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ABSTRACT

Markers from local field potentials, neurochemicals, skin conductance and hormone
concentrations have been proposed as a means of closing the loop in Deep Brain Stimulation
(DBS) therapy for treating neuropsychiatric and movement disorders. Developing a closed-loop
DBS controller based on peripheral signals would require: (i) the recovery of a biomarker from
the source neural stimuli underlying the peripheral signal variations; (ii) the estimation of an
unobserved brain or central nervous system related state variable from the biomarker. The
state variable is application-specific. It is emotion-related in the case of depression or post-
traumatic stress disorder, and movement-related for Parkinson’s or essential tremor. We present
a method for closing the DBS loop in neuropsychiatric disorders based on the estimation of
sympathetic arousal from skin conductance measurements. We deconvolve skin conductance via
an optimization formulation utilizing sparse recovery and obtain neural impulses from sympathetic
nerve fibers stimulating the sweat glands. We perform this deconvolution via a two-step coordinate
descent procedure that recovers the sparse neural stimuli and estimates physiological system
parameters simultaneously. We next relate an unobserved sympathetic arousal state to the
probability that these neural impulses occur and use Bayesian filtering within an Expectation-
Maximization framework for estimation. We evaluate our method on a publicly available data-set
examining the effect of different types of stress on peripheral signal changes including body
temperature, skin conductance and heart rate. A high degree of arousal is estimated during
cognitive tasks, as are much lower levels during relaxation. The results demonstrate the ability to
decode psychological arousal from neural activity underlying skin conductance signal variations.
The complete pipeline from recovering neural stimuli to decoding an emotion-related brain state
using skin conductance presents a promising methodology for the ultimate realization of a closed-
loop DBS controller. Closed-loop DBS treatment would additionally help reduce unnecessary
power consumption and improve therapeutic gains.
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INTRODUCTION

Deep Brain Stimulation (DBS) is a type of therapy involving the application of high frequency electrical
stimulation, usually at approximately 130 Hz, to specific anatomical structures deep within the brain
(Carron et al., 2013; Oluigbo et al., 2012). While the precise mechanics of the therapy are yet to be fully
understood, it has been hypothesized that DBS mimics the effect of ablative lesions without causing any
tissue damage (Dostrovsky and Lozano, 2002). A second hypothesis suggests that stimulation from the
implanted electrodes modulates electrical circuit activity within dysfunctional brain regions (Oluigbo et al.,
2012; Cleary et al., 2015). DBS has been approved by the Food and Drug Administration (FDA) for the
treatment of Parkinson’s disease and essential tremor in the United States. Humanitarian device exemptions
have also been granted by the FDA for the use of DBS in the treatment of severe obsessive compulsive
disorder and dystonia (Grahn et al., 2014). Meanwhile, the therapy has also been investigated as a treatment
option for a host of other medical conditions including major depression (Puigdemont et al., 2012; Merkl
et al., 2013), chronic pain (Boccard et al., 2015; Lempka et al., 2017), drug-resistant epilepsy (Fisher et al.,
2010; Vesper et al., 2007), anorexia nervosa (Wu et al., 2013; Lipsman et al., 2013) and substance abuse
(Miiller et al., 2013; Zhou et al., 2011).

Commercially-available DBS systems currently function in an open loop manner. In open-loop DBS,
stimulation is delivered continuously until manually re-adjusted. In contrast, a closed-loop DBS (CLDBS)
system automatically adjusts stimulation parameters based on sensor feedback recorded from the patient
(Herron et al., 2017). The feedback signal is usually based on a symptom-related biomarker (Bouthour
et al., 2019). Open-loop systems can require multiple post-operative visits in the months following surgery
(Grahn et al., 2014). During visits, different parameters of the electrical stimulation including frequency,
amplitude and pulse width are adjusted for improving therapeutic benefit (Bronstein et al., 2011). Manual
adjustment of the parameters in a trial-and-error fashion is time consuming. It is also challenging to explore
the complete stimulation parameter space during brief patient visits. Moreover, open-loop DBS systems
apply stimulation even if not strictly required. Consider, for instance, two common movement disorders—
essential tremor and Parkinson’s disease. Motor symptoms for both disorders include rhythmic involuntary
movements (tremors). In essential tremor, the tremors occur during volitional movement (Plumb and
Bain, 2007) and stimulation may be unnecessary when a patient is not using an affected limb (Herron
et al., 2017). The tremors occur at rest in Parkinson’s (Chou et al., 2011). However, motor symptoms can
fluctuate continually (Rosin et al., 2011; Little et al., 2013). Evidence suggests that local field potential
(LFP) (-band oscillations in the subthalamic nucleus correlate with motor impairment in Parkinson’s
(Little and Brown, 2012). CLDBS systems switching on control based on LFP threshold crossings were
shown to have superior performance in treating Parkinson’s patients and had substantial gains in reducing
stimulation time (Little et al., 2013, 2016). The effectiveness of CLDBS over an open-loop stimulation in
Parskinson’s was also shown in non-human primates (Rosin et al., 2011). CLDBS systems have thus arisen
gradually to eliminate part of the inefficiencies of their open-loop predecessors.

In a recent work describing a theoretical framework for the design of a CLDBS system for treating chronic
pain, Shirvalkar et al. (2018) point out two important elements of closing the loop: (i) the extraction of an
accurate, relevant and timely biomarker of the underlying state variable of interest; (i1) a control-theoretic
(e.g. state-space) representation of the system relating the biomarker to the unobserved state variable. In
their specific application, they suggest using LFPs from the somatosensory cortex, the dorsal anterior
cingulate cortex and the orbitofrontal cortex for tracking a multidimensional pain state. Others have
similarly suggested neurochemical biomarkers, skin conductance features and hormone concentrations
as a means of feedback for treating a broad range of neuropsychiatric disorders (Grahn et al., 2014; Bina
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and Langevin, 2018). Following the suggestion of Shirvalkar et al. (2018), we present a proof-of-principle
state-space framework that can be used for CLDBS therapy.

DBS has recently emerged as a potentially successful treatment option for patients diagnosed with
post-traumatic stress disorder (PTSD) (Langevin et al., 2016; Koek et al., 2014). PTSD is a type of
psychiatric disorder that can occur in patients who have experienced traumatic or stressful events in the
past. Distressing memories or dreams often persist long after the event (Jetly et al., 2015). Symptoms of
PTSD include changes in psychological arousal, reactivity and mood, and are evidenced by factors such as
hypervigilance and exaggerated startle responses (American Psychiatric Association, 2013). This state of
hyperarousal or hypervigilance in PTSD has been noted in multiple studies (Woodward et al., 2000; Risser
et al., 2006; Hellmuth et al., 2012). While the method we present here could find broader applicability to a
range of neuropsychoatric disorders, it seems particularly suited to address PTSD with its hyperarousal
symptoms.

Bina and Langevin (2018) suggest the possibility of monitoring skin conductance changes as a potential
biomarker in a CLDBS system for treating PTSD. Sympathetic nerve fibers innervate the sweat glands
(Low, 2012). Consequently, changes in the conductivity of the skin owing to perspiration provide a
measure of sympathetic drive or arousal (Critchley et al., 2002). Heightened responsivity in terms of
skin conductance has been noted in PTSD patients compared to controls (Orr and Roth, 2000). In a
three-group study of Vietnam combat veterans with PTSD, psychiatric Vietnam combat veterans and
psychiatric non-combat Vietnam-era veterans, McNally et al. (1987) reported that PTSD subjects had
the largest skin conductance responses (SCRs) in response to combat-related words. In a similar study
comprising of Vietnam combat veterans with PTSD, Vietnam combat veterans and non-combat controls,
Goldfinger et al. (1998) reported that PTSD veterans had the highest baseline skin conductance levels. In
an affect-toned Rorschach test conducted in the same study, arousal, as measured by skin conductance,
was highest in the PTSD group as well. Pole (2007) also noted higher skin conductance baselines, larger
SCRs and slower skin conductance habituation in startle and trauma-cue studies in PTSD patients in a
meta-analysis study of adults with and without PTSD. Skin conductance changes also occur in depression.
Ward and Doerr (1986) measured skin conductance in patients with depression, parents of firstborn one- to
three-month old infants and control subjects, and found that depressed patients had significantly lower skin
conductance levels than the other groups. Lin et al. (2011) examined the effects of stress and depression
using a series of physiological measures. Participants were first categorized into the normal, low-risk and
high-risk depression groups and were assigned to one of two stress treatments. Percentage change in skin
conductance between baseline and during the stress treatment periods were significantly dependent on and
correlated positively with depression. Both PTSD and depression are potential candidates for DBS therapy
when other treatment options have been exhausted. Skin conductance additionally has the advantage of
being easily measured with wearable devices such as the Empatica E4 (Koskimaiki et al., 2017). Wearable
devices afford convenience, seamless integration into clothing and do not involve the risks of surgically
implanted sensors.

We develop a state-space model to track an unobserved sympathetic arousal state from skin conductance
measurements. The relationship between arousal and skin conductance has been attested to in multiple
studies (Boucsein, 2012). Individual SCRs are a notable feature in a skin conductance signal. SCRs
accompany psychologically arousing stimuli as the skin’s conductivity increases momentarily. We relate
arousal to the rate at which SCRs occur. Current methods for detecting SCRs in a skin conductance signal
rely on detecting peaks above a threshold set between 0.01-0.05 pS (Benedek and Kaernbach, 2010).
Inter-subject variability in skin conductance signals is a known phenomena (Dawson et al., 2007). We
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Figure 1. A CLDBS System based on Skin Conductance Measurements. A conceptual CLDBS
architecture for treating neuropsychiatric disorders based on tracking a neural state from peripheral
skin conductance measurements. Langevin et al. (2016) and Koek et al. (2014) applied stimulation to
the amygdala in treatment-refractory PTSD patients. The amygdala plays an important role in emotion
processing. In particular, the basolateral nucleus of the amygdala contains cells that are responsive to both
fear acquisition and fear extinction (Liithi and Liischer, 2014). Langevin et al. (2016) and Koek et al. (2014)
targeted this area owing to the partially dysfunctional fear extinction mechanism for trauma-related cues in
PTSD patients.

therefore use a deconvolution strategy for extracting the physiological parameters related to sweat secretion
for each individual and detect neural impulses to the eccrine sweat glands that generate the SCRs rather
than relying on heuristic peak detection. The following section describes our two-part methodology. We
first describe the deconvolution approach that utilizes its own state-space formulation for detecting neural
impulses based on sweat diffusion and evaporation dynamics. We next describe the state-space formulation
for the CLDBS system that relates the probability of neural impulses to a latent sympathetic arousal
state. We present our results thereafter and finally conclude with a discussion of our results, and how
our methodology could be used in an experimental CLDBS prototype (e.g. such as in the conceptual
architecture depicted in Figure 1).

1 MATERIALS AND METHODS
1.1 Data

We use the Non-EEG Dataset for Assessment of Neurological Status (Birjandtalab et al., 2016). The data
is publicly available through the PhysioNet database (Goldberger et al., 2000). The data-set contains skin
conductance recordings from 20 healthy college students who were exposed to physical, emotional and
cognitive stress during three different time periods. Skin conductance was recorded using the wrist-worn
Affectiva Q Curve device. Skin conductance can be contaminated by noise sources such as motion artifacts,
range saturation and amplification factor changes (Boucsein, 2012). Many of the signals had to be discarded
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Table 1. Subject Information for Selected participants

Participant | Subject ID | Age | Gender | BMI (kgm™)
1 1 30 M 30.00
2 5 30 M 24.75
3 8 27 M 19.32
4 9 25 M 21.70
5 12 32 F 20.20
6 16 24 M 16.66

owing to motion artifact contamination and noise due to bad skin contact. Hence, we only used the data
from six subjects. We re-labeled the original subject numbers with corresponding participant numbers
(Table 1). The physical, cognitive and emotional stress periods each lasted 5 minutes and were interspersed
by 5 minute intervals of relaxation. Subjects were made to stand, walk and jog during the physical stress
part of the experiment. We excluded data from this portion of the experiment and focus only on the
psychological aspects. The cognitive stress portion consisted of two separate tasks. In the first task, subjects
had to count backwards in 7’s beginning at 2485 for 3 minutes and then perform the Stroop test for a further
2 minutes. In a Stroop test, a subject is shown a word denoting a color and is asked to read it out. However,
the color in which the text is written may not necessarily correspond to what it means. A buzzer notified
subjects of any errors they made. Emotional stress was induced by means of a horror movie clip. The
authors of the data-set noted that many of the volunteers participating in the experiment showed a stress
response that was visible to the experiment administrator while they were just being given instructions
regarding the cognitive tasks. Hence, they categorized the 40 s interval just prior to the counting task and
the Stroop test as a stress period.

1.2 Skin Conductance Deconvolution using Compressed Sensing
1.2.1  Skin Conductance Model Formulation

A skin conductance signal ygc(t) consists of two distinct parts. The comparatively slow varying part, also
known as the tonic level, is primarily related to thermoregulation and is a function of ambient temperature
and humidity. The other part, also known as the phasic component, fluctuates much faster and is generated
by sympathetic nerve fibers stimulating the sweat glands. Therefore

ysc(t) = y(t) +yr(t), (1)
where y(t) and yp(t) represent the constituent phasic and tonic components, respectively.

The phasic component y(¢) can be extracted from ygc(¢) using an algorithm such as cvxEDA (Greco
et al., 2016). The physiology leading to the generation of the phasic component—namely the diffusion
of sweat from the sweat duct to the stratum corneum, and its subsequent evaporation thereafter—can be
modeled using first order dynamics (Alexander et al., 2005; Benedek and Kaernbach, 2010; Boucsein,
2012), and mathematically expressed via the following pair of differential equations:

1(t) = —Tixl(t) + Tlu(t) (diffusion) (2)
To(t) = T—ldml(t) - Tldxg(t) (evaporation) 3)
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where x1(t) is an internal variable, x2(t) is the phasic component and u(t) is the neural stimuli to the sweat
glands. x;(t) is related to the amount of sweat and pressure within the sweat duct. The phasic component
consists of a series of SCRs, each of which results from a single neural impulse burst. 7, and 7, are the rise
and decay times of a single SCR.

The number of SCRs in a phasic skin conductance signal is typically much smaller than the total number
of acquired data samples. Consequently, the number of underlying neural impulse bursts causing the SCRs
is also small. This enables us to employ a sparsity constraint when solving for u(¢). We model u(t) as a
finite sum of weighted, shifted delta functions

N
u(t) = wid(t — Ay), (4)
=1

where u; represents the amplitude of an impulse occurring at A;, and N is the number of samples in the
neural stimuli signal. /V is proportional to the recording duration 7; and the input sampling frequency f;,
(N =Ty fu). A; =41, where T, = f,; Lo, is positive if there is an impulse at time instance A; and 0
otherwise. The continuous-time phasic skin conductance y(t) contaminated by measurement noise v/(t) is

y(t) = w2(t) + v(1). (5)

If the signal is periodically sampled at T}, intervals to yield a total of M/ measurements, we can define the
equivalent discrete-time observation ¥ as

yr = x2(kTy) + vy (6)

where v, is Gaussian noise. Given all the discrete measurements ¥ for k = 1,2, ..., M, we would like to
recover u(t) and estimate 7, and 7;. We take 21(0) = 0 as an initial condition assuming that the sweat duct
is empty at the beginning. The state-space solution for z2 (k7T ) leads us to (Faghih et al., 2015b)

Yk = agyo + brpu + vy, (7
kTy kT, kTy ETy—T, kTy—Tu kTy—2T,
_ T _ 1 -4 T 1 e 1 — ==
wherea, =e 74, by = [(Trﬂ) (e —e ) e | CRG e Td ) = v
_ KTy —2Ty 1 Ty _Tu T
—e i) o pos(em o —e ) Qe O]Jandu=[u; wuy --- wupy]' represents
kTy
L
a sparse vector containing all the neural stimuli over the entire signal duration (i.e., very few of the u;’s are
non-zero). Concatenating all the measurements into a single vectory = [y1  y2 -+ ¥y M]T we have,
y =Aryo+Brut+v )
where A, = [a1 as -+ ap].By=[b by - bl l,v=[ 1 --- wvyl" andyis

the initial condition of the phasic skin conductance signal. Here, 7, is an integer multiple of 75,.
1.2.2 Deconvolution

We set the sampling interval for the phasic skin conductance signal and neural stimuli to 7, = 0.5 s and
T, = 0.25 s respectively. Eq. (8) has M < N and represents an ill-posed problem with multiple solutions.
The sparsity constraint on u however, makes it possible to solve the equation via compressed sensing. An
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[1-norm penalization term is typically added to the objective function to impose sparsity (Faghih, 2018). We
consider [,-norm penalization in this particular formulation. We further constrain the rise and decay times
t0 0.1 <7, <1.4and1.5 < 75 <6 similar to Amin and Faghih (2018, 2019). We impose these constraints
based on prior work in the literature to ensure that the solution is identifiable and physiologically plausible
(Alexander et al., 2005; Benedek and Kaernbach, 2010; Greco et al., 2016). Letting T = [7, Td]T, we
formulate the following constrained optimization problem based on Eq. (8) to estimate T and u

. 1
argmin J(7T,u) = §Hy — Ay — BTu||% + Allu][5, 9)
T, u
C7<b,u>0
-
-1 1 0 0 T ) ..
where C' = 0 0 -1 1 , b= [ —-0.1 14 —-15 6 ] and A is the /,-norm regularization

parameter for imposing sparsity on u. A is chosen to provide a balance between exploiting sparsity and
accounting for signal fluctuations (Faghih, 2018). This optimization problem is challenging. We therefore
decouple it into two sub-problems. A coordinate descent approach can be formulated similar to Faghih
(2014); Faghih et al. (2015b, 2014, 2015a); Faghih (2018) by solving the following sub-problems iteratively
(for[ =0,1,2,---) until convergence:

1. Y = argmin Jy (7" u)

u
s.t. u>0

2. 7D = argmin J(r,ul+D)

g
s.t. Ct<b

The first step represents a sparse recovery problem with a constrained convex optimization formulation.
Many different approaches exist to solve this. One of the popular approaches is the iterative re-weighted
least squares (IRLS) method. We solve this sparse recovery problem using two IRLS methods called
FOCUSS+ (Murray, 2005) and GCV-FOCUSS+ (Zdunek and Cichocki, 2008). FOCUSS+ uses a heuristic
approach for increasing A at each IRLS step. We use FOCUSS+ for obtaining a suitable initialization
of u. GCV-FOCUSS+ uses the Generalized Cross-Validation (GCV) technique to update A at each step
(Golub et al., 1979). We initialize GCV-FOCUSS+ with the result from FOCUSS+ and then run the IRLS
until convergence. We finally constrain the minimum amplitude of any detected neural impulse to be
0.01 to reduce noisy detections. The second step in the coordinate descent approach represents a system
identification problem with a constrained non-convex optimization formulation. We use the interior point
method to solve this step.

The overall deconvolution algorithm begins by extracting the phasic skin conductance component using
cvxEDA (Greco et al., 2016), then randomly initializing 7 and performing the initialization step for u
using FOCUSS+. Thereafter, we proceed with coordinate descent using GCV-FOCUSS+ and the interior
point method. We perform the deconvolution on a small 3 minute segment (taken from close to the opening
portion of the experimental data we consider) of the signal to obtain the rise and decay times. Once we
obtain these parameters, we use them to perform sparse recovery with GCV-FOCUSS+ on the entire skin
conductance signal.

1.3 Sympathetic Arousal State Estimation

The autonomic nervous system contains both a sympathetic and a parasympathetic branch. The
sympathetic branch mediates the body’s “fight or flight” response and causes increases in blood pressure,
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perspiration and heart rate (Silverthorn, 2009). As pointed out earlier, sympathetic nerve fibers innervate
the sweat glands (Low, 2012) and consequently skin conductance provides an index of sympathetic arousal
(Critchley et al., 2002). Multiple skin conductance features such as tonic levels, rates of SCR appearance,
SCR amplitudes and decay rates have been examined in the context of various behavioural interventions
(Boucsein, 2012; Dawson et al., 2007). The rate at which SCRs occur has been shown to be related to
cognitive task load (Munro et al., 1987; Jennings, 1986) and is thus a useful biomarker of autonomic
arousal (Aikins et al., 2009). Here, we describe our approach of estimating an unobserved sympathetic
arousal state based on the appearance of neural impulses underlying SCR generation.

We develop a state-space model relating arousal to the probability that the neural impulses occur
(Wickramasuriya et al., 2018). The model is inspired by an earlier work relating a sequence of binary
response variables to a latent cognitive learning state (Smith et al., 2004). We first divide the time-axis
into bins of 77, duration indexed over j and assign s; = 1 or s; = 0 based on whether or not a neural
impulse occurs at the j™ time instance. Similar to Smith et al. (2004), we assume that sympathetic arousal
zj follows a random walk with time,

zj=zj-1+¢ ;5 € ~N(0,02). (10)

The appearance of neural impulses s; is a Bernoulli distributed random variable with probability p; and is
taken to be related to z; via a sigmoid function (Smith et al., 2004),

1
1+ 6—(a+2j> ’

log( bi ):Oé+Zj:>pj: (11D

1-— bj
The choice of the sigmoid function follows from the theory of generalized linear models (McCullagh
and Nelder, 1989). Such logarithmic or exponential transformations are frequently encountered in count
or frequency type data. Assuming that a subject’s sympathetic arousal state zy ~ 0 at the outset of the
experiment, o = log[po(1 — po) ~!] can be calculated by taking py as the probability that a neural impulse

occurs randomly in a time bin textcolorblackfor each individual (Smith et al., 2004; Wickramasuriya et al.,
2018).

Given the observations S1.; = {s1, s2, ..., sy} we wish to estimate z; Vj. We use Bayesian filtering and
Expectation-Maximization (EM) for estimating the arousal states z; and recovering the unknown model
parameters z and o2. The algorithm iterates between the E-step and M-step until convergence.

1.3.1 Expectation Step

The E-step consists of two parts—a forward filter and a backward smoother. The filter first calculates a
state estimate z;|; using the observations 5.5 available up to the 4" time index. The backward smoother
determines a second estimate z; ; given all the available observations Si.;. A Gaussian approximation is

made at the filter formulation step and leads to the following equations at the /" EM iteration (Smith et al.,

2004):
Predict:
Zjlj-1 = Zj-1]j-1 (12)
2 ) 2(1)
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Update:
= 2 S 14
Zjli = Zjli—1 T Ojl-1|Si — 1+ e~ (@+20) (o

) 1 15 -
o2 = n ey (15)

2 .
o4 . a+z
-1 [L et Tl

One should note that z;; appears on both sides of Eq. (14) and therefore is numerically solved using

Newton’s method. We next obtain the smoothed state and variance estimates z;| ; and 0J2.| ; as follows
(Mendel, 1995):

2

A il a6
T2
JH1j
21y = 215 + Aj (24117 = Zj41)5) (17)
2 2 2 2 2
0 = 75 T A ("j+1u - Uj+1\j> : (13)

1.3.2 Maximization Step

We maximize the complete data likelihood at the M-step to estimate the two unknown model parameters
o2 and 2. The parameter updates for the (I 4+ 1)™ iteration are as follows (Smith et al., 2004):

J J
2(1+1 2
S T+ > (o + ) = D (Ao + Zj|sz—1|J)] (19)
J=2 j=2
1 3 2 2 2 2
R A (P (0717 + 275) (20)
1) 1
A =52 @1

Following a criteria similar to Smith et al. (2004), we take the parameters to have converged once their
absolute difference between consecutive iterations does not exceed 1075.

1.3.3 High Arousal Index

Similar to Smith et al. (2004), we calculate the probability that sympathetic arousal state z; exceeds a
specific threshold. We name this the High Arousal Index (HAI). HAI helps express how aroused a person is
above a certain baseline. After the EM algorithm has converged, the state z; at each time instance is taken
to be Gaussian distributed z; ~ N (217, 0]2.‘ ;) and we define HAI as follows:

HAI = Pr(z; > 27), (22)

where the threshold z7 is set to each subject’s median state value across the whole experiment. Recall that
the experiment acquired data from subjects during episodes of both stress and relaxation. The high stress
induced during the experiment corresponds to a state of high arousal and the relaxation corresponds to low
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Table 2. Experimental Results

Participant | 7, (second) | 74 (second) | ||u||o R?
1 0.681 2.591 20 | 0.9629
2 1.398 1.568 17 | 0.9707
3 1.159 1.505 14 | 0.9868
4 0.965 1.880 8 0.9399
5 0.604 3.018 35 | 0.9788
6 0.663 2.617 28 | 0.9686

the experimental skin conductance time series.

Table 3. Results from Simulated Data

The estimated model parameters and the squares of the multiple correlation coefficients (R? ) for the fits of

Participant | 7, (second) | 74 (second) | |[a]lo | R? ‘T%T” x 100% @ x 100% | ||ullo — [|a]]o]
1 0.664 2.627 19 10.9921 2.49 1.39 I
2 1.348 1.573 16 [ 0.9919 3.58 0.32 I
3 1.128 1.503 11 | 0.9806 2.67 0.13 3
4 1.139 1.510 7 0.9891 18.03 19.68 1
5 0.5514 3.230 34 10.9936 8.71 7.02 1
6 0.650 2.672 27 109918 2.00 2.10 1

The estimated model parameters and the squares of the multiple correlation coefficients (R? ) for the fits of
the experimental skin conductance time series

arousal. Therefore, we selected 27 as the median value as an approximation of normal arousal in between
the two extremes.

2 RESULTS

2.1 Skin Conductance Deconvolution

Figure 2 shows the skin conductance signals and deconvolution results for the selected participants during
the backward counting task. In each sub-figure, the upper sub-panel shows the separation of the tonic and
phasic components using cvXxEDA (Greco et al., 2016). The lower sub-panel in each sub-figure shows the
corresponding neural stimuli recovered using our deconvolution approach along with the reconstructed
signal. It is the timings of these neural impulses that are used for estimating sympathetic arousal. Our
method detects all significant impulses though it misses a few small ones that are comparable to noise. The
number of detected impulses and the estimated SCR rise and decay times 7, and 7, are given in Table 2.
Recall that these numbers are calculated based on data acquired during the backward counting task of the
experiment. The 7, and 7, values estimated from this portion of the experiment are finally used to solve
for the neural impulses over the entire signal. Also given in Table 2 are the squared multiple correlation
coefficients R? for the participants. R? is an indication of goodness-of-fit and expresses how much of the
variance of the data is captured by the model. R? is above 0.93 for everyone indicating a good fit to the
data. The number of impulses varies considerably from person to person. This is likely due to the fact that
each participant responds to stress uniquely, despite being exposed to the same type of external stressor.

To further validate our deconvolution approach, we generated a second set of synthetic data using the 7
and u already estimated for each participant. We added 25 dB SNR Gaussian noise to corrupt this new
simulated phasic skin conductance data and performed deconvolution yet again. Figure 3 shows the results
along with the ground truth. Table 3 shows the estimated parameters and their errors. Again, all R? values
are above (.98 indicating a very good fit to the data.
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Figure 2. Estimated Deconvolution of the Experimental Skin Conductance Data. For each of the
participants, (1) the upper sub-panel depicts the raw skin conductance data (blue curve) and the separated
tonic component of the skin conductance data using cvxEDA (green curve); (ii) the lower sub-panel depicts
the separated phasic component (blue stars), the estimated reconstructed signal (red curve), the estimated
neural stimuli timings and amplitudes (black vertical lines).

2.2 Sympathetic Arousal State Estimation

Figure 4 shows the sympathetic arousal state estimation results. For participant 1, arousal as measured by
HAI remains above 90% during the cognitive tasks and reduces significantly during relaxation. HAI then
increases around the start of emotional stress. Participant 2 has a similar response although the increase in
arousal at the start of emotional stress is much less. There is also a notable, though not significantly high,
increase right in the middle of the relaxation period. The arousal profile for participant 3 is almost identical
to that of participant 1 with a high level at the start, a significant drop during relaxation and a moderate
increase at the starting point of emotional stress.

The HAIs are somewhat different for the remaining participants. For participant 4, arousal increases up to
or above the 90% threshold a few times during the cognitive tasks, but does not remain high continuously.
There is a significant drop during relaxation and an increase above 90% when the horror movie begins. HAI
for participant 5 remains high during the cognitive tasks and then drops during relaxation. There are several
notable increases during emotional stress, though none of them increase above the 90% threshold. None of
the increases however, exceed 90% in this period. Participant 6 is closest to participant 4 although HAI

Frontiers 11



Wickramasuriya et al. Closed-loop DBS using Skin Conductance

Participant 1 Participant 2

Skin Conductance
(uS)
=)
o o
- .
.
E
L
Skin Conductance
(1S)
o o
o - n
%

,ﬁ

6 L
i g
2 5
E,| £27
) | ) | ||
0 R TR i | 1 | | ol . L 1. 1 | 11 |
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Time (seconds) Time (seconds)
Participant 3 Participant 4

Skin Conductance

Skin Conductance
o18)
o e
8 =
T f>
r
¢
?3'

Amplitude
T

Amplitude

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Time (seconds) Time (seconds)

Participant 5 Participant 6
06
o4t . i

\|||I| \ll‘ ||’I||||I||
40 8

0 20 40 60 80 100 120 140 160 180 20 60 0 100 120 140 160
Time (seconds) Time (seconds)

Skin Conductance
(1S)

o - n
?

L I |
Skin Conductance

o

o N

T

¥

Amplitude
— n
o o o
T T
|
Amplitude
o (& 5
T

L
1

80

o

Figure 3. Estimated Deconvolution of the Simulated Phasic Skin Conductance Data in 6
Participants. For each of the participants, (i) the upper sub-panel depicts the simulated phasic component of
the skin conductance data samples with 25 dB SNR Gaussian noise (blue stars), the estimated reconstructed
signal (red curve); (i1) the lower sub-panel depicts the estimated neural stimuli timings and amplitudes
(black vertical lines) and the ground truth of the neural stimuli (red vertical lines) for each of the participants.

remains more consistently above 90% during cognitive stress with only a slight drop in the middle. Arousal
thereafter drops during relaxation and increases above 90% for a brief period at the start of emotional
stress. The estimated arousal states z;| ; also follow the general trend of the corresponding HAIs for all
participants.

3 DISCUSSION
3.1 Skin Conductance Deconvolution

Our method successfully recovers neural impulses associated with phasic SCRs. Between-subject
variability in the estimated rise and decay times and the number of impulses is to be noted. The tonic levels
also show considerable variations from person to person. These variations clearly highlight the need for
determining the physiological parameters 7, and 74 on an individual basis rather than relying on fixed
values for everyone.
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Deconvolution using simulated data (Figure 3 and Table 3) also shows that most impulses are accurately
recovered. Only impulses that are comparable to noise peaks are missed. The error percentages in estimating
7, and 74 are less than 10% for five of the participants. Participant 4 has a much higher percentage error.
Recall that our problem formulation for estimating the rise and decay times is not convex. Consequently,
there exists the possibility of stagnating at a local minimum. While we attempt to mitigate this problem
through multiple initializations, and then taking the solution with the smallest squared error, there still
exists a finite possibility of stagnating at a location other than the global minimum. The number of neural
impulses for participant 4 is also much lower than for the others. Consequently, there are less SCRs to fit to
and the result is more error-prone.

Each SCR, resulting from a single neural impulse, is mathematically modeled as a bi-exponential function.
Estimating the rise and decay times of an SCR in the presence of noise is challenging due to this sensitive
exponential nature. More than one pair of rise and decay times exist that can closely approximate an
experimental SCR shape. Results are also heavily dependent on the removal of the tonic part. cvxEDA
(Greco et al., 2016) models the tonic part with cubic B-spline basis functions with a 10 s knot size. Greco
et al. (2016) used lo-norm penalization on the cubic spline basis function coefficients to avoid overfitting.
They selected the regularization parameter to the penalization term based on prior data they had analyzed.
This parameter depends on how the data is scaled in reality and how much of the tonic part it contains.
Here, we set the regularization parameter related to the smoothness of the tonic component in cvxEDA at
0.001 instead of the 0.01 default to obtain a better separation of the tonic and phasic components.

Our current implementation of skin conductance deconvolution comprises of the two-step coordinate
descent algorithm described earlier. Although it performs well in terms of accuracy, a faster implementation
is necessary for a real-time CLDBS system. The physiological parameters 7, and 7, usually remain stable
over a prolonged period of time. Therefore, we can perform only the sparse recovery procedure on windows
of incoming data after an initial parameter estimation is complete, and thereafter estimate 7, and 74 in the
background from time-to-time. A faster implementation of the sparse recovery step (e.g. using Greedy
algorithms or Bayesian approaches) could further help improve time complexity.

3.2 Sympathetic Arousal State Estimation

A general trend is to be observed in the participant arousal levels in Figure 4. In the case of cognitive
stress, the subjects’ arousal states and HAI remain almost constantly high with the exception of participant
4. In contrast, there is only a moderate increase that dies down at the start of the emotional stress phase. The
cognitive tasks required active engagement, i.e., mathematical calculations and active concentration, on the
part of the participants. Meanwhile, the emotional stress period only involved passive engagement—the
subjects just had to watch a horror movie clip without any significant cognitive effort. The varying level of
cognitive activity is a likely reason for the difference in arousal between cognitive and emotional stress.
Birjandtalab et al. (2016) used a clip from the horror movie entitled the “The Horde” to generate emotional
stress. It is also possible that the movie was insufficient to generate significant emotional stress. The desired
stress-generating effect may not have been realized if, for instance, a participant had already watched
the movie. A visual inspection of the sub-panels depicting skin conductance in Figure 4 does not show
a significant number of SCRs during emotional stress. It is likely PTSD patients may experience more
emotional rather than cognitive stress. However, the emotions they experience may not necessarily be those
evoked in healthy subjects for the very same stimuli. For instance, scenes of blood and dead bodies in a
horror movie may evoke traumatic memories in PTSD patients leading to higher levels of stress. Further

This is a provisional file, not the final typeset article 14



Wickramasuriya et al. Closed-loop DBS using Skin Conductance

experimentation with a patient population would help validate our methods in detecting elevated levels of
arousal in PTSD.

Sympathetic arousal information is not only encoded in how frequently neural impulses to the sweat
glands occur, but also in the skin conductance signal amplitudes. Consequently, the amplitude of individual
SCRs are taken as indicators of arousal (Bach et al., 2010). The tonic skin conductance level also contains
emotion-related information (Braithwaite et al., 2013). Our current state-space formulation only considers
the rate at which neural impulses (i.e., binary events) occur. Future work would incorporate the additional
amplitude features for estimating sympathetic arousal using augmented state-space models that include
both binary and continuous observations (Prerau et al., 2009; Coleman et al., 2011). The addition of heart
rate could also help obtain an improved sympathetic arousal estimate (Wickramasuriya and Faghih, 2019).

The current EM approach is also offline and therefore requires modification if it is to be used in real-time
in an experimental CLDBS prototype. We suggest running the forward filter in the E-step continuously
and performing the full EM procedure in the background from time to time. This is very similar to the
approach proposed for deconvolution when adapting to the needs of real-time computation. This may also
permit the model parameters to change in adaption to disease progression and changing environmental
conditions over time. The steps could also be run in parallel in a multicore processor. Several smartphones
are now enabled with multicore processors and one option could be to perform the CLDBS computations
on a wearer’s phone. Another option would be to stream the data to the internet and perform computations
in the cloud. Developing a custom hardware device to accompany the CLDBS implant is yet another option
for performing skin conductance deconvolution and arousal state estimation in real-time.

3.3 Study Limitations

As noted earlier, many of the skin conductance recordings were contaminated with noise and had to
be discarded. In-band motion artifacts such as those seen in the data-set usually contaminate a signal
nonlinearly. Adaptive filtering (Mathews, 1991; Zaknich, 2005) and multi-level wavelet-based thresholding
(Chen et al., 2015) are some of the options for suppressing motion artifacts. It is likely that skin conductance
will indeed be contaminated with such artifacts in a real-world setting. We leave the development of an
accelerometer-based adaptive filter for removing motion artifacts in skin conductance for future work. In
another work, Amin and Faghih (2018) illustrated a way of performing concurrent deconvolution from
multi-channel skin conductance data to obtain an estimate from noisy data. They included weights in
different channels based on the standard deviation of noise in each channel while estimating the neural
stimuli. They showed that the multi-channel approach could be more reliable for noisy skin conductance
data. Multi-channel approach could be potentially used for more reliable to achieve a more reliable CLDBS
system. Moreover, factors other than sympathetic arousal can also influence skin conductance (e.g. body
temperature, hydration, physical activity and electrolytes). Variations induced by these factors may thus
confound sympathetic arousal estimates; this is a limiting factor of using skin conductance alone. Such
factors could be taken into account in a real-world setting and their effect canceled to obtain an improved
arousal estimate. This would require an extended state-space model incorporating body temperature and
hydration levels, for instance, as additional observations.

textcolorblackThe present work is a proof-of-principle framework for using skin conductance in closing
the DBS loop. As skin conductance relates to sympathetic arousal, and moreover as PTSD patients
frequently show symptoms of hyperarousal, we note the suitability of using skin conductance as a CLDBS
biomarker. The data-set used here however, does not include any PTSD patients and is a limitation of this

Frontiers 15



Wickramasuriya et al. Closed-loop DBS using Skin Conductance

study. Further investigation is therefore necessary to validate the use of skin conductance in an experimental
CLDBS prototype for PTSD patients. Recall that differences in skin conductance have been reported in the
literature between individuals with and without PTSD. The coefficients of the differential equations (7) in
Egs. (2) and (3) governing sweat secretion dynamics are determined on a per subject basis. Thus, even if
T were significantly different between healthy and patient populations, our deconvolution methodology
would still adapt to each individual. Furthermore, we only track a single skin conductance feature—the
occurrence of neural impulses. The « coefficient in Eq. (11) is calculated from the baseline probability
of impulses on a per subject basis. The process noise variance o2 in Eq. (10) is also estimated for each
subject individually via the EM algorithm. Therefore, our Bayesian filter for sympathetic arousal estimation
is also able to adapt to each individual. Although the present study did not include data from a patient
population, we would however expect our methods to generalize to them nevertheless due to the ability of
the framework to adapt to each individual.

3.4 Effect of DBS on Skin Conductance

The neural substrates underlying skin conductance have been examined in studies involving functional
imaging, brain lesions and direct electrical stimulation (Critchley, 2002). Mangina and Beuzeron-Mangina
(1996) applied electrical stimulation to the limbic structures of a group of subjects with intractable epilepsy
and measured bilateral skin conductance. When the left sides of the amygdala, posterior hippocampus,
anterior hippocampus and cingulate gyrus were stimulated, higher SCR amplitudes on the left hand were
observed compared to the right. The reverse was also true when the right sides of the same interior structures
were stimulated. They also reported that stimulation intensity increased SCR amplitudes. Lanteaume et al.
(2006) examined the effect of electrical stimulation of the amygdala on self-reported emotions and SCRs in
a group of patients with drug-resistant partial epilepsy. SCR amplitudes were larger when the stimulation
caused a positive emotional change as opposed to a negative change or no change. Our methodology does
not make use of the SCR amplitudes but rather the rates at which they occur. Further research would
be necessary to quantify the effect on SCR rates when applying direct stimulation via a DBS implant to
the limbic structures. A correction for the effect due to the stimulation could be incorporated into the
state-space model in this case.

3.5 Closing the DBS Loop

Developing a complete CLDBS system is a challenge. Our approach demonstrates the ability to recover
sympathetic arousal from skin conductance measurements using state-space methods. Neural stimuli to
the sweat glands originating from the sympathetic nerve fibers encode emotion-related information in
how frequently they fire. By relating the probability of neural impulse occurrence to sympathetic arousal
through a state-space model, we are able to estimate a continuous state trajectory across different episodes
of relaxation and stress.

Different biomarkers have been suggested for closing the loop in DBS therapy. Ideally, the biomarker
should enable the real-time tracking of an unobserved brain state. Here, we investigate skin conductance
as a viable alternative for a CLDBS as a means of treating neuropsychiatric disorders such as PTSD.
While we have sought to address how to estimate an emotion-related state trajectory from peripheral skin
conductance measurements, there remains the problem of determining the mapping from the state variable
back into the CLDBS stimulation parameter space (i.e., the amplitude, frequency and width of the electrical
stimuli). Determining this mapping will enable sympathetic arousal to be controlled in realtime. Grahn et al.
(2014) proposed a novel means of addressing this mapping problem in a CLDBS system they developed for

This is a provisional file, not the final typeset article 16



Wickramasuriya et al. Closed-loop DBS using Skin Conductance

maintaining stable dopamine levels in rodents. They first varied the frequency, amplitude and pulse width of
the electrical stimulation and measured the corresponding dopamine level responses for different parameter
combinations. We too could similarly vary the electrical stimulation parameters of a DBS system while
measuring skin conductance changes and estimate the corresponding arousal levels. Grahn et al. (2014)
next characterized the dopamine responses using a combination of 7" order polynomials and 2" order
exponentials. This required a total of 12 model coefficients. They next trained a neural network having the
frequency, amplitude and pulse width as the inputs and the 12 model coefficients as the outputs. Likewise,
we could train a neural network mapping stimulation parameters to arousal responses. Thereafter Grahn
et al. (2014) trained a second neural network having the model coefficients as inputs and the frequency,
amplitude and pulse width as the outputs. They used this inverse model for predicting the stimulation
parameters necessary for maintaining specific extra-cellular dopamine levels. Therefore, a CLDBS system
utilizing our method for arousal estimation could utilize a similar neural network characterizing the inverse
relationship back into the stimulation parameter space in its feedback path.

A simpler option would be to use on/off control instead of adjusting the stimulation parameters in a
continuous manner. Herron et al. (2017) developed an on/off CLDBS controller for a patient suffering
from tremor. The controller applied electrical stimulation when beta-band power recorded from invasively
acquired electroencephalography (EEG) dropped below a certain (manually-tuned) threshold, and switched
it off when the power exceeded yet another threshold. Preliminary on/off control could be applied in the
case of neuropsychiatric disorders too, for instance when sudden angry outbursts or bouts of depression as
detected by abnormally elevated or diminished arousal levels occur.

We wish to point out that not all elevated arousal levels need to be controlled (e.g. high arousal levels
due to positive excitement). When proposing a CLDBS framework for the treatment of chronic pain,
Shirvalkar et al. (2018) too noted that they did not wish to avoid all feelings of pain per se, as pain itself
provides a warning of potential tissue damage. Therefore, a fully closed-loop system for the treatment
of neuropsychiatric disorders should be able to recognize the positive—negative aspect of emotion as
well. This positive—negative or pleasure—displeasure dimension is known by the term emotional valence
(Russell, 1980). The CLDBS would ideally need to estimate a vector z; containing both arousal and valence.
Emotional valence information can be decoded using physiological signals such as scalp EEG, heart rate,
electromyography and skin conductance (Koelstra et al., 2012; Soleymani et al., 2012). Stimulation can
then be turned on, for instance, only if high arousal is detected and valence is negative.

Finally a control algorithm is necessary in the CLDBS feedback loop when progressing beyond
preliminary on/off stimulation. Our state estimation approach relies on a rate of neural firing. Azgomi et al.
(2019) developed a fuzzy feedback controller based on the rate of SCR appearances for increasing arousal
during relaxation and decreasing it during periods of cognitive stress. The controller was based on the
model proposed in Wickramasuriya et al. (2018) and can directly be used with the method presented here.
In a review of CLDBS therapy, Carron et al. (2013) mention two different other works, namely those by
Grant and Lowery (2013) and Pasillas-Lépine et al. (2013), that propose a control mechanism based on the
rate of neural firing for estimating a state variable. Pasillas-Lépine et al. (2013) proposed a proportional
control based on the firing rates of the subthalamic nucleus and global pallidus. Grant and Lowery (2013)
developed a similar CLDBS controller based on §-band oscillations in LFPs. An adaptation of one of these
methods could also be used for developing a control law for regulating emotion based on peripheral skin
conductance measurements.
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3.6 Conclusion

DBS has met with success in treating a host of disease conditions where other therapeutic measures
have been exhausted. CLDBS systems have been proposed as the future of DBS due to their inherent
advantages over the previous generation of open-loop systems. Closing the DBS loop is a challenge. In this
work, we present a method for estimating sympathetic arousal from skin conductance measurements as a
potential mechanism that could be deployed within a CLDBS system for treating neuropsychiatric disorders.
The methodology consists of two parts: (i) the deconvolution of phasic skin conductance to obtain the
neural impulses that generate SCRs; (ii) a state-space model for tracking sympathetic arousal based on the
frequency at which the SCRs appear. Results are demonstrated on a publicly available data-set. We finally
discuss possibilities for developing a controller that could map the state estimates back into the stimulation
parameter space for automated closed-loop control. While we mention PTSD as an example scenario here,
our approach could be generalized to other disease conditions where any type of impulse-like or pulsatile
signal is a biomarker. For instance, if neural spiking or pulsatile cortisol secretions are clinically-relevant
features for a particular disease condition, then the Bayesian filter described here could also be used as part
of closing the loop. Additionally, the methods presented here are personalized, i.e., the model parameters
are estimated for each individual. Differences in skin conductance have been reported in the literature
between healthy subjects and patients with anorexia nervosa (Tchanturia et al., 2007) and depression
(Ward and Doerr, 1986). If skin conductance biomarkers can be determined for each of these conditions
(based on SCR amplitudes, rates of SCR occurrence, skin conductance levels etc.), then an extended
state-space model could be developed to track a symptom-related neural state that incorporates both binary
and continuous-valued observations (Prerau et al., 2009; Coleman et al., 2011).
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