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This study examined how humans spontaneously merge a sequence of
discrete actions into a rhythmic pattern, even when periodicity is not
required. Two experiments used a virtual throwing task, in which
subjects performed a long sequence of discrete throwing movements,
aiming to hit a virtual target. In experiment 1, subjects performed the
task for 11 sessions. Although there was no instruction to perform
rhythmically, the variability of the interthrow intervals decreased to a
level comparable to that of synchronizing with a metronome; further-
more, dwell times shortened or even disappeared with practice.
Floquet multipliers and decreasing variability of the arm trajectories
estimated in state space indicated an increasing degree of dynamic
stability. Subjects who achieved a higher level of periodicity and
stability also displayed higher accuracy in the throwing task. To
directly test whether rhythmicity affected performance, experiment 2
disrupted the evolving continuity and periodicity by enforcing a pause
between successive throws. This discrete group performed signifi-
cantly worse and with higher variability in their arm trajectories than
the self-paced group. These findings are discussed in the context of
previous neuroimaging results showing that rhythmic movements
involve significantly fewer cortical and subcortical activations than
discrete movements and therefore may pose a computationally more
parsimonious solution. Such emerging stable rhythms in neuromotor
subsystems may serve as building blocks or dynamic primitives for
complex actions. The tendency for humans to spontaneously fall into
a rhythm in voluntary movements is consistent with the ubiquity of
rhythms at all levels of the physiological system.

NEW & NOTEWORTHY When performing a series of throws to hit
a target, humans spontaneously merged successive actions into a
continuous approximately periodic pattern. The degree of rhythmicity
and stability correlated with hitting accuracy. Enforcing irregular
pauses between throws to disrupt the rhythm deteriorated perfor-
mance. Stable rhythmic patterns may simplify control of movement
and serve as dynamic primitives for more complex actions. This
observation reveals that biological systems tend to exhibit rhythmic
behavior consistent with a plethora of physiological processes.

motor learning; physiological rhythms; rhythmic movements; stabil-
ity; variability
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INTRODUCTION

It is a well-known but intriguing observation that humans
“fall into step” when walking side by side with a friend. When
listening to music, one may inadvertently tap one’s foot to the
beat, and when the audience applauds after a concert even a
large collective of clapping hands can converge to a common
rhythm (Strogatz 1994; Strogatz and Stewart 1993). More
subtle synchronization occurs during social interactions when
people unknowingly mimic each other’s rhythm in speech or
body movements (Tolston et al. 2014). Such uni- and bidirec-
tional synchronization between two or more oscillations is
observed in a host of biological, physical, and social systems
(Phillips-Silver et al. 2010; Strogatz 1994, 2004).

However, what happens if there is no external rhythm to
synchronize with or if there is not even a rhythm at the outset?
When humans repeat similar movements over a prolonged
time, such as repetitive actions in the workplace, they some-
times experience themselves to be “in the flow,” a subjective
state that can occur when a sequence of movements becomes
increasingly more regular or periodic. Motivated by this anec-
dotal observation, the present study examined how people
spontaneously fall into a rhythm when performing a series of
discrete, goal-directed movements in the absence of any peri-
odic cues. How does the repetition of similar movements
performed at no specific intervals develop into a rhythmic
pattern? Does this rhythmic pattern show features of dynamic
stability, and if so, do such stable dynamics enable better
performance? A brief caveat on terminology upfront: although
“rhythm” in music and dance can be associated with a complex
temporal pattern, we refer to rhythm as “approximately peri-
odic” behavior, whereas strict “periodicity” is defined as a
sequence of events separated by identical intervals. Further-
more, a rhythmic time series is continuous, in contrast to
discrete movements that are separated by pauses (Hogan and
Sternad 2007).

Rhythms are ubiquitous in the human body, including cor-
tical, cardiac, respiratory, circadian rhythms, and tremor, both
in functional and pathological expressions. These oscillations
occur at many different temporal and spatial scales, comprising
orders of magnitudes from 10~ s in neural or informational
processes to distributional processes operating at 10° and 10"
and the metabolic system at 10° s (Moser et al. 2006). These
different mechanisms are coupled within and across spatiotem-
poral scales, likely to also manifest as rthythms at the behav-
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ioral level. In return, behavioral rhythmicity may help to
maintain the entrainment among the physiological processes of
the body. For example, disturbances of the circadian rhythm
lead to desynchronization between physiological rhythms, ex-
perienced as jetlag (Haus and Smolensky 2006). An extensive
body of research has modeled these rhythms as nonlinear
oscillators that, when coupled, can account for synchronized
behavior in nature, ranging from circadian rhythms to the
synchronous behavior of fireflies (Ermentrout and Kopell
1991; Kopell and Ermentrout 1986; Pikovsky et al. 2000;
Rinzel and Ermentrout 1998; Strogatz 1994; Winfree 1967,
1990).

Recognition of the fundamental nature of rhythmicity in
biological and physical systems is also the basis for a propo-
sition in motor control: human movements rely on and exploit
dynamic primitives; one such primitive is oscillations or
rhythms (Hogan and Sternad 2012, 2013; Ijspeertet al. 2013;
Ronsse et al. 2009; Schaal et al. 2000; Sternad 2008). Several
previous lines of work have provided evidence that rhythmic
movements are a basic form of organization that the neuro-
mechanical system assembles and may use as building blocks
in the control of voluntary movements. Importantly, these
rhythmic patterns, or dynamic primitives, are presumed to have
attractor properties, i.e., they have limit-cycle dynamics. Such
stable oscillations arise at the neural level but may also com-
prise the neuromechanical system (de Rugy and Sternad 2003;
Ronsse et al. 2009; Strogatz and Stewart 1993). The primary
example has been legged locomotion that has been modeled as
coupled oscillators (Full and Koditschek 1999; Ijspeert et al.
2013; Ochoa et al. 2017; Taga et al. 1991). However, biolog-
ical movements are not only rhythmic but also display vastly
more complex behaviors. Hence, several studies have sug-
gested that other stable attractors exist, such as fixed points that
are the basis for discrete point-to-point movements (Ijspeert et
al. 2013; Ronsse et al. 2009; Sternad et al. 2000). Even chaotic
attractors have been discussed as contributors to the observed
variability (Raftery et al. 2008). Recent work has emphasized
that, for interactions with objects, impedance is also needed as
a dynamic operator (Hogan and Sternad 2012, 2013). If hu-
mans indeed fall into a stable thythm when performing a series
of actions, then this would provide strong support that rhyth-
mic behavior is an attractor and a dynamic primitive for human
behavior.

To investigate the spontaneous development of rhythmicity,
we examined how human subjects practiced a virtual throwing
task with the sole goal to hit a target. The instruction only
emphasized that the target should be hit accurately, and rhyth-
micity was not mentioned. In experiment 1, subjects performed
the throwing task across 11 days with a total of 2,640 throws
(240 throws per day). As subjects indeed converged to a
rhythm, experiment 2 explicitly disrupted the timing of the
throwing movements by cuing the throws at random times
between successive throws. As the task was modified to be less
challenging, 6 days of practice proved sufficient (120 trials per
day, 720 total). In both experiments, continuous kinematic data
of the arm movements were collected across all trials on 1 day.
In addition to performance error, the arm trajectories were
analyzed for signatures of rhythmicity and stability. Following
Hogan and Sternad (2007), rhythmicity was defined by the
degree of periodicity and continuity. The degree of dynamic
stability was assessed by computing Floquet multipliers and

variability at the Poincaré section. Finally, we assessed
whether rhythmicity and stability in behavior correlated with
task performance.

We hypothesized that the discrete throwing actions merge
into a rhythmic sequence, identified by an approximately
constant period and decreasing number and duration of pauses
between movements (hypothesis I). Subjects with higher de-
grees of rhythmicity and stability of their arm trajectories
achieve better task performance (hypothesis 2). With increas-
ing rhythmicity, the degree of stability of movements increases
(hypothesis 3). When instructed to pause between successive
throws, subjects perform worse than during self-paced rhyth-
mic behavior (hypothesis 4). Results were indeed supportive of
the hypotheses and allowed us to conclude that stable rhythmic
behavior is foundational for good task performance. This is
consistent with the proposition that humans exploit dynamic
primitives to not only simplify control, but also improve
performance. When allowed to exploit stable attractor behav-
ior, humans may free up attention for accuracy demands.

METHODS
FParticipants

Fifteen right-handed subjects (20.5 £ 2.8 yr; 7 women, 8§ men)
were recruited for experiment 1. All subjects were compensated with
$55 after completing the 11 data collection sessions on 11 separate
days. In experiment 2, 16 right-handed subjects (20.7 = 2.8 yr; 9
women, 7 men) took part and were randomly assigned to one of two
groups. Subjects received $30 after completing the six daily sessions
of data collection. None of the subjects had any prior experience with
the experimental task. All subjects signed the consent form of the
protocol before the data collection; the study was approved by the
Institutional Review Board at the Northeastern University.

Experimental Task and Apparatus

The experiments used a virtual throwing task that was based on the
British pub game Skittles, which is similar to American tetherball
(Fig. 1A) (Cohen and Sternad 2012; Hasson et al. 2016; Miiller and
Sternad 2004; Zhang et al. 2018). In this game, subjects throw a ball
tethered to the top of a vertical post to hit a target skittle(s) on the
opposite side of the post. For the virtual rendering, this task was
presented as a top-down view on a backprojection screen (2 X 2 m)
in front of the subject (distance to subject 1.50 m). The large red circle
depicts the top-down view of the post; the smaller yellow circle
represents the target to be hit (Fig. 1B). The purple bar corresponds to
the subject’s arm/manipulandum and displayed his/her movements in
real time. The white circle at the end of the bar is the ball to be thrown.

To perform the throwing movements, subjects rested their forearm
on a manipulandum that restricted their movements to rotations in the
horizontal plane (Fig. 1B). A wooden ball was fixed to the end of the
manipulandum that had a force sensor attached to it (Interlink Elec-
tronics, Camarillo, CA). To initiate the throw, subjects grasped the
ball and pressed their index finger on the force sensor to hold the
virtual ball. To throw the ball, subjects moved their forearm and
released the finger from the pressure sensor as in a Frisbee throw.
Releasing the finger from the force sensor initiated the ball flight, and
the ball trajectory was calculated from the online-measured angular
position and velocity of the manipulandum at the release moment.
After release, the ball traversed an elliptic trajectory around the post
as shown in Fig. 1C. The top-down view simplified the physics of the
task to a two-dimensional system in which the ball was suspended by
two orthogonal, massless springs (Fig. 1C, inset). The equilibrium
point of the ball was at the origin, which was defined at the center of
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Fig. 1. Experimental task and set-up. A: real skittles game. B: virtual skittles game and how subjects interact with the virtual workspace. The subject stands in
front of the backprojection screen, rests her arm on a manipulandum, and throws the ball around the red center post to hit the yellow target in the virtual
workspace. C: top-down view with of post (red circle) and ball trajectories around the target (yellow). The ball trajectory describes an elliptic path around the
post. The pink bars denote the rotating arm. 3 exemplary trajectories with the 2 dashed-line trajectories going through the target despite different release angle
and velocities demonstrate the redundancy of the task. The solid line has a non-0 error, highlighted in the inset. The second inset shows a schematic of the 2D
spring model for generating the trajectory of the virtual ball [see details of the model in Zhang et al. (2018)].

the post location. The two dashed lines in Fig. 1C show ball trajec-
tories that went through the target with zero error. Note that these
two trajectories were released with two different arm angles and
velocities. This exemplifies the redundancy of the task; zero error
could be achieved with many different combinations of release angle
and velocity. The solid line represents a trajectory that passed the
target with a non-zero error, as further highlighted in the zoomed view
in the inset.

In experiment 1, the angular position of the manipulandum of the
first five subjects was recorded with an analog potentiometer (Vishay
Spectrol, Shelton, CT). However, this potentiometer was not suffi-
ciently sensitive in detecting the angle change when the velocity was
low. Hence, the potentiometer was replaced with a digital encoder
(BEI Sensors, Goleta, CA) to collect the remaining 10 subjects in
experiment I and subsequently all 16 subjects in experiment 2.

In experiment 1, the diameter of the ball and the target were 5 cm,
and the diameter of the post was 50 cm; in experiment 2, ball and
target were 2.5 cm, and the post was 25 cm in diameter. These
changes made the task of hitting the target easier. The error of each
throw was defined as the shortest distance between the ball path and
the center of the target (Fig. 1C, inset). When the error was less than
a threshold, set to be 1.1 cm in experiment I and 1.8 cm in experiment
2, the color of the target changed from yellow to green to indicate a
successful target hit.

The physical model that generated the ball trajectories consisted of
the ball fixed to the center location by two orthogonal massless
springs; the rest position of the ball defined the origin of the work-
space coordinates, coincident with the location of the center of the
post (Fig. 1C). The equations for the ball position in the x- and
y-directions at time ¢ were

1

x(1) = Asin(ot + ¢)e 7 )

y(t) = Aysin(wt + (p_‘,)e_; 2)

The frequency w denotes the natural frequency of the springs.
The amplitudes A, and A, and the phases ¢, and ¢, of the springs
were determined by the position and velocity of the ball at the
moment of release. The exponential term with the time constant 7
created a small damping effect on the ball trajectory. Details of the
physical model were presented in previous studies (Cohen and
Sternad 2009; Hasson et al. 2016; Miiller and Sternad 2004; Zhang
et al. 2018).

Experimental Design and Task Specifications

Figure 2 overviews the specific experimental design, the virtual
workspace, and the solution space for the two experiments. In exper-
iment 1, 15 subjects performed 11 days of practice, with 240 throws
parsed into 4 blocks of 60 throws with a brief rest between each block
(2,640 throws in total). Each session lasted ~20 min (Fig. 2A). The
subjects were instructed to hit the target (yellow) as accurately as
possible and to avoid the center post (red). If the distance from the
target was within the error threshold, the target color turned green to
signal success. Importantly, they did not receive any cues about the
temporal sequence of the throws, and they could wait between throws
as long as they wanted or needed. The target was located at (—60 cm,
60 cm) referenced to the center post (0 cm, O cm); the natural
frequency w of the springs was 3.16 rad/s, and the time constant T was
20 s. The pivot of the manipulandum was located at (0 cm, —150 cm),
and length of the lever arm was 40 cm (Fig. 2B). The threshold for the
error was 1.1 cm. After subjects released the ball, the elliptic trajec-
tory was drawn on the screen for 1.4 s. During this time, the ball could
not be grasped, and the initiation of a new throw had to wait for this
minimum time.

An important property of the task is redundancy; a successful hit
can be achieved with more than one ball release. As elaborated
previously, both angular position and velocity determine the ball
trajectory, and one value of error can be achieved by a mathematically
infinite number of different combinations of angular position and
velocity, defining a solution manifold (Miiller and Sternad 2009;
Sternad et al. 2014; Zhang et al. 2018). This feature of the task is
illustrated in Fig. 2, C and F, in which angular position and velocity
span the execution space and performance error defines the result
space; different color shadings indicate the different levels of error.
All solutions with zero error define a one-dimensional solution man-
ifold. Although this feature was not used for the primary performance
analysis, the solution manifold was important for the analysis of the
Floquet multipliers (see below).

In experiment 2, 16 subjects were randomly assigned either to a
self-paced group or to a discrete group. Both groups practiced the
throwing task for 6 consecutive days with only 120 throws on each
practice day, parsed into 4 blocks of 30 throws (720 throws in total,
Fig. 2D). Subjects in the self-paced group received the same
instruction as in experiment 1. Subjects in the discrete group were
asked to position their arm in a rest zone at 90 * 15 deg after each
throw; this rest zone was indicated on the screen by two white
dashed lines (Fig. 2E). Subjects waited until they received a verbal
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cue from the experimenter to start the next throw. This cue was
timed by a computer to be 7 s after the initiation of the previous
throw. As a throw lasted ~2 s, the instructed pause between
successive throws was ~5 s. As the actual duration of each throw
varied and the pause was relatively long, subjects did not perceive
the interval as periodic.

The parameters of the task were modified to reduce the challenge
and ensure relatively fast development of rhythmicity and also to test
the generalization of the results from experiment 1. After pilot tests of
different task conditions, the following parameters were chosen: target
location (—30, 30 cm), w = 3.14 rad/s, 7= 13.6 s, error thresh-
old = 1.8 cm. The pivot of the manipulandum was also slightly
shifted to the left and was located at (—10 cm, —65 cm) with a length
of 30 cm. These modified parameters changed the result space and the
solution manifold (Fig. 2F). Although the solution manifold retained
its U shape, the lighter color shadings indicate that the errors were
smaller for a broader range of angle-velocity combinations. Hence this
solution space enabled subjects to achieve target hits faster and was
therefore also likely to facilitate faster development of rhythmicity.

Release Angle (deg)

Dependent Measures

Success rate and performance errors. A first measure of task
performance was the success rate or percentage of successful trials per
day, i.e., throws with errors below threshold. A related but finer-
grained measure of performance was the error, defined by the mini-
mum distance between the target and the ball trajectory (Fig. 1C). The
median error over all trials per day summarized each subject’s daily
performance.

Periodicity of interthrow intervals. Periodicity is one essential
characteristic of rhythmic movement, i.e., the same posture or event
should recur at invariant intervals (Hogan and Sternad 2007). How-
ever, strict periodicity is unlikely to be present in human behavior, and
in common understanding rhythmicity implies some variation around
a constant interval. Figure 3A displays the time series of a self-paced
trial of one subject on day / and on day /1. The red points mark the
moments of ball release; the pink-shaded areas denote dwell times.
Comparison of day I and day 11 clearly illustrates that the successive
throws developed into an approximately periodic, i.e., rhythmic
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sequence. To quantify the degree of periodicity, the moments of ball
release served as landmarks; the interval between two successive
releases defined the interthrow interval (ITI). The median of all ITIs
per day characterized each subject’s performance; ITIs longer than
10 s were removed, as they indicated a voluntary rest. The periodicity
of movement was estimated by the dispersion of ITI, quantified by the
quartile variation coefficient (QVC) of ITI for each day, as the
distribution of ITI was highly leptokurtic and skewed (Bonett 2006)

_ 05— 0,
QVC —ITI = —Q3 T o, 3

where Q, refers to the 25th percentile and Q5 to the 75th percentile of
the distribution.

Number and duration of dwell times. Following definitions by
Hogan and Sternad (2007), discrete movements were defined by dwell
times between successive movements, whereas rhythmic movements
do not have such pauses. Comparing day I/ with day 11 in Fig. 3A
suggests that the dwell times indeed shortened or completely disap-
peared with practice. To quantify how the discrete throwing move-
ments merged into a continuous sequence, the number and durations
of dwell times between trials were quantified. Dwell time was defined
as the interval between the termination of one throw to the initiation
of the next throw (Fig. 3B).

For the identification of onset and offset of each throw, the angular
position was smoothed with a Savitzky-Golay filter using a second-
order polynomial model; the window length of the smoothing filter
was set to 100 ms. Angular velocity was approximated by the slope of
a linear fit to 20 smoothed-angle samples before the current time
point; acceleration was calculated with the same method as for the
velocity. The onset of a throw was indicated when the velocity
surpassed 5 deg/s for 10 ms, and the acceleration continuously
exceeded 50 deg/s? for 10 ms for the first time. The offset was
identified when velocity returned to values smaller than 5 deg/s and
acceleration remained smaller than 50 deg/s* for 10 ms. The time
interval between an offset and onset of the next throw quantified the
dwell time. If no clear initiation or termination was detected, the
adjacent throws were considered part of continuous movements (Fig.

>

Fig. 4. Representative movement trajectories of the arm
in state space and the Poincaré map. A: illustration of
the Poincaré section and the Poincaré map in state
space. The blue line is the continuous hand trajectory of
60 successive throws in 1 block. The black asterisks on
the arm trajectory represent the ball releases. The red
line between the origin of the plot and the mean of the
ball releases represents the Poincaré section. The green
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3A, bottom). For all subjects, dwell times longer than 10 s were
removed, indicating an explicit rest. This only happened six times in
experiment 1 and never happened in experiment 2. The total number
and the summed durations of dwell times per practice day served as
two dependent measures for rhythmicity.

Variability and stability in state space. Previous work has high-
lighted that discrete and rhythmic movements have different flow
topologies in state space (Huys et al. 2014; Schoner 1990; Sternad et
al. 1998). We therefore plotted arm trajectories in state space, spanned
by angular position and velocity, and examined their variability using
Poincaré sections (Fig. 4). A Poincaré section is an (n—1)-dimen-
sional surface that cuts through the flow in n-dimensional state space
(Rasband 1997; Strogatz 1994). The Poincaré map is a discrete
representation of the periodic flow of a continuous dynamical system,
defined by the successive crossings of the Poincaré section. The
topology of the Poincaré map and the Poincaré plot were previously
examined to quantify the stability of human locomotion (Dingwell
and Kang 2006; Hurmuzlu et al. 1994) and other physiological data,
such as cardiac and respiratory signals (Glass and Mackey 1988;
Honerkamp 1983; Winfree 1990).

Figure 4 shows exemplary orbits of the arm trajectories in state
space (blue), together with the ball releases, denoted by black aster-
isks. Note that the state space is spanned by angle and velocity of the
arm movements; when each state is viewed as a release of the ball
trajectory, then each state also has an associated error. This is
illustrated by the color shades as used previously in Fig. 2, C and F.
The blue trajectories are intersected by a red line from the origin
through the ball releases, the Poincaré section. The origin of the
Poincaré section was determined for each subject and block separately
as follows

center (angle,velocity)
Py (angle,velocity) + Py 5 (angle,velocity)
- 2

“

where P, 5 is the 2.5th percentile of the distribution of all angles and
velocities, Py, 5 represents the 97.5th percentile. The second point
defining the section was the average location of release points in each
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block, determined by the mean of the position and velocity values.
Note that samples of the arm trajectory frequently did not lie exactly
on the Poincaré section. Therefore, for each cycle of arm trajectory,

the point closest to the Poincaré section (dA,) was selected. The

projections of all dAt onto the Poincaré section rendered the Poincaré
mapd =1[d, d,, ..., d].

Before the calculations of the Poincaré section and the Poincaré
map, the state space was normalized. Therefore, the trajectories of all
blocks of each subject were pooled, and the position and velocity axes
were normalized by setting the average maximum and minimum of
each variable to 1 and —1. The normalization was kept constant for
each individual across all practice days when calculating the variabil-
ity in Poincaré map and the Floquet multipliers. This allowed us to
measure the changing variability across practice days. To maintain
differences across subjects, each subject was normalized separately.

Stability in state space. To quantify the degree of stability of
rhythmic movements, the Floquet multiplier has been widely used as
a measure (Ahn and Hogan 2015; Hurmuzlu and Basdogan 1994; Kuo
1999). Human walking has been a primary application, and the
moment of heel strike was chosen as the landmark for the Poincaré
map. For the throwing movements, the cycle-by-cycle stability was
characterized by the Floquet multiplier defined from the Poincaré map
of the arm trajectories:

divy—d =Nd,—d) ©)

where A is the Floquet Multiplier, d, and d,, , represent the states at
the rth and (¢+ 1)-th cycle, and d* is the fixed point. A smaller Floquet
multiplier value indicates faster convergence to the fixed point and
therefore higher stability of the movement.

Previous studies on locomotion defined the fixed point d* as the
average value of d, implying that different values of d presented
fluctuations around the mean that converged to the fixed point.
However, in this study the mean value was not necessarily equivalent
to the desired task performance and therefore did not represent the
best estimate for the fixed point. A better choice was the point at
which the performance error was zero. This value d* was given by the
solution manifold and its intersection with the Poincaré map (Fig. 44,
inset). The Floquet multiplier was then defined by the eigenvalue of
the one-dimensional map, determined by the slope of a simple linear
regression of d,,, on d,.

However, a recent study by Ahn and Hogan (2015) demonstrated
that the estimation based on linear regression and related methods by
Burg, Yule, and Walker (Burg 1967; Walker 1931; Yule 1927)
resulted in systematic overestimations of A because of the limited
length and the presence of noise in human behavioral data. Therefore,
we applied their suggested correction method to obtain an unbiased

estimate of the FM. This value A was calculated as follows:

3 y 2n+1
)\Burg - )\Burg

(n = 1)(1 = Kyur)

(6)

2)1*1
i=1 XX+ 1
n=1
Eizlxi
XBurg represented the Floquet multiplier calculated with Burg’s
method based on spectral estimation.

where XYW = represented the Yule-Walker equation and

Statistical Analysis

To characterize how performance and rhythmicity changed with
practice in experiment 1, all eight dependent measures, median error,
success rate, median ITI, QVC-ITI, total duration and total number of
dwell times per block, mean STD-PM, and the FM of four blocks
were subjected to one-way, repeated-measures ANOVAs with prac-
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tice day as the within-subjects factor. Greenhouse-Geisser corrections
were applied when the sphericity assumption was violated (Kirk
1982). Pairwise post hoc tests between practice days specified the
change across days. To further assess whether rhythmicity in arm
movements was associated with the performance error, Pearson’s
correlation coefficients were computed between error and each of the
dependent measures for each practice day.

In experiment 2, 2 (group) X 6 (practice days) repeated-measures
ANOVAs were applied on the same dependent measures to determine
whether discretizing movement influenced the performance. The same
Pearson’s correlation coefficients were calculated for the discrete and
the self-paced group.

RESULTS

Experiment 1

Task performance: success rate and error. Figure 5 shows
that the success rate increased and the error decreased for all
subjects across the 11 days of practice, as should be expected
in this novel task. Individual subjects’ median values per day
are represented by different colors, and the black points show
the mean performance of the 15 subjects. The one-way
ANOVA confirmed that the success rate significantly increased
from 10.14 = 3.79% to 23.28 £ 5.90%, F(5.50, 77.00) =
17.56, P < 0.001, partial n* = 0.56 (Fig. 5A). Concomitantly,
the errors significantly decreased from 6.90 cm * 2.94 cm to
2.72 cm = 0.80 cm, F(1.88, 26.29) = 22.71, P < 0.001, partial
n* = 0.62 (Fig. 5C). With only very few exceptions, there was
a continuous trend across all days, suggesting that improve-
ment occurred throughout day 11.

To determine whether performance changed across days,
pairwise t-tests compared the performance on each day with
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Fig. 5. Task performance in experiment 1. A: success rates on all 11 days of
practice. The colored lines represent the individual participants’ performances;
the black line and points show the mean values of all subjects per day. B:
number of pairwise #-tests of success rate between practice days. The perfor-
mance of each day was compared with all following days in a pairwise fashion.
The bar chart shows the number of significant -tests with P = 0.05 (maximum
10 comparisons on day /, maximum 9 comparisons on day 2, etc.). The red
dashed line indicates the total number of #-tests per day. C: performance error
across 11 days of practice. D: number of significant #-tests in pairwise
comparisons between each day and its successive days.
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of dwell times. A and B: ITI across 11 days of practice and number of significant differences for each day with subsequent days. C and D: variability of the
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11 days of practice and number of significant differences of each day with subsequent days. G and H: number of pauses across 11 days and number of significant
differences for each day with subsequent days. All metrics show significant changes over the 11 days of practice.

each of the following days. The bar charts in Fig. 5, B and D,
show the total number of significant comparisons for each day;
the red dashed line indicates the number of #-tests performed on
each day. Comparing the actual number of significant pairings
with this maximum number illustrates that both success rate
and performance error decreased from day [ to all other days
at the beginning, with fewer significant changes in the middle
but still some improvements at the final practice days. This
performance improvement is to be expected but serves as the
basis for further examination of rhythmicity and stability.

Rhythmicity: periodicity of ITls. Both the ITI and its vari-
ability, QVC-ITI, decreased across practice days (Fig. 6, A and
C). The ITI decreased from 2.38 = 0.45 s to 1.90 = 0.24 s,
F(2.47, 34.55) = 12.42, P < 0.001, partial n*> = 0.47. Al-
though subjects became faster as practice progressed, their
periodicity was not bounded by the minimum time between
throws; this minimum time was the 1.4-s interval after ball
release until it could be grasped again. Individual subjects
varied in their ITI between 1.5 and 2.5 s. Pairwise comparisons
between practice days suggested that subjects decreased the
interval between throws predominantly during the first 4 days
and then maintained their ITI on further days of practice
(Fig. 6B).

The periodicity estimate QVC-ITI also decreased signifi-
cantly from 0.10 = 0.05 to 0.03 = 0.01, F(2.13, 29.78) =
17.45, P < 0.001, partial n2 = 0.56. Similar to ITI, QVC-ITI
significantly dropped from day I to day 2, continued by a slow
monotonic change until day 5 (Fig. 6D). These results support
hypothesis 1, showing that subjects developed increasingly
periodic arm movements. It is also noteworthy that the vari-
ability of ITI reached a level equivalent of 5%; this is very low,
as even rhythmic movements synchronized with a metronome
show similar variability.

Correlation between periodicity and error. For each day, the
performance errors of all subjects were correlated with their
respective ITI and QVC-ITI (Table 1). ITI appeared unrelated
to error, and subjects who performed with shorter ITIs were not
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necessarily worse than those individuals with longer time
between throws. Such relation might be conjectured if one
assumed that error detection and correction would require time
before each throw. In contrast, QVC-ITI showed significant
correlations with mean error on early practice days (days 1-4).
These results only weakly supported hypothesis 2.
Rhythmicity: dwell time and number and duration of pauses.
The number and duration of pauses could only be calculated
for the 10 subjects whose data were collected with the optical
encoder (the potentiometer used for the first 5 subjects did not
allow accurate detection of initiation and termination of move-
ment). Figure 6, £ and G, shows the number of pauses and
dwell times across the 11 practice days. Overall, subjects
inserted fewer pauses with practice, seen in the declining
number of pauses per day from 163.90 * 38.50 times to
86.70 = 62.75 times, F(3.68, 33.11) = 4.75, P = 0.005, partial
n2 = (0.35. However, there was also a marked divergence

Table 1. Pearson correlation coefficients r between performance
error and other dependent measures in experiment 1
Number of  Dwell
. ITI, s QVC-ITI Pauses Time, s STD-PM FM
Practice
Day r Sig. r Sig. r Sig. r Sig. r Sig. r Sig
Day 1 0.36 0.67 + —0.16 0.30 072 f 0.81 i
Day 2 —0.10 0.42 —-0.27 —0.23 073 § 045
Day 3 0.10 0.61 * 0.01 0.09 075 f 053 *
Day 4 0.07 073 ¥ 0.18 0.35 076 T 057 *
Day 5 —0.28 0.48 —0.02 0.23 092 % 05
Day 6 —0.27 0.63 * —0.01 0.03 0.64 T 0.62 *
Day 7 0.15 0.41 0.20 0.06 0.80 % 0.84 i
Day 8 0.01 0.20 0.29 0.37 0.65 T 085 i
Day 9 —0.15 0.10 0.37 0.34 0.8 % 077 7
Day 10 —0.19 0.31 0.35 0.41 073 1 075 7
Day 11 —0.11 0.57 0.22 0.21 072 | 047

ITI, interthrow interval; QVC-ITI, quartile variation coefficient of ITI, Sig.,
significance. *0.01< P < 0.05, 10.001< P < 0.01, £P < 0.001. The boldface
numbers indicate the correlations that were significant.
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between individuals; 4 subjects decreased at the beginning and
retained only 15-50 pauses per day until the end, whereas the
other 6 subjects fluctuated more across practice and retained
between 100-200 pauses (the maximum number was 236 per
day).

Unlike the pauses, however, most subjects significantly
reduced their dwell times from a block total of 127.56 * 71.70
sto 19.06 £ 23.93 s, F(2.03, 18.24) = 5.48, P = 0.013, partial
1° = 0.38. Pairwise comparisons showed that both number of
pauses and total dwell time dropped fast from day I to day 2
and then reached an asymptote after day 4 (Fig. 6, F and H).
These changes are in support of hypothesis 1. However, coun-
ter to hypothesis 2, there was no significant correlation
between performance error and number of pauses and dwell
time (Table 1).

Variability in state space: variability of Poincaré map. The
variability of the arm trajectory was quantified in state space,
drawing a Poincaré section through the mean release points
(Fig. 4). The standard deviations of the intersections at the
Poincaré map were determined for each block, STD-PM, and
then averaged across each day. As illustrated in Fig. 4B, the
trajectories of the orbits across three exemplary days of a single
subject became tighter and less variable. This observation was
summarized in the average STD-PM of each day that signifi-
cantly decreased from 45.94 = 13.41 to 18.65 £ 6.12, F(3.12,
44.32) = 35.5, P < 0.001, partial > = 0.72. Smaller STD-PM
indicated that the hand trajectories recurred in every movement
cycle with a similar state. This reduction in variability devel-
oped quickly over the first 3 days, then kept decreasing from
day 4 to day 7 before it started to plateau on day 8 (Fig. 7B).
This decrease was supportive of hypothesis 3.
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Fig. 7. Measures of variability and stability in state space in experiment 1. A
and B: variability on the Poincaré map STD-PM across 11 days of practice and
number of significant differences for each day with subsequent days. C and D:
values of Floquet multipliers across 11 days of practice and number of
significant differences for each day with subsequent days. Although variability
decreases, the Floquet multiplier values remain invariant but show large
intersubject differences.

Stability in state space: Floquet multipliers. The Floquet
multipliers were calculated within each block and then aver-
aged across the four blocks for each day. To begin, all Floquet
multiplier values in the 10 subjects were <1, indicating that the
rhythmic arm movements were dynamically stable (Fig. 7C).
However, counter to hypothesis 3, movements within each
subject did not become more stable as the changes of Floquet
Multiplier across practice days were not significant, F(4.67,
65.34) = 2.05, P = 0.09, partial > = 0.13. The individual
subjects maintained similar Floquet multiplier levels or fluc-
tuated across practice without any consistent trend. This was
also reflected in the few significant pairwise comparisons
(Fig. 7D).

However, the actual Floquet multiplier values differed sig-
nificantly between the subjects. When we performed Pearson
correlations between the performance error and the two stabil-
ity metrics, strong positive correlations were revealed on all
days (Table 1). Figure 8 visualizes these consistent results for
both STD-FM and Floquet multiplier across all 11 days of
practice. Figure 8, A and B, shows that subjects who had lower
state space variability tended to perform better in the target-
oriented throwing, as expected by hypothesis 3. The same
strong positive correlations in Fig. 8, C and D, demonstrate that
subjects who had smaller Floquet multiplier, i.e., higher sta-
bility, performed with lower errors.

Experiment 2

Two new groups of subjects performed the same skittles
task but with a different target configuration and solution
space that lowered the task difficulty. We expected that,
with an easier task, rhythmicity should develop faster.
Furthermore, if this task variation achieved comparable
results, then this would also demonstrate some generality of
the results in experiment 1.

Task performance: success rate and error. A first analysis of
success rate and performance error clearly revealed that the
self-paced group was better in the two metrics of task perfor-
mance than the discrete group. As Fig. 9, A and B, illustrates,
6 days of practice with only 120 throws on each day was
sufficient to show signs of approaching a plateau in success
rate and performance error. The two-way ANOVA under-
scored that success rate significantly increased over days,
F(3.11, 43.51) = 37.10, P < 0.001, partial n* = 0.73 (Fig.
9A), whereas the error significantly decreased in both groups,
F(1.97, 27.62) = 27.83, P < 0.001, partial n* = 0.67 (Fig.
9B). More central to the hypothesis was that the subjects in the
self-paced group showed a higher average success rate and
lower errors than the discrete group. Although this group
difference did not reach the level of significance for the success
rate (P = 0.079), the advantage for the self-paced group was
significant in the performance error, probably because error
had a finer-grained resolution than the threshold-based binary
success rate, F(1,14) = 4.86, P = 0.045, partial n2 = 0.26.
This result supported hypothesis 4.

One potential caveat is that there were no significant inter-
actions (both measures P > 0.28) allowing for the possibility
that the difference in performance might have been due to
differences between the group’s general skill level. To probe
whether this group difference was present at the very beginning
of the experiment, we also compared the measures between the
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self-paced and the discrete group on day I using two-sample
independent #-tests. Neither success rate nor performance error
were significantly different (P > 0.05); the differences only
became significant on days 4 and 5. This subtle divergence did
not reach significance in the interaction of the ANOVA.
However, these results indicate that it was not differences in
skill level between the two groups that brought about the
overall better performance of the self-paced group. Rather, it
was the disruption of the flow of successive throws that
impacted performance.

Periodicity: ITIs. Measures of periodicity were only appli-
cable for the self-paced group. Table 2 summarizes mean
values of ITI and QVC-ITI over six practice days. Although a
small visible decrease in both ITI and QVC-ITI was discern-
ible, these changes did not reach significance in a one-way
ANOVA. Because the target location in experiment 2 was less
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Fig. 9. Task performance in experiment 2. The blue and red lines represent the
subject means of the discrete group and the self-paced groups, respectively.
The light blue and light red lines show the individual subjects’ performance in
the 2 experimental groups. A: success rate across 6 days of practice. B:
performance error across 6 days of practice.

difficult to hit, subjects fell into a rhythm very early in practice
and maintained the same regularity until the end of the much
shorter practice. This is reflected in the very low QVC-ITI that
reached 5% very early in practice. In fact, both ITI and
QVC-ITI reached the same level as in in experiment 1 on day
3. Hence, despite little change across practice days, the rhyth-
micity measures still replicated those of experiment 1 and were
consistent with hypothesis 1.

Rhythmicity: number and duration of dwell times. As for
periodicity, the measures for rhythmicity, i.e., number and
duration of dwell times, could only be determined for the
self-paced group. The one-way ANOVA showed no consistent
changes in the number and duration of dwell times over the 6
days; 2 subjects decreased their number of pauses, whereas 3
decreased their dwell times among all 8 subjects. Comparing
the mean values in Table 2, it becomes evident that the initial
values were already very low and close to the values at the end
of experiment 1. Hence, these low levels allowed for very little
change.

Table 2. Measures of rhythmicity in experiment 2

Practice
Day ITI, s QVC-ITI Dwell Time, s Number of Pauses

Day 1 245 +0.48 0.07 =£0.02 71.70 = 64.76 87.38 = 26.23
Day 2 242 £0.52 0.05*+0.05 72.13 = 64.38 81.25 = 35.17
Day 3 231 £0.34 0.05+0.02 56.82+43.22 83.75 = 34.95
Day 4 2.16 £0.24 0.05+0.01 40.72 +33.74 79.00 = 36.70
Day 5 2.17 £0.27 0.04 =0.01 48.30 = 40.70 85.63 * 34.37
Day 6 2.11 £0.23 0.04 =£0.01 38.59 +=33.70 83.50 * 36.09

Values are means = SE. ITI, interthrow interval; QVC-ITI, quartile varia-
tion coefficient of ITL.
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Fig. 10. Measures of variability and stability in state space in experiment 2. A
and B: arm trajectories on day I and day 4 of an exemplary subject form the
self-paced group. C and D: arm trajectories on day I and day 4 of an exemplary
subject form the discrete group. E: standard deviations at the Poincaré section
STD-PM across 6 days of practice. F: Floquet multiplier across 6 days of
practice. The 2 groups improve across the 6 days, and they differ in perfor-
mance measures. The variability (Bodfish et al. 2000) and stability measures
show the same pattern as in experiment 1.

Stability: periodicity in state space. Although the rhythmic-
ity measures did not detect significant changes across days, the
stability measures were sufficiently sensitive to reveal changes.
Both groups decreased their variability in state space, STD-
PM, over 6 days of practice as in experiment 2, F(2.65,
37.09) = 31.25, P < 0.001, partial n* = 0.691 (Fig. 10E). In
addition, there was a significant difference between the self-
paced group and the discrete group in STD-PM, F(1,
14) = 6.20, P = 0.026, partial * = 0.307, indicating that the
self-paced group performed with lower variability, i.e., higher
periodicity, than the discrete group. These results aligned with
expectations from hypothesis 1.

As for success rate and error, the pattern might also be
produced by two groups with different skill level. Therefore,
we again focused on the 120 trials of day I to analyze the
initial difference between the groups. A two-sample t-test
did not reveal any difference (P > 0.05). In contrast, the
same comparisons for day 2, 3, and 5 did detect a statistical
difference. Although these t-tests were not corrected for
multiple comparisons, they nevertheless suggest that group
difference only arose as a result of the two different timing
instructions.
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Stability in state space. As summarized in Fig. 10F, the
Floquet multiplier values of both groups were between 0 and
0.4, with the exception of one extreme outlier in the discrete
group. Note that this subject was not an outlier in the other
performance measures, suggesting that subjects could indeed
perform with the entire range of Floquet multipliers. As in
experiment 1, there were no significant effects across practice
days (P = 0.07) nor between the two groups (P = 0.08).
Pearson correlations between the performance error and the
two stability measures were summarized in Table 3. As can be
seen, STD-PM in the discrete group correlated significantly
with error in 5 out of 6 days, consistent with hypothesis 3. The
lack of correlation may be ascribed to the fewer subjects that
displayed a smaller range of Floquet multiplier values than in
experiment 1.

DISCUSSION

The findings of the two experiments conclusively demon-
strate that subjects spontaneously developed a stable rhythm
when performing a sequence of similar movements. Rhythmic-
ity was defined by metrics that quantified the degree of peri-
odicity and continuity. Stability was evaluated in state space
using the Poincaré map. Experiment I documented how sub-
jects spontaneously developed rhythmicity over extensive
practice; variability of ITIs decreased, and pauses between
throws became fewer and shorter (hypothesis I). Subjects with
higher degrees of rhythmicity and stability of their arm trajec-
tory also achieved better task performance (hypothesis 2).
Although variability at the Poincaré section noticeably de-
creased, stability as quantified by the Floquet multipliers did
not change with practice (counter hypothesis 3). Nonetheless,
subjects that exhibited smaller Floquet multiplier values, indi-
cating higher stability, performed with smaller errors. Experi-
ment 2 explicitly disrupted periodicity and continuity, which
had a negative effect on errors and success rate, as predicted by
hypothesis 4.

At first glance, the observation that subjects fall into rhythm
may appear almost trivial, as it concurs with intuitive experi-
ences and anecdotal observations. However, it needs to be
reiterated that in the throwing movements, the explicit and only
goal of the subjects was to minimize their error when aiming to
hit a target. The intervals between successive ball releases
became increasingly invariant, without explicit awareness of
this development. The variability of the ITIs in both the
11-day-long but also in the shorter practice dropped to levels as

Table 3. Pearson correlation coefficients r between error and
dependent measures in experiment 2

Self-Paced Group Discrete Group

. STD-PM FM STD-PM FM
Practice
Day r Sig. r Sig. r Sig. r Sig.

Day 1 0.61 0.38 0.76 * 0.16

Day 2 0.24 —0.22 0.53 0.71

Day 3 0.49 —-0.27 0.87 ¥ 0.79 *
Day 4 0.60 —0.27 0.76 * —0.21

Day 5 0.75 * —-0.27 0.93 ¥ 0.57

Day 6 0.65 —0.34 091 ¥ 0.21

Sig., significance. *0.01< P < 0.05, 70.001< P < 0.01. The boldface
numbers indicate statistically significant correlations.
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low as 5%. This variability is comparable to variability re-
ported in studies on tapping to a metronome, a task in which
the subject intends to move as periodically as possible in
synchrony with a metronome (Repp 2010; Repp and Steinman
2010). Why do people get attracted to a rhythm?

More specifically, why should initiation of each successive
movement be constrained to an almost periodic pattern? Fur-
thermore, why could it be beneficial to eliminate pauses be-
tween individual throws? Assuming error correction is the
predominant process in this practice, it might appear advanta-
geous to flexibly adjust the intervals between attempts to allow
for processing of the error and to update the motor command
of the next attempt (Diedrichsen et al. 2010; Wolpert et al.
2011). Indeed, as expected, performance significantly im-
proved with practice, attesting to gradual corrections of errors
despite the self-imposed time constraints (Fig. 5). However,
this appears counterintuitive because, when connecting the
successive movements into a continuous flow, there are no
controlled initial conditions for each new throw. Instead, pre-
vious errors may seamlessly propagate into the next cycle and
compromise error correction. It could be reasoned that the best
conditions for improving each throw is to set the arm to the
exact same initial conditions so that the error correction is
applied to invariant starting conditions. However, increased
rhythmicity left the overt performance in experiment 1 largely
unaffected. The lack of correlation between errors and ITIs
seemed to suggest that there was no time constraint for error
processing, at least not across subjects (Table 1). Neither did
the elimination of pauses affect performance success directly.
Only when the continuous flow was explicitly perturbed in
experiment 1 and a pause was imposed by the experimenter
was the performance negatively affected. Note that there was
no instruction to initiate as fast as possible upon the cue that
might have distracted the subject’s attention.

Instead, performance improvements appeared to be medi-
ated by the emerging stability properties of the rhythmic
movement. The variability of the Poincaré map clearly de-
creased with practice, underscoring the decrease in the overt
variability of the ITT (Figs. 6 and 7). It is important to note that
this increasing consistency in state space is not required for
consistent task performance, as the task is redundant. The
result space has a solution manifold with mathematically infi-
nite solutions, and the system can visit any point at or close to
the solution manifold without any overt effect on performance
(Fig. 2, C and F). The Floquet multiplier itself, a measure of
the evolution around the fixed point, or zero error solution in
this case, was positive with higher values indicating a lower
degree of stability. While the Floquet multiplier did not change
across practice, counter to expectations, it varied widely across
subjects, and the values strongly correlated with subjects’
throwing proficiency (Figs. 7C and 8C). These results suggest
that stability of the rhythmic arm movements supported good
performance. However, a caveat is necessary: Floquet multi-
plier analysis rests on the assumption that the performance is at
a limit-cycle attractor. Hence, a stronger test of stability would
be to apply perturbations (e.g., Kay et al. 1991).

One plausible explanation for the emerging rhythmicity
could be that subjects get attracted to the resonant frequency of
the oscillating limb, which may confer an energetically parsi-
monious solution as smaller input forces generate higher am-
plitude output. Such an argument has been supported by a

number of studies in locomotion in which the human or animal
tends to prefer a frequency that coincides with the minimum of
metabolical energy consumption (Hoyt and Taylor 1981;
Snaterse et al. 2011). Other work demonstrated that the pre-
ferred frequencies scale proportional to the resonant frequency
of the limb (Holt et al. 1990, 1995; Turvey et al. 1988). For the
human arm moving in the horizontal plane (as in skittles),
several studies have assessed stiffness and damping (Bennett
1993; Bennett et al. 1992; Latash 1992), but the resonant
frequency itself has been given less attention. With the use of
perturbation methods, these studies quantified the stiffness of
the neuromuscular complex and its variations throughout the
cycle. However, not only do these stiffness estimates vary
across the cycle, different studies also identified widely differ-
ent stiffness values, ranging between 2 and 18 N-m/rad (Ben-
nett et al. 1992) and 6 to 22 N-m/rad (Latash 1992). This is
probably due to different choices of movement frequencies and
specified movement amplitudes. Another set of studies exam-
ined rhythmic movements in the sagittal plane, in which the
pendular movements are also subject to restoring torques
attributable to gravity, absent in movements in the horizontal
plane in which stiffness alone is the determinant (Bingham et
al. 1991). For forearm movements swinging in the sagittal
plane, Hatsopoulos and Warren (1996) estimated the resonant
frequency to be around 1.2 Hz and the joint stiffness to be 0.4
N-m/rad. This study demonstrated that subjects indeed ex-
ploited the resonant frequency when allowed to swing their
limb at their preferred frequency.

To assess whether the limb movements in the skittles task
converged to their respective resonant frequencies with poten-
tial energy savings, it would be necessary to know not only the
inertial parameters of the limb and the manipulandum, but also
the values for the muscle stiffness and damping. Moreover, as
visible in the phase portrait in Fig. 4, the throwing task goes
beyond simple forearm oscillations and includes accentuated
hand opening for the ball release. Furthermore, the effective
resonant frequency should probably not only be defined for the
moving forearm plus hand, but also include the ball trajectory,
as its dynamics is coupled to the hand. Quantifying this
“resonant frequency” over the entire perception-action cycle is
clearly a challenge. To conclude, although it is possible or even
plausible that the emerging ITI converges to a period that
affords low metabolic cost or effort, this is hard to quantita-
tively support at this point.

One benefit of rhythmic performance with dynamic stability
is its robustness with respect to perturbations and noise (Long-
tin et al. 1990; Stark 1962). By definition, any system with
stable limit-cycle dynamics rejects small errors and noise and
returns to its stable attractor without requiring explicit correc-
tions. Empirical support that this feature of dynamic systems is
relevant for human motor behavior has been provided in a
series of studies on rhythmically bouncing a ball to a target
height (de Rugy and Sternad 2003; Huber and Sternad 2015;
Sternad et al. 2000, 2001a, 2001b). Although the racket can
contact the ball at any phase of the racket movement and
achieve the desired target amplitude, mathematical analyses
showed that only contacts at the decelerating portion of the
racket trajectory show dynamic stability. Subjects indeed con-
verged to this phase of contact with practice, without being
explicitly aware of it. These studies argued that exploiting
dynamic stability is a computationally parsimonious solution,
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obviating computationally demanding error correction (Schaal
et al. 1996; Sternad 2017; Wei et al. 2007). However, in
contrast to the throwing movements, bouncing a ball in the air
is a rhythmic activity, and subjects were instructed to rhyth-
mically bounce the ball. When performing a sequence of
throws, periodic movements were not required.

From a neurophysiological perspective, rhythmic move-
ments may confer an advantage because they may involve
fewer high-level neural resources. Using fMRI imaging,
Schaal, Sternad, and colleagues (Schaal et al. 2004) demon-
strated that rhythmic wrist movements required significantly
fewer cortical and subcortical areas than discrete movements
that were voluntarily separated by random pauses. Discrete
movements were associated with bilateral parietal and cerebel-
lar activation, not seen in self-paced rhythmic movements.
Presumably, control of rhythmic movements is deferred to
subcortical and possibly brainstem areas although these brain
regions were not recorded. This view is also supported by a
study on patients with stroke that revealed less impairment in
rhythmic movements compared with discrete movements in
patients with cortical stroke (Leconte et al. 2016). If rhythmic
movements can be maintained with fewer demands on higher-
level cortical control, then they may free up computational
capacity for other control processes.

This preference for stable rhythmic actions is also good
support for the proposition in motor control that movements
are generated by dynamic primitives. Previous work has ar-
gued that the control of the complex human system requires
modules to simplify control of the high-dimensional and re-
dundant system. Several lines of research have pursued such
modules in the muscular organization and identified func-
tional low-dimensional synergies (d’Avella et al. 2003,
2006; Ivanenko et al. 2004; Tresch et al. 1999). For exam-
ple, several studies examined locomotion in humans and
identified four or five synergies in muscle activation in
control of the movement (Dominici et al. 2011; Ivanenko et
al. 2004, 2005). Examining walking on a narrow beam,
dancers exhibited better control of balance, which was
associated with additional synergies (Sawers et al. 2015).

In contrast to muscle synergies, a dynamic systems perspec-
tive proposes that modules or primitives are defined over the
neuromuscular substrate within the context of a behavioral
task. Sternad and colleagues (Schaal and Sternad 1998; Schaal
et al. 2000; Sternad 2008; Sternad et al. 2000) have proposed
stable attractors as modules that are assembled over the neu-
romechanical system. Recognizing that the neuromechanical
system is nonlinear, stable attractors can take the form of fixed
points and limit-cycles, generating discrete and rhythmic
movements, respectively. Such stable subsystems may com-
bine to perform more complex movements as a combination of
both (de Rugy and Sternad 2003; Ronsse et al. 2009; Sternad
et al. 2000). More recently, Hogan and Sternad (2012, 2013)
proposed that a third primitive, impedance, is needed to ensure
stable physical interactions with objects and the environment.
They outline a nonlinear equivalent network as a model for
integrating the primitives into interactive behavior.

Although the observations have been recorded in the ideal
conditions of the laboratory, the phenomenon is likely to
uphold in more realistic conditions with environmental distur-
bances, just as the rhythmicity of walking and running is
maintained on uneven terrain. How robust this tendency is

requires further investigation. It is noteworthy though that this
preference for rhythmic movements is also consistent with
several clinical observations. For example, individuals with
severe autism frequently are urged to perform repetitive move-
ments, such as hand flapping and body rocking, that seem to
have a calming effect (Bodfish et al. 2000; Goldman et al.
2009). Individuals with chronic schizophrenia frequently dis-
play purposeless repetitive movements, and antipsychotic
drugs can induce low-frequency large-amplitude tremor (Burke
et al. 1982). Furthermore, it is well known that one cardinal
symptom of Parkinson disease is tremor with higher-amplitude
and lower frequency compared with healthy physiological
tremor (Heldman et al. 2011). A similar manifestation of
uncontrolled oscillations is essential tremor, another wide-
spread but still understudied neurological disorder (Archer et
al. 2018a, 2018b; Elble 2017). These pathological manifesta-
tions suggest that, when the nervous system is impaired,
oscillations as a more basic form of organization can emerge.

As a final speculation, we want to return to the recognition
that the human system is a complex hierarchy of intercon-
nected oscillations at different temporal and spatial scales. As
many scientists in chronobiology have pointed out, the human
body comprises a hierarchy of oscillatory processes at a vast
range of orders of magnitudes, starting with periods 102 and
10~ ! s at the level of neuronal signals, to 10°-107 s at the level
of cardiac and respiratory processes, to the level of the meta-
bolic system with 10° to 10° s and even higher in circadian and
reproduction cycles. The behavioral level of volitional move-
ments is at the order of 10° s. However, the intriguing fact is
that movements are under volitional control and can take on
many complex nonrhythmic patterns. The observation that a
sequence of volitional movements tend to shape into a rhyth-
mic pattern suggests that it falls in line with the hierarchical
system whenever possible.

Returning to the subjective association of rhythmic move-
ments with “being in a zone,” signaling a comfortable state,
this may suggest that rthythmic behaviors have beneficial ef-
fects on the human system, just as rocking has soothing effect
on an infant (Ko et al. 2016). We conclude by proposing that
the central nervous system can make use of this intrinsic
tendency and exploit such temporary rhythmic patterns as
building blocks or primitives to construct more complex move-
ment patterns. We recognize that much of these interpretations
are still highly speculative and call for more research in this
direction.
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