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ABSTRACT 

Emerging urban logistics applications need to address various challenges, including complex traffic conditions and 

time-sensitive requirements. In this study, in the context of urban logistics, we consider a vehicle routing problem with 

time-dependent travel times and time windows (VRPTW), and the goal is to minimize the total generalized costs including 

the transportation, waiting time, and fixed costs associated with each vehicle. We adopt a high-dimensional space–time 

network flow model to formulate an underlying vehicle routing problem (VRP) with a rich set of criteria and constraints. A 

difficult issue, when solving VRPs, is how to iteratively improve both the primal and dual solution quality in general and 

how to break the symmetry generated by many identical solutions, particularly with homogeneous vehicles. Along this line, 

many coupling constraints, such as the consensus constraints across different agents or decision makers, need to be 

carefully addressed to find high-quality optimal or close-to-optimal solutions under medium- or large-scale instances. 

Currently, the alternating direction method of multipliers (ADMM) is widely used in the field of convex optimization, as an 

integration of the augmented Lagrangian relaxation and block coordinate descent methods, for machine learning and 

large-scale continuous systems optimization and control. In this work, we introduce the use of ADMM to solve the 

multi-VRP, which is a special case of integer linear programming, and demonstrate a manner to reduce the quadratic penalty 

terms used in ADMM into simple linear functions. In a broader context, a computationally reliable decomposition 

framework is developed to iteratively improve both the primal and dual solution quality. Essentially, the least-cost path 

subproblem or other similar subproblems involving binary decisions can be embedded into a sequential solution scheme 

with an output of both lower bound estimates and upper bound feasible solutions. We examine the performance of the 

proposed approach using classical Solomon VRP benchmark instances. We also evaluate our approach on a real-world 

instance based on a problem-solving competition by Jingdong Logistics, a major E-commerce company.  

 

Keywords: Urban logistics, Vehicle routing problem with time windows, Alternating direction method of multipliers, 

Problem decomposition  
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1. Introduction 

In this study, we are interested in how to develop a computationally reliable and theoretically sound problem 

decomposition scheme for solving various emerging scheduling and routing problems in dynamic transportation networks. 

In particular, our research is also motivated by solving vehicle routing and closely related ride sharing problems due to the 

rapid development of e-commerce industries and traveler mobility services. An efficient algorithm for vehicle routing 

problems (VRPs) can be a crucial building block for providing “door-to-door” freight distributions (Savelsbergh and Van 

Woensel, 2016) and customized public transportation services (Tong et al., 2017) with high frequency and punctuality in 

congested urban areas.  

1.1 Literature review on the VRP 

Compared with long-distance transportation between cities, the efficiency of urban logistics highly depends on 

real-time traffic conditions. At the same time, the customers have stricter requirements regarding delivery time and 

locations. The complex traffic conditions and increasingly complicated requirements motivate the development of 

optimized strategic and operational decision making to manage the logistic processes more efficiently. In the context of 

urban logistics, the VRP algorithm should be developed considering the time windows of customer requirements and 

vehicle carrying capacity.  

In this study, we consider a VRP with time windows (VRPTW), which includes various constraints such as service time 

windows and vehicle carrying capacity constraints. The VRPTW is widely studied in the literature (Desrochers et al., 1992; 

Kallehauge, 2008; Zhou et al., 2018). Typical solution methods of VRPTW can be classified into two categories: heuristics 

and exact optimization approaches. Although there are abundant and efficient heuristic methods such as the 

savings algorithm (Clarke and Wright, 1964), matching-based algorithm (Altinkemer and Gavish, 1991), sweep-based 

algorithm (Gillett and Miller, 1974; Renaud and Boctor, 2002), cluster first, route second (Fisher and Jaikumar, 1981), and 

meta-heuristics such as the Tabu search (Taillard, 1993), adaptive large neighborhood search (ALNS) algorithm (Ghilas et 

al., 2016; Goel and Gruhn, 2005), and ant system optimization (Reimann et al., 2004), these widely used heuristic or 

meta-heuristic methods typically do not offer measures on optimality gaps. Meanwhile, exact or approximate optimization 

approaches, such as the branch-and-cut, branch-and-price, and Lagrangian decomposition methods, deserve particular 

attention as they can provide a yardstick to evaluate the obtained solutions and further reach the right balance between the 

solution search efforts and required optimality.  

1.2 Literature review on problem decomposition 

Decomposition is a general approach to solve large-scale problems. Its core is to break the original problem into 

smaller subproblems and to solve each of them separately, either in parallel or sequentially. There are a wide range of 

classical decomposition methods, such as Dantzig–Wolfe (Dantzig and Wolfe, 1960), Benders (Benders, 1962), Column 

generation (Ford Jr and Fulkerson, 1958), Lagrangian relaxation (LR) (Held and Karp, 1970), and branch-and-price 

(Nemhauser et al., 1991). Interested readers can find a number of surveys and textbook chapters on various optimization 

domains, to name a few, contributed by Boyd and Vandenberghe (2004), Lasdon (2002), chapter 6 of Bertsekas (1999), and 

chapter 12 of Bradley et al. (1977) for linear, nonlinear, and integer programming problems.  

These decomposition schemes have been widely used to solve VRPs. In the following well-known studies, 

branch-and-bound (Christofides et al., 1981), branch-and-cut (Laporte et al., 1985), LR (Fisher et al., 1997), and 

branch-and-cut-and-price (Fukasawa et al., 2006) have been adopted specifically to solve the VRP. Recently, notable 

research attention has been devoted to the VRP in the context of time-dependent transportation networks. Dabia et al. 

(2013) adopted the branch-and-price framework to decompose the arc-based formulation into a set-partitioning problem as 

the master problem, and the pricing problem is constructed as a time-dependent shortest path problem with resource 

constraints. Aiming to embed the vehicle capacity and pickup and delivery precedence constraints in a layered graph 

structure, Mahmoudi and Zhou (2016) constructed a multi-dimensional commodity flow formulation where possible 

transportation states are enumerated, and then an LR approach was used to decompose the original model into a sequence of 

shortest path subproblems. As demonstrated in the branch-and-price literature by Barnhart et al. (1998), and in a recent 

publication by Niu et al. (2018) focusing on integrated transit vehicle assignment and scheduling, researchers need to fully 

recognize the critical solution symmetry issues, and develop effective symmetry breaking techniques, when handling the 

multi-vehicle routing problem that consists of numerous homogeneous vehicles. 

In this study, with a dual decomposition paradigm, we develop a computationally reliable solution framework based on 

the alternating direction method of multipliers (ADMM), which is a variation of dual decomposition that provides improved 

theoretical and practical convergence properties. The literature on ADMM can date back to the classical paper by Glowinski 

and Marroco (1975) and Douglas and Rachford (1956), and its convergence analysis and many related theoretical building 
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blocks have been subsequently established by a number of studies in the field of convex programming (Eckstein and 

Bertsekas, 1992; Ruszczyński, 1989). A relatively recent overview offered by Boyd et al. (2011) further popularized the use 

of ADMM in many disciplines, particularly in a few emerging branches of big data and machine learning. In the area of 

distributed optimization with multiple agents, one of the leading studies by Nedic and Ozdaglar (2009) proposed an 

ADMM-motivated consensus and sharing mechanism where each agent has its own convex, potentially non-differentiable 

objective function.  

Some studies also extended and applied ADMM in the field of mixed-integer programming. For instance, Boland et al. 

(2018) adapted the ADMM-based solution procedure to handle the stochastic form of the augmented Lagrangian based on 

scenario decomposition. They pointed out that the drawback of primal–dual methods for mixed-integer programs was that it 

is difficult to guarantee convergence and proposed a new algorithm combining progressive hedging with a Frank–Wolfe 

method for computing lower bounds. Takapoui et al. (2017) presented an ADMM-based heuristic for embedded 

mixed-integer quadratic programming applications to satisfy the requirement of high computational efficiency. Feizollahi et 

al. (2015) proposed an extended ADMM algorithm to solve the decentralized unit commitment problem, where a 

release-and-fix approach is used to deal with binary variables. 

To the extent of our knowledge, very few studies have specifically focused on the adaptation of ADMM on the VRP, 

which is essentially a deterministic combinatorial optimization problem over transportation networks. More importantly, 

our proposed ADMM-based solution framework can be further applied to reformulate a broader class of consensus and 

consistency constraints where binary decision variables are carefully constructed to enable a wide range of computationally 

efficient algorithms in transportation networks.  

1.3 Motivation and potential contributions 

While the VRP has been widely studied, we hope the introduction of ADMM as an improved dual decomposition 

algorithm could shed more light in the following aspects. First, compared to meta-heuristic methods, a desirable algorithm 

should not only obtain good and feasible solutions but also establish a strong lower bound estimate to precisely measure the 

quality of the solutions. Second, in the classical branch-and-price solution framework for the VRP, each vehicle maintains 

multiple alternative routes in the column pool, and the master problems are usually solved by invoking linear programming 

(LP) solvers and sophisticated branching strategies. In contrast, our proposed ADMM-based framework only keeps one 

path column for each vehicle at an iteration, which offers a relatively simpler algorithmic implementation structure, 

especially for time-indexed formulation problems with several columns to manage. Essentially, this ADMM-based 

framework aims to iteratively improve both the primal and dual feasibility, and this decomposition procedure could be 

further extended to handle other transportation problems beyond VRP, such as problems with consistency constraints 

between the optimization layers. 

In our research, ADMM is adopted as a high-level problem decomposition and modular coordination framework, 

which obtains the solution of the large-scale problem by solving a set of much smaller subproblems with efficient 

algorithms as the base operations. We perform a sequence of reformulation steps, namely, (a) dualization and augmentation, 

(b) decomposition, and (c) linearization. In particular, this research can address several modeling challenges. 

(1) If a LP relaxation (of the set covering problem) is used in the restricted master problem for the VRP, e.g., in the form of 

the Dantzig–Wolfe decomposition or branch-and-bound, it typically required significant effort to obtain and improve 

feasible integer solutions. The limitation of the standard LR method for the VRP is its inherent solution symmetry due 

to homogeneous vehicles. By adding the augmented terms, we present an improved dual decomposition to effectively 

break the solution symmetries and quickly generate good feasible integer solutions. 

(2) ADMM has been widely used in the field of convex programming but, to the extent of our knowledge, there are very 

few applications of ADMM in linear integer programming in general and especially in VRP, which involves the 

optimal coordination of multiple vehicles with a large number of integer decision variables subject to a set of complex 

side constraints. To address this difficulty, we use a hyper-dimensional network model to simplify the side constraints 

and further enable an efficient dynamic programming algorithm for the dualized problem.  

(3) Another challenge in applying ADMM in VRPs is how to linearize the quadratic objective function in its inner penalty 

term involving integer variables. The regular way is to linearize the objective function, e.g., using the Frank–Wolfe 

method or first-order Taylor expansion (Nishi et al., 2005), which is still computationally expensive in its own right. In 

this work, we clearly show that within the block coordinate descent method of Gauss–Seidel type, the quadratic penalty 

term used in the VRP-ADMM model is separable for each “x-update” and could be reduced to a much simpler linear 

functional form if only binary decision values are involved. The establishment of this equivalence gives rise to the 

possibility and promise of computationally efficient iterative solution searching procedures.  

(4) If the standard ADMM method is applied alone, it is still difficult to estimate the lower bounds of the problems, and the 

information provided here is insufficient to evaluate the corresponding solution quality with respect to the system-wide 

optimum. In this study, we present a coherent solution approach for simultaneously estimating the upper and lower 
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bound values. This process can accordingly access and reduce the global optimality gaps by iteratively solving two 

closely related problems, namely, the Lagrangian dual and augmented models.  

The remainder of this paper is structured as follows. In Section 2, the formulation of the VRPTW is represented based 

on the state–space–time network. In Section 3, the ADMM-based decomposition framework and solution procedure are 

presented. Section 4 discusses the convergence and potential extensions of ADMM. In Section 5, the proposed model and 

solution framework are applied to the Solomon benchmark and a real-world case. Finally, we draw our conclusions in 

Section 6. 

2. Problem statement and model formulation 

2.1 Problem statement of the VRPTW 

The VRPTW in this study aims to find a set of routes that minimizes the total generalized system-wide costs, including 

the transportation, vehicle waiting time, and the fixed costs. Given a physical transportation network denoted by (𝑁, 𝑀), 

where 𝑁 is a set of nodes and 𝑀 is a set of directed links. We use 𝑇𝑇(𝑖, 𝑗, 𝑡) to represent the travel time on the link (𝑖, 𝑗) ∈
𝑀 when departing at time 𝑡. For simplicity, the time-dependent travel times are assumed to be deterministic and can be 

pre-calculated according to predictable traffic conditions during a day. 

Nodes in this physical network are categorized into two different types, including customer nodes denoted by 𝑝, 𝑝 ∈ 𝑃  

and the distribution center denoted by o. That is, 𝑁 = {𝑜}⋃𝑃. Each customer 𝑝 ∈ 𝑃 is characterized by a volume and a 

weight of demand and a preferred service time window [𝑒𝑝,𝑙𝑝], where 𝑒𝑝 is the desired earliest time of service and 𝑙𝑝 is the 

latest time. All customer nodes in P must be visited by a single vehicle exactly once.  

The distribution center 𝑜 is the origin and destination of all vehicles, while a vehicle is enabled to load and unload 

commodities at the distribution center in the middle of its tour. That is, after delivering one batch of packages, a vehicle can 

go back to the distribution center to load the assigned items for the next batch. Along the planning horizon, each vehicle is 

designated with a given service period [𝑒𝑣,𝑙𝑣], where 𝑒𝑣 is the earliest time to depart from the distribution center and 𝑙𝑣 is 

the latest time to return.   

2.2 Time-indexed and state-indexed network representation for VRPTW 

A standard way to formulate the VRP model is to use cumulative time and cumulative load variables directly based on 

a customer node-oriented network (Cordeau, 2006), where variables are used in a set of time window and vehicle carrying 

capacity constraints. Another widely used mathematical formulation is established through a time-expanded network 

construction (Boland et al., 2017), in which the time window requirements are naturally enforced.  

Within a dual decomposition framework, a desirable model should have a very limited number of complicated 

constraints to be dualized, and a computationally efficient algorithm is required to solve the relaxed problem with high 

dimensionality. Therefore, we adopt the hyper-dimensional multi-commodity flow modeling framework proposed by 

Mahmoudi and Zhou (2016) and construct a time-indexed and state-indexed network with three dimensions (Shang et al., 

2019), including (a) space dimension, (b) time dimension, and (c) cumulative service state dimension. 𝐺 = (𝐸, 𝐴) is used to 

represent the hyper-network with a set of vertices 𝐸 and a set of arcs 𝐴. The vertex (𝑖, 𝑡, 𝑤) ∈ 𝐸 is extended from the node 

𝑖 ∈ 𝑁, and each arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ 𝐴 indicates a directed state–space–time path from vertex (𝑖, 𝑡, 𝑤) to vertex (𝑗, 𝑠, 𝑤′). 

Specifically, 𝑡 represents the uniformly discretized time interval (e.g., 1 min) in the planning time horizon. The arcs can be 

divided into the following three types: (a) transportation arcs, (b) waiting arcs, and (c) loading and unloading arcs. The 

transportation arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤) represents a vehicle moving from node 𝑖 to node 𝑗 based on the given time-dependent 

travel time 𝑇𝑇(𝑖, 𝑗, 𝑡), 𝑠= 𝑡 + 𝑇𝑇(𝑖, 𝑗, 𝑡). The waiting arc (𝑖, 𝑖, 𝑡, 𝑡 + 1, 𝑤, 𝑤) represents a waiting activity at node 𝑖 from 

time 𝑡 to t + 1, i.e., vehicle location and the cumulative service state remain unchanged for one time interval. The loading 

and unloading arcs (𝑖, 𝑖, 𝑡, 𝑠, 𝑤, 𝑤′) represent a loading activity at the distribution center or an unloading activity at 

customer nodes with the state changing from w to w'. The state 𝑤 represents the “cumulative service state” of the vehicle, 

which tracks served customers and provides the corresponding carrying volume and weight information of packages to 

satisfy the vehicle capacity constraints. The cumulative service state of a vehicle is updated to the initial status after going 

back to the distribution center 𝑜. Fig. 1 illustrates a simple example of a state–space–time path, which corresponds to a 

sequence of nodes (o,0,w0) → (1,3,w0) → (1,4,w1) → (o,7,w1) → (o,8,w0) → (2,12,w0) → (2,13,w2) → (3,15,w2) →(3,16,w2) 

→ (3,17,w6). The time window and capacity constraints are embedded in the network through time and state dimensions. 
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Fig. 1. A simple example of state–space–time path adopted from Mahmoudi and Zhou (2016) 

2.3 Time-discretized, multi-dimensional multi-commodity flow formulation of VRPTW 

The sets, indexes, variables, and parameters used for model formulation and network construction are described in 

Tables 1 and 2. 

Table 1  

Sets, indexes, and variables used for model formulation. 
Symbol Definition 

𝑉 Set of physical vehicles  

𝑃 Set of customers 

𝑊 Set of cumulative service states 

𝐴𝑣 Set of state–space–time arcs in vehicle 𝑣’s network 

𝛹𝑝,𝑣 Set of unloading arcs for customer 𝑝 in vehicle 𝑣’s network 

𝑣 Index of vehicles 

𝑝 Index of customers 

𝑤 Index of cumulative service states 
(𝑖, 𝑡, 𝑤), (𝑗, 𝑠, 𝑤′) Indexes of state–space–time vertexes 

(𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) 
Index of space–time–state arcs indicating that one travels from node 𝑖 at time 𝑡 with cumulative 

service state 𝑤 to node 𝑗 at time 𝑠 with state 𝑤’ 
𝑎 The abbreviation of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) 

𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣  = 1 if arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) is used by vehicle 𝑣; = 0 otherwise 

 

Table 2  

Parameters used in network construction and model formulation 
Symbol Definition 

[𝑒𝑝,𝑙𝑝] Time window of customer p 

[𝑒𝑣,𝑙𝑣] Service period of vehicle v 

 𝑜𝑣 Origin of vehicle v 

 𝑑𝑣 Destination of vehicle v 

𝑤0 Initial state 

𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′  Cost of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)  

𝑇𝑇(𝑖, 𝑗, 𝑡) Travel time on the link (𝑖, 𝑗) when departing at time 𝑡 
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Here we frame the VRPTW model as follows.  

Objective Function: 

min  𝑍 = ∑ ∑ 𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣

(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐴𝑣𝑣∈𝑉

 (1) 

The objective function of the proposed model is to minimize the total costs of all kinds of selected arcs.  

Flow balance constraints: 

As the time window, the vehicle carrying volume and weight capacity constraints for each vehicle are inexplicitly 

represented in the hyper-network construction so that we just need to ensure all the selected arcs that can constitute feasible 

paths from the origin to the destination by following the flow balance constraints. 

Flow balance constraints at vehicle 𝑣’s origin vertex: 

∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣

(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐴𝑣

= 1    𝑖 = 𝑜𝑣 , 𝑡 = 𝑒𝑣 , 𝑤 = 𝑤0, ∀𝑣 ∈ 𝑉 (2) 

Flow balance constraint at vehicle 𝑣’s destination vertex: 

∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣

(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐴𝑣

= 1    𝑗 = 𝑑𝑣 , 𝑠 = 𝑙𝑣 , 𝑤 ∈ 𝑊, ∀𝑣 ∈ 𝑉 (3) 

Flow balance constraint at intermediate vertex: 

∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′′
𝑣

(𝑗,𝑠,𝑤′′)

− ∑ 𝑥𝑗′,𝑖,𝑠′,𝑡,𝑤′ ,𝑤
𝑣 = 0 

(𝑗′,𝑠′,𝑤′)

 

(𝑖, 𝑡, 𝑤) ∉ {(𝑜𝑣 , 𝑒𝑣 , 𝑤0), (𝑑𝑣 , 𝑙𝑣 , 𝑤0)}, ∀𝑣 ∈ 𝑉 

(4) 

Constraints (2) and (3) ensure that each vehicle departs from origin 𝑜𝑣 at the planning time horizon beginning in 𝑒𝑣 

with initial state 𝑤0, and arrives at destination 𝑑𝑣 at the end of the planning time horizon 𝑙𝑣. Constraint (4) guarantees the 

flow balance on other intermediate nodes. 

Request satisfaction constraint: 

∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣

(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝛹𝑝,𝑣𝑣∈𝑉

= 1          ∀𝑝 ∈ 𝑃 
(5) 

Constraint (5) ensures that each customer is served exactly once.  

Binary definitional constraint: 

𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣 ∈ {0,1}               ∀(𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ 𝐴𝑣 , ∀𝑣 ∈ 𝑉 (6) 

Constraint (6) defines the binary variables for arc selection.  

3. Dualization and augmentation, decomposition, and linearization techniques for applying ADMM in VRP  

In this section, we first review the background information of ADMM briefly, mainly for continuous convex problems. 

In our specific application of VRPs with discrete binary decision variables, the proposed modeling process contains three 

steps for reformulation, namely (a) dualization and augmentation, (b) decomposition, and (c) linearization. As a method of 

multipliers, this dualization and augmentation procedure relaxes hard constraints at the cost of breaking the separable 

structure of the problem. To address this issue, we decompose the model by utilizing the iterative principle in ADMM, and 

then a series of nonlinear subproblems is obtained. In the last step, the linearization technique is used to reduce the 

subproblems into a much simpler linear formulation. Each subproblem is solved by the efficient dynamic programming 

algorithm with search region reduction techniques (Mahmoudi and Zhou (2016)). One could also use a multi-label 

dynamical programming algorithm with state–space relaxation or dominance criteria to solve the least-cost subproblems 

(Boland et al., 2006; Desaulniers et al., 2006, Chapter 2). 

3.1 Generic formulation of ADMM 

Essentially, ADMM is an integration of the augmented Lagrangian relaxation and block coordinate descent methods. 

Consider a problem with a separable objective function and linear equality constraints of the form as (7), for example, with 

vehicle variables x and y in the context of VRP. 

min    𝑓(𝑥) + 𝑔(𝑦) 
(7) 

subject to  𝐴𝑥 + 𝐵𝑦 − 𝑐 = 0 

In the above expression,  𝑥 ∈ 𝑅𝑛, 𝑦 ∈ 𝑅𝑚, 𝐴 ∈ 𝑅𝑝×𝑛, 𝐵 ∈ 𝑅𝑝×𝑚, and 𝑐 ∈ 𝑅𝑃, and 𝑓(𝑥) and 𝑔(𝑦) are assumed to be 
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convex. The augmented Lagrangian function based on the relaxation of the constraints is shown as Eq. (8) with the 

corresponding dual problem (9), where 𝜆 ∈ 𝑅𝑃. 

𝐿𝜌(𝑥, 𝑦, λ) = 𝑓(𝑥) + 𝑔(𝑦) + λ𝑇(𝐴𝑥 + 𝐵𝑦 − 𝑐) +
𝜌

2
‖𝐴𝑥 + 𝐵𝑦 − 𝑐‖2

2 (8) 

max inf𝑥,𝑦𝐿𝜌(𝑥, 𝑦, 𝜆) (9) 

The variables 𝑥, 𝑦 and multipliers 𝜆 are updated separately and sequentially by following the iterative principle (10). 

𝑥𝑘+1 ≔ argmin𝑥𝐿𝜌(𝑥, 𝑦𝑘 , λ𝑘)  

𝑦𝑘+1 ≔ argmin𝑦𝐿𝜌(𝑥𝑘+1, 𝑦, λ𝑘) (10) 

λ𝑘+1 ≔ λ𝑘 + 𝜌(𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑐)  

In a case with inequality constraints, we can introduce the slack variable M to transform inequality constraints into 

equality constraints. That is, replacing   𝐴𝑥 + 𝐵𝑦 − 𝑐 < 0 by 𝐴𝑥 + 𝐵𝑦 − 𝑐 = 𝑀,  < 0, leads to Eq. (11). 

𝐿𝜌(𝑥, 𝑦, 𝑀, λ) = 𝑓(𝑥) + 𝑔(𝑦) + λ𝑇(𝐴𝑥 + 𝐵𝑦 − 𝑐 − 𝑀) +
𝜌

2
‖𝐴𝑥 + 𝐵𝑦 − 𝑐 − 𝑀‖2

2 (11) 

The necessary and sufficient optimality conditions for the ADMM model are primal feasibility and dual feasibility 

(Eckstein and Bertsekas, 1992), as shown in (12). 

Primal feasibility:    𝐴𝑥 + 𝐵𝑦 − 𝑐 = 0 

(12) Dual feasibility:     𝛻𝑓(𝑥∗) + 𝐴𝑇𝜆∗ = 0 

 𝛻𝑔(𝑦∗) +  𝐵𝑇𝜆∗ = 0 

By using ρ as the step size for updating the dual variables, the second dual feasibility condition always holds for the 

iterative (𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1). The corresponding residuals for the other two conditions can be calculated as (13). 

Primal residuals: 𝑟𝑘+1 = 𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑐 
(13) 

Dual residuals: 𝑠𝑘+1 = 𝜌𝐴𝑇𝐵(𝑦𝑘+1 − 𝑦𝑘) 

In a well-defined convex programming problem, the primal residuals 𝑟𝑘+1 and dual residuals 𝑠𝑘+1 will converge to zero 

and the primal and dual feasibility condition will be achieved as 𝑘 → ∞.  

3.2 Extended multi-block version of ADMM 

When it comes to practical applications with multiple agents, the primal problem can be naturally formulated as a 

multi-block model whose objective function contains more than two separable functions. Therefore, it is practically 

valuable to extend the standard two-block ADMM to a multi-block version. Consider the multi-block convex minimization 

problem given in expression (14), where 𝑥𝑖 ∈ 𝑅𝑛𝑖, 𝐴𝑖 ∈ 𝑅𝑝×𝑛𝑖, 𝑐 ∈ 𝑅𝑃, and each 𝑓𝑖(𝑥𝑖) is assumed to be convex. 

min    𝑓1(𝑥1) + 𝑓2(𝑥2) + ⋯ + 𝑓𝑁(𝑥𝑁) 
(14) subject to  𝐴1𝑥1 + 𝐴2𝑥2 + ⋯ + 𝐴𝑁𝑥𝑁 − 𝑐 = 0 

The augmented Lagrangian function for (14) is defined in formulation (15). 

𝐿𝜌(𝑥1, … , 𝑥𝑁 , λ) = ∑ 𝑓𝑖(𝑥𝑖)
𝑁
𝑖=1 + λ𝑇(∑ 𝐴𝑖𝑥𝑖

𝑁
𝑖=1 − 𝑐) +

𝜌

2
‖∑ 𝐴𝑖𝑥𝑖

𝑁
𝑖=1 − 𝑐‖2

2  (15) 

Similar to the two-block ADMM defined in model (10), the updating procedure of problem (14) can be implemented by 

solving the augmented Lagrangian function (15) in the Gauss–Seidel fashion as expressions (16).  

𝑥1
𝑘+1 ≔ argmin𝑥1∈𝑋1

𝐿𝜌(𝑥1, 𝑥2
𝑘 , … , 𝑥𝑁

𝑘 ; λ𝑘) 

(16) 

𝑥2
𝑘+1 ≔ argmin𝑥2∈𝑋2

𝐿𝜌(𝑥1
𝑘+1, 𝑥2, … , 𝑥𝑁

𝑘 ; λ𝑘) 

…… 

𝑥𝑁
𝑘+1 ≔ argmin𝑥𝑛∈𝑋𝑁

𝐿𝜌(𝑥1
𝑘+1, 𝑥2

𝑘+1, … , 𝑥𝑁−1
𝑘+1 , 𝑥𝑁; λ𝑘) 

λ𝑘+1 ≔ λ𝑘 + 𝜌(∑ 𝐴𝑖𝑥𝑖
𝑘+1𝑁

𝑖=1 − 𝑐)  

Compared to the two-block ADMM which provably converges for convex problems (Gabay, 1983; Eckstein and 

Bertsekas, 1992), the convergence of N-block (𝑁 ≥ 3) ADMM was an open question for a long time. A recent study (Chen 

et al., 2016) showed that the direct extension of ADMM (16) was not necessarily convergent. Many researchers focus on 

studying the sufficient conditions that guarantee convergence of the multi-block ADMM. Most conditions require strong 

assumptions, e.g., the objective function is strongly convex and the penalty parameter should be restricted to a certain 

region (Han and Yuan, 2012), or any two coefficient matrices are orthogonal (Chen et al., 2016). The lack of convergence 

has also motivated some studies to propose modifications of the multi-block ADMM that can impose convergence, such as 

those of Lu et al. (2018), Li et al. (2017), and He et al. (2012). From another point of view, even though it lacks convergence 

guarantees, the multi-block ADMM can often still be modestly applied to practical problems owing to its easy 

implementation and efficiency (Brooks et al., 2015; Han et al., 2014; Tao and Yuan, 2011). In our study, to obtain the 

guarantee of solution quality (i.e., the obtained solution is a certain percentage off from the exact optimal solution), we 

emphasize how to utilize a LR function to construct the lower bound estimate and compute the optimality gap at each search 

step. 



   

 

9 

 

3.3 Reformulation of the VRP model  

In the proposed VRP model, the coupling constraint (5) across different vehicles is now the single set of hard 

constraints. With LR (see Appendix A), we can dualize Eq. (5) into the objective function as (17). Further, quadratic 

penalty terms are added to transform the model into the augmented objective function 𝐿𝜌 as (18). Thus, the original model 

is reformulated as function (18) with constraints (2), (3), (4), and (6). 

min 𝐿 = ∑ ∑ 𝑐𝑎𝑥𝑎
𝑣 + ∑ 𝜆𝑝

𝑝∈𝑃𝑎∈𝐴𝑣𝑣∈𝑉

(∑ ∑ 𝑥𝑎
𝑣

𝑎∈𝛹𝑝,𝑣𝑣∈𝑉

− 1) (17) 

min 𝐿𝜌 = ∑ ∑ 𝑐𝑎𝑥𝑎
𝑣 + ∑ 𝜆𝑝

𝑝∈𝑃𝑎∈𝐴𝑣𝑣∈𝑉

(∑ ∑ 𝑥𝑎
𝑣

𝑎∈𝛹𝑝,𝑣𝑣∈𝑉

− 1) +
𝜌

2
∑ (∑ ∑ 𝑥𝑎

𝑣

𝑎∈𝛹𝑝,𝑣𝑣∈𝑉

− 1)

2

 

𝑝∈𝑃

 (18) 

For notational simplicity, we denote (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) as 𝑎, and define a new variable 𝜇𝑝
𝑣  to represent the total number of 

times that customer 𝑝 has been served by all the other vehicles except v. The value of 𝜇𝑝
𝑣  can be calculated as Eq. (19). 

𝜇𝑝
𝑣 = ∑ ∑ 𝑥𝑎

𝑣′

𝑎∈𝛹𝑝,𝑣′𝑣′∈𝑉|{𝑣}

     ∀𝑝 ∈ 𝑃 
(19) 

Obviously, the Lagrangian problem can be decomposed into several subproblems for each vehicle v as expression (20).  

min 𝐿𝑣 = ∑ 𝑐𝑎𝑥𝑎
𝑣

𝑎∈𝐴𝑣

  + ∑ ∑ 𝜆𝑝𝑥𝑎
𝑣

𝑎∈𝛹𝑝,𝑣𝑝∈𝑃

 (20) 

Within the block coordinate descent method inside ADMM, the augmented problem (18) can also be decomposed into 

several subproblems as expression (21). 

min  𝐿𝜌,𝑣 = ∑ 𝑐𝑎𝑥𝑎
𝑣

𝑎∈𝐴𝑣

  + ∑ ∑ 𝜆𝑝𝑥𝑎
𝑣

𝑎∈𝛹𝑝,𝑣

+

𝑝∈𝑃

𝜌

2
∑ ( ∑ 𝑥𝑎

𝑣 + 𝜇𝑝
𝑣

𝑎∈𝛹𝑝,𝑣

− 1)

2

 

𝑝∈𝑃

 (21) 

In general, a quadratic term might greatly increase the computational difficulty. However, the following proof shows 

that the quadratic term in the subproblem can be separated and regrouped as a linearized objective function thanks to the 

binary nature of its decision variables. 

Proposition. Each subproblem can be reduced to a least-cost path problem with a linear objective function: 

min  𝐿𝜌,𝑣 = ∑ 𝑐̂𝑎
𝑣𝑥𝑎

𝑣

𝑎∈𝐴𝑣

 (22) 

𝑐̂𝑎
𝑣 = {

𝑐𝑎 + 𝜆𝑝 + 𝜌𝜇𝑝
𝑣 −

𝜌

2
𝑎 ∈  𝛹𝑝,𝑣

𝑐𝑎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (23) 

Proof. 

Let us start with a simple quadratic form (𝑥 + 𝑏)2, where x is a binary variable and b is a constant. It is obvious that as 

𝑥2 = 𝑥 because of the property of the binary variable, (𝑥2 + 2𝑥𝑏 + 𝑏2) can be further reduced to (𝑥 + 2𝑥𝑏 + 𝑏2) = (2𝑏 +
1)𝑥 + 𝑏2, which is a linear function of x. Similarly, in our specific VRP applications, considering vehicle v and all the other 

vehicles as two parts, we can divide the quadratic term into three parts as Eq. (24), where {𝑥𝑎
𝑣} is the decision variable of 

subproblem 𝐿𝜌,𝑣, and 𝜇𝑝
𝑣  can be calculated by Eq. (19). 

( ∑ 𝑥𝑎
𝑣 + 𝜇𝑝

𝑣

𝑎∈𝛹𝑝,𝑣

− 1)

2

= ( ∑ 𝑥𝑎
𝑣

𝑎∈𝛹𝑝,𝑣

)

2

+ 2 ∑ 𝑥𝑎
𝑣

𝑎∈𝛹𝑝,𝑣

(𝜇𝑝
𝑣 − 1) + (𝜇𝑝

𝑣 − 1)
2
 

(24) 

 

One can easily verify that (∑ 𝑥𝑎
𝑣

𝑎∈𝛹𝑝,𝑣
)

2

 is the only quadratic term. As each customer can be served at most once by one 

vehicle in our hyper-dimension network construction, ∑ 𝑥𝑎
𝑣

𝑎∈𝛹𝑝,𝑣
= {0,1}. Owing to its binary nature, the square of 

∑ 𝑥𝑎
𝑣

𝑎∈𝛹𝑝,𝑣
 equals to itself (Eq. (25)). 

(∑ 𝑥𝑎
𝑣

𝑎∈𝛹𝑝,𝑣
)

2

= ∑ 𝑥𝑎
𝑣

𝑎∈𝛹𝑝,𝑣
  (25) 

Then, we can regroup the objective function for each subproblem as a linear form in expression (26), 

min  𝐿𝜌,𝑣 = ∑ 𝑐𝑎𝑥𝑎
𝑣 + ∑ ∑ [ 𝜆𝑝𝑥𝑎

𝑣 +
𝜌

2
𝑥𝑎

𝑣(2𝜇𝑝
𝑣 − 1)]

𝑎∈𝛹𝑝,𝑣𝑝∈𝑃𝑎∈𝐴𝑣

+ 𝑄 = ∑ 𝑐̂𝑎
𝑣𝑥𝑎

𝑣

𝑎∈𝐴𝑣

+ 𝑄 (26) 

where 𝑐̂𝑎
𝑣 is a modified cost term inside each update for a vehicle, and Q is a constant term. 
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3.4 ADMM-based solution procedure for VRP 

Based on the above three-step reformulation technique, an ADMM-based solution procedure is employed here to solve 

the multi-vehicle routing problem. 

// Step 1: Initialization 

Initialize iteration number 𝑘 = 0; 

Initialize Lagrangian multipliers 𝜆𝑝
0  and penalty parameter 𝜌0; 

Initialize upper bound and lower bound solutions {𝑋𝐿𝐵
0 } and {𝑋𝑈𝐵

0 }; 

Set the best lower bound 𝐿𝐵∗ = −∞ and the best upper bound 𝑈𝐵∗ = +∞. 

// Step 2: Minimize the augmented Lagrangian over each individual vehicle v sequentially 

// Step 2.1: Call the forward dynamic programming algorithm over vehicles 

For each vehicle 𝑣 ∈ 𝑉  

Update the arc cost 𝑐̂𝑎
𝑣 ∈ 𝛹𝑝,𝑣 by Eq. (23); 

Find the least-cost path for vehicle v (min 𝐿𝜌,𝑣 , solve problem (21)) by calling the forward dynamic 

programming algorithm;  

End for 

       // Step 2.2: Update the Lagrangian multipliers and quadratic penalty parameter 

Update the Lagrangian multipliers: 

𝜆𝑝
𝑘+1 ≔ 𝜆𝑝

𝑘 + 𝜌𝑘 (∑ ∑ 𝑥𝑎
𝑣

𝑎∈Ψ𝑝,𝑣𝑣∈𝑉 − 1) , ∀𝑝 ∈ 𝑃 ; 

Update the quadratic penalty parameter by 

𝜌𝑘+1 ≔ {

𝜌𝑘 + 𝜏𝑖𝑛𝑐𝑟 if ‖𝑟𝑘‖2
2 ≥ 𝜇‖𝑟𝑘−1‖2

2 and 𝑘 > 1/3𝑘max

𝜌0 if ‖𝑟𝑘‖2 = 0

𝜌𝑘 otherwise

  , where typical choices can be 1 ≤ 𝜏𝑖𝑛𝑐𝑟 ≤ 10 

and 𝜇 = 0.25 (Yang and Huang, 2005); 

// Step 3: Generate the upper bound solution and compute 𝑈𝐵𝑘   

// Step 3.1: Find feasible solution {𝑋𝑈𝐵
𝑘 } for the primal problem   

Adopt the customer-to-vehicle assignment results in step 2.1 

For each customer 𝑝 ∈ 𝑃 do 

If the customer is served by more than one vehicle, then designate one of the vehicles for him/her. 

If the customer is not served by any vehicle, then assign a backup vehicle for him/her. 

End for 

// Step 3.2: Compute 𝑈𝐵𝑘  

Compute 𝑈𝐵𝑘 by substituting solution {𝑋𝑈𝐵
𝑘 } in Eq. (1); 

𝑈𝐵∗ = min{𝑈𝐵∗, 𝑈𝐵𝑘}. 

// Step 4: Generate the lower bound solution and compute 𝐿𝐵𝑘   

// Step 4.1: Generate the lower bound solution {𝑋𝐿𝐵
𝑘 }  by solving the pure Lagrangian dual problem  

For each vehicle 𝑣 ∈ 𝑉  

Find the least-cost path for vehicle v (min 𝐿𝑣, solve problem (20)) by calling the forward dynamic programming 

algorithm; 

       End for 

// Step 4.2: Compute 𝐿𝐵𝑘  

Initialize 𝐿𝐵𝑘=0; 

Compute 𝐿𝐵𝑘  by substituting solution {𝑋𝐿𝐵
𝑘 } in Eq. (17); 

𝐿𝐵∗ = max{𝐿𝐵∗, 𝐿𝐵𝑘}. 

// Step 5: Evaluate the solution quality and termination condition test 

Compute the relative gap between 𝐿𝐵∗ and 𝑈𝐵∗ by 

 Gap=  
𝑈𝐵∗−𝐿𝐵∗

𝑈𝐵∗  ×100%; 

If the solution satisfies a convergence condition, e.g., primal residuals 𝑟𝑘 and dual residuals 𝑠𝑘 as shown in Eq. (13) 

are sufficiently small, or 𝑘 reaches the maximum iteration number 𝑘max, terminate the algorithm and output the best lower 

bound 𝐿𝐵∗ and best upper bound 𝑈𝐵∗; otherwise, k≔k+1 and go back to Step 2. 

Remark 1: In step 4.1, the Lagrangian multipliers {𝜆𝑝
𝑘} for calculating the lower bound are adopted from step 2. Note that 

𝐿𝑣 does not contain any quadratic penalty terms related to 𝜌; thus, the relaxed problem min 𝐿 (Eq. (17)) can be calculated 

exactly by solving each 𝐿𝑣 and the exact lower bound for the primal problem can be provided. 

Remark 2: To obtain a better performance of ADMM, we adopt a flexible parameter updating strategy instead of using a 
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fixed 𝜌. He et al. (2000), Lin et al. (2011), and Xu et al. (2016) have showed that the appropriate use of a varying penalty 

parameter could improve convergence and make the solutions less dependent on the initial value of the penalty parameter. 

The core idea behind these methods is to balance the primal and dual residuals during the iterative approach. In our 

framework, we also adopt this idea and propose an updating strategy, which allows the value of the penalty parameter to 

increase or decrease depending on the current and history solutions. Specifically, if the algorithm is running for a certain 

number of iterations but the primal residuals still do not have an obvious convergence trend, ρ will be increased to 

accelerate the speed of obtaining a feasible solution. In contrast, if a feasible solution is obtained (the primal residual is 

equal to zero), ρ can be reset to an initial value to explore other feasible solutions. With the help of this parameter updating 

strategy, the proposed ADMM-based scheme could better mitigate the issues of slow convergence, early stopping, and 

possible traps in local optimality. The initial value of ρ was recommended to be chosen between 0.1 and 10 to yield a good 

performance (Takapoui et al., 2017).  

Remark 3: A subtle but crucial point to underscore is that when solving the subproblem for the mth individual vehicle, only 

the routing decision variables for the mth vehicle are being optimized at this inner iteration step. As shown in Fig. 2, the 

routes of all the other vehicles are temporarily kept fixed, including the routes in the (k + 1)th iteration for vehicle v1, v2,…, 

vm-1 and in the last kth iteration for vehicle vm+1, vm+2,…, vn, where n is the size of the vehicle set V. In contrast, in the standard 

LR method, the subproblems are identical and solved in parallel with a given set of multipliers.  

Iteration k Iteration k+1

v1   v2   v3        vn-2   vn-1   vn    

v1   v2   v3        vn-2   vn-1   vn    

v1   v2   v3        vn-2   vn-1   vn    

v1   v2   v3        vn-2   vn-1   vn    

v1   v2   v3        vn-2   vn-1   vn    

v1   v2   v3        vn-2   vn-1   vn    

v1   v2   v3        vn-2   vn-1   vn    

v1   v2   v3        vn-2   vn-1   vn    

    

Current subproblemTemporarily fixed solution

 
Fig. 2. Iterative pattern in the ADMM-based framework for VRP. 

 

 

4. Discussions 

4.1 Discussions on theoretical convergence 

The theoretical convergence of the two-block ADMM for convex programming has been discussed in many studies 

(Gabay, 1983; Eckstein and Bertsekas, 1992). A general theoretical result given by Boyd et al. (2011) and revised by Chen 

et al. (2017) shows that the residual and objective convergence can be proved under the following three assumptions: 

Assumption 1: the function of original problem f and g: 𝑅𝑛 → 𝑅 ∪ {+∞} are closed, proper, and convex. 

Assumption 2: The unaugmented (pure) Lagrangian L has a saddle point. 

Assumption 3: All the subproblems involved have solutions. 

Researchers also recognized that there was no guarantee for the convergence of ADMM when extended (in a 

straightforward manner) to handle multiple blocks or when applied to nonconvex problems. One way to ensure 

convergence for nonconvex domains is to solve the proximal subproblem over the convex hull of the feasible set. The VRP 

in this research is modeled as a multi-block linearly constrained minimization model, and then solved by a multi-block 

version of ADMM. Under these complex situations, convergence of our ADMM-based framework cannot be guaranteed, 

even though we can reach the optimal solution at each update step. In other words, the different value of parameters may 

lead to different local optimal solutions (and in particular, not the global optimal solution). As a result, the ADMM-based 

algorithm is considered as heuristics motivated from the primal and dual solution framework or an improved version of the 

sub-gradient method. To address this issue, Feizollahi (2015) proposed three modified exact algorithms by adding primal 

cuts to restrict the LR of the original MIP problem.  However, it needs much more time to certify optimality, so they also 

proposed a more efficient heuristic version, namely, a release-and-fix (R&F) approach. Boland et al. (2018) and Gade et al. 

(2016) have presented effective methods for computing lower bounds in the progressive hedging algorithm (PHA). 
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Although they are written for stochastic multi-stage mixed-integer programs, the concepts and methods provide important 

theoretical references for us to address transportation optimization problems in the context of dual decomposition with 

consensus constraints. 

In our study, we address the shortcomings in applying ADMM to non-convex and multi-block problems from two 

points of view. Firstly, a parameter updating strategy is adopted. The increase in parameter 𝜌 aims to ensure that feasible 

solutions can be obtained after a certain number of iterations, and the decrease is used to mitigate traps in local optimality. 

Secondly, we also solve a serial of pure Lagrangian problems to determine a lower bound of the optimal objective function 

by borrowing the LR multipliers from an intermediate iteration of ADMM. In this way, the optimality gap between the 

upper and lower bound estimates can be provided to evaluate and guarantee the quality of the solution. 

In summary, ADMM is not an exact algorithm for nonconvex or multi-block problems. Future research could deploy a 

branch-and-price solution search paradigm to create mutually exclusive subproblems and fully close the optimality gaps. 

The main advantages of our proposed method could be summarized as follows: (a) the dual multipliers can provide 

system-wide price information; (b) the quadratic penalties can manage the solution search process in the dualized problem 

to better reach both the primal and dual feasibility; and (c) the LR-based lower bound of the optimal solution is available. 

These benefits enable ADMM to have better solution optimality measures compared to the other heuristic methods.  

4.2 ADMM for other broader classes of constraints 

The proposed ADMM-based framework can also be applied to transportation optimization models with broader 

classes of constraints, which can be examined in the following categories.  

(1) Consensus constraints 

In many problems, different agents or decision makers need to meet the consensus constraints. Specifically, in our 

proposed VRPTW model, the service request satisfaction constraint is the consensus constraint across different vehicles. 

This type of constraints is also widely used in other transportation problems, for example, the headway constraint in railway 

timetable problems, and the road capacity constraints in traffic assignment problems.  

(2) Consistency constraints 

In the integrated model with multi-type decisions, the consistency constraints should be ensured across these 

decisions. For example, in the train service plan optimization problem, consistency constraints are used to integrate three 

types of decisions: (a) passenger service selection behavior, (b) service plan and timetabling, and (c) track and rolling stock 

capacity utilization. It is interesting to examine how to jointly coordinate the decisions with the help of the Lagrangian 

multipliers and quadratic penalties. Along this line, a recent notable study by Liu and Dessouky (2018) investigated the 

integrated scheduling of freight and passenger trains, where the train precedence subproblem and the train routing 

subproblem are innovatively decomposed and dualized. 

(3) Non-anticipative constraints 

In the context of stochastic optimization, uncertain parameters could affect the decisions under different stages or 

scenarios. Thus, the non-anticipative constraints need to be enforced between the first static stage and the second dynamic 

stages (Boland et al., 2018). This line of applications in the field of transportation covers the VRP with uncertain demand 

(Gendreau et al., 1996) and train timetable problem with uncertain passenger demand (Yang et al., 2009; Yin et al., 2016). 

The ADMM-based framework can be useful in providing a theoretically sound and numerically reliable algorithmic 

foundation for iteratively decomposing and optimizing the decision variables across different stages or scenarios. 

       

In the following discussion, we use a detailed example to illustrate the application of ADMM in another type of VRP 

model, which has two decision layers, namely, assignment and routing. First, we specifically reformulate the proposed VRP 

model to create an assignment-and-routing mapping by a variable spitting technique (Fisher et al., 1997; Niu et al., 2018). In 

detail, we introduce an additional assignment decision variable 𝑦𝑝
𝑣 , which is equal to 1 if customer 𝑝 is served by vehicle 𝑣 

and equal to 0 otherwise, and replace the constraint in Eq. (5) by the following Eq. (27), Eq. (28), and Eq. (29). 

Request assignment constraint: 

∑ 𝑦𝑝
𝑣

𝑣∈𝑉

= 1    ∀𝑝 ∈ 𝑃 (27) 

Consistency constraint between assignment and routing: 

∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣

(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈Ψ𝑝,𝑣

= 𝑦𝑝
𝑣      ∀𝑝 ∈ 𝑃, 𝑣 ∈ 𝑉 

(28) 

Binary definitional constraint: 

𝑦𝑝
𝑣 ∈ {0, 1}                (29) 
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Constraint (27) ensures that each customer is visited by a single vehicle exactly once. Constraint (28) is the consistency 

constraint between detailed vehicle routing decisions and assignment decisions. Constraint (29) defines the binary variables 

for assignment. Within the proposed ADMM-based decomposition framework, constraint (28) can be dualized into the 

objective function with {𝜆𝑝
𝑣 }, and then the relaxed model is decomposed into two subproblems to separate {𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′

𝑣 } and  

{𝑦𝑝
𝑣}. The first subproblem with decision variable  {𝑦𝑝

𝑣} is a generalized assignment subproblem aiming to find the 

customer-to-vehicle assignment. The second subproblem with decision variable {𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣 } is still a least-cost path 

problem to detail the vehicle routes. These two subproblems at different ends of the decision process are solved iteratively 

as the pattern shown in Fig. 3. Specifically, the assignment results can guide the routing refinement of vehicles. 

Correspondingly, the vehicle routes are also feedback to the assignment layer and help to make decisions for the next 

iterations. This ADMM-based decomposition framework across different decision levels also presents additional 

opportunities for re-interpreting and refining many efficient heuristics from a primal and dual perspective, such as the 

savings algorithm (Clarke and Wright, 1964) and sweep-based algorithm (Gillet and Miller, 1974).  

Iteration k Iteration k+1

Assignment         Routing

Current subproblemTemporarily fixed solution

Assignment         Routing

Assignment         Routing

Assignment         Routing

Assignment         Routing

Assignment         Routing

 
Fig. 3. Iterative pattern in the ADMM-based framework for the assignment and routing problem. 

 

5. Numerical examples 

The algorithm proposed in the study is coded in Python, run in PyPy, and evaluated on a personal Windows computer 

with a 2.20 GHz CPU and 16 GB of memory. In this section, we compare the performance of the standard LR method and 

our ADMM-based decomposition framework based on a set of Solomon VRP benchmark instances (Solomon, 1987). Then, 

the impact of parameter 𝜌 on the upper and lower bound solutions is carefully examined. Finally, we further test the 

proposed ADMM-based framework on a real-world instance from Jingdong logistics, a major logistics company affiliated 

to one of the global online retailers, JD.com. Our open-source Python codes with data sets and solutions are provided at 

https://github.com/YaoYuBJTU/ADMM_Python. This algorithmic framework can be also easily extended and applied to 

other test data sets and problems, and an implementation using a low-level programming language such as C++ is expected 

to dramatically improve the computational speed compared to Python. For example, our C++ based implementation for the 

large-scale cyclic timetabling problem achieves significantly higher computational efficiency, and the code can be found at 

https://www.researchgate.net/profile/Yongxiang_Zhang7.  

5.1 Illustrative examples and comparison based on Solomon benchmark instances 

The well-known Solomon benchmark instances highlight several factors that affect the behavior of routing and 

scheduling algorithms, including geographical data, number of customers serviced by a vehicle, percent of time-constrained 

customers, and tightness and positioning of the time windows. Three different classes of instances (C, R, and RC, 

respectively) are contained in the Solomon dataset, where geographical data is clustered in set C, randomly generated in set 

R, and is a mix of random and clustered structures in set RC. The detailed data sets and the best-known solution can be 

download at http://web.cba.neu.edu/~msolomon/problems.htm. 

To test our algorithm in different configurations and scales, we perform our algorithm to solve C101, R101, and 

RC101 with different scales, i.e., for 25, 50, and 100 customers, respectively. The fleet size of vehicles is set as 25, with the 

capacity of each vehicle as 200. The standard LR method is used for comparison. Specifically, the Lagrangian dual 

problems of LR are solved by the cutting plane algorithm with trust region (see Hiriart-Urruty and Lemarechal (1996) and 

Kallehauge et al. (2001)) and feasible solutions for the primal problem are generated by primal solution-based heuristics. 

The results of the ADMM-based algorithm are calculated by the solution procedure shown in Section 3.4. To be fair, the 

initial value of {𝜆𝑝} is set as 0, the initial value of parameter 𝜌 for ADMM and the region for the cutting plane are set as 1, 

and the subproblems are both solved by the dynamic programming algorithm. 

http://web.cba.neu.edu/~msolomon/problems.htm
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The details of the comparison between the LR and ADMM solutions are presented in Table 3, including lower and 

upper bound solutions and running times. Table 4 and Fig. 4 further visualize two types of gaps obtained from the two 

methods.  
Table 3 

Comparison between LR and ADMM solutions. 

Dataset 

LR ADMM 
Best-known 

solution 
Lower 

bound 

Upper 

bound 
Iterations 

CPU 

time 

Lower 

bound 

Upper 

bound 
Iterations 

CPU 

time 

C101.25 191.8 191.8 13 1.13 188.7 191.8 11 0.78 191.3 

C101.50 363.2* 363.2 25 6.10 361.7 363.2 12 3.01 362.4 

C101.100 805.8 828.9 49 87.35 793.0 828.9 15 27.97 827.3 

R101.25 618.3 634.9 116 6.65 614.6 618.3 76 0.87 617.1 

R101.50 971.86 1145.9 94 9.72 1028.9 1046.7 87 3.84 1044.0 

R101.100 1263.2 1925.4 58 29.77 1618.6 1667.4 65 30.27 1637.7 

RC101.25 407.7 502.7 118 7.95 401.2 462.5 136 2.54 461.1 

RC101.50 693.8 1084.8 50 7.54 824.5 945.6 135 14.81 944 

RC101.100 1320.1 2299.3 57 66.13 1430.0 1680.9 112 125.08 1619.8 

*Note that in the LR solution of C101.25 and C101.50, the lower bounds are equal to the upper bounds but are slightly 

larger than the best-known solutions. This is because we round the continuous traveling time into discrete time indexes in 

our dynamic programming algorithm. This approximation might lead to a slight error. 

Table 4 

Comparison between LR and ADMM gaps. 

Dataset 
LR ADMM Comparison 

GAP_1* GAP_2** GAP_1 GAP_2 GAP_1 GAP_2 

C101.25 0.00% 0.26% 1.62% 0.26% 1.62% 0.00% 

C101.50 0.00% 0.22% 0.41% 0.22% 0.41% 0.00% 

C101.100 2.79% 0.19% 4.33% 0.19% 1.54% 0.00% 

R101.25 2.61% 2.80% 0.60% 0.19% −2.02% −2.61% 

R101.50 15.19% 8.89% 1.70% 0.26% −13.49% −8.63% 

R101.100 34.39% 14.94% 2.93% 1.78% −31.47% −13.16% 

RC101.25 18.90% 8.28% 13.25% 0.30% −5.64% −7.97% 

RC101.50 36.04% 12.98% 12.81% 0.17% −23.24% −12.81% 

RC101.100 42.59% 29.55% 14.93% 3.63% −27.66% −25.92% 

AVERAGE 16.95% 8.68% 5.84% 0.78% −11.10% −7.90% 

*GAP_1 represents the gap between the lower bound and upper bound. 

** GAP_2 represents the gap between the upper bound and the best-known solution. 

Table 3, Table 4, and Fig. 4 show that both methods obtain the same upper bound solutions in the easiest C101 

instances, and the solutions are very close to the best-known solution (GAP_2 < 0.30%). Clearly, ADMM can find 

near-optimal solutions with fewer iterations and less computational time than LR. When it comes to the R101 and RC101 

instances, ADMM can reach better upper and lower bounds compared to LR, even though LR needs less computational 

time for some cases. The advantage of ADMM is more significant under relatively larger-scale instances. Specifically, LR 

can only obtain a feasible solution with a relatively large gap (GAP_2 = 29.55%) in the worst case. In contrast, the gap 

between ADMM and the best-known solution is within 5% in all the test cases, and the lower bound solutions are tight 

enough to ensure reasonable optimality. On average, compared to the standard LR, the solution gap GAP_1 of ADMM is 

reduced by 11.10%, and the gap from the best-known solution GAP_2 is also decreased by 7.90%. Overall, the results 

demonstrate the effectiveness and computational reliability of our proposed ADMM-based framework.  
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Fig. 4. Gap comparison between ADMM and LR  

In the context of VRP, the multiplier λ𝑝 in the standard LR method can be regarded as the service profit for customer 𝑝. 

The Lagrangian problem is decomposed into identical least-cost path problems for each vehicle and the relaxed constraint is 

ensured by adjusting multiplier λ𝑝 during an iterative procedure. In particular, when using the cutting plane method, we find 

the optimal Lagrangian multipliers by adding a new cut (a path in the VRP) into the dual problem at each iteration.  

However, each vehicle would simultaneously commit to the same route as each subproblem is identical. Only if a set of 

minimal cost paths could together cover each customer exactly once, a feasible and optimal solution could be found (Kohl 

and Madsen, 1997), or LR can just provide the lower bound estimation to the primal problem. Therefore, the LR method 

tends to suffer from symmetry issues. 

In contrast, the augmented Lagrangian function and each subproblem in ADMM have additional quadratic penalty 

terms, which can differentiate the modified costs {𝑐̂𝑎
𝑣} used in different subproblems and mitigate the symmetry issue. In 

detail, as shown in Eq. (21), the service profit for each vehicle to serve customer p not only depends on Lagrangian 

multiplier λ𝑝 but also on the term 
𝜌

2
(2𝜇𝑝

𝑣 − 1). That means a vehicle would be discouraged (but not prohibited) from 

serving a customer if he/she has already been served by other vehicles. Interestingly, one connection with the primal 

solution-based heuristics is that, when the value of 𝜌 is set to infinity, the vehicle would seek to avoid violating any 

feasibility constraint and search for a completely feasible solution.  

5.2 The real-world case study 

We also test our algorithm on the data set extracted from the optimization competition launched by Jingdong Logistics. 

Focusing on smart logistics and supply chain, one of the competition topics is an urban truck routing and scheduling 

problem, and a large amount of real data based on the company’s B2B delivery scenarios in Beijing has been provided. 

More details and the dataset of the competition can be obtained from the website: https://smart.jdwl.com/lol.html. 

As shown in Fig. 5, we select a subset of customer data from the competition data set as our test case, where the 

distribution center provides urban distribution services for 100 customers in the urban area. Besides, several assumptions 

considered in this data set are presented as follows. 

(1) Each vehicle starts working at 8:00 and goes back to the distribution center before 00:00. 

(2) The fixed usage charge for each vehicle is 200 RMB/day, the transportation cost is 12 RMB/km and the waiting 

cost is 24 RMB/hour. In addition, the number of backup vehicles is assumed to be sufficient. 

(3) The weight and volume capacity of each vehicle is 12,000 kg and 12m3. 

(4) Each order or customer has a particular time window. 

(5) The travel time of each link is given as a constant based on the real-world road network. 

(6) The service time for each customer is set as 30 min.   

The weighted objective to be minimized includes the transportation cost, waiting cost, and fixed vehicle cost.  

https://smart.jdwl.com/lol.html


   

 

16 

 

Distribution center

Customer

 
Fig. 5. Distribution center and customers in the Beijing road network. 

 

5.2.1 Cutting plane method used as a warm-starting strategy to initialize the Lagrangian multipliers 

Before solving this problem by the proposed ADMM-based algorithm, we first approximately estimate the initial 

value of Lagrangian multipliers {𝜆𝑝} by a warm-starting strategy, where we only solve the Lagrangian dual problem by the 

cutting plane method with trust region. In other words, the steps for minimizing the augmented Lagrangian (step 2 in 

Section 3.4) and generating the upper bound solutions (step 3) are skipped for simplification, as we do not need to find the 

feasible solutions or upper bounds at this pre-processing stage. Compared to executing the entire ADMM-based algorithmic 

procedure with {𝜆𝑝
0 } = 0, this warm-starting strategy can obtain a better initial value of {𝜆𝑝} quickly and reduce the overall 

computational time. 

In this case, we run the cutting plane method for 200 iterations with 82.94 s in total. Fig. 6 illustrates that the multipliers 

of all passengers decrease to the value of approximately −150, and then evolve to different values. That means, when the 

Lagrangian multipliers are larger than −150, they will not attract any vehicle departure from the distribution center. 

Accordingly, we set the initial Lagrangian multipliers {𝜆𝑝} as −150 instead of 0 to reduce the computational time. One can 

also use previous solutions or an empirical market value price to better set the initial value of Lagrangian multipliers. 
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Fig. 6. Evolution of Lagrangian multipliers 
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5.2.2 Computational results 

The proposed ADMM-based algorithm is performed in 200 iterations to solve this case, and the computing time for each 

iteration is approximately 5.32 s. We set the parameter 𝜇 as 0.25, 𝜏𝑖𝑛𝑐𝑟  as 2, and the initial penalty parameter 𝜌 as 1. The 

evolution trends of the lower and upper bounds are demonstrated in Fig. 7. We can see that the upper bound solutions 

improve significantly in the first 100 iterations and obtain a stable high-quality value at the 138th iteration. Finally, the best 

upper bound value is 22515.74 and the best lower bound value is 21363.79, and the final gap is 5.12%.  
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Fig. 7. Evolution curves of the upper and lower bounds. 

 

In the best upper bound solution, 13 vehicles are needed to serve all the given customers, with total waiting time of 1108 

min and a total transportation distance of 1622.64 km. The details of the optimized result are presented in Table 5. The 

routes for the vehicles are further illustrated in Fig. 8 and Fig. 9. 

Table 5  

Details of the Optimized Solution. 

Vehicle id Vehicle routing solution Travel distance (km) 

1 0-7-18-32-60-6-82-89-100 114.72 

2 0-20-16-26-39-56-83-90-46-100 176.11 

3 0-42-35-98-72-49-75-96-76-100 116.72 

4 0-61-52-1-50-51-19-65-77-12-100 216.56 

5 0-9-22-15-34-5-69-68-87-55-100 121.44 

6 0-25-31-59-73-53-66-44-100 110.01 

7 0-57-54-17-84-79-38-95-80-24-100 78.89 

8 0-45-30-81-85-97-10-33-86-43-100 143.76 

9 0-14-78-88-71-23-91-47-74-100 84.69 

10 0-70-67-21-62-48-13-3-100 164.07 

11 0-37-64-40-2-11-27-28-100 149.97 

12 0-4-58-36-63-99-93-41-29-8-100 130.10 

13 0-92-94-100 15.60 
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Fig. 8. Geographic view of the optimized solution 
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Fig. 9. Optimized solution depicted with respect to time 
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6. Conclusions 

In this study, focusing on the consensus constraints in VRPs, we proposed an ADMM-based decomposition 

framework to iteratively improve the primal and dual solution quality simultaneously. To demonstrate the broader benefit of 

our proposed algorithmic framework, we demonstrate how various transportation optimization models with 

consensus/consistency constraints can be reformulated and solved efficiently, as long as the decomposed subproblem 

involves binary decision variables in a framework of block coordinate descents and augmented Lagrangian. For the VRP 

problem, first, by using a state–space–time network diagram, we constructed a multi-dimensional commodity flow 

formulation for the VRP, where the time window and vehicle capacity constraints are embedded to simplify the dual 

process. Then, ADMM was particularly introduced in order to develop a reliable decomposition framework, in which the 

original model was decomposed into a series of least-cost path problems through three steps, namely, dualization and 

augmentation, decomposition, and linearization, and these subproblems are solved by the dynamic programming algorithm. 

To measure the quality of the solutions, a lower bound estimate was established by solving a pure LR problem.  

To examine the effectiveness of the proposed ADMM-based framework, two sets of numerical examples were 

implemented, including a set of Solomon benchmark instances and a real-world instance provided by Jingdong Logistics. 

The computational results showed that the ADMM-based approach can efficiently obtain good quality solutions with 

relative tight lower bounds. 

In summary, the proposed ADMM-based framework offers a relatively simple and reliable algorithmic 

implementation structure, which can also be commonly used in solving many other transportation problems. Our future 

research will focus on the following two major aspects: (1) extension of the ADMM-based framework to other more 

complicated transportation problems, for instance, the problem with multiple decision variables across layers; (2) addition 

of branching techniques into the framework to improve the solution quality and the relative gap between the lower and 

upper bounds. 

Appendix A: Formulations of Lagrangian relaxation (LR) and augmented Lagrangian method 

For the sake of completeness, in this appendix we briefly review the basic framework of the LR and augmented 

Lagrangian methods. 

Consider a linear equality-constrained problem expressed as (A1), where 𝑥 ∈ 𝑅𝑛, 𝐴 ∈ 𝑅𝑝×𝑛, and 𝑐 ∈ 𝑅𝑃, and 𝑓(𝑥) are 

assumed to be convex. 

min    𝑓(𝑥) 
(A1) 

subject to  𝐴𝑥 − 𝑐 = 0 

The LR form for problem (A1) can be written as Eq. (A2) and the Lagrangian dual problem is shown as expression (A3), 

where 𝜆 ∈ 𝑅𝑃. 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) + 𝜆𝑇(𝐴𝑥 − 𝑐) (A2) 

max inf𝑥 𝐿(𝑥, 𝜆) (A3) 

In the general case, after each iteration, the equality constraint residual contributions (𝐴𝑥𝑘 − 𝑐) are required to be collected 

to compute the Lagrangian multipliers of the next iteration. The main advantage of the LR method is that each 

x-minimization step can be split into separated subproblems and solved in parallel when 𝑓(𝑥) is separable.  

By adding a quadratic penalty, the augmented Lagrangian function is shown as Eq. (A4), where 𝜌 is the parameter of 

the quadratic penalty. 

𝐿(𝑥, λ, 𝜌) = 𝑓(𝑥) + λ𝑇(𝐴𝑥 − 𝑐) +
𝜌

2
‖𝐴𝑥 − 𝑐‖2

2 (A4) 

The standard augmented Lagrangian method would minimize 𝐿(𝑥, λ, 𝜌) with respect to each sub-vector of x jointly.  
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