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Dynamic Primitives in Human Manipulation of Non-Rigid Objects
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Abstract— This study examined strategies humans chose to
manipulate an object with complex (nonlinear, underactuated)
dynamics, such as liquid sloshing in a cup of coffee. The prob-
lem was simplified to the well-known cart-and-pendulum system
moving on a horizontal line. This model was implemented in
a virtual environment and human subjects manipulated the
object via a robotic manipulandum. The task was to maneuver
the system from rest to arrive at a target position such that no
residual oscillations of the pendulum bob remained. Our goal
was to test whether humans simplified control by employing
dynamic primitives, specifically submovements. Experimental
velocity profiles of the human movements were compared to
those predicted by three different control models. Two models
used continuous optimization-based control, the third control
model was based on Input Shaping. Input Shaping is a method
for controlling flexible objects by convolving a motion profile
with impulses of appropriate amplitude and timing. To evaluate
whether humans used Input Shaping, we decomposed the
velocity profiles recorded from humans into submovements,
as proxies for the convolved impulses. Comparing the motion
profiles from the 3 models with the experimentally measured
human profiles showed superior performance of the Input
Shaping model. These initial results are consistent with our hy-
pothesis that combining dynamic primitives, submovements, is a
competent description of human performance and may provide
a simpler alternative to computationally complex optimization-
based methods of robot control.

I. INTRODUCTION

Interactions with non-rigid objects, such as folding laundry
or carrying a cup of coffee, are ubiquitous in everyday life.
However, modern-day robots are still far from mastering
these skills. This disparity in performance raises the question
of how humans achieve their remarkable dexterity. Better
understanding of human motor control might inform the
control of robots, exoskeletons and prostheses.

Insights gained from human motor control have already
helped inspire new ways to address problems in the control
of robot motion. For example, Central Pattern Generators for
locomotion in vertebrate biological systems have inspired
rhythm generators for artificial locomotion [1], algorithms
for grasp planning in robots have been inspired by how hu-
mans control their hand [2]. Recent approaches in humanoid
robotics were informed by human postural control [3], and
understanding human object manipulation from a controls
perspective [4] are promising. Further, in physical human-
robot interaction a recent study showed that following a robot
trajectory required less effort when the robot trajectory had
a velocity-curvature relation similar to that found in natural
human movement [5].
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Manipulating objects with internal degrees of freedom is
a complex control task due to nonlinear and underactuated
dynamics. However, while simple arm-reaching movements
have been investigated intensively [6] [7] [8] [9], the question
of how humans transport and manipulate non-rigid objects
is far less understood [10] [11] [12].

Several studies provided evidence that humans use internal
models that map hand movements and interaction forces to
object movements. Both Mehta and Schaal [13] and Mah and
Mussa-Ivaldi [14] used the task of controlling an inverted
pendulum to demonstrate that humans employed internal
forward and inverse models of motion-force relations. When
moving a mass-spring system, Dingwell et al. [15] presented
results that were consistent with the hypothesis that humans
developed an internal inverse model of the arm-plus-object
dynamics. However, the non-rigid object used in that ex-
periment was a simple linear mass-spring system. For tasks
that require physical interaction with objects that exhibit
more complex nonlinear, underactuated and potentially even
chaotic dynamics, a control strategy that relies solely on an
internal model appears challenging due to its complexity.

A series of studies by Sternad and colleagues examined
just such a complex object, a cart-and-pendulum, inspired
by the task of carrying a cup of coffee, although simplified
to 2D. Results showed that subjects made the dynamically
complex system simpler to predict and exploited its reso-
nance structure [16] [17].

Based on earlier results presented by Flash and Hogan
[6] that showed that unconstrained reaching movements can
be described by a trajectory that maximized smoothness
(minimized mean-squared jerk), several studies investigated
whether human manipulation of non-rigid objects admitted
similar smoothness-based optimization criteria [18] [19] [20]
[21] [22]. Note that in each of these studies, the non-rigid
object of interest was a simple mass-spring system.

Dingwell et al. proposed minimum-crackle of the object
(MCO) as the governing optimization criterion in this task
[18]. However, this model has several limitations: In the
limit as the spring stiffness went to infinity, i.e., the manip-
ulated object became rigid, one would expect to recover the
minimum-jerk model, but this was not the case. Furthermore,
Svinin et al. pointed out that the MCO model was only
applicable to the specific task of manipulating a single-mass,
single-spring system [20]. Svinin et al. proposed another
model that circumvented these problems and showed that
experimental results could be predicted by a dynamically-
constrained minimum-jerk trajectory for the hand (DCMJH).

A third model proposed in the literature minimized the
acceleration of the center of mass (MACM) [21]. In ad-
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dition to accounting for all previous experimental results
on the mass-spring object, MACM was able to account
for other non-typical behaviors. Moreover, in contrast to
DCMJH, MACM did not require re-optimization when the
task changed from unconstrained reaching to object manip-
ulation. Both the controlled variable, the center of mass
of the system (hand+object), and the optimization criterion
did not change between tasks and, hence, the analytical ex-
pressions representing the center-of-mass trajectory remained
unchanged.

All three models suffer from several shortcomings. They
all assumed that the dynamics of the manipulated object
were those of a linear mass-spring system. This linear
system does not represent the considerably more complex
dynamics of the broad range of objects that humans interact
with on a daily basis. Moreover, these models were merely
descriptive and did not provide insight about how they would
be implemented or generated by a controller. Online solution
of such optimization problems combined with the inverse
dynamics computation to generate the planned/desired tra-
jectories would be a daunting task for human brains.

Therefore, we hypothesized that humans simplify the con-
trol of physical interaction with dynamically complex objects
by using dynamic primitives. There is mounting evidence
that the human sensorimotor control system indeed relies on
a composition of primitives [23]-[30], but this has not been
investigated in the context of complex object manipulation
and controlling physical interaction. Dynamic primitives
include submovements for discrete actions, oscillations for
rhythmic actions, and mechanical impedance for physical
interaction with objects [31] [32]. For robots, control by
composition of dynamic primitives may provide a simpler
alternative to computationally intensive approaches based on
optimization [33] [34] [35].

To test this hypothesis, we designed an experiment in
which participants transported a simplified model of a cup
of coffee in a virtual environment. They were instructed to
maneuver the cup from a starting position to arrive at a target
position with zero oscillations of the ball. This ‘no-residual-
oscillations’ task afforded a simple solution known as Input
Shaping, which has been studied in the control literature
[36] [37] [38]. Developed to control the motion of highly
oscillatory systems, Input Shaping relies on convolving a
motion profile with a sequence of impulses that cancels out
transient oscillations induced by movement. The simulated
movement profile is strikingly similar to the human profiles
generated by an overlapping sequence of submovements [30]
[31] [32]. As we have defined submovements based on their
velocity profile [31], Input Shaping provides a way to select
submovements to perform the ‘no-residual-oscillations’ task.

II. THREE MODELS FOR NON-RIGID OBJECT CONTROL

A. Minimum-crackle of the object (MCO)

The MCO model was proposed by Dingwell et al. [18],
who investigated the task of transporting a mass with an
attached spring from one point to another in the horizontal

plane. The dynamics of the object were governed by

io = =2 (xy — z0), (1)

Mo

where g and xo denoted the position of the hand and the
object, respectively; Ko was the stiffness of the object, and
Mo was its mass. To move both hand and object from rest
to rest required satisfying 12 boundary conditions, 6 for the
hand and 6 for the object

xH(O) = .%H(O) = .Z'H(O) = 0,

LEH(T) = D,i‘H(T) = .TH(T) = 0,

20(0) = &0(0) = &0(0) =0,

20(T) = D, io(T) = io(T) =0, 2)
where T denoted the motion duration, and D the distance
covered in the movement. However, since the hand and
object were dynamically coupled, the required boundary
conditions on the hand movement could be satisfied by
imposing corresponding boundary conditions on the third and

fourth derivatives of the object trajectory. This resulted in 10
independent boundary conditions

z0(0) = 0,20(0) = #0(0) = To(0) = T'o(0) =0,
20(T) = D,io(T) = io(T) = T0(0) = Z'o(0) = 0.
3

The lowest-order polynomial satisfying these boundary con-
ditions was 9th-order. The optimization criterion that resulted
in a ninth-order polynomial was to minimize the mean-
squared-crackle, C, of the object trajectory

1T (o)
0_5/0 ( pre )dt. @)

Enforcing the boundary conditions in (3), the optimal object
trajectory was

t\? t\® t\’
zo(t) = 70D <f) 315D (?) + 540D (?)

t\° t\°
— 420D (f) 1+ 126D (f) . (5)

hand

B. Dynamically-constrained minimum-jerk of the
(DCMJH)

The DCMJH model [20] proposed that, similar to uncon-
strained reaching movements, humans try to minimize the
jerk of the hand trajectory, J, when transporting an object
from rest to rest

1 (T (B
Jf§/0 ( e >dt. 6)

The key point is that x needs to be expressed in terms of
zo. From (1),

TH = Kfzio + zo, @

Taking the third derivative of (7) for hand-jerk, the problem

became minimization of object crackle, as in the MCO
model, combined with object jerk. Due to its length and
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Fig. 1. (a) A sequence with two impulses, ;7 and I, displaying destructive interference. (b) The control input only drives the trolley to the desired

location with no regards to payload oscillations. (¢) The control input also cancels out residual payload oscillations.

complexity, the analytical expression for the optimal object
trajectory is not included here, but the interested reader is
referred to [20].

C. Input Shaping (IS)

Input Shaping (IS) is a strategy for maneuvering objects
with highly-oscillatory internal dynamics (e.g. a payload
suspended from a crane) in a rest-to-rest motion, such that
there are no residual oscillations at the target position [36]
[37] [38]. Input Shaping is achieved by convolving a motion
profile with a sequence of impulses that excite transient
oscillations in the system in a manner that results in their
destructive interference at the target position. An example
with 2 impulses is shown in Fig.1(a).

Consider a crane controlled by a human. The operator
could simply move the trolley to the desired position using
a desired velocity profile e.g. a minimum-jerk profile. How-
ever, without any other input, this would cause the payload
to oscillate around the new trolley position, as displayed in
Fig.1(b). On the other hand, it is possible for the trolley
to reach the desired position with zero residual oscillations
of the payload, as shown in Fig.1(c). This can be achieved
by convolving the minimum-jerk velocity profile with a
sequence of impulses that cancel residual oscillation (an
input shaper), as shown in Fig.1(a). The resulting ‘shaped’
command is then used as input to the system to generate the
behavior illustrated in Fig.1(c).

For the cart-and-pendulum system moving from rest to
rest over a distance D, an input shaper consisting of only
2 impulses suffices to ensure zero residual oscillation [39].
For this input shaper, the two impulses I; and I> and their
respective timings t; and to were

¢
erp ( )
Vi1-¢2
I = Ly=1-T,t, =0ty = —,
: s Wd
14 exp ( m)
®)
where ( was the system’s damping ratio and wy was its
damped frequency.

III. SIMULATIONS AND CONTROL MODEL PREDICTIONS
A. Dynamical model of the “cup of coffee”

From a computational perspective, simulating a realistic 3-
dimensional cup with sloshing coffee governed by nonlinear

equations from fluid mechanics is taxing. This computational
complexity was especially challenging as the study employed
a virtual setup in which real-time simulations of the system
dynamics were required. The cup of coffee was therefore
simplified to a semicircular 2-dimensional arc, the cup, with
a ball rolling inside, representing the coffee; the motion of
the 2D cup was limited to a horizontal line. Restricting the
ball to only slide along the cup without rolling or friction, the
system was reduced to the well-known cart-and-pendulum
system with no damping. Fig.2(a) illustrates the real and
simplified task, while Fig.2(b) displays the mechanical model
of the simplified system.

The equations of motion of the simplified mechanical
model were

(m+ M)ic =ml (gbz sin(¢) — dicos(qﬁ)) +u, (9
Il = —gsin(¢) — i cos(), (10)

where z¢ denoted the position of the cart, ¢ denoted the
pendulum angle, counter-clockwise defined as positive, m
the mass of the pendulum bob, M the mass of the cart, [ the
length of the massless pendulum rod, and g the gravitational
acceleration. The force exerted by the human subject was
denoted by u. The parameters used to simulate this system
in the virtual environment were: M = 1.9 kg, m = 1.1 kg,
I=0.5m,and g = 9.8 m/s>.

Fig. 2. (a) Real and simplified task. (b) Mechanical model. (c¢) Virtual
environment setup. (d) Screen display.
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B. Linearization of the cart-and-pendulum model

To simulate the three models, the equations of motion (9)
and (10) were linearized around the pendulum’s downward
equilibrium position, ¢ = 0. The reasons for this were two-
fold: First, the MCO and DCMJH models were developed
for linear mass-spring models; a fair comparison should be
based on a similarly linearized model. Second, the standard
application of Input Shaping is to a linearized model. While
designing an input shaper for a nonlinear system is possible,
it is not straightforward and was beyond the scope of this
study. The linearized equations were

(m + M)ic = —mld +u,
16 =—go —iic.

The position of the internal degree of freedom, the pendulum
position zp, which was required to simulate the MCO and
DCMIJH models, can be inferred from Fig.2(b)

an
12)

xp =xc + lsin(g). (13)

Using the linearized version of (13)
xp =xc + 19, (14)
ip=ic+1, (15)

and substituting into (12), the following relation was obtained

ip =9 (wo —ap), (16)

l

which closely resembled (1). For simulating the MCO and
DCMIJH control models, the position of the hand xy was
assumed to coincide with the cart position z¢. This lin-
earization was only used to compute predictions of the three
models; the virtual system with which subjects interacted
simulated the full nonlinear equations (9-10).

C. Predictions of the three control models

Simulations of all 3 control models generated velocity
profiles of the linearized system that succeeded in the ‘no-
residual-sloshing’ task. The desired distance DD was equal
to the distance between the starting and target positions in
the experiment, 0.45 m; all other model parameters were
identical to those used in the virtual environment (see next
section). Since the two optimization-based models (MCO and

Predicted cart velocity profiles for different motion durations plotted over normalized movement time. (a) MCO model (b) DCMJH model (c) IS

DCMIJH) were variants of maximizing smoothness, the input
shaper model used a maximally smooth (mean-squared jerk)
profile. That was convolved with the impulse sequence.

Fig.3 presents the simulation results of all three models
for 12 motion durations between 1.2 s to 2.6 s (color-
coded and normalized to time). Even though the 3 control
models produced very similar motion profiles, there were
also important differences. In particular, the Input Shaping
model predicted that cup velocity would never be negative.
Neveretheless, the similarity shows that the simple Input
Shaping strategy compares well to the computationally ex-
pensive optimization-based methods.

IV. THE ‘NO-RESIDUAL-SLOSHING’ TASK

The task of transporting a cup filled with coffee requires
physical interaction with a dynamically complex non-rigid
object. Motivated by this real-life example, in this exper-
imental task subjects maneuvered an underactuated object
from a starting point to a target point, with the goal of
arriving at the target position with no residual oscillation.

A. The virtual experiment

The dynamical model presented in (9) and (10) was
simulated in a virtual environment interfaced with a robotic
manipulandum, as depicted in Fig.2(c). The projection screen
displayed the cup as a 2D arc (corresponding to the cart)
and ball (corresponding to the pendulum bob), and a start
and target box separated by 0.45 m, as shown in Fig.2(d).
Subjects were instructed to move the cup from the start box
on the left and arrive at the target box on the right with no
residual oscillations of the ball. They were also instructed
not to lose the ball along the way. Subjects moved at their
desired pace; only if the trial duration was longer than 3.5 s
subjects were told to move faster on the next trial. At the end
of each trial, the maximum angle that the ball reached inside
the target box was displayed on the screen as perfromance
feedback to the subjects. The smaller the angle of these
terminal oscillations, the better their performance.

The experiment consisted of 4 blocks with 50 trials each.
Before the first block, subjects familiarized themselves with
the virtual task for 5 minutes. At the beginning of each trial,
the cup was centered in the left box and the ball rested at
its equilibrium position.
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B. Apparatus and data acquisition

The participants stood in front of a large backprojec-
tion screen (2.4 x 2.4 m) at 2 m distance. Physical in-
teraction with the virtual object occurred via a 3-degree-
of-freedom force-controlled robotic manipulandum (Hap-
ticMaster, Motekforce, NL [40]). By applying a force to
the handle of the robotic arm, participants controlled the
horizontal z-position of the virtual cup. The robotic arm
was restricted to move in the horizontal direction along the
subject’s frontal plane to ensure a linear horizontal motion of
the cup, consistent with the model. The robotic arm provided
haptic feedback, allowing participants to sense the system’s
inertia and the force of the ball on the cup. More details on
the manipulandum’s end-effector position resolution, haptic
resolution, and force sensitivity, are provided in [40].

The force applied by the participants to the manipu-
landum (u) and the kinematics of the cup and the ball
(xc, o, Zc, o, 4237 g'zg) were recorded at 120 Hz. A total of
10 subjects participated in the experiment. The protocol was
approved by the Institutional Review Board of Northeastern
University and participants signed a consent form prior to
the experiment.

C. Submovement analysis

All three models assumed perfect execution of the motor
task: zero residual oscillations. For example, the Input Shap-
ing model required two perfectly timed and precisely identi-
cal impulses (Fig.3(c)), observed as two symmetrical peaks
in the velocity profile. To evaluate whether humans used
Input Shaping, we decomposed the velocity profiles recorded
from humans into submovements, regarded as proxies for the
convolved impulses. Unlike the exact model, the analysis
allowed two different submovements, each approximated by
a support-bounded lognormal function. These differences
accounted for the iinevitable variability of human perfor-
mance. Therefore, we decomposed the measured velocity-
profiles into a sequence of support-bounded lognormal func-
tions, commonly referred to as LGNB [41]. This choice
was also motivated in previous work showing that LGNB
submovements provided the best fit to rapid movements
[42] [43]. Using the scattershot algorithm presented in [43],
the sequence of LGNB functions that produced the best fit
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Fig. 4. Example of two LGNB submovements fitted to a velocity profile.
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Fig. 5. Histogram summarizing the subjects’ preferred movement times,
highlighting those trials that successfully completed the task. The criterion
for success was that a maximum angle in the residual oscillations was <
3 degrees.

with the experimental velocity profile for a given trial was
extracted. An example of a typical decomposition is shown
in Fig.4.

V. EXPERIMENTAL RESULTS

Subjects chose a range of movement times to perform the
task. The histogram in Fig.5 pools the movement times of all
trials, separating the successful from the unsuccessful ones.
A trial was considered successful if the maximum angle in
the residual oscillations was < 3 degrees. These results show
that the majority of the trials lay within the range of 2.25 s to
3.25 s, and that the proportion of successful trials increased
for slower movements.

A. Comparison of the three control models

To determine which of the three models, MCO, DCMJH,
or IS, best described the experimental data, the velocity pro-
files of all successful experimental trials were compared to
the model-predicted profiles. These comparisons were made
for 8 different movement times between 1.7 s and 2.5 s.
Trials with movement times in the intervals of [1.7,1.8],
[1.8,1.9], ..., [2.4,2.5] seconds were averaged and standard
deviations were calculated. For each interval, the velocity
profiles for the three models at this duration were plotted
together with the mean velocity profile of all successful trials.
The results of these comparisons for 4 exemplary intervals
are displayed in the top row of Fig.6. Although the three
control models predicted quantitatively different velocity
profiles, these differences were comparable considering the
variability of the experimental data. The rightmost panel in
the top row summarizes the fitting error for all 3 models for
the 9 different motion durations.

An Input Shaping strategy based on a minimum-jerk
assumes an exact and perfect execution of motor actions. A
more realistic approach to allow for the variability of human
performance assumed a pair of non-identical submovements,
specifically LGNBs. We therefore used the extracted LGNB
profiles to approximate Input Shaping. The velocity profiles
generated with these LGNB submovements are displayed in
the bottom row of Fig.6. As summarized in the rightmost
panel in the bottom of Fig.6, the two LGNB submovements
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show a better fit with the experimental data than the two
optimization models.

B. Sensitivity analysis

Imperfectly-timed or wrong-amplitude submovements
would result in non-zero residual oscillations, quantified by
their maximum angle. To further assess the appropriatness
of this model, we tested the sensitivity of Input Shaping
to errors in amplitude and timing of the impulse sequence
was analyzed, Fig.7(a). For each trial, errors of impulse
amplitudes and timing were inferred from the extracted
submovements. The resulting maximum angle of residual
oscillation was determined as summarized in Fig.7(a) and
compared with the experimental performance in Fig.7(b).
As illustrated, the predicted residual oscillations were close
to the experimentally observed oscillations. This sensitivity
analysis supports that humans used a strategy similar to Input
Shaping.

VI. DISCUSSION AND CONCLUSIONS

This paper addressed the problem of manipulating a non-
rigid object, such as a cup of coffee, with internal degrees of
freedom. Motivated by previous work on Input Shaping, the
hypothesis was that humans simplify control using appropri-
ately scaled and timed submovements. To test this hypothesis
the task of maneuvering a cart-and-pendulum system was

implemented in a virtual environment. Experimental velocity
profiles of successful trials were compared to those predicted
by three different control models, two based on proposed
optimization criteria, the third based on Input Shaping.
The difference between the three model predictions was
largely obscured by the variability of the experimental data.
When variability was taken into account by decomposing
experimental velocity profiles into a sequence of overlapping
LGNB submovements, that sequence best described subjects’
behavior.

A. Limitations

The most prominent limitation of this initial study was
that subjects avoided fast movements. For faster movements,
the proportion of trials that failed became larger. This initial
study has not yet analyzed the reasons and errors in the
respective strategies leading to failure. Further, this initial
experiment comprised a limited number of trials and was not
designed to study learning. It is possible that with extensive
practice subjects may converge to a behavior that more
closely resembled one of the optimization-based models.
That is a topic for future research.

B. Levels of explanation

An important distinction between the models considered
here is the level at which they describe motor behavior.
At least three levels with progressively increasing detail
(observational, compositional, physiological) have been pro-
posed [31]. The two optimization-based models describe
actions at the level of observable behavior, but remain silent
about how that behavior might be implemented at lower
levels. The model based on submovements describes the
compositional level where primitive actions are composed
to produce observable behavior. The fact that Input Shaping
and its experimental approximation successfully reproduced
human performance suggests that it may provide deeper
insight about human control of complex dynamic objects.
This insight suggests that primitives-based controllers are
simpler solutions for robot control compared to computa-
tionally complex optimization-based methods.
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