A cumulative service state representation for the pickup and delivery problem with transfers

Monirehalsadat Mahmoudi
School of Packaging, College of Agriculture and Natural Resources, Michigan State University, East Lansing,
Michigan, 48824, mahmoul 8@msu.edu

Junhua Chen
School of Traffic and Transportation, Beijing Jiaotong University, Beijing, P. R. China 100044, cjh@bjtu.edu.cn

Tie Shi
School of Transportation and Logistics
Southwest Jiaotong University, Chengdu, P. R. China 610031, tshi2005@my.swijtu.edu.cn

Yongxiang Zhang
School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, P. R. China 610031,
bk20100249@my.swjtu.edu.cn

Xuesong Zhou
School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281,
xzhou74@asu.edu

Abstract

The pickup and delivery problem with transfers is a challenging version of the vehicle routing problem. In order
to tackle this problem, we add a time dimension to physical transportation networks to not only track the location of
vehicles at any time but also impose parcels’ pickup/delivery time windows, synchronization time points, and
precedence constraints to the problem. We also add another dimension, described as the “cumulative service state” to
the constructed space-time network to track the service status of parcels at any time. The constructed network not
only handles real-life transportation networks but also is well-suited for connecting microscopic cumulative service
states to macroscopic cumulative flow count diagrams. We develop a continuous time approximation approach using
cumulative arrival, departure, and on-board count diagrams to effectively assess the performance of the system and
dynamically constrict the search space. To handle a large-scale set of parcels, we develop the traditional cluster-first,
route-second approach. We reach optimality for the clusters derived from the original set of parcels. We also propose
an integer programming model to improve the vehicles’ efficiency. We perform extensive numerical experiments
over the standard data set used by Ropke and Pisinger (2006) and real-world large-scale data set proposed by Cainiao
Network (with about 10,000 delivery orders) to examine the computational efficiency of our developed algorithm.

Keywords: pickup and delivery problems with transfers, dynamic programming, cumulative service states,
cumulative flow count diagrams, Lagrangian heuristics.
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1. Introduction

Coordinated transportation services consist of three different levels of service: ride-hailing, ridesharing without
transfer, and ridesharing with at least one transfer. Ride-hailing is a level of coordinated service in which a passenger
hires a driver to get a transportation service for a fee, and the driver is supposed to deliver the passenger to exactly
where he needs to go. Traditional taxi companies offer this form of transport. The way by which a passenger hails a
car can be listed as follows: a passenger can hail a taxi from the street, call up a transport service on the phone or hail
a car from an app by his cellphone.

Ridesharing without transfer is another level of coordinated transportation service, which is slightly different
from ride-hailing. In this mode of transportation, similar to the ride-hailing, a passenger hires a driver to take him
where he needs to go, but the passenger may share his ride with other passengers. Recently, a broad range of
transportation network companies, such as Uber, Lyft and Sidecar have begun to offer this type of transport service
by the aid of three recent technological advances: (1) Global Positioning System (GPS) navigation devices, (2)
smartphones, and (3) social networks. Cross-docking, a warehousing strategy of moving of goods directly from the
receiving dock to the shipping dock, is an example of this type of transportation service which reduces the handling
and storage steps in between to a minimum.

The third level of coordinated transportation service is ridesharing with transfers. In general, transfers are used to
provide more efficient transportation networks by reducing the operational costs, as well as making more flexible
routes available for passengers. A large number of daily trips are classified in this category. An example of this type
of transportation service is the first mile/last mile transport of the commuters who go from an origin to a transit
station or from a station to a final destination. Ridesharing between households or fellow workers is another example
of transfers. In this case, members of a family or any other social group arrange their trips informally and share their
travel information, such as departure time, stops, and transfer points, among themselves. In Figure 1, we show
different levels of coordinated transportation service via an example in which six passengers with different origins,
destinations, and departure time windows have called for service.
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Fig. 1. Different levels of coordinated transportation service.

As shown in Figure 1, in the case of ridesharing with transfers, the vehicles’ capacity can be utilized more in
comparison to other types of coordinated transportation service. In this case, the first vehicle picks up passengers
from different origins and delivers them to a transfer point; the bus picks them up from the first transfer point and
delivers them to the second transfer point; and finally, the second vehicle picks them up from the second transfer
point and delivers them to their final destinations. In this example, we assume that departure time windows are wide
enough such that one vehicle handles all trips from origins to the first transfer point, and the other serves all trips
from the second transfer point to the destinations.

The concept of pickup and delivery with transfers is not only used in passenger transit but also applied frequently
in freight transportation in what is called “freight consolidation.” Freight consolidation is when small shipments are
bundled with other small shipments for some legs of their journey. It is also known as consolidation service,
assembly service, and cargo consolidation. Different terms are used for transfer centers, depending on the
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transportation mode and the type of good being transported, such as rail yards in the railway industry, hub airports in
air cargo transportation, transshipment ports in sea cargo transportation, and terminals for transporting goods by
trucks.

In the last decade, ridesharing companies have introduced a new mode of transportation that is much more
convenient than public transit and less expensive than taxi services. By introducing connected and autonomous
vehicles to this mode of transportation and eliminating the cost of hiring drivers, ridesharing can be a good
complement for the public transportation in the future. In August 2018, Valley Metro (Metro Phoenix's transit
agency) and Waymo (Google's self-driving car project) launched a new partnership to experiment with how new
technology can improve traditional public transit options. This arrangement may be a huge relief for those passengers
who want to take the bus or light rail to work but live too far from the nearest station.

In general, ride-hailing and ridesharing with or without transfers can be mathematically modeled by the vehicle
routing problem with pickup and delivery with time windows (VRPPDTW). The VRPPDTW is a combinatorial
optimization problem that searches for an optimal set of routes for a fleet of vehicles to serve a set of requests. Each
request is a combination of pickup from the origin and drop-off at the destination within particular time windows.
The objective of the VRPPDTW varies from one study to another based on the main focus of the problem. For
example, some studies aim to satisfy all demands with fewer vehicles, while others attempt to maximize the number
of parcels that can be served by a fixed number of vehicles. Therefore, the objective of the former problem is to
minimize costs subject to full demand satisfaction, while the objective of the latter one is to maximize the total
number of served passengers subject to vehicle availability. In fact, the latter case is more practical. Other objective
functions observed in the literature include but are not limited to: minimization of difference between actual and
desired delivery times (see, e.g., Bodin and Sexton, 1986), minimization of differences between actual and shortest
possible ride times (see, e.g., Bodin and Sexton, 1986), minimization of total route duration (see, e.g., Dumas et al.,
1989; Desrosiers et al., 1991; Ioachim et al., 1995), minimization of total route length (see, e.g., Cordeau and
Laporte, 2003), minimization of vehicles’ idle time (see, e.g., Diana and Dessouky, 2004), minimization of
passengers’ inconvenience (see, e.g., Coslovich et al., 2006; Melachrinoudis et al., 2007), or a weighted combination
of those mentioned above.

In order to solve the VRPPDTW, several algorithms have been suggested by the extant literature. Dumas et al.
(1991) used a set-partitioning model to minimize the total travel cost, considering tight vehicle capacity constraints,
as well as time windows and precedence constraints. They proposed a column generation scheme with a constrained
shortest path as a sub-problem to construct admissible routes. Savelsbergh and Sol (1998) developed a branch-and-
price algorithm to minimize the total number of vehicles needed to serve all passengers as the primary objective, and
minimize the total distance traveled as the secondary objective. In addition, Lu and Dessouky (2004), Cordeau
(2006), and Ropke et al. (2007) proposed branch-and-cut algorithms to minimize the total routing cost. Ropke and
Cordeau (2009) also presented a branch-and-cut-and-price algorithm in which the lower bounds are controlled by a
column generation scheme and strengthened by introducing several valid inequalities to the problem. Baldacci et al.
(2011) proposed a new exact algorithm based on a set-partitioning formulation improved by additional cuts to
minimize total routing costs. In a recent clustering algorithm proposed by Hdme and Hakula (2015), the multi-vehicle
routing solution is obtained by calling a recursive single-vehicle algorithm based on the passenger-to-vehicle
assignment from the first clustering stage.

In terms of algorithmic development, a number of studies have focused on solving the VRPPDTW by the
dynamic programming (DP) approach. For instance, the classical work by Psaraftis (1980) presented an exact
backward DP for the single-vehicle routing problem with pickup and delivery with time windows. The objective of
the problem was to minimize a weighted combination of the total service and waiting time for passengers with
0(n?3™) complexity, where n denotes the total number of passengers in the system. Psaraftis (1980) proposed a
passengers’ service state representation that was adopted from the path representation for the traveling salesman
problem proposed by Bellman (1962) and Held and Karp (1962). Psaraftis (1983) further modified the algorithm to a
forward DP algorithm with the same space complexity. Desrosiers et al. (1986) proposed a forward DP algorithm for
the single-vehicle routing problem with pickup and delivery with time windows to minimize the total distance
traveled to serve all passengers. Recently, by the aid of a Lagrangian relaxation solution framework, Mahmoudi and
Zhou (2016) have proposed a forward DP solution-based algorithm to minimize the total routing costs of the single
vehicle sub-problems on a three-dimensional space-time-state network. Their time-dependent single-vehicle state is
jointly defined by the passengers’ carrying state, the current node being visited, and the time to reflect time windows
and vehicles’ capacity constraints in a well-structured network. Furthermore, their special three-dimensional network
representation for the multi-vehicle routing problem with pickup and delivery with time windows reduces the space
complexity of the DP algorithm from the exponential order of 3™ (n is the total number of passengers) to the much



smaller space requirement of Zgzo Cy}, where Q is vehicles’ capacity and C}} is the number of k-combinations from n
passengers. We note that Q is not a large number in practice (e.g., 2 or 3 for taxi).

There are also a number of studies addressing the issue of synchronization in various vehicle routing and
scheduling problems. Sharypova et al. (2012) designed a continuous-time mixed integer programming (MIP) model
to minimize the total system operational costs in the intermodal service network design problem, in which the arrival
and departure times of vehicles are synchronized to facilitate the transshipment of containers in the terminals. Li et al.
(2014) assumed that passengers and parcels can share the same taxi transport services and further proposed an MIP
model to optimize the taxi routes and schedules, such that the total system profit can be maximized. They set higher
priority for the passengers, such that the transportation of parcels will be synchronized as much as possible. Dellaert
et al. (2016) addressed the two-echelon vehicle routing problem with time windows (2E-VRPTW), where the
shipment process of the freight is divided into two separate parts and each of the parts is transported by an echelon.
They developed two different groups of integer programming (IP) models to minimize the total transportation cost of
two echelons. Extra connectivity constraints are introduced into one of the groups to ensure the interconnectivity of
the first and second echelon paths.

Despite the extensive prior research on ride-hailing and ridesharing without transfers, few studies have focused
on ridesharing with transfers. This is observed in the literature as the pickup and delivery problem with
transshipments/transfers (PDPT). A number of studies have focused on showing the usefulness of transfer and
schedule coordination in the pickup and delivery problem, such as Mitrovi¢-Mini¢ and Laporte (2006), Qu and Bard
(2012), Masson et al. (2013), Kim and Schonfeld (2014), Sun and Schonfeld (2016), and Ghilas et al. (2016). Another
stream in the literature has focused on solving the PDPT by heuristic/meta-heuristic algorithms. For example,
motivated by the practice in a large San Francisco-based courier company, Mitrovié-Mini¢ and Laporte (2006)
conducted an empirical study on the effectiveness of transfer points in the pickup and delivery problem. Since the
company was serving a large area covering several neighboring cities, they were allowing transshipment of loads
between vehicles to keep drivers in their home area and found circumstances under which such transfers may be
useful. They applied a two-phase heuristic (a construction phase followed by an improvement phase) to solve the
problem. In another practice-driven study, Qu and Bard (2012) examined the usefulness of transshipment in finding
daily routes for a regional air carrier. In their study, they developed a greedy randomized adaptive search procedure
to handle this complex problem. Furthermore, Masson et al. (2013, 2014) proposed an adaptive large neighborhood
search for solving the PDPT. They tested their algorithm on real-world instances related to the transportation of
mentally or physically disabled people. They showed that adding the concept of transfer to the pickup and delivery
problem can make significant improvements in the objective function. Recently, Ghilas et al. (2016) have proposed
an adaptive large neighborhood search heuristic algorithm for the PDPT. They showed the merits of using transfers in
the pickup and delivery problem by testing their algorithm on sets of generated instances.

A number of research articles have also focused on finding exact solutions for this problem. For example, Mues
and Pickl (2005) developed a path-based MIP model for the PDPT and applied a column generation to solve the
model. Cortés et al. (2010) proposed an MIP model for the PDPT in which passengers have different options for
transfer from one vehicle to another at particular transfer nodes. They used a branch-and-cut algorithm based on
Benders decomposition to solve the model. In three major papers on this topic by Drexl (2012a, 2012b, 2013),
different types of synchronization (i.e., task synchronization, operation synchronization, movement synchronization,
load synchronization, and resource synchronization) have been extensively discussed. Recently, Rais et al. (2014)
proposed an MIP formulation for the PDPT with/without time windows for services in which heterogeneous vehicles
and flexible fleet size are allowed. They used the commercial solver GUROBI powered by the simplex method on
linear-programming relaxations combined with branch-and-cut and branch-and-bound techniques to solve the MIP
model. The MIP model proposed by Rais et al. (2014) solves the problem on passengers’ origin/destination-based
network. Their model does not work directly with transportation networks in which change in travel time is subject to
the time of the day (e.g., high-occupancy vehicles (HOV) lanes) or the load of the vehicle (high-occupancy toll
(HOT) lanes). Finally, dealing with several constraints, especially those related to the validity of the time and load
variables has prompted us to look at this challenging problem from a different angle.

In this research, we add time dimension to the space graph to not only track the location of vehicles at any time
but also impose parcels’ pickup and delivery time windows, synchronization time points, and precedence constraints
to the problem. Defining time as an explicit dimension and physical transportation networks as the base of our
proposed networks help us to handle the foregoing instances of HOV and HOT lanes. We also add another
dimension, called the “parcels’ cumulative service state” to the constructed space-time graph to track the service
status of parcels at any time and impose the coupling and precedence constraints to the model. Based on this premise,
our contribution is three-fold.



(1) In terms of methodology, we propose a new mathematical model for the PDPT, in which heterogeneous
vehicles and flexible fleet size are allowed. Based on our space-time-state network representation, we apply
a DP to include the vehicle-to-task assignment constraints and provide exact solutions for small-scale
problems. Meanwhile, our space-time-state network representation prevents sub-tours which is a common
issue in the family of vehicle routing problems.

(ii) More importantly, to address the curse of dimensionality, we demonstrate a consistent transition from the
cumulative service states to cumulative flow count diagrams to effectively estimate the overall dynamic
system performance. It should be noted that the concept of cumulative flow count diagram is widely applied
as a representative of dynamic activities in traffic science literature. The concept of cumulative flow count
diagram accounts for the cumulative flow count of vehicles passing through a transportation system, in
which vehicle concentrations, queue sizes, travel times, and delays are the main measures of the system
performance evaluation (see the papers by Newell, 1982 and Hall, 1991 for a summary of corresponding
methodologies).

(iii) With the consistent microscopic and macroscopic system representation, our model and algorithm can
effectively handle large-scale real-world instances and generate a good initial solution to be applied for our
Lagrangian heuristic method. Then, by our Lagrangian heuristic, we evaluate the marginal cost of each
transfer and guide a fast search for real-world test cases with about 10,000 delivery orders.

2. Problem statement for the PDPT

Unlike the case for parcels, modeling of the PDPT can be complex due to various preferences of passengers (e.g.,
to allow different number of transfers in a trip). In order to streamline our discussion around the PDPT, we have
conducted the current study based upon parcel transportation, where one does not face the foregoing complexities.
The pickup and delivery problem with time windows searches for an optimal set of routes for a fleet of vehicles to
serve a set of parcels. Each parcel must be picked up from the origin and dropped off at the destination in given
departure and arrival time windows, respectively.

Because of the introduction of transfers, each parcel is picked up and dropped off more than once, and hence, the
parcel’s trip contains more than one origin-destination (OD) pair. In this case, the OD pair can be a trip from the
parcel’s origin to a transfer point, from a transfer point to another transfer point, or from a transfer point to the
parcel’s final destination. In our model, the parcel’s origin/destination are called main origin/destination, and a
pickup/drop-off location at a transfer point is called intermediate origin/destination.

In this paper, we assign a given set of transfer points to each parcel. The set of transfer points for a parcel is
defined based on the historical data related to the previous parcels whose origin and destination were in the same
geographical zones of the parcel’s origin and destination, respectively. These transfer points can be located anywhere
in the given transportation network. Of note, the set of transfer points for a parcel can be empty. A “way” is defined
as a sequence of landmarks (i.e., the parcel’s origin, predefined transfer points (if existing), and the parcel’s
destination). The set of ways by which a parcel can be served is given. All given ways for a parcel are time-feasible.
We provide an example explaining the concept of ways for parcels in Section 3.1. For any feasible solution in the
PDPT, the following conditions must hold:

e Every vehicle starts its route from its origin depot at the time when its time horizon starts and ends the route
at its destination depot at the ending time of its time horizon.

e Every parcel is served at most once (i.e., not at all or just once).

e For every OD pair, the origin is visited before the destination (precedence constraint).

e A parcel arrives at a transfer point before departing from it (transfer synchronization).

e  For every OD pair, the pickup/drop-off occurs within the corresponding departure/arrival time windows.

e For every OD pair, the trip from origin to destination is done by a single vehicle (coupling constraint).

e The time to pickup/drop-off multiple parcels from/at a location is the sum of the times needed to
pickup/drop-off each parcel.

e Every vehicle does not exceed its capacity.

To solve the PDPT for a large number of parcels, we initially cluster the OD pairs. By doing this, the large-scale
primary problem is broken down to several sub-problems. The objective function of the clustering algorithm is to
minimize the weighted combination of mismatches between each OD pair assigned to the cluster and the OD pair
used to “seed” the cluster and the total number of clusters. We discuss the clustering algorithm in Section 3.3 in more
details.



After clustering OD pairs, we propose a least-cost path model to route vehicles inside each cluster (Section 3.4).
We note that, in this problem, the total number of vehicles is given. The objective of this problem is to minimize the
routing cost of vehicles while enforcing vehicles to serve OD pairs within their route. To implement this goal, we
provide some incentives for vehicles such that they select detours and serve OD pairs instead of selecting the direct
route (least-cost path) from their origin depot to their destination depot.

After finding the optimal route for each vehicle in each cluster, we return to the original problem and look at the
clusters as an integrated system. In this case, vehicles can be utilized more such that they can serve more OD pairs
during their time horizon. To meet this purpose, we present an [P model to find the optimal chains of tasks that can be
performed by each vehicle (Section 3.5). A task is defined as a number of OD pairs that have been already served by
a vehicle through the algorithm mentioned in Sections 3.4. The objective function of this problem is to minimize the
total routing cost for vehicles, provided that each task is taken by only one vehicle.

Section 4 provides computational results over the data set used by Ropke and Pisinger (2006) and the real-world
data set proposed by Cainiao Network (the logistics service provider to the Alibaba Group in China). In Section 4, we
demonstrate the computational efficiency of our developed algorithm coded in C++. We conclude the paper in
Section 5.

3. Our proposed model for the PDPT

The existing MIP model for the PDPT (Rais et al., 2014) contains several constraints related to the validity of the
time and load variables, which make the problem difficult to solve for a large number of parcels. The main thrust of
this paper is how to construct a multi-dimensional network such that the concept of assignment of vehicles to OD
pairs and their routing in the PDPT for a large-scale set of parcels and vehicles are integrated together. In the next
section, we explain how to construct a multi-dimensional network for the PDPT. We provide a table of notations for
sets, indices, parameters and decision variables used in this paper in Appendix A.

3.1. Space-time network

We define the problem on a physical transportation network, which includes a set of physical nodes (e.g.,
intersections or freeway merge points) and a set of directed physical links with different types (e.g., freeway
segments, arterial streets, or ramps). Generally, data sets given by metropolitan planning organizations (MPOs)
define different scenarios to account for the variation of speed over different times of day. By having a fixed length
and variant speed for each link, we can obtain the travel time for each link at each time of day. As a result, each link
has a time-dependent travel time.

As mentioned before, depending on the number of transfers, each parcel may be picked up/dropped off several
times. It is necessary to distinguish pickup/drop-off locations and vehicles’ origin/destination depots from physical
transportation nodes because, unlike physical transportation nodes, pickup/drop-off locations and vehicles’ depots
have time window restrictions. Moreover, as another distinguishing feature (compared to physical transportation
nodes), our definition for OD pairs’ cumulative service states prompts pickup and drop-off actions (state transitions)
to only occur from/at particular nodes. To address this, dummy nodes corresponding to these locations are added to
the transportation network (see the paper by Mahmoudi and Zhou, 2016 for more details).

Suppose 0D}, denotes the m' OD pair in n'™ way by which parcel j is served. Let o/, and d};, denote dummy
nodes corresponding to parcel j’s origin and destination in the m™ OD pair of n'h way, respectively. Each dummy
node is only connected to its corresponding physical transportation node by a link. We call this link a service link or,
more precisely, a pickup/drop-off link. The travel time of this link is interpreted as the service time, which is the time
needed to pick up/drop off a parcel.

Figure 2(a) illustrates a three-node transportation network with bi-directional links. Here, we provide an example
on the small-scale three-node transportation network to illustrate the concept of dummy node and parcel’s way.
Suppose two parcels needed to be transported: parcel 1 should be transported from node 1 to node 3, while parcel 2
from node 3 to node 1. We also assume that both parcels can have a one-stop trip stopping at node 2. Therefore, their
set of transfer points is {2}. Figure 2(a) illustrates the two ways by which parcels 1 and 2 can be transported (shown
by dashed and dotted lines, respectively). Figure 2(b) demonstrates a network in which dummy nodes corresponding
to each OD pair have been added to the network. In this example, there are six OD pairs: 0D/ 0/ — dJ}, for j €

(1,2,n=m=1andj,me {1,2},n = 2.
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Fig. 2. (a) Two ways, i.e., 1 » 3 and 1 - 2 — 3, by which parcel 1 can be transported, and two ways, i.e., 3 > 1 and 3 -
2 — 1, by which parcel 2 can be transported; (b) dummy nodes corresponding to each OD pair have been added to the
physical transportation network.

As mentioned before, each parcel must be picked up from its main origin and dropped off at its main destination
in particular departure and arrival time windows, respectively. Suppose [a;, b; | and [ @, b;] denote parcel j’s
departure and arrival time windows, respectively. We note that a; and b; are the earliest and latest departure times

from parcel j’s main origin, and @; and Ej are the earliest and latest arrival times to its main destination. Therefore,

[a;, bj]is the departure time window for all dummy nodes connected to parcel j’s main origin, and [ @;, b; ] is the
arrival time window for all dummy nodes connected to its main destination. For all other dummy nodes connected to
an intermediate origin or destination, a wide time window [ a;, Ej ] is considered.

In addition, let o, and d,, denote dummy nodes corresponding to the origin and destination depots for vehicle v,
respectively. Again, each dummy node is only connected to its corresponding physical node by a link. The travel time
for this link is interpreted as the preparation time (i.e., we call these links preparation links). Moreover, vehicle v’s
time horizon is denoted by [t, stares tyenal, Where ty, seqre and t, onq are the time stamps at which the time horizon
(work shift) of vehicle v begins and ends, respectively.

To illustrate space-time networks, we initially map the two-dimensional space graph (physical transportation
network with added dummy nodes) to a one-dimensional space at which all nodes are positioned in a row. Then, we
add time dimension to the space graph, where the time horizon is discretized into a series of time intervals with the
same time length. Although the solution optimality may be generally compromised by time discretization, we have
attempted to alleviate this effect by considering smaller time units (e.g., one minute) compared to OD pairs’
departure/arrival time windows and ride time. To reflect on this, we use the term “pseudo-optimal” for the solution
we obtain by solving the time-dependent least-cost path problem. Nevertheless, we note that the discretization
schemes have been already used in the literature to capture the time-related or capacity-related dynamics in
transportation system modeling: cell transmission model for traffic flow dynamics (see the paper by Daganzo, 1994),
space-time expanded network for departure time choices (see the paper by Yang and Meng, 1998), and early work on
space-time network flow models (see the paper by Zawack and Thompson, 1987).

We note that if vehicle v arrives early at a dummy node corresponding to a parcel’s pickup/drop-off location, it
should wait until the time window starts, while arriving late to these nodes is not permitted (hard time windows). In
addition, if vehicle v arrives at d,, earlier than t,, o,,4, it should wait until its time horizon ends, and arriving later than
tyena 1s not allowed. To address this, we add another dimension in the next section, called “parcels’ cumulative
service state”, to the constructed space-time graph to track the service status of OD pairs at any time.

3.2. Multi-dimensional network construction

In the classical study by Psaraftis (1980), an exact backward DP was proposed for the single-VRPPDTW to
minimize a weighted combination of the total service and waiting time for passengers. Psaraftis (1983) further
developed a forward recursion scheme in this DP to deal with passengers’ time windows. However, this approach is
not easily used for the VRPPDTW. In that study, the state representation consists of the location currently being
visited and the service status of parcels. The service status of parcels is chosen from set {1,2,3}, where 3 means parcel
j is still waiting to be picked up, 2 means parcel j has been picked up but the service has not been completed, and 1
means parcel j has been successfully delivered.

In our study, we adapt the Bellman-Held-Karp path representation scheme (Bellman,1962; Held and Karp, 1962)
in the traveling salesman problem to define passengers’ service patterns. In the foregoing studies, the passengers’
service patterns consist of two terms: the node currently being visited and the cumulative service state of passengers.
We extend the first term to the node currently being visited at time t, and the second term to the more complicated



cumulative service state of OD pairs, i.e., “pickup” and “drop-off”. In our scheme, state s is a vector whose elements
represent the cumulative service state of OD pairs. The state of 0D}, is an element chosen from set {0,1,2}. The state

of 0D/, is 0 if parcel j is still waiting to be picked up from o;7,, 1 means it has been picked up but the trip from o},
to d;, has not been completed yet, and 2 means it has been successfully delivered to d};,.

In the example mentioned in Section 3.1, since we have 6 different OD pairs (i.e., 3 OD pairs each for parcel 1
and parcel 2), 3° states may exist, which are [0,0,0,0,0,0], [1,0,0,0,0,0], [0,1,0,0,0,0], ..., [2,2,2,2,2,2]. We note that
the elements of each state are associated with the cumulative service state of OD pairs OD{ 1, OD{,, 0D}, 0D} ,,
0D} ,, and ODZ,, respectively. Some of these states are obviously infeasible. For example, at state [2,2,2,2,2,2], both
parcels are served by both ways 1 and 2, while a parcel cannot be served by more than one way.

After defining the states, the next step is defining all feasible state transitions. According to our definition for the
cumulative service state, there are a limited number of feasible state transitions from state s to s’, since several
transitions from state s to s’ violate the activity precedence constraints (e.g., if drop-off occurs before pickup) or the
vehicles’ capacity constraints. We note that in the state transition from state s to s’, the states s and s’ are only
different in one element. Figure 3 illustrates a number of feasible and infeasible state transitions for the example
mentioned in Section 3.1. State transitions illustrated in Figure 3(a) and 3(b) are feasible. Figure 3(a) shows that both
parcels are waiting to be picked up at state s, while at state s, parcel 1 is picked up by way 1 but the trip has not been
completed yet. In Figure 3(b), at state s, parcel 2 has been already delivered by way 2 successfully, and parcel 1 has
been picked up by way 1, but the service has not been completed yet. At state s’, both parcels are served successfully.
The state transition shown in Figure 3(c) is infeasible due to the violation of parcel 1’s precedence constraint.

[0,0,0,0,0,0] = [1,0,0,0,0,0] [1,0,0,0,2,2] = [2,0,0,0,2,2] [1,0,0,0,2,2] = [0,0,0,0,2,2]
(a) () (©

Fig. 3. (a) Feasible state transition in which parcel 1 is picked up, while parcel 2’s service has not started yet; (b) feasible
state transition in which parcel 1 is dropped off while parcel 2 has already been delivered; (c) infeasible state transition due
to the violation of parcel 1’s precedence constraint.

A vertex in our multi-dimensional network is an object of the form (i, t, s, v), where i is a node index (it can be
either a physical transportation node or a dummy node), t is a time index, s is an index related to the OD pairs’
cumulative service state, and v is a vehicle index. Clearly, not all (i, t, s, v)-tuples will form feasible vertexes. Vertex
(i,t,s,v) is feasible if the combination of indices i, t, and s is feasible for vehicle v’s state-space-time network. Of
note, t € [ty stares tyenal . We define a set of rules determining when such a tuple is feasible in the following
paragraphs.

Figure 4 illustrates a number of important network constructs by the example mentioned in Section 3.1. Suppose
there are two vehicles available in the system: vehicle 1 has the same origin and destination depots located at node 1,
while vehicle 2’s origin and destination depots are at node 3. First, dummy nodes corresponding to OD pairs’ pickup
and drop-off locations, as well as vehicles’ origin and destination depots, are added to the physical transportation
network (Figure 4(b)). Then, the two-dimensional space graph (XY plane) is mapped to a one-dimensional space
network in which all nodes are positioned in a row (Figure 4(c)). In the third step, the cumulative service state and
vehicle-time are added as new dimensions to the one-dimensional space network (Figure 4(c)).

To add the vehicle-time dimension to the space network, a unique block is generated for each vehicle. Several
interior layers comprising OD pairs’ cumulative service states are added along the vehicle’s time horizon. Each block
consists of two exterior layers, so-called opening and ending layers, whose job is transmitting the information related
to the cumulative service state of OD pairs from the ending layer of the current block/vehicle to the opening layer of
the next block/vehicle. In the example shown in Figure 4, similar to a runner in a relay race, vehicle 1 transmits this
information from vertex (dy, t; gng, S, 1) to vertex (0, tz seqre, S, 2). If @ vehicle serves an OD pair, it should complete
the trip from the OD pair’s origin to its destination. Therefore, we do not see any state with element “1” at the
opening and ending layers of blocks. Here, we define a set of rules determining when (i, t, s, v)-tuples are feasible.

Rule 1. The total number of vehicles is given. Index v should not exceed the total number of vehicles.
Rule 2. Node i is considered in vehicle v’s network, if and only if it is accessible to nodes o, and d,, within vehicle

v’s time horizon. In this paper, we have written a separate module, called a “space-time prism”, to determine the set
of accessible nodes for each vehicle. In this module, we use a forward and backward DP to solve a time-dependent



minimum spanning tree problem. Interested readers can find more information about space-time prism calculation in
the paper by Mahmoudi et al. (2019).

Rule 3. Node i is only feasible within its own particular time window. The time window for all physical
transportation nodes in vehicle v’s network is [t s¢are) Eyena]- The dummy nodes’ time window has been already
discussed in Section 3.1.

Rule 4. At the opening and ending layers of a block, states with element “1”” must not exist.

Rule 5. State s should not violate vehicle v’s capacity constraint. This means that the total number of element “1” at
state s must not exceed vehicle v’s capacity at any time and location.

Arc (i,i',t,t',s,s") is defined from vertex (i, t, s, v) to vertex (i’,t',s’, v") in a multi-dimensional network and is
feasible if all the following conditions are met:
Condition 1.v' € {v,v+1}.v' =v +1, if and only ifi = d,,i" = 0,,t = tyeng. t' =ty spgr» ads = 5" V' = v,
otherwise.

Condition 2. If v = 1 (i.e., the first vehicle in the system), [ = 0,, and t = t; ¢4+, then s = ¢. State ¢ is the null
state at which the service of no OD pair has started yet. In other words, all elements of vector ¢ are 0.

Condition 3. The link between adjacent nodes i and i', (i # i), must exist. The link can be a physical transportation
link, service link, or preparation link.

Condition 4. t' =t + TT; ;1 ,, where TT; ;s , is the travel time/service time/preparation time from node i to i’ starting
at time t.

Condition 5. s # s' if the link connecting node i to i’ (i # i) is one of the following links: (1) pickup link that
connects dummy node i corresponding to a parcel’s origin (main or intermediate origin) to the corresponding
transportation node i’; or (2) drop-off link that connects transportation node i to dummy node i’ associated with a
parcel’s destination (main or intermediate destination). In other cases, s = s’, where the state transition from state s to
s’ must be feasible.
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Fig. 4. (a) A three-node transportation network; (b) modified network with dummy nodes for two vehicles and two parcels;
(c) three-dimensional space-time-state network.

Due to the complexity of the constructed network, our model is able to solve the PDPT for a limited number of
OD pairs and vehicles. To handle a large-scale set of OD pairs, we suggest the traditional cluster-first, route-second
approach in which the large-scale primary problem is broken down to several sub-problems. In the next section, we
describe the details of the clustering phase, and then explain how to conduct the PDPT on the constructed network.

3.3. Clustering OD pairs

Finding high-quality clusters without having some levels of routing information is a difficult task. Some methods
cluster OD pairs based on the proximity of geographical zones of their respective origin and destination nodes.
Dumas et al. (1989) introduced the concept of mini-clusters, where parcels with spatio-temporal proximity are
clustered together. In their algorithm, a heuristic algorithm provided a set of mini clusters. Desrosiers et al. (1991)
proposed another way of constructing mini-clusters by a parallel insertion method based on spatio-temporal
proximity of the parcels. loachim et al. (1995) later applied an optimization-based technique instead of a heuristic for
constructing mini-clusters. Zhu and Guo (2014) presented a hierarchical clustering algorithm in which nearby OD
pairs had a higher probability of belonging to the same cluster than to a cluster containing OD pairs that are farther
away. Wan et al. (2015) and Kumar (2016) used a density-based hierarchical clustering method, in which clusters
were defined as areas of higher density than the remainder of the data set. Ball and Hall (1965) and Lloyd (1982)
presented a centroid-based clustering algorithm (i.e., ~~-means) operating based on optimizing an objective function,
which typically measures inter-cluster separation, within-cluster variance or both. Pankratz (2005), Bard and Jarrah
(2009), Qu and Bard (2012), and Masson et al. (2013) are some of many examples of studies that applied a clustering
algorithm for solving the pickup and delivery problem.
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In our research, since we examine the pickup and delivery problem with time windows, the time should also be
considered. Therefore, we utilize the space-time network and spatiotemporal zones to do the clustering procedure.
Since each OD pair has a pickup/drop-off time window and not a unique time stamp for pickup/drop-off action, we
assume that the pickup/drop-off action occurs in the middle of each departure/arrival time window. This assumption
also helps us to approximately calculate the space-time distance between two space-time vertexes. We calculate the
space-time distance between each OD pair’s origin vertex and other OD pairs’ origin vertexes or each OD pair’s
destination vertex and other OD pairs’ destination vertexes by calculating the weighted combination of geographical
and temporal distance between two vertexes. We calculate the geographical distance between two vertexes by the
Euclidian distance and calculate the temporal distance between two vertexes by the absolute value of the difference
between two corresponding time stamps.

First, to find these space-time distances, we calculate the middle time of o/, ’s departure time window. The

aj+

bj. . . .. .. aj+b;
2” if 0/, is connected to the main origin, and it is =—

middle time of 0/ ’s departure time window is if o/, is

m»

connected to an intermediate origin. We call the middle time of 0]7,’s departure time window as 0;7,’s departure time

aj+bj
2

stamp, and denote it by tom,- Similarly, we calculate the middle time of d},’s arrival time window, i.e., if o/

aj+bj

is connected to the main destination and if 0], is connected to an intermediate destination, call it as d;7,’s

arrival time stamp, and denote it by t,m . We also set 8; as the weight of geographical distance (per mile) and £, as
aly

the weight of temporal distance (per minute) to weight the space and time dissimilarities in our space-time distance
calculation, respectively. Different values of 5; and S, result in different clusters. Suppose f ,, o’ is the space-time
05l !
! !
distance between o/, and oﬁfnr, and f " m is the space-time distance between d;; and djrf"n,. Then, we propose
B j'n
equations (1)-(2) to calculate fom n and f

!
m
j:n'oj’,n’ dj,n'dj’,n’

(1)
= X —_ 2 — 2 X —
Fopont, =P \[(xo;mn Xyt JEE O, = )2 B X [taps ~ Ly |
2)
=P X [(xgm —x z 4 - 24 By X [tgm —t
Fapart, =B J( = X V¥ Oapy = Yo V4 B X |tap Ly

where x and y are the x-coordinate and y-coordinate of the corresponding dummy node. We note that these
coordinates are exactly the same as the x/y-coordinate of the physical node corresponding to the dummy node. The
first term of the right-hand side of equations (1)-(2) calculates the geographical distance, while the second term
computes the temporal distance between two nodes.

The relationship between [5; and S, is directly related to the average speed limit of transportation links in
transportation networks. Let us assume that the average speed limit of transportation links is 25 miles per hour (mph).
Suppose one mile as the unit of distance and one minute as the unit of time. Then, by driving with 25 mph speed, we
can travel 0.417 miles in one minute. It means that 0.417 miles travel is equivalent to one-minute travel by a vehicle
with the average speed of 25 mph; therefore, with 25 mph speed, §; is equal to 1 per mile and £, is equal to
0.417 per minute. Similarly, by driving with 60 mph speed, we can travel one mile in one minute. In other words,
one-mile travel is equivalent to one-minute travel by a vehicle with the average speed of 60 mph; therefore, with 60
mph speed, §; is equal to 1 per mile and f, is equal to 1 per minute. Suppose the average speed varies between 25

mph and 60 mph, then §; =1 and 0.417 < 5, < 1. Finally, let - denote the measure of dissimilarity
i

j’,n’
I
between 0D/} and OD]Tn, and is calculated by max {fom om’ fdm ' }. We consider the maximum value of
’ ’ 0l ot J @il ot
fom om’ and f am g’ for the calculation of T opm opm’ 10 reflect the highest space-time dissimilarity between 0D},
: N 7 : j,n' N ’

im0l n J it i !

and ODJTff;,. Figure 5 illustrates an example in which three OD pairs have been defined in the same cluster.
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Fig. 5. A cluster of three OD pairs.

Thus, we have calculated the maximum dissimilarity between each OD pair and other OD pairs. In the next step,
each OD pair is considered as an individual cluster. As a result, we can obtain the dissimilarity between 0D}, and

cluster g by calculating the value of TobTtq: Of note, the dissimilarity between OD;; and its corresponding cluster is

equal to 0. Defining the pickup and delivery problem on multi-dimensional networks increases the computational
efforts for solving the DP algorithm that will be discussed in Section 3.5. Our proposed DP can solve the pickup and
delivery problem for at most @ number of OD pairs per cluster. The value of a is 35 in our practice. We propose an
[P model to cluster OD pairs:

Min {51 X Xq2jXn2m {rOD%,q'ZODﬂl,q} +8 XX Yq} )
S.L.

YiYnTm ZopTt,q < @Yq vq, “4)
Xq ZopM,q = 1 Vj,vn,vVm, (5)
Zop™q € {0,1}; y, € {0,1} vq,vj,vn,vm. (6)

Variable y, equals 1 if cluster g exists, and 0 otherwise. Variable z,,m , is also equal to 1 if 0D, is assigned to
q OD],n, jm

q
cluster g, and 0 otherwise. Objective function in (3) consists of two terms: the first term captures the dissimilarity
between each OD pair assigned to the cluster and the OD pair used to “seed” the cluster, and the second term reveals
the total number of clusters. Without having term ¥, y, in the objective function, each OD pair is assigned to its own
cluster. We set {; as the weight of the former term and {, as the weight of the latter term in the objective function.
Since different values of {; and {, result in different clusters, we adjust these values to generate variant clusters.

In this IP model, constraint (4) expresses that each cluster must contain up to & number of OD pairs. Moreover,
each OD pair must be assigned to exactly one cluster (constraint (5)). This problem can be solved by any commercial
solver, such as ILOG Cplex, Xpress-MP or GUROBI. In our experiments, we use GAMS Distribution 23.00.

The first term of objective function (3), i.e., Xg X Xn X {rOD},’;l,q' ZOD},%Q}’ could be much more accurate if it

was formulated by the quadratic function Y X(jnm) Xj'm'm’ T, m o m’ Zop™ q Z, m' . This quadratic function
0Dy ODjr ! jmn ODjr ard

considers the pairwise dissimilarity between all pairs of OD pairs included in the same cluster. However, commercial
solvers, such as CPLEX can handle the quadratic objective but may not perform well for larger problems and will not
guarantee an optimal solution.

We note that our data (set of OD pairs) consists of space-time vectors. There are plenty of instances in the
literature that have attempted to compare clustering algorithms in high dimensions. But there are too many factors
involved: what does our data look like, how do we preprocess it, do we have a well-chosen and appropriate distance
measure, how good is our implementation, do we have index acceleration to speed up some algorithms, etc. Our
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proposed clustering algorithm is just a preprocessing step to break the main large-scale problem to several sub-
problems. Nevertheless, we do not claim that our method performs better than other machine learning methods.

3.4. Routing inside the clusters

Routing cost of arc (i,i’,t,t',s,s’,v,v), denoted by ¢; ;7 ; ./ s 1 ,,, is the real physical movement cost. In this paper, we
aim to minimize the routing cost of vehicles while enforcing vehicles to serve OD pairs within their route. To
implement this goal, we provide some incentives for vehicles such that they select detours and serve OD pairs instead
of selecting the direct route (least-cost path) from their origin depot to their destination depot. This can happen by
considering a negative cost associated with the pickup arc of each OD pair in each cluster. Let EJ% denote the service

cost of m™ OD pair for way n for parcel j. Then, the routing cost for the pickup arc of 0D}, is the sum of its real

physical movement cost and E}"; Let TCy, denote the total transportation cost of a vehicle when it leaves its origin
depot to exclusively serve OD;, and return to its destination depot. We initialize Eﬁl by (=T(/,). We noticed that
this method of initialization can reduce the convergence time of the Lagrangian heuristic algorithm that will be
explained in Section 3.6; however, the quality of final solution is not significantly affected by the initial value of E}T,lq.
At this stage, we assume that the total number of vehicles in cluster g is known, that is equal to the total number
of OD pairs in cluster g, and the goal is to minimize the routing cost of vehicles while enforcing vehicles to serve OD
pairs within their route. We note that the vehicles serving OD pairs at this stage are not real and have been defined
just for the sake of OD pairs’ routing inside each cluster. We assume that all these hypothetical vehicles are
homogenous in terms of capacity, origin and destination depots, and time horizon. Let us find the average x-
coordinate of all OD pairs’ origin in cluster ¢ and denote it by X, 4. Similarly, yo‘q denotes the average y-coordinate

of all OD pairs’ origin in cluster g. Then, the closest physical transportation node to [x, 4, q] is assumed as the

origin depot of all vehicles in cluster g, and the dummy node corresponding to this origin depot is added to the
network and symbolized by 0,. We also find the x- and y-coordinates of all OD pairs’ destination in cluster g and
denote them by x4 4 and y o respectively. Then, the closest physical transportation node to [x44,Y q] is assumed as

the destination depot of all vehicles in cluster g, and the dummy node corresponding to this destination depot is added
to the network and symbolized by d,.

We also guarantee that the vehicles in cluster g have enough time to reach all OD pairs’ origin and destination.
In other words, if an OD pair is not served in cluster g, it should not be due to the inaccessibility of the OD pair’s
origin/destination to the vehicles’ depots. Therefore, we assume that all vehicles in cluster g start their routes from
the least earliest departure time of all OD pairs in cluster ¢ minus a sufficient tolerant time interval, denoted by t,,
and end them at the utmost latest arrival time of all OD pairs in cluster g plus a sufficient tolerant time interval,
denoted by fq. The sufficient tolerant time interval has been set as 20 minutes in our computational experiments.

Thus far, we clustered OD pairs and assigned a number of hypothetical vehicles to serve the OD pairs inside each
cluster. Then, we construct a network for each cluster, in which each vehicle starts its route from o, at time tg,
choose the least-cost path and may or may not serve OD pairs within its route, and ends its route to d,, at time t;.
Finally, the vehicle transmits the information related to the cumulative service state of OD pairs to the next vehicle.
This is exactly a time-dependent state-dependent least-cost path problem whose mathematical model is provided in
the next section.

In the model proposed by Mahmoudi and Zhou (2016) for the VRPPDTW, if an OD pair has a high negative cost
in one iteration, it may be served several times by multiple vehicles. To prevent from this issue, their algorithm
considers a penalty for that OD pair in the next iteration to prevent vehicles from serving that OD pair. Then, after
some iterations, the marginal cost of each OD pair converges to a particular value. However, if OD pairs are densely
distributed in the transportation network, it is quite possible that the marginal cost of some OD pairs never converges
to a specific value. In this paper, the serial structure of our network is such that the vehicles are routed one by one,
and the information related to the parcels’ service state is transferred from the current vehicle to the next one. Thanks
to this feature in our network, an OD pair is never served by multiple vehicles, and therefore, we never face this issue.

Based on the constructed network that can capture vehicles’ capacity constraints, as well as desired departure and
arrival time windows and precedence constraints, we now start constructing a least-cost path model for the local
clusters derived from the original large-scale real-world instances. The model uses binary variables x; ;7 ., ¢ o7,/
which is equal to 1 if arc (i,i’,t,t’,s,s’, v, v") is used, and 0 otherwise. The objective is to find a set of minimum-cost
vehicle routes. Then, the problem can be mathematically modeled as follows:

Min Zi.i’.t.t’.s.s’.v{ci,i’,t,t’,s,s’,v : xi,i’,t,t’,s,s’,v,v} (7
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S.1.

Zil,tlysl xoq,i’,ﬁq,t’,d),sl,vl,vl = 1’ (8)
Zi,t,s,s’ xi,dq,t,fq,s,s’,vlvq|,v|Vq| =1, (9)
Zi’,t’,s’,v’ Xii'tt'ss vo' Zi’,t’,s’,v’ Xilit'ts' sv'w = 0 v(it s, v), (10)
Xiit et ss' vo' €10,1} v(, it t',s, s, v,v"). (1D

The objective function (7) minimizes total routing costs, including all real physical movement costs, waiting
costs, preparation costs, and all E’;ln values for any OD pair (j,n,m) selected. Constraints (8)-(10) ensure flow
balance on every vertex in the network. Constraint (11) defines the binary decision variables.

Cumulative service states at the ending layer of the last vehicle of a cluster ensure that, for each parcel, OD pairs
from at most one way are selected. To guarantee the sequencing of OD pairs in way n, once a service arc
corresponding to parcel j’s pickup/drop-off is traversed, the time corresponding to this traverse is recorded. Then, the
time windows corresponding to the dummy nodes related to the former and latter OD pairs of way n for parcel j that
have not been traversed yet are modified. If more than one OD pair from a way exists in a cluster, by our definition
for feasible state transition, the sequencing of OD pairs in that way is guaranteed. Moreover, by our definition for
feasible cumulative service states at the ending layer of the last vehicle of the cluster, if in a cluster, any OD pair
from way n for parcel j is selected, all OD pairs of way n for parcel j existing in the cluster are selected. To sum up,
the least-cost path problem solved in this step uses the cumulative service states and expanded network structure to
guarantee that:

(1) OD pairs from at most one way for each parcel are selected,

(i1) any subset of OD pairs from one way for a parcel that are selected occur at times that are feasible (their time
sequence corresponds to that of their way and there is enough time to complete any intermediate OD pairs
from the way that are not in this cluster), and

(ii1) if any OD pair from a way for a parcel in the cluster is selected, then every OD pair for that way and for that
parcel that occurs in the cluster is selected.

3.5. Routing outside the clusters

Our clustering procedure may raise the question about whether or not a vehicle can serve in more than one
cluster. The answer would be “yes”. In fact, if the space-time vertex at which vehicle v’ from cluster g’ picks up its
first parcel is accessible for the space-time vertex at which vehicle v from cluster g drops off its last parcel, then the
tasks of vehicles v and v’ can be performed by one vehicle. A task/work piece is a number of OD pairs already
served by one vehicle. To sum up, vehicles can be utilized more during their time horizon if they could serve in more
than one cluster. Figure 6 illustrates this procedure by an example in which seven OD pairs (grouped in three
clusters) are served by a single vehicle.

» Time
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6:00 PM + + > X-space (mile)
Fig. 6. An illustration of three clusters performed by one vehicle.
At this stage, we work with the real heterogonous vehicles distributed in the transportation network. We find the

optimal chains of tasks that can be performed by each real vehicle. We note that each task/work piece has already
been completed by a hypothetical vehicle from Section 3.4. The total number of real vehicles is unknown; however,
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potential origin/destination depots for these vehicles are known beforehand. Let E denote the set of potential origin
depots and E' the set of potential destination depots for real vehicles. Let W denote the set of work pieces generated
in Section 3.4 (so, W represents a set of hypothetical vehicles’ activities, each consisting of a sequence of pickup,
travel and drop-off operations occurring at specified times). We define a network to have nodes £ U W U E’ and arcs
given by a subset A S (E X W)U (W X W) U (W X E"), so that:

e (e,w)€E Afore €FE andw € W if and only if a real vehicle starting at origin depot e can perform work
piece w,

e (w,w") € Aforw,w €W ifand only if w # w'and a real vehicle can perform work piece w’ immediately
after completing work piece w, and

o (w,e")eAforw €W ande' € E'if and only if a real vehicle can perform work piece w before ending at
destination depot e’.

For each a € A, the cost ¢, is
e the transport cost of getting from e to the start of w, plus M, a cost per real vehicle used, if a = (e, w) €
EXW,
e the cost of performing work piece w (calculated in Section 3.4) plus the cost of transport from the end of w
to the start of 0’ if a = (w, w") € W X W, and is
e the cost of performing work piece w (calculated in Section 3.4) plus the cost of transport from the end of w
to depot e’ ifa = (w,e’) € W X E'.

The problem to be solved in this section is to construct a set of paths in the network, each starting at a node in E
and ending at a node in E’, so that the paths induce a partition of W, and total cost of arcs used in paths is minimized.
This problem can be modeled as an IP model as follows: Define §*(w) to be the set of arcs in A leaving w € W and
6~ (w) to be the set of arcs in A entering w € W. We also define decision variable y, = 1 if arc a € A appears in a
path for a real vehicle; y, = 0 otherwise. Now, the IP model is as follows:

min Zaeﬂ CaVa (12)
S.1.

Yaest(w)Ya =1 Vo €W, (13)
Yaes~(w)Ya =1 Vo €W, (14)
y € {0,134 (15)

We note that due to the start and end times associated with each work piece w € W, the network with arcs A
will be acyclic. Hence, there is no need for constraints to remove sub-tours in this model. This problem can be viewed
as a special, simpler, case of a well-known problem, named the “vehicle scheduling problem” (see Bunte and
Kliewer, 2009 for more details).

From a column generation standpoint (Dumas et al., 1991), our approach only examines the chains containing
optimal routes of multiple vehicles, so-called “long” columns, in comparison with the commonly used single vehicle
“short” columns in a generic column generation scheme. Thus, our algorithms can be viewed as an adaption of
column generation algorithm that operates on a small set of long columns with parcel-to-vehicle assignment-routing
solutions.

3.6. Lagrangian heuristic for OD pairs’ marginal cost adjustment

In the solution obtained from Section 3.5, it is possible that OD pairs from multiple ways for a parcel are selected
(the ways were in different clusters). To address this issue, we use constraints that we call leg-covering constraints.
These exploit the observation that if a parcel is served at most one way (or partially served by OD-pairs from no more
than one way), then at most one OD pair in any set consisting of no more than one OD pair from each of the parcel’s
ways can be used. Let 0;,, denote the set of origin nodes, i.e., the set of nodes of the form 0", for each parcel j and
each n indexing a way for that parcel. Then, the leg-covering constraints are as follows:

Z(i,i’,t,t’,s,s’,v,v):ieS.i’éES Xiil et ss'ww =1 vj,vS € Uyp Oj,n s.t. |S n 0j,n| =1vn (16)
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Since the number of ways for each parcel is expected to be small, enumerating these constraints is not
prohibitive. We use the example illustrated in Figure 2 to better explain the concept of leg-covering cuts (Figure 7).

In this example, 0; ; = {011}, 01, = {0],,07,},and S € {{011‘1, 011‘2}, {011‘1, 012‘2}}.
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Fig. 7. Two leg-covering cuts to guarantee that parcel 1 is served by exactly one way.

In a half-finished way for a parcel, some but not all OD pairs for the way have been selected (where the OD pairs
for one way are split between different clusters and the parcel is not picked-up in all these clusters). In order to
prevent half-finished ways, we add another constraint presented as follows:

Zi,t,t’,s,s’,v xo}"n,i,t,t’,s,s’,v,v < Zi.t.t’.s.s’.v xojr-"n“,i,t,t’,s,s’,v,v' Vj,vn,Vm. (17)

We tune the marginal cost of every leg-covering cut and half-finished way for each parcel and subsequently
adjust the marginal cost of each OD pair by using the sub-gradient method. Let k denote the iteration number and
Ok jns and Ay ;s denote the step size and Lagrangian multiplier corresponding to cut (j,n,S) at iteration k,
respectively. First, we initialize 0 j,, s to a base cost, where base cost has a negative value and is defined as the total
negative costs obtained by selecting every link (i,i"), where i € S,i" ¢ S. We also set 4,5 = 0. Second, we
calculate the sub-gradient of cut (j,n, S), denoted by Vle,j,n,s’ using equation (18). Third, we update the Lagrangian
multiplier corresponding to cut (j,n,S) for the next iteration by (19). Finally, we update the step size of the next
iteration by equation (20). After calculating A1 j s, We distribute the updated marginal cost of cut (j,n,S) among
all links, whose origin node belongs to set S, based on their current marginal cost.

VLAk_j_n_s =1- Z(i,i’,t,t’,s,s’,v,v):ieS,i’ES Xii'tt'ss vy (18)
Aics1jms = MiN (0, A jns + Ok jms- Vi, ;1 o) (19)

90,j,n,S (20)
Qk,j,n,S - k+1

We do the same procedure for constraint (17); 6"y jynm and A’y .., denote the step size and Lagrangian
multiplier corresponding to constraint (17) at iteration k, respectively. First, we initialize 6’y ; , , to a base cost,
where base cost has a positive value and is defined as the absolute value of the difference between the negative costs
of links originated from o}, and oj"’,ll+1 . We also set 'g;nm =0. Second, we calculate the sub-gradient
corresponding to constraint (17) at iteration k, denoted by VL', Kjmm? by equation (21). Third, we update the
Lagrangian multiplier corresponding to the constraint for the next iteration with equation (22). Finally, we update the
step size of the next iteration by equation (23). After calculating A'y1 j  m, We distribute the updated marginal cost
of constraint (17) among the links originated from o/, and 0})’,‘1“ based on their current marginal cost. Our proposed

Lagrangian heuristic stops if the total number of iterations becomes greater than a predetermined maximum iteration
number (i.e., 30 iterations in our experiments).

! j— —_— .
VL Miejmm — Zi,t,t’,s,s’,v xo}rln'i't't"s'slvv'” Zl't't’vs'sl'” xOTn“.i.t.t',s.s'.v.v’ (21)
! _ . ’ ! !
A k+1,jnm = MIN (0,2 kjmm T 6 k,jnm: VL A’k,j,n,m)’ (22)
_ elo,j,n,m (23)

!
6 kjnm — T4

To sum up, at each iteration, we solve the least-cost path problem presented in Section 3.4. Then, we solve the IP
model presented in Section 3.5. Finally, we adjust the marginal cost of each OD pair by using the sub-gradient
method to alleviate the issues related to selecting multiple and/or half-finished ways for a parcel. These steps provide
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a lower bound solution for the primal problem. Every parcel in the lower bound solution has one of the following
situations:

(1) No OD pair for the parcel has been selected;

(i) Some but not all OD pairs of a way for the parcel have been selected. This results in a half-finished way;
(iii) OD pairs of multiple ways for the parcel have been selected. These ways can be complete or half-finished.
(iv) All OD pairs of a way for the parcel have been selected. This results in a complete way;

Among all these four situations, only situation (iv) results in feasibility. Situations (ii) and (iii) both result in
infeasibility. Situation (i) also causes infeasibility if the objective is to serve all parcels. At the end of each iteration,
we develop a heuristic to generate an upper bound based on the solution we obtain from the lower bound.

Step 1:

e If situation (i) occurs for a parcel and causes infeasibility, assign its non-stop way to the parcel. In our
experiments, each parcel can be served by its non-stop way. Consider the OD pair corresponding to this non-stop
way as a new work piece.

e If situation (ii) occurs for a parcel, assign the half-finished way to the parcel and consider the unserved OD pairs
of this way as new separate work pieces.

e If situation (iii) occurs for a parcel and at least one complete way exists among the selected ways, maintain one
of the complete ways for the parcel in the upper bound solution and ignore all others.

e If situation (iii) occurs for a parcel and no complete way exists among the selected ways, assign the half-finished
way with the least number of unserved OD pairs to the parcel, consider the unserved OD pairs corresponding to
this way as new separate work pieces, and ignore all other ways.

e Ifsituation (iv) occurs for a parcel, maintain the way for the parcel in the upper bound solution.

Of note, by ignoring the selected ways, we simply assume that the dummy nodes associated with the OD pairs of
these ways were traversed as physical transportation nodes in the least-cost path algorithm presented in Section 3.4.

Step 2: Solve the IP model presented in Section 3.5 again when new work pieces from Step 1 are added to the set of
work pieces obtained from Section 3.4. Update the global upper bound (i.e., a solution with the least total cost among
all upper bound solutions thus far).

Here, we provide a summary of the steps we take to perform the cluster-first, route-second approach:

Step 1(a): Heuristically cluster all OD pairs in all possible ways, so that there are at most « (set to 35 in practice) OD
pairs per cluster (Section 3.3).

Step 1(b): Initialize the cost of each OD pair for each way of each parcel to be the negative of the total transportation
costs of a vehicle when it leaves its origin depot, exclusively serves OD/7, and returns to its destination depot

(Section 3.4).

Step 1(c): Use a rule of thumb to construct a hypothetical vehicle origin, destination and time window for each
cluster (Section 3.4).

Step 2: For each cluster, solve a least-cost path problem in an expanded network to select the subset of OD pairs to
serve by hypothetical vehicles, and to decide the time of each pick-up and drop-off operation in each selected OD
pair. Each hypothetical vehicle performs a sequence of parcel pick-up and drop-off operations that is feasible in time
and space that does not violate its capacity. The objective is to minimize “total routing costs,” while enforcing
vehicles to serve OD pairs within their route (Section 3.4).

Step 3: The activities of each hypothetical vehicle in each cluster forms a “work piece.” These are partitioned (and
sequenced, implied by the timing of the work pieces) by finding a partitioning of an acyclic network into paths. Each
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path is a sequence of activities to be performed by a real vehicle. The objective is to minimize “routing cost” (Section
3.5). This may result in (i) no OD pairs for a parcel being selected, (ii) some but not all OD pairs for one way of a
parcel being selected, or (iii) OD pairs from multiple ways for a parcel being selected. Issue (i) is addressed implicitly
by the initialization of Ey; to be negative values.

Step 4. Adjust ¢}, to address issues (ii) and (iii) in Step 3 by Lagrangian relaxation of constraints (16)-(17) to enforce
them with sub-gradient optimization used to adjust the Lagrangian multipliers (Section 3.6). A heuristic is proposed
to generate the upper bound from the solution obtained from the lower bound. The global upper bound is also
updated. Go to Step 2.

3.7. On the computational complexity of the DP algorithm used for each cluster

Several efficient algorithms have been suggested to solve the time-dependent least-cost path problem on a
network with time-dependent arc costs (see the papers by Ziliaskopoulos and Mahmassani, 1993 and Chabini, 1998
in the context of deterministic networks; Miller-Hooks and Mahmassani, 1998 and 2000 in the context of stochastic
networks). We have used a time-dependent state-dependent DP algorithm to solve the least-cost path problem
obtained from Section 3.4. Assume that the unit of time is one minute. Let L; ; ,, denote the label of vertex (i, t, s, v)
and the term “pred” stands for the predecessor. Algorithm 1, described below, presents the proposed time-dependent
forward DP algorithm.

/I Algorithm 1: Time-dependent forward DP algorithm for each cluster g
for each vehicle v, v € V; do
begin
// initialization
L, = +oo;
node pred of vertex (.,.,.,.) := —1;
time pred of vertex (.,.,.,.) := —1;
state pred of vertex (.,.,.,.) := —1;
vehicle pred of vertex (.,.,.,.) = —1;
for each time t € [gq,fq] do
begin
for each link (i,i") do
begin
for each state s do
begin
derive downstream state s’ based on the feasible state transition on link (i, i")
derive arrival time t' =t + TT) ;1 ¢;
derive v'; // Section 3.2, Condition 1
if (Ligsy t+ Ciit et ss'v < Liryr s ') // The condition corresponds to the Bellman optimality condition.
begin
Lirgrstor = Ligsy + Ciit 4’ 5,50 5 // label update
node pred of vertex (i’,t',s",v") :=i;
time pred of vertex (i’,t',s’,v") :=t;
state pred of vertex (i’,t',s',v") :=s;
vehicle pred of vertex (i’,t',s’,v") := v;
end;
end; // for each state
end; // for each link
end; // for each time
end; // for each vehicle

Let L, and T, denote the set of links and time stamps in cluster g, respectively. According to our definition for
cumulative service states, the total number of cumulative service states for & number of OD pairs in cluster q is 3%,
because each OD pair’s cumulative service state can be 0, 1, or 2. Therefore, the space complexity of our proposed
DP algorithm for each cluster is O(a3% |Tq||Lq |). Our experiments were performed on an Intel Workstation running
two Xeon E5-2680 processors clocked at 2.80 GHz with 20 cores and 192GB RAM running Windows Server 2008
x64 Edition. Let us assume that |Tq| =103 and |Lq| = 103. In the innermost loop of Algorithm 1, we record five
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data for vertex (i’,t,s’, v"): the label, node predecessor, time predecessor, state predecessor, and vehicle predecessor.
As a result, 5a3% x 106 bytes of memory are required. To find the maximum value of a for any machine that runs
our algorithm, it is sufficient to find the solution for this inequality: 5a3% x 10° < total available memory. For the
machine we are running our experiments on, 192GB RAM is available; therefore, the maximum theoretical value of
a is 7. We note that due to the existence of time and state dimensions in our model, the calculated « is not very large.
In practice, the actual value of a solvable by our exact DP on our machine is larger than 7 (i.e., @ = 35), as explained
below.

According to Algorithm 1, the network is created before DP implementation. This means that, before DP starts
scanning vertexes, for each time t and each node i, all states corresponding to the OD pairs of cluster g must be
generated. Sometimes the total number of feasible states for (i,t) is quite large such that the size of the network
becomes enormous. In this case, we suggest creating the network dynamically within the scanning process (which
could considerably reduce the search space). We also suggest using a beam search algorithm to keep a limited
number of states for vertexes built from node i and time ¢ at each level when the number of candidate states is large.

The beam search algorithm reduces the search space by setting dominance rules and solves practical problems
within reasonable time and memory. The beam search algorithm is a greedy search algorithm that uses breadth-first
search to explore the search tree. In addition, only a limited number of promising nodes (states in our case) are kept at
each level of the search tree, and other nodes are pruned off. In this algorithm, beam width refers to the number of
promising nodes left at each level. In general, beam width restricts the memory required to perform the tree search.
We note that fewer nodes are cut off with greater beam width. The beam search algorithm finally generates a
representative set of non-dominated or promising solutions. In order to explain our beam search algorithm, we
elaborate the concept of cumulative flow count diagram first.

Edie and Foote (1960) first designed cumulative curves to describe the cumulative flow count of vehicles, and
Gazis and Potts (1963) used a cumulative diagram as a predictive tool for the first time. Newell (1993) further
presented a three-dimensional version of a cumulative diagram regarding space, time, and cumulative flow, to merge
the concepts of cumulative diagrams with wave theory (Makigami et al., 1971). Daganzo (2001) presented a seminal
study for extending N curves to study the dynamics and stability of supply chain systems. Our cumulative flow count
approach sheds more light on a recent development direction in the field of discrete-time IP (Boland et al., 2017),
which aims to iteratively refine and find optimal continuous-time solutions without explicitly modeling the
microscopic state changes along the discrete time dimension.

Cumulative flow count diagrams are effective in describing the service process in the queueing system. The
service process represents the required time and resources to serve a parcel. The performance of the queueing system
is defined by the arrival process, service process, and queue discipline. We use time-dependent cumulative flow
counts for each agent (i.e., parcel) to capture the arrival and departure of traveling objects. Figure 8 illustrates the
graphs corresponding to parcels’ cumulative arrival, on-board, and departure count diagrams. The region bounded by
the parcels’ cumulative arrival and on-board count diagrams represents the total waiting time for parcels to be picked
up. The area bounded by the parcels’ cumulative on-board and departure count diagrams represents the total service
time.

Parcels cumulative
Parcels cumulative on-board count
arrival count \

\

#of unserved parcels

Parcels cumulative
departure count

Cumulative count

Beginning of End of time

Time
time horizon horizon
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Fig. 8. Cumulative arrival, departure, and on-board count diagrams.

Regarding the performance of a vehicle routing system, we propose four criteria as evaluation rules during the
node selection procedure to be used in the beam search process. Let C} (t), CP(t), CE(t), CZ(t), and CE(t) denote
parcels’ cumulative arrival count to the system at time ¢, parcels’ cumulative on-board count at time t, parcels’
cumulative departure count from the system at time t, vehicles’ cumulative arrival count to the system at time ¢, and
vehicles’ cumulative departure count from the system at time t, respectively. Then, our four criteria are presented as
follows:

e  The total number of unserved parcels at time t are minimized. This criterion is calculated by Cf @ -c g (.
e To improve service quality, the total waiting time of parcels who are receiving service until time t are
minimized. This criterion is calculated by ZE!qu [Ch (") = ChN).

e The total serving time of parcels until time t should also be minimized to improve parcels’ service quality.
This criterion is calculated by Zi,th[cg &) —=chnl.

e The total processing time for vehicles until time t indicates the efficiency of the system to some degree. This
criterion is represented by foth [CZ(t") — C5(N].

In our experiments, we consider two different approaches to define these dominance rules. The first approach is
to define a utility function, which is a weighted combination of all four criteria. Then, the top twenty states with the
highest utility will be selected for further exploration, while other states will be pruned off (twenty is set after
parameter tuning). In the second approach, we keep the top twenty states with the highest collected profit (negative
cost) obtained from picking up OD pairs. It may be interpreted that states at which more OD pairs are picked up have
higher priority to be selected.

Here, we use the example mentioned in Section 3.1 to show vehicles’ processing time as a measure of dynamic
system performance. Vehicles’ processing time are checked during the node selection procedure in the beam search
process. Figure 9 shows the space-vehicle-time path by which each parcel is served by a non-stop trip. This path is as
follow: 0, >1—->0{; »1-52-53->d}; »3->2->1->d, »0,-53-03;,>3->2->1-d};>1->2-
3 = d,. The state corresponding to the vertex at which the state transition occurs is shown in Figure 9 as well. As can
be seen, if parcels are served by non-stop trips, deadheading for vehicles occurs. In other words, each vehicle must
travel for 1 hour without carrying any parcel to return to its destination depot. In this case, the total processing time
for each vehicle is equal to 2 hours. Figure 10 shows the space-vehicle-time path by which each parcel is served by a
one-stop trip. This path is 0, > 1-0{,21-2-d{,>2-05,22->1-d5,>1->d; 20,>3>
0}, >3-2-dy,>2-0{,>2->3->d}, >3- d, In this case, since parcels are delivered by one-stop
trips, deadheading does not occur, and the total processing time for each vehicle is equal to 1 hour.
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Fig. 9. Measuring the dynamic system performance in a pickup and delivery without any transfer.
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Fig. 10. Measuring the dynamic system performance in a pickup and delivery with a transfer.

4. Computational experiments
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The time-dependent state-dependent DP described in this paper was coded in C++ platforms, while OD pairs’
clustering and work pieces routing were solved by GAMS Distribution 23.00. The experiments were performed on an
Intel Workstation running two Xeon E5-2680 processors clocked at 2.80 GHz with 20 cores and 192GB RAM
running Windows Server 2008 x64 Edition. In this section, we examine our proposed model on data set used by
Ropke and Pisinger (2006) which is publicly available at http://www.diku.dk/~sropke/, followed by the data provided
by Cainiao Network available at https://tianchi.shuju.aliyun.com/datalab/index.htm to demonstrate the computational
efficiency of our developed algorithm. The complete C++ implementation of the proposed DP algorithm and data set
for the three-node example are available at https://github.com/xzhou99/Agent-Plus. We note that, in this paper, each
parcel has at most three different ways to be served, and there are several parcels in our experiments that are served
by non-stop trips. In both data sets, the algorithm terminates after 30 iterations.

4.1. The data set used by Ropke and Pisinger (2006)

The data set used by Ropke and Pisinger (2006) is the modified version of instances initially introduced by
Savelsbergh and Sol (1998). In this data set, parcel p’s origin and destination are denoted by node p and node n + p,
respectively, where n is the total number of parcels in the system. In addition, the coordinates (x and y) of parcels’
origin and destination are randomly generated and uniformly distributed over a [0,50] X [0,50] square. A single
depot is located in [25,25]. Moreover, [0,1000] is considered as the vehicles’ time horizon (vehicles’ time horizon is
assumed to be identical). Feasible departure/arrival time windows are also randomly generated for each parcel.

Each instance in this data set is named by two alphabetical letters (i.e., AA, BB, CC, DD, XX, or YY) and a
double-digit number after the alphabetical letters. The two alphabetical letters are representative of the class of the
instance, while the double-digit number demonstrates the total number of parcels in the instance. Each class presents
the characteristics of its instances including vehicles’ capacity, length of parcels’ departure time windows, and load
of parcels (Table 1). The load of each parcel is randomly generated from a given set (Table 1). We note that the load
of each parcel does not exceed the maximum capacity of the vehicles. The capacity of vehicles for instances of a class
is the same.

Table 1
The characteristics of the instances of the data set used by Ropke and Pisinger (2006)
Vehicles’ Length of parcels’ The set from which the loads
Class . . .
capacity  departure time windows _ are randomly generated
AA 15 60 [5,15]
BB 20 60 [5,20]
CcC 15 120 [5,15]
DD 20 120 [5,20]
XX 15 60 [1,15]
YY 15 120 [1,15]

According to Table 1, we expect more levels of complexity in instances XX and YY in comparison to instances
AA, BB, CC, and DD due to the wide range of parcel’s load. To the best of our knowledge, very few papers have
published the results of instances XX and YY. We note that, in this data set, the objective is to serve all parcels with
fewer vehicles. Table 2 presents the results obtained from our algorithm on the instances of the data set used by
Ropke and Pisinger (2006). The third and fourth columns of Table 2 from left, denoted by “A” and “B”, present the
total number of vehicles used to serve all parcels in our algorithm and the algorithm proposed by Ropke and Pisinger
(20006), respectively. To compare the performance of two algorithms in terms of number of vehicles, we define the
fifth column of Table 2 from left as the ratio of 4 to B. The sixth and seventh columns of Table 2 from left, denoted
by “C” and “D”, present the upper bound of total routing cost obtained from solving the problem by our algorithm
and the algorithm proposed by Ropke and Pisinger (2006), respectively. To compare the performance of two
algorithms in terms of routing cost, we define the eighth column of Table 2 from left as the ratio of C to D. The ninth
column of Table 2 from left, denoted by “E”, presents the lower bound of total routing cost obtained from our
algorithm. The tenth column of Table 2 from left, calculated by (? %X 100), presents the gap percentage between
lower and upper bounds of our solution. According to Table 2, for the four largest AA instances, for one of the
medium-scale CC instances and for all of the DD instances, our heuristic performed substantially better than that of
Ropke and Pisinger (2006) (in terms of both number of vehicles and routing cost). The situation was reversed for the
four largest BB instances and four of the six largest CC instances, with the method of Ropke and Pisinger (2006)
performing substantially better in both respects. On all other instances, the results were similar.
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Table 2

A comparison of the results obtained from our algorithm and the algorithm proposed by Ropke and Pisinger (2006).

Computation time

Name clis(tfrs B 4 C D ¢ E Gap % Cgiﬁglg::)m (sec) (Ropke and
B b Pisinger (2006))
AA30 5 4 5 080 41316 5131740  0.81 41288 0.07 25.6 27
AA35 5 5 5 1.00 51,506 51,343.53 1.00 51244 0.51 442 33
AA40 6 6 6 1.00 61,759 61,609.44 1.00 61432 0.53 44.67 414
AA45 7 6 6 1.00 62,029 61,693.01 1.01 61542 0.79 52.57 49.8
AAS50 8 6 7 086 62213 71,932.03  0.86 61687 0.85 54.25 58.8
AASS 8 8 8 1.00 82,405 82,185.31 1.00 81765 0.78 95.63 64.2
AA60 9 8 9 0.89 82,629 92,366.70  0.89 81936 0.84 94.44 76.8
AA65 10 7 8 0.88 72,783 82,331.12  0.88 72245 0.74 98.3 87.6
AA70 10 8 11 073 82,950  112,45828  0.74 82347 0.73 143.7 98.4
AAT75 11 8 9 0.89 83,044 92,529.42  0.90 82545 0.60 141.82 112.8
Average of AA 7.9 6.6 74 090 682634 _ 75976.624 091 _ 67803.1 0.64 79.518 64.98
BB30 5 4 5 0.80 41267 51,193.62  0.81 41065 0.49 28.4 28.2
BB35 5 5 6 0.83 51,580 61,400.07  0.84 51206 0.73 38.2 32.4
BB40 6 5 5 1.00 51,785 51,421.35 1.01 51142 1.24 60.83 44.4
BB45 7 6 6 1.00 61,950 61,787.28 1.00 61632 0.51 71.86 492
BB50 8 7 7 1.00 72,164 71,889.75 1.00 71593 0.79 89.5 58.8
BBS55 8 8 8 1.00 82,483 82,080.73 1.00 81889 0.72 122.75 64.2
BB60 9 11 10 110 112,988 10232377  1.10 101998 9.73 122.22 73.8
BB65 10 10 8 125 103211 82,623.98 1.25 82454 20.11 122.9 852
BB70 10 11 9 122 113,534  92,647.75 1.23 92465 18.56 160.4 100.8
BB75 11 11 9 122 113,558 92,476.30 1.23 91897 19.07 154.18 112.8
Average of BB 7.9 78 73 104 80452 74984.46 1.05 727341 7.20 97.124 64.98
CC30 5 5 5 1.00 51,358 51,145.18 1.00 50987 0.72 442 282
cC3s 5 5 5 1.00 51,578 51,235.64 1.01 51147 0.84 51.8 342
CC40 6 5 6 0.83 51,695 61,473.91 0.84 51213 0.93 495 432
cc4s 7 5 8 0.63 51,955 81,408.89  0.64 51473 0.93 53.57 49.8
CC50 8 7 6 117 72,154 61,936.27 1.16 61759 14.41 51.38 63.6
CCs5s 8 10 6 1.67 102,460  61,930.55 1.65 61770 39.71 90.88 71.4
CC60 9 8 7 114 82,546 72,104.00 1.14 71876 12.93 84.89 82.8
CC65 10 9 8 113 92,803 82,326.62 113 81896 11.75 102.9 90
CC70 10 9 9 100 92,963 92,613.68 1.00 92229 0.79 149.3 102
CC75 11 9 9 1.00 93220 92,711.74 1.01 92231 1.06 149 112.8
Average of CC 7.9 72 69 106 742732  70888.648 106  66658.1 8.41 82.742 67.8
DD30 5 4 6 0.67 41,426 61,040.10  0.68 41137 0.70 414 27.6
DD35 5 5 7 0.71 51,614 71,308.04  0.72 51545 0.13 68.2 33.6
DD40 6 5 6 083 51,851 61,531.68  0.84 51290 1.08 68 432
DD45 7 5 8 0.63 51,960 81,601.63  0.64 51238 1.39 72.86 48
DD50 8 6 7 086 62,131 71,76123  0.87 62065 0.11 70.25 60
DD55 8 6 7 0.86 62,358 72,051.95  0.87 61789 0.91 121.38 69
DD60 9 7 8 0.88 72,521 82,308.08  0.88 72120 0.55 113.78 78.6
DD65 10 7 8 0.88 72,825 82,200.77  0.89 72385 0.60 120.6 90
DD70 10 8 8 1.00 83,034 82,631.56 1.00 82496 0.65 173.6 102
DD75 11 9 9 1.00 93255 92,970.84 1.00 92748 0.54 165.45 109.8
Average of DD 7.9 62 74 083 642975 75940.588  0.84 638813 0.67 101.552 66.18
XX30 5 4 - - 41,093 - - 40923 041 101.4 -
XX35 5 5 - - 51,313 - - 51075 0.46 174.6 -
XX40 6 5 - - 51,540 - - 51120 0.81 166.33 -
XX45 7 7 - - 71,719 - - 61156 14.73 156.29 -
XX50 8 6 - - 61,707 - - 61438 0.44 126.88 -
XX55 8 6 - - 61,839 - - 61486 0.57 254.25 -
XX60 9 6 - - 62,033 - - 61945 0.14 299.44 -
XX65 10 6 - - 62,531 - - 62344 0.30 286.4 -
XX70 10 7 - - 72,775 - - 72251 0.72 400.1 -
XX75 11 8 - - 82,960 - - 82645 0.38 388.73 -
Average of XX 7.9 6 - - 61951 - - 60638.3 1.90 235.442 -
YY30 5 4 - - 41,195 - - 41023 0.42 76.2 X
YY35 5 5 - - 51,363 - - 51045 0.62 187.6 -
YY40 6 6 - - 61,608 - - 61242 0.59 161.33 -
YY45 7 6 - - 61,806 - - 61502 0.49 176.14 -
YY50 8 6 - - 61,966 - - 61706 0.42 203.88 -
YYS55 8 7 - - 72,121 - - 61840 14.26 274.13 -
YY60 9 6 - - 62,321 - - 61972 0.56 276.56 -
YYG65 10 7 - - 72,464 - - 72132 0.46 3273 -
YY70 10 7 - - 72,586 - - 72211 0.52 419.6 -
YY75 11 9 - - 92,679 - - 82325 11.17 397.64 -
Average of YY 7.9 6.3 - - 65010.9 - - 62699.8 2.95 250.038 -

Figure 11 illustrates the position of parcels’ origin and destination and the routes of vehicles in data set AA30.
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Fig. 11. Position of parcels’ origin and destination and route of vehicles in data set AA30.

4.2. Large-scale network and test data set from Cainiao’s Last Mile Rush competition

We also tested our algorithm on the data set proposed by Cainiao Network, called Last Mile Rush, to address
the last mile delivery problem. Cainiao Network is the logistics company launched by Chinese e-commerce giant
Alibaba Group in 2013. In this data set, there are two types of parcels: e-commerce parcels and intra-city online-to-
offline (020) parcels. In the case of e-commerce parcels, couriers pick up parcels from local branches of express
companies and deliver them to individuals. In the case of intra-city O20 parcels, couriers pick up parcels from 020
shops and deliver them to the customers, each of whom has particular pickup and delivery time windows. Several
assumptions are considered in this data set:

One express company with 124 local branches serves all e-commerce delivery requests in Shanghai. We
note that there is no overlapping between the service ranges of any two local branches.

All e-commerce parcels arrive at local branches before 8:00am and must be delivered by 8:00pm.

All couriers start working at 8:00am. They are allowed to deliver both types of parcels at the same time.
Type “A” demand: There are 9,214 points of interest (POIs), each of which has a particular latitude and
longitude. Every POI is representative of the location of an order/customer, which can be either an e-
commerce or intra-city O20 order and may contain one or more than one parcel.

Each POl is served by only one local branch, since there is no overlapping between the service ranges of any
two local branches.

No courier is allowed to carry more than 140 parcels at a time.

If a customer requests multiple e-commerce parcels, all should be delivered to the corresponding POI at one
time.

Type “B” demand: There are 598 O20 shops in Shanghai. Similar to e-commerce parcels, if a customer
requests multiple O20 parcels, all should be delivered to the corresponding POI at one time.

Each 020 order has particular pickup and delivery time windows. Couriers must pick up 020 orders from
020 shops at the designated pickup time and deliver them to the O20 customers no later than the
designated delivery time.

If a courier arrives at a delivery point of an O20 order earlier than its designated delivery time, it does not
wait, and it is actually allowed to leave the parcel(s) there.

The data set contains the latitude (lat) and longitude (Ing) of all local branches, POIs, and O20 shops. The
distance between any two locations can be calculated by equation (24).

(24)
80 80

where (lat,, Ing,) and (latg, Ingg) are the latitude and longitude of nodes A and B, respectively; Alat =

@; Alng = w; and R = 6,378,137 m.

The traveling speed of all couriers is assumed to be 15 km per hour. There are 1,000 available couriers in

this data set. Each courier may remain idle or serve in one or more than one local branch.

All couriers start their work shift exactly at 8:00am from local branches and end it at the last POI.

The process time of a POI’s request (in minutes), T, is also calculated by equation (25).

T =3Vn+5, (25)

where n is the number of parcels in the POI’s order.

distance = 2R. arcsin(\/sin2 (% Alat) + cos (1L latA) .CoS (1L lath).sin2 (% Alng),

This data set contains several attributes related to the location of local branches, POIs, and O20 shops, as well as
information related to the e-commerce and intra-city O20 orders. The total number of e-commerce orders (type ‘A’)
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and 020 orders (type ‘B’) are 9,214 and 598, respectively, while at most 1,000 vehicles are available for service.
There is always a trade-off between minimizing the total cost (total travel time) and maximizing the total number of
performed orders (both types A and B). In order to find a balance between these two objectives, we offer an
evaluation function containing two terms: (1) total travel time (TT) with the weight of 1, and (2) total number of
performed orders with the weight of p, p < 0. In addition, in order to guide the search, we assign different
weights/priorities for orders being picked up and delivered successfully, as well as orders that have been only picked
up but not delivered. Therefore, we define the evaluation function as follows:

Min (TT + p(uaPnf®? + upPnp*® + phnf + pinf)), (26)

where TT is the total travel time (total travel cost),

p is the weight of total number of performed orders (complete pickup and delivery or just pickup),
uh&P is the weight/priority of type “A” orders that have been picked up and delivered successfully,
nh&P is the total number of type “A” orders that have been picked up and delivered successfully,
ub&P is the weight/priority of type “B” orders that have been picked up and delivered successfully,
nh&P is the total number of type “B” orders that have been picked up and delivered successfully,
uk is the weight/priority of type “A” orders that have been only picked up but not delivered,

nk is the total number of type “A” orders that have been picked up but not delivered,

ub is the weight/priority of type “B” orders that have been only picked up but not delivered, and
nk is the total number of type “B” orders that have been picked up but not delivered.

Evaluation function (26) is utilized as a selection criterion for the set of states. We note that the results are very
sensitive to parameters uh%P, ub& uk and pk, whose values are varied by the distribution of OD demands and the
characteristics of types “A” and “B” orders. Therefore, the value of these parameters must be determined by a large
number of experiments for each group of orders. We have selected group 31 (out of all 111 groups of orders) to
explain how we have adjusted these parameters for a group of orders. Our attempts for tuning the parameters for
group 31 are presented in Appendix B. We note that we performed the same procedure for all 111 groups of orders.
We also have used the Fibonacci sequence (max number of states) as the width of the beam search algorithm to
reduce the search region.

All local branches, POIs, 020 shops, and OD demands in the Cainiao Network have been shown in Figure 12(a).
As shown in Table 3, we have used five different parameters for the beam width to implement our beam search
algorithm. According to Table 3, it can be concluded that case IV provides the best solution among other cases, since
in this case all orders (both types “A” and “B”) have been performed by 893 vehicles in 3,764.51 seconds.
Comparing the results of cases I and II to case IV, types “A” and “B” orders are incomplete (IC) in the prior two
cases. Comparing the results of case III to case IV, the total cost and total number of vehicles needed in this case is
much larger than those in case IV. Finally, comparing the results from case V to IV, the RAM usage and CPU time
taken for case V are roughly twice as those used for case IV, while the total number of vehicles needed and total cost
for both cases are almost the same. Therefore, we have selected case IV and shown the delivery routes of all couriers
in Figure 12(b). We note that the objective in (26) is a weighted combination of minimizing total travel time and
maximizing total number of served orders. Therefore, an unserved order in the final solution does not cause
infeasibility.

Table 3
Results obtained from our algorithm on the Cainiao network.
(Tl\?se Beam width RAM usage (GB) CPU time (sec)  Total cost (min) Total # of complete tasks (A+B) # of vehicles
I 6,765 19.84 431.78 459337 6908+433 (IC) 755
I 10,946 48.09 888.68 389440 8936+497 (IC) 876
il 17,711 84.93 1829.06 364270 9214+598 954
v 28,657 140.96 3764.51 297200 9214+598 893
\Y 46,368 220.23 7748.42 296934 9214+598 892
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Fig. 12. (a) Cainiao network with all local branches, POIs, O20 Shops, and OD demands; (b) Delivery routes of all
Couriers for Case IV in Table 3.

Due to the size of this data set, we take some additional steps to reduce the computational time. For this purpose,
we reduce the total number of hypothetical vehicles in each cluster. As discussed in Section 3.4, we assume that the
total number of hypothetical vehicles in a cluster is equal to the total number of OD pairs in that cluster. After
running our algorithm on this data set, we noticed that in most cases, only about one third of the vehicles in each
cluster transport parcels, while others run empty. We note that this is just an observation and cannot be generalized
for other data sets. Thus, we reduce the total number of vehicles in each cluster by two third, run the algorithm and
obtain the results. We print out the cumulative arrival and on-board count diagrams to assess the waiting time of OD
pairs along the time horizon manually. If there is a period of time with atypical waiting time, we identify the set of
clusters temporally located in that period of time to check the service performance of OD pairs inside these clusters.
If an OD pair in the cluster derived from the identified set of clusters was not served at all, it can be either due to the
lack of vehicle availability in its cluster or due to the low value of its ¢y, . Hence, we check the routing of vehicles in
the cluster to see if there is a vehicle running empty in that cluster. If so, it indicates that we have already had enough
vehicles available at the depot, otherwise we increase the total number of hypothetical vehicles in the cluster by one
and run the algorithm again to see if any improvement is observed. If so, we modify the total number of vehicles in
the cluster to the new number, otherwise we move to the next cluster from the set of identified clusters.

5. Conclusions

In this research, by extending the work pioneered by Bellman (1962), Held and Karp (1962) and Psaraftis (1980)
on using the dynamic programing method to solve the vehicle routing problem, we embed many complex constraints
of the pickup and delivery problem with transfers on a three-dimensional space-time-state network. In this network
construction process, elements of time and load are explicitly added as new dimensions to the physical transportation
network. To address the curse of dimensionality, we demonstrate a consistent transition from the microscopic
cumulative service states to macroscopic cumulative flow count diagrams, which can be used to effectively estimate
the overall dynamic system performance. We also split the large-scale primary problem into a number of small-scale
sub-problems. We use a dynamic programming algorithm to solve a least-cost path problem for the local clusters
derived from the original set of parcels. At the end, extensive computational results over the data set used by Ropke
and Pisinger (2006) and real-world data set proposed by Cainiao Network were performed to examine the
effectiveness of our developed algorithm.

Future work may concentrate on building a computational engine to establish a wrapper for the dynamic
programming algorithm with the inputs of a transportation network and possible state transition matrices, and the
output of various vehicle-path assignment and routing solutions. Another interesting extension of our space-time-state
framework is to build a more practical and robust model in the context of pickup and delivery of passengers including
some levels of travelers’/service providers’ behavior.
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Appendix A Notations

Table Al

Notations used for the sets, indices, parameters, and decision variables in this paper

Indices and parameters used throughout the paper

i Indices for parcels

nn' Indices for the ordinal number of a way for a parcel

m, m'’ Indices for the ordinal number of an OD pair in a way for a parcel

oD%, The m™ OD pair in n way by which parcel j is served
1 The dummy node corresponding to parcel j’s origin in the m™ OD pair of n" way
A The dummy node corresponding to parcel j’s destination in the m™ OD pair of n way

a; The earliest departure time from parcel j’s main origin

b; The latest departure time from parcel j’s main origin

a; The earliest arrival time to parcel j’s main destination

Ej The latest arrival time to parcel j’s main destination

[a;b;] Parcel j’s departure time window

(@, Ej] Parcel j’s arrival time window

v, v Indices for vehicles

0y The dummy node corresponding to the origin depot for vehicle v

d, The dummy node corresponding to the destination depot for vehicle v

Ly start The time stamp at which vehicle v’s time horizon begins

tyend The time stamp at which vehicle v’s time horizon ends

[tv,start' tu,end]

Vehicle v’s time horizon

s, s’ Indices for states which are vectors whose elements represent the cumulative service state of OD pairs
ii Indices for nodes

t,t' Indices for time stamps

(i,t,s,v) The vertex in vehicle v’s network

@i,itt,s,s,v,v")

The arc connecting vertex (i, t, s, v) to (i’,t',s’,v")

TTyie

The travel time/service time/preparation time from node i to i’ starting at time t

Indices, parameters,

and decision variables exclusively used in Section 3.3

tom, The middle time of 0]",11’5 departure time window

tam The middle time of d};, s arrival time window

By The weight of geographical distance (per mile) in the space-time distance calculation
B, The weight of temporal distance (per minute) in the space-time distance calculation
fox The space-time distance between o and *

Tou The highest space-time dissimilarity between o and *

q,9 Indices for clusters

a Maximum number of OD pairs in a cluster

Yq ¥q = 1 if cluster q exists; y, = 0 otherwise

ZopT q Zop q = 1if OD;7, is assigned to cluster q; Zopm,q = 0 otherwise

0 The weight of the first term of the objective function in the clustering algorithm

0 The weight of the second term of the objective function in the clustering algorithm

Sets, indices, parameters, and decision variables exclusively used in Section 3.4

Ciiltt! ss'w The routing cost of arc (i,i',t,t',s,s',v,v)

Ejr";l The service cost of m™ OD pair in nh way for parcel j

TC, The total transportation cost of a vehicle when it leaves its origin depot to exclusively serve 0D/, and
return to its destination depot

Xo,q The average x-coordinate of all OD pairs’ origin in cluster ¢

yo'q The average y-coordinate of all OD pairs’ origin in cluster ¢

0q The dummy node corresponding to the origin depot of all hypothetical vehicles in cluster ¢

Xagq The average x-coordinate of all OD pairs’ destination in cluster ¢

y 4q The average y-coordinate of all OD pairs’ destination in cluster ¢

dg The dummy node corresponding to the destination depot of all hypothetical vehicles in cluster ¢

tq The time at which hypothetical vehicles’ time horizon in cluster g starts

fq The time at which hypothetical vehicles’ time horizon in cluster q ends
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Xii et ss' v Xiier'ss'wy' = Lifarc (4,1, t,t',s,s',v,v') is selected; x; ;7 1/ ¢ ' ,7 = O otherwise
Va The set of hypothetical vehicles in cluster q, where V; = {vy, v, ..., v|Vq|}
) The null state at which the service of no OD pair has started yet

Sets, indices, parameters, and decision variables exclusively used in Section 3.5

E The set of potential origin depots for real vehicles

E' The set of potential destination depots for real vehicles

w The set of work pieces generated in Section 3.4 and represents a set of hypothetical vehicles’ activities,
each consisting of a sequence of pickup, travel and drop-off operations occurring at specified times

A The set of arcs for the algorithm presented in Section 3.5

e The index of a node in set E

e' The index of a node in set E’

w The index of a node in set W

' The index of a node in set W'

5t (w) The set of arcs in A leaving w € W

6 (w) The set of arcs in A entering w € W

Cq The cost of arc a € A in the algorithm presented in Section 3.5

Va vy, = 1ifarc a € A appears in a path for a real vehicle; y, = 0 otherwise

Sets, indices, and parameters exclusively used in Section 3.6

Ojn The set of origin nodes, i.e., the set of nodes of the form o}",‘v for each parcel j and each n indexing a
way for that parcel

S The set where § € Uy, 05 . t. |S n Oj,n| =1

k The iteration number

Ok,jns The step size corresponding to cut (j,n, S) at iteration k

Ak jns The Lagrangian multiplier corresponding to cut (j, n, S) at iteration k

Vle]n s The sub-gradient of cut (j, n, S)

0"k jnm The step size corresponding to constraint (17) at iteration k

N jnm The Lagrangian multiplier corresponding to constraint (17) at iteration k

VL 5 fimmn The sub-gradient corresponding to constraint (17) at iteration k

Sets, indices, and parameters exclusively used in Section 3.7

Litsy The label of vertex (i, t, s, v)

Lg The set of links in cluster q

Ty The set of time stamps in cluster g

cr () Parcels’ cumulative arrival count to the system at time ¢

ch (o) Parcels’ cumulative on-board count at time ¢t

ch Parcels’ cumulative departure count from the system at time t

Ci () Hypothetical vehicles’ cumulative arrival count to the system at time ¢
Cp(t) Hypothetical vehicles’ cumulative departure count from the system at time ¢

Appendix B Parameters tuning for Cainiao Network

We

have taken our group 31 as an example of a group of orders to explain how we have adjusted these

parameters for a group of orders by the aid of our evaluation function. In these experiments, we have defined 5

different scenarios as follows:
I Setuh®" =2 ub% = 1 and define some sub-scenarios to adjust the values of uf; and ub;
I Setuh®P =2, ub%P = 0.5 and define some sub-scenarios to adjust the values of u and u5;
II.  Set uh®P =2, ub& = 1.5 and define some sub-scenarios to adjust the values of uf; and ub;
IV.  Set uh® =2, ub&P = 2 and define some sub-scenarios to adjust the values of uf and ub;
V.  Setuh¥ =2, ub¥ = 2.5 and define some sub-scenarios to adjust the values of pf and pb.

We note that in Table B1, the demand completion time is the time that the last vehicle finishes its task. Figure B1

illustrates the values of the objective function for different scenario/sub-scenarios to help us choose the best
parameter settings. As can be seen in this figure, scenario I, sub-scenario III has the smallest objective function
among other scenarios. Therefore, we set the parameters of group 31 based on the parameters used in scenario I, sub-
scenario III.
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Fig. B1. A comparison between the values of the objective function for different scenarios-sub scenarios for group 31.

Table B1
Parameter setting for group 31.
. Sub- e Performed tasks prw Demand Total # of Value of
Scenario scenario Type "A Type "B Total travel completion vehicles objective
No. No Picked up Picked up & Picked Picked up & time (min) time (min) needed function
) T Sl VA T only delivered up only delivered

I 2 1 0.5 2 0 44 0 18 3769 671 8 6840

11 2 1 1 2 0 44 0 18 3443 617 8 6460

111 2 1 1.5 2 0 44 0 18 3153 612 8 6165

I v 2 1 2 2 0 44 0 18 3586 685 8 6671

\Y 2 1 2.5 2 0 42 3 15 2968 659 7 6977

VI 2 1 3 2 3 41 5 12 2924 659 7 7303

VIl 2 1 3.5 2 5 39 6 12 3061 698 8 8009

VIII 2 1 4 2 7 37 7 11 3505 571 9 9156

I 2 05 0.5 2 0 44 0 16 3769 775 8 7544

il 2 05 1 2 0 44 0 16 3706 786 8 7492

I 11 2 05 1.5 2 4 40 2 16 3797 896 8 8153

v 2 05 2 2 4 40 2 15 3896 964 8 8620

\Y% 2 05 25 2 2 42 6 11 3909 978 8 8867

VI 2 05 3 2 6 38 10 8 4126 1236 9 10702

I 2 15 0.5 2 1 42 2 16 3669 617 8 7576

11 2 15 1 2 1 43 2 16 3756 764 8 7410

I 11 2 15 1.5 2 4 40 2 16 3797 964 8 8221

v 2 15 2 2 4 40 2 16 3443 906 8 7809

\% 2 15 25 2 6 38 2 16 3606 999 9 8745

VI 2 15 3 2 9 35 4 14 4236 1369 9 10615

I 2 2 0.5 2 1 43 0 18 3569 689 8 6848

11 2 2 1 2 0 44 1 17 3797 764 8 7111

v 111 2 2 1.5 2 4 40 2 16 3909 964 8 8333

v 2 2 2 2 4 40 4 14 3896 1096 8 8752

\Y 2 2 2.5 2 6 38 6 12 3960 978 9 9678

VI 2 2 3 2 9 35 6 12 4038 1236 9 10584

I 2 25 0.5 2 4 38 0 18 3614 697 8 8271

11 2 25 1 2 4 38 0 18 3709 764 8 8433

v 11 2 25 1.5 2 6 38 0 18 3666 938 8 8144

v 2 25 2 2 6 38 0 18 3705 869 8 8114

\% 2 25 25 2 6 38 2 16 3976 986 9 9102

VI 2 25 3 2 9 35 4 14 4236 1345 9 10591

In Figure B2, we intend to show the cumulative arrival/departure and on-board diagrams for orders in case
scenario I, sub-scenarios I to VIII. In this figure, the graphs indicated by black color are the cumulative arrival orders
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to the system, the graphs indicated by red color are the cumulative on-board orders (pickup only), and the graphs
indicated by blue color are the cumulative departure orders from the system. Figure B2(a) to B2(d) are the cumulative
flow graphs for scenario I, sub-scenario I to IV, while B2(e) to B2(h) are the cumulative flow graphs for scenario I,

sub-scenario V to VIII. As we can see in this figure, there is no incomplete task in sub-scenarios I to IV, while a
number of orders have remained incomplete in sub-scenarios V to VIII.
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Fig. B2. Cumulative arrival/departure, as well as on-board diagrams for scenario I (a) sub-scenario I, (b) sub-scenario II, (c) sub-scenario III,
(d) sub-scenario 1V, (e) sub-scenario V, (f) sub-scenario VI, (g) sub-scenario VII, and (h) sub-scenario VIII.
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