacity is 9999. (ii) The time-dependent demand of each OD pair is 
assumed to be 1, which means that one passenger will arrive every 5 minutes for each OD pair. (iii) The 
observed average trip time of each passenger group is generated as a random value between the minimal 
and the maximal path costs of the 3-shorest paths of its OD pair, and those observed data are accurate 
and don’t need the pre-processing step. However, it should be pointed out that the required real-world data 
should have the following considerations: (i) The origin and destination of transit demand should be more 
accurate instead of using the centroid of traffic analysis zones, (ii) the transit OD demand is time-dependent 
and location-dependent rather than our assumed same value, and (iii) the transit vehicles are also line-
dependent and need to be carefully calibrated as mentioned in section 3.2. 

Our focused state is the uncertainties of passenger flow count on transfer links from stop 4000644 to 
stop 4000863 (internal nodes from 370 to 553) and from stop 4000745 to stop 4000509 (internal nodes 
from 447 to 290) during 6am to 9am. The source codes for the following experiments can be found at 
https://www.researchgate.net/publication/332545172_Experiments_on_large_scale_networks_k-
best_path_based_observability 

 
5.2.1 Computation results of original models solved by standard solver and Dantzig-Wolfe 
decomposition 

 
As developed in section 4.2, the original model is an arc-based linear programming model, which could 

be directly solved by standard solvers. Two scenarios are solved by CPLEX in GAMS on one workstation 
with intel i7@2.80 GHz, 40 threads and 192GB RAM, and its corresponding results are compared in Table 
7. Since the variable is arc flow 𝑥(𝑎, 𝑖, 𝑗, 𝑡, 𝑠) for each passenger group 𝑎 on arc (𝑖, 𝑗, 𝑡, 𝑠), the number of 

original variables is 𝑎 × 𝑖 × 𝑗 × 𝑡 × 𝑠. In scenario 1, this number is 2 × 636 × 636 × 80 × 80, around 5.18 
billion. Even the matrix of constraints is very sparse, it will take more than 10 min to generate and solve the 
linear programming model in scenario 1. If we further consider more than 50 passenger groups, it will be 
beyond the capability of the standard solvers to handle this problem. When the problem in scenario 1 is 
decomposed by Dantzig-Wolfe decomposition, each passenger group will be solved independently in each 
subproblem to make the model solvable in large-scale networks. The computational time for solving each 
subproblem by CPLEX in GAMS is about 4 min 42 s.  

 
Table 7 Model statistics of two scenarios 

Model statistics Scenario 1 Scenario 2 

Number of passenger groups 2 5 

Number of nodes 636 636 

Focused time period (min to 
min) 

360-440 360-440 

Number of original variables 
𝑥(𝑎, 𝑖, 𝑗, 𝑡, 𝑠)  

5.18 billion 12.9 billion 

Number of constraints 102,000 255,000 

Computation time (s) 10 min 15 s 25 min 21 s 

 
5.2.2 Approximation-based path-based solution  

https://www.researchgate.net/publication/332545172_Experiments_on_large_scale_networks_k-best_path_based_observability
https://www.researchgate.net/publication/332545172_Experiments_on_large_scale_networks_k-best_path_based_observability
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As shown in section 5.2.1, Dantzig-Wolfe decomposition can decompose the model as a number of 
relatively easy solvable subproblems, which provide the current shortest space-time path as extreme point 
for each passenger group at each iteration, but the multiple iteration process may take a long computation 
time and has a high requirement on computer memory used for arc-based models in large-scale networks. 
Therefore, we will propose an approximation-based approach, which generates k-shortest paths as 
extreme points for each passenger group (in each OD pair with time-dependent departure time) in advance 
rather than using Dantzig-Wolfe decomposition to generate extreme point iteration by iteration. That is 
similar to solving a restricted master problem based on the k extreme points in Dantzig-Wolfe 
decomposition. 

The k-shortest path algorithm for each passenger group (each time-dependent OD pair) is implemented 
by C++ as follows.  

(i) Based on the origin vertex (origin node and departure time) in the space-time network, the label 
correcting algorithm is used to generate a shortest path tree from the origin vertex to all possible vertexes 
selected on the basis of the space-time arc generation rules shown at the beginning of section 5.2. 

(ii) According to the physical destination location, we can find a number of candidate vertexes (stop id 
and stop time in schedule) connected to the physical destination node by walking arcs. Then we can add 
the label costs of those candidate vertexes and its corresponding walking arc costs to the physical 
destination, so the destination will have a number of vertexes (destination node and arrival time) with 
different label cost. 

(iii) Sort those label costs of the destination node and select k least-cost destination vertexes and back 
trace to the origin vertex. As a remark, at each vertex, we also record the transfer state (the number of 
transfer times from its origin vertex), so when back tracing the path to origin vertex, we can obtain different 
paths which are from one same vertex with same label cost but with different transfer states. Finally, the k-
shortest path set can be generated for each time-dependent OD pair. 

Compared with the iteratively generated extreme points (shortest space-time paths) to reach the optimal 
solution in Dantzig-Wolfe decomposition, this approximation method may have no feasible solution or 
optimal solution if enough paths are not generated. Specifically, if a network has heavy congestion (such 
as, the Beijing transit systems in peak hours) due to the interaction of high travel demand and limited vehicle 
carrying capacity, passengers may have to wait for a long time and cannot get on their successively desired 
vehicles. This kind of endogenous system congestions could affect the selection of “k” in our k-best path-
based approximation to have feasible solutions. Therefore, we also analyze the impacts of the selection of 
different “k” on the system observability in the following experiments. On the other hand, this path-based 
approximation could greatly reduce the number of variables in the model and significantly improve the 
computation efficiency in transit systems where the number of alternative space-time paths for each 
passenger group is usually limited.  

Table 8 lists the model statistics of four scenarios to calculate the uncertainties of passenger flow count 
on transfer links from stop 4000644 to stop 4000863(internal nodes from 370 to 553). It is observed that 
the optimal solution can be reached with the increase of the number of candidate paths generated in k-
shortest path algorithm. As the corresponding feasible constraint space is enlarged from scenarios 1 to 4, 
the maximal passenger flow count increases and the minimal value decreases until scenario 3, which 
indicates that 5-shortest paths generated for each passenger group may be used to find the optimal solution 
directly. The total computation time is also greatly reduced compared with solving the arc-based formulation 
directly in GAMS. In addition, the maximal flow count, the minimal flow count, and the uncertainty range on 
link from stop 4000745 to stop 4000509 (internal nodes from 447 to 290) in 4 scenarios are shown in Fig. 
12 

Table 8. Model statistics of four scenarios on link from stop 4000644 to stop 4000863 

Model Statistics 
Scenario 

1 
Scenario 

2 
Scenario 

3 
Scenario 

4 

Number of passenger groups (OD pair with departure 
time) 

1485 1485 1485 1485 

Focused time period (min to min) 360-620 360-620 360-620 360-620 

k-shortest paths of each passenger group k=3 k=4 k=5 k=6 

computation time for generating k paths in C++ (sec) 48 48 48 48 

maximal passenger flow count solved in GAMS 26 26.85 27.12 27.12 

minimal passenger flow count solved in GAMS 16.32 15 15 15 
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uncertainty of passenger flow counts on this transfer 
link 

9.68 11.85 12.12 12.12 

number of variables 𝑥𝑎
𝑝
 4455 5940 7425 8910 

number of constraints 12124 12862 13561 14162 

computation time for solving the master problem in 
GAMS (sec) 

24 24 24 24 

total computation time (sec) 72 72 72 72 

 

 

Fig. 12 Uncertainties of passenger flow count at transfer links from stop 4000745 to stop 4000509 

7. Conclusion and future research 

This research provides insights about the relationship between multi-source information, information 
space, state estimation, and system observability quantification by taking the urban transit systems as the 
analysis object. The information space and information errors are highly respected for state observability. 
Projection-function-based approaches are presented to quantify the observability of different states under 
the same information space. The proposed models can explain that the value of information highly relies 
on its aimed specific system states and sensor location rather than its volume. It provides an analysis to 
show how to better use multi-source information for different state estimate evaluation and how to design 
the sensor network with measurement errors (Zhou and List, 2006; Xing et al., 2013; Zhu et al, 2018; Wu 
et al., 2018) for future system state observability improvement. 

 The observability quantification based on different states is just the first step for better observing and 
controlling the system. The following questions are currently under our considerations for future research: 
(1) what is the balance among the system observability, the minimally needed information, and the required 
accuracy of future controls? (2) What is the balance of the sensor data cost, value of information and its 
computational efficiency in proposed models and algorithms? (3) How to integrate the heterogeneous 
sensor network design with the real-time system control? (4) How to use multi-source data to better model 
travel behavior and further improve system observability (Wu et al., 2018)? (5) How to visualize the real-
time uncertainty of different system states in a straightforward way for the public?  
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Appendix A: Frank-Wolfe algorithm for nonlinear programming models 

The algorithm procedure is described as follows. 
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Step 1: initialization: 𝑘 = 0, and find one feasible solution as 𝒙0; 
Step 2: Based on the first-order Taylor approximation of 𝑓(𝑥)  around 𝑥𝑘 , minimizing the linear 

approximation: min 𝒔𝒌
𝑇∇𝑓(𝑥𝑘), and 𝒔𝒌 is subject to all constraints. 

Step 3: Find 𝛾 that minimizes 𝑓(𝑥𝑘 + 𝛾(𝑠𝑘 − 𝑥𝑘)), subject to 0 ≤ 𝑘 ≤ 1. 
Step 4: Update: 𝑥𝑘+1 = 𝑥𝑘 + 𝛾(𝑠𝑘 − 𝑥𝑘). If |𝑥𝑘+1 − 𝑥𝑘| ≤ ∆ or 𝑘 = 𝐾, stop. Otherwise, 𝑘 = 𝑘 + 1 and go 

to step 2. 
Specifically, at step 2, ∇𝑓(𝑥𝑘) = 𝛽1 ∑ ∑ [2 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠)𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠

𝑎 (𝑘)] + 𝛽2 ∑ [∑ ∑ (2 ×𝑡∈𝜏𝑎(𝑖,𝑗,𝜏)

𝑥𝑖,𝑗,𝑡,𝑠
𝑎 (𝑘))]  is constant, so 𝒔𝒌

𝑇∇𝑓(𝑥𝑘) = 𝛽1 ∑ ∑ [2 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠)𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 (𝑘) × 𝑠𝑖,𝑗,𝑡,𝑠

𝑎 (𝑘)] +

𝛽2 ∑ [∑ ∑ (2 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑡∈𝜏𝑎 (𝑘) × 𝑠𝑖,𝑗,𝑡,𝑠
𝑎 (𝑘))](𝑖,𝑗,𝜏) . Finally, the model proposed in step 2 is a linear programming 

model with the flow-balance constraint. In addition, at step 1, for finding one feasible solution, we can define 
a simple linear objective function, so the model will be a linear programming model with the flow balance 
constraint, which can be solved by the Dantzig-Wolfe algorithm due to the special block structure as well. 
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