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Abstract— Hormones play a fundamental role in homeostasis.
We develop a state-space model relating the body’s internal
energy to cortisol hormone secretions. Cortisol is secreted
in pulses and follows a 24 h circadian rhythm. Secretory
event timings carry important information regarding internal
feedback signaling taking place, as do the upper and lower
serum cortisol levels. We relate an internal energy state variable
to cortisol pulse timings and to the upper and lower serum
cortisol envelopes. We derive Bayesian filter equations for state
estimation and use the Expectation-Maximization algorithm for
model parameter recovery. Results on multi-day simulated data
show circadian energy variations in healthy subjects and non-
circadian fluctuations throughout 24 h periods in patient models
suffering from hypercortisolism. The results shed new light on
why patients diagnosed with excess cortisol disorders frequently
experience symptoms of daytime fatigue and sleep disturbances
at night. The state-space model is also an important first
step towards the design of closed-loop controllers for treating
hormone-related disorders in a manner that closely emulates
the body’s own pulsatile feedback mechanisms.

I. INTRODUCTION
Hormones play a critical role in regulating the body’s

internal environment. Cortisol, belonging to the category of
glucocorticoids, is the body’s primary stress hormone. Its
main purpose is to raise blood glucose levels and give the
body more energy in response to external stressors [1]. Most
cortisol disorders involve either too much (hypercortisolism)
or too little (hypocortisolism) of the hormone. Cortisol is
secreted in pulses, and between 15–22 pulsatile secretions
occur each day in a healthy adult [2]. Cortisol is directly
related to how energized or drowsy a person feels. Sweat-
based sensor patches enable the possibility of using wearable
technologies for treating cortisol disorders [3].

State-space models governing cortisol secretion dynamics
have been developed previously (e.g. [4]). However, none
of them explicitly take into account the pulsatile secretory
nature and relate cortisol to the underlying state the human
body is actually attempting to maintain within a desirable
range. Motivated by cortisol’s fundamental role in giving
the body more energy by raising blood glucose levels, we
present a state-space model relating cortisol secretions to
the body’s internal energy state. We relate this energy state
to the pulsatile secretory events, and to the upper and
lower serum cortisol envelopes. We use a combination of
Bayesian filtering and Expectation-Maximization (EM) for
state estimation and model parameter recovery.

*DSW and RTF are with the Department of Electrical and Computer
Engineering at the University of Houston, Houston, TX 77004 USA (e-
mail:{dswickramasuriya, rtfaghih}@uh.edu). This work was supported in
part by NSF grant 1755780 – CRII: CPS: Wearable-Machine Interface
Architectures. Correspondence should be addressed to senior author RTF.

II. METHODS

In the absence of experimental data spanning multiple
days, we simulate cortisol measurements using the statistical
models described in [5] and [6] for healthy subjects and
Cushing’s disease patients respectively. Cushing’s disease is
a type of hypercortisolism that can be triggered by tumors
or prolonged drug use [7].

A. Data Simulation – Healthy Subject

Following [5], we draw pulse inter-arrival times for cor-
tisol from a Gamma distribution with parameters α = 54
and β = 39. These parameters are for inter-arrivals in terms
of hours and are converted to minutes during simulation.
The pulse amplitudes Hk follow a time-of-day-dependent
Gaussian distribution Hk ∼ N (µk, κ

2
k) where µk =

6.1 + 3.93 sin
(

2πk
1440

)
− 4.75 cos

(
2πk
1440

)
− 2.53 sin

(
4πk
1440

)
−

3.76 cos
(

4πk
1440

)
, κk = λ

√
µk and λ = 0.1 [5]. Given a

vector of pulse input timings and amplitudes, we follow the
solution of the coupled differential equations regulating the
secretion of cortisol outlined in [8], [9] to obtain the serum
cortisol profile over five days. We also use cortisol infusion
and clearance rates of 0.0751 min-1 and 0.0086 min-1 based
on the median rate parameters in [2] extracted for ten healthy
subjects. Noise with standard deviation 0.5 µgdL-1 is finally
added to the simulated observations.

B. Data Simulation – Cushing’s Disease

1) No Circadian Rhythm: Lee et al. [6] suggest inter-
arrival times of 59 ± 11 min with amplitudes of 38 ± 2.5
µgdL-1min-1 for simulating the serum cortisol profile of a
male Cushing’s disease patient recruited in a study originally
described in [10]. We use the Gamma and Gaussian distri-
bution parameters corresponding to the Cushing’s mean and
standard deviation values above to simulate a second set of
inter-arrival times and amplitudes respectively.

2) With Circadian Rhythm: Berg et al. [10] noted the
preservation of a cortisol circadian rhythm in a few Cushing’s
disease patients. We therefore simulate data for another
hypothetical patient—one whose circadian rhythm was pre-
served by means of the time-of-day-dependent Gaussian
pulse amplitudes. We set λ = 2.5/

√
38 when calculating

the new pulse-amplitude standard deviation. We select µk =
38.5 + 1.93 sin

(
2πk
1440

)
− 1.6 cos

(
2πk
1440

)
− 1.5 sin

(
4πk
1440

)
−

3.5 cos
(

4πk
1440

)
to produce amplitudes in the same approxi-

mate range as for the first Cushing’s disease patient with the
same Gamma inter-arrival distribution and simulate a third
set of measurements.
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Fig. 1: Cortisol profiles in a healthy subject and in Cushing’s disease patients. In each sub-figure, the sub-panels from
top to bottom respectively depict, (i) the serum cortisol profile in µgdL-1; (ii) the pulsatile secretions in µgdL-1min-1; (iii)
the upper (green) and lower (mauve) envelopes of the cortisol profile. Note that serum cortisol measurements are much
higher in Cushing’s disease.

C. State-space Model

Prior work on estimating a latent state from point process
and continuous-valued observations has frequently made use
of first-order autoregressive and random walk models [11],
[12], [13]. Here, we introduce a slight variation to explicitly
account for circadian rhythmicity and assume that the body’s
internal energy state Xk evolves with time as follows:

Xk = ρXk−1 + Ik + εk (1)

Ik =
2∑
i=1

ai sin
(2πik
1440

)
+ bi cos

(2πik
1440

)
(2)

where εk ∼ N (0, σ2
ε); ρ is a coefficient to be determined

along with the ai and bi terms. Ik acts as a forcing function
in keeping with known energy variations during wakefulness
and sleep in a 24 h period. It is generally taken that the
circadian secretory pattern of adrenocorticotropic hormone
(ACTH) imposes the same rhythm on cortisol [4].

We analyze our data at a time resolution of one minute
(24 h = 1440 min). The presence or absence of a cortisol
pulse each minute forms a binary point process and we
assign Mk = {1, 0} accordingly. The occurrence of a cortisol
pulse at each time instant is therefore a Bernoulli distributed
random variable with probability pk. Following the theory
of generalized linear models, we use a logit transformation
[14] to relate pk to the energy state Xk.

log
( pk
1− pk

)
= β0 + β1Xk, (3)

where β0 and β1 are coefficients to be determined. We also
have the simulated daily serum cortisol measurements that
the body is regulating based on energy demand and expen-
diture. We calculate their upper and lower envelopes using
MATLAB’s envelope function (Fig. 1). Here, we use the peak
option to detect the envelopes as spline interpolations over
local extrema. Labeling the upper and lower envelopes as Rk
and Sk respectively, we assume linear relationships with Xk

similar to [12].

Rk = γ0 + γ1Xk + Vk (4)
Sk = δ0 + δ1Xk +Wk (5)

where Vk ∼ N (0, σ2
V ) and Wk ∼ N (0, σ2

W ). γ0, γ1, δ0, δ1
are regression coefficients.

A modification to the upper and lower envelopes was
necessary in the case of Cushing’s disease where the levels
of serum cortisol are much higher. This elevation is likely
due to a malfunctioning of the feedback control mechanism
governing the secretion of cortisol [7]. For a healthy subject,
the serum cortisol levels can decrease to a value close to
zero, although not to zero itself. Therefore, we can assume
that zero forms a lower baseline. We hypothesize that the
control system malfunction in Cushing’s is caused by the
body establishing a new lower baseline that cortisol levels
are not allowed to drop below. This lower baseline is much
higher than normal and is likely caused by the body gradually
developing a resistance to the chronically high levels of
cortisol. For both of the Cushing’s patients we take the
minimum cortisol level across the five days as the lower
baseline and subtract it from the cortisol profile to obtain
the modified upper and lower envelopes.

D. Estimation
1) Expectation-Step: Let Mk = {M1,M2, . . . ,Mk},

Rk = {R1, R2, . . . , Rk} and Sk = {S1, S2, . . . , Sk} denote
the observations up to time k. Taking Yk = {Mk,Rk,Sk}
we wish to estimate Xk ∀k. The present work is a novel
filter extending [12] with an additional continuous variable
and a different state equation for estimating Xk. We therefore
derive the following EM algorithm. We make a Gaussian
approximation to the posterior density fXk|Yk(xk|yk) similar
to [13] and obtain the following set of Kalman-like forward
filter equations for k = 2 : K.
Predict: xk|k−1 = ρxk−1|k−1 + Ik (6)

σ2
k|k−1 = ρ2σ2

k−1|k−1 + σ2
ε (7)

Update:
Ck =

σ2
k|k−1

σ2
V σ

2
W + σ2

k|k−1(γ
2
1σ

2
W + δ21σ

2
V )

(8)

xk|k = xk|k−1 + Ck

[
β1σ

2
V σ

2
W (mk − pk|k)

+ γ1σ
2
W (rk − γ0 − γ1xk|k−1)

+ δ1σ
2
V (sk − δ0 − δ1xk|k−1)

] (9)



σ2
k|k =

[
1

σ2
k|k−1

+ β2
1pk|k(1− pk|k) +

γ21
σ2
V

+
δ21
σ2
W

]−1
(10)

pk|k =
[
1 + e−(β0+β1xk|k)

]−1
causes xk|k to appear on

both sides of (11) and has to be solved numerically using
Newton’s method. The smoothed states xk|K and variances
σ2
k|K are then obtained following the method given in [15].
2) Maximization-Step: The parameters a1, a2, b1, b2, ρ,

β0, β1, γ0, γ1, δ0, δ1, σ
2
V , σ

2
W , σ

2
ε are chosen at each M-step

iteration to maximize the complete data log-likelihood.
Defining the following terms

Ak , ρ
σ2
k|k

σ2
k+1|k

(11)

Uk , x2k|K + σ2
k|K (12)

Uk,k+1 , xk|Kxk+1|K +Akσ
2
k+1|K , (13)

the parameter updates at the (n+ 1)th M-step iteration are

ρ(n+1) =

∑K−1
k=1 Uk,k+1∑K−1
k=1 Uk

(14)[
γ
(n+1)
0

γ
(n+1)
1

]
=

[
K

∑K
k=1 xk|K∑K

k=1 xk|K
∑K
k=1 Uk

]−1
·[ ∑K

k=1 rk∑K
k=1 rkxk|K

] (15)

σ
2(n+1)
V =

1

K

[
K∑
k=1

r2k +Kγ
2(n+1)
0 + γ

2(n+1)
1

K∑
k=1

Uk

− 2γ
(n+1)
0

K∑
k=1

rk − 2γ
(n+1)
1

K∑
k=1

xk|Krk

+ 2γ
(n+1)
0 γ

(n+1)
1

K∑
k=1

Uk

]
(16)

σ2(n+1)
ε =

1

K

[
K∑
k=2

Uk − 2ρ(n+1)
K−1∑
k=1

Uk,k+1

+ ρ2(n+1)
K−1∑
k=1

Uk − 2
K∑
k=2

Ikxk|K

+ 2ρ(n+1)
K∑
k=2

Ikxk−1|K +
K∑
k=1

I2k

]
. (17)

The updates for δ0, δ1, σ
2
W can be obtained likewise by

replacing rk with sk in (15) and (16) respectively. Moreover,
we have taken X0 = X1 rather than estimating it as a
separate parameter as in one of the options provided in
[11], [12]. This permits a certain amount of bias at the
beginning. Solving for {ai, bi}i=1,2 and ρ must be performed
simultaneously. Here, we have separated them out to simplify
computation. a1, a2, b1, b2 are chosen to minimize

Q1 =
K∑
k=1

I2k − 2
K∑
k=2

Ikxk|K + ρ(n+1)
K∑
k=2

Ikxk−1|K . (18)

Solving for {β0, β1} requires calculating the partial deriva-
tives of the following term.

Q2 =
K∑
k=1

E
[
mk(β0 + β1Xk)− log

(
1 + eβ0+β1Xk

)]
(19)

We apply a Taylor series expansion around each xk|K similar
to [13] and use MATLAB’s fsolve to do so.

III. RESULTS

Fig. 1 shows the simulated cortisol profiles for the healthy
subject and both Cushing’s disease patients without and with
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Fig. 2: Cortisol-related energy state estimation. In each sub-figure, the sub-panels in turn depict, (i) the cortisol level zk;
(ii) the pulse occurrences; (iii) the probability of pulse occurrence pk|K ; (iv) the true upper bound (green line) and its fit
(dashed line); (v) the true lower bound (pink line) and its fit (dashed line); (vi) the energy estimate xk|K . A clear circadian
energy variation can be seen in the healthy subject while no such circadian rhythm is visible in the patients.



the circadian rhythm. To conform to the general range of
serum cortisol levels, we use a starting value of 5 µgdL-1

for the healthy subject and 75 µgdL-1 for the patients.
Energy state estimates and fits to the observations are

shown in Fig. 2. The healthy subject’s energy state varies
fairly consistently following circadian periodicity. The larger
energy peak appears between 6:00–10:00 a.m. as expected,
and a slight drop occurs in the afternoon. A secondary peak
occurs between late afternoon and early evening.

No such circadian energy variation is seen for the first
Cushing’s disease patient. There are significant nighttime
energy increases and daytime drops. This is expected as the
simulations used a non-circadian probability distribution.

Interestingly, the second Cushing’s disease patient also
does not exhibit circadian energy variations despite the
amplitudes being drawn from a Gaussian distribution with a
circadian mean. We use coefficients for the sinusoids that do
not give rise to a circadian rhythm with peaks as prominent
as for the healthy subject. Moreover, the λ is also larger
than 0.1. While the pulse amplitudes (Fig. 1) for this patient
do follow a somewhat repetitive pattern, the serum cortisol
levels do not exhibit that same pattern. It is likely that the
Gamma distributed inter-arrival times for Cushing’s cause
this circadian rhythm disruption.

IV. DISCUSSION AND CONCLUSIONS

A healthy subject regularly experiences more energy dur-
ing hours of wakefulness than during sleep. Recall that cor-
tisol primarily raises blood glucose levels. One would expect
therefore, that unusually high cortisol levels in a Cushing’s
disease patient constantly provides more energy. Instead,
patients frequently experience fatigue and insomnia [16],
[17]. While several factors could underlie this phenomena,
we present a new perspective purely based on the energy
state model. Our analysis offers the explanation that fatigue
during the day and sleep disturbances at night could be due
to the way in which energy varies during each 24 h period.
For Cushing’s patients, drops in energy are frequently seen
in the daytime, as are increases during the night and likely
cause daytime fatigue and nighttime sleeping difficulties.

We presented a state-space model relating energy to
cortisol. We simulated data for a healthy subject and two
Cushing’s disease patients. The model offers new insight
to the seemingly contradictory phenomena that fatigue and
insomnia accompany excess blood cortisol. Due to the lim-
ited availability of blood cortisol measurements spanning
multiple days, especially in pathological cases, our work
had to rely on simulated data. Future work would involve
further validation with simulated healthy subject data and
validation on experimental data with larger samples in
hypercortisolism. Incorporating ACTH secretions [18] and
developing a closed-loop pulsatile controller [19] for treating
cortisol-related disorders in a manner that mimics the body’s
own physiology are some other future directions. Moreover,
modeling εk in (1) with a Cauchy distribution instead of a
Gaussian would enable Xk to follow sharp temporal changes.
The EM algorithm also has a tendency to converge to

parameters where there is an overfit to one of the continuous-
valued observations. This can be prevented with an early-
stopping criteria similar to that used when training a neural
network via gradient descent.
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