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Abstract

The cyclic train timetabling problem aims to synchronize limited operational resources toward a master periodic schedule of
transport services. By introducing an extended time-space network construct, this paper proposes a new type of integer programming
model reformulation for the cyclic train timetabling problem on a double-track railway corridor at the macroscopic level. This
reformulation method also holds the promises to be applied in a broader set of routing and scheduling problems with periodic activity
requirements. We also hope that this space-time network extension technique, as a special version of variable splitting methods in
the dual decomposition literature, could potentially bridge the modeling gaps between cyclic and non-cyclic timetables. Specifically,
the existing mathematical programming model for the periodic event scheduling problem (PESP) is transformed into a multi-
commodity network flow model with two coupled schedule networks and side track capacity constraints. In addition, two dual
decomposition methods including Lagrangian relaxation and Alternating Direction Method of Multipliers (ADMM), are adopted to
dualize the side track capacity constraints. For each train-specific sub-problem in an iterative primal and dual optimization framework,
we develop an enhanced version of forward dynamic programming to find the time-dependent least cost master schedule across the
time-space network over multiple periods. ADMM-motivated heuristic methods with adjusted penalty parameters are also developed
to obtain good upper bound solutions. Based on real-world instances from the Beijing-Shanghai high-speed railway corridor, we
compare the numerical performance between the proposed reformulation and the PESP model that involves the standard optimization
solver.

Keywords: Cyclic train timetabling; extended time-space network; Lagrangian relaxation; ADMM
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1. Introduction

Railroad serves an important role in transporting long-distance passengers and massive goods using an economically attractive
and environmentally friendly manner. As the passenger and freight demand for railroad transportation, in different parts of regional
markets (e.g. US, China), has grown greatly in recent years (US Bureau of Transportation Statistics; Chinese National Bureau of
Statistics), the railroad companies need to operate trains efficiently with limited infrastructure capacity, particularly through holistic
optimization of train timetables and real time dispatching methods. The train timetabling problem has attracted much attention from
researchers around the world, and we refer readers to Assad (1980), Cordeau et al. (1998), Huisman et al. (2005), Caprara et al.
(2007), Harrod (2012) and Caimi et al. (2017) for excellent surveys on the train timetabling problems, while a majority of the efforts
has focused on the category of non-cyclic train timetabling problems. For example, Heydar et al. (2013) reported that about one-
hundred published papers involved the non-cyclic train timetabling problem, while the number dropped to less than one third for the
cyclic train timetabling problem. In addition, most of the cyclic train timetabling models are built within the periodic event scheduling
problem (PESP) modeling framework proposed in Serafini and Ukovich (1989), and modulo variables are usually required to deal
with the non-trivial periodicity constraints (Harrod, 2012; Caimi et al., 2017). In our research, we hope our proposed method could
potentially bridge the modeling gaps between cyclic and non-cyclic train timetables, by introducing a time-space network extension
technique to deal with the periodicity constraints without using modulo variables, as a special version of variable splitting methods
in the dual decomposition literature.

In general, the cyclic train timetabling problem determines the event times for the arrival, departure, and passing of the trains
in each visited station that should be repeated in every cycle time, and it has the advantage of regularity and it is especially convenient
for passengers to use the transfer service. In addition, PESP-based model usually requires that the event times are all less than the
cycle length, and binary modulo variables will typically enforce two safety constraints for each pair of incompatible events
corresponding to either before or after precedence relationships (see Appendix B). The non-cyclic train timetabling problem, on the
other hand, is more flexible and it is suitable to serve time-varying passenger flows. In a real world case with complex railway
passenger flow characteristics and network structures, such as the Beijing-Shanghai high-speed railway corridor in China, planners
have to simultaneously consider a spectrum of demand patterns, ranging from short-distance-high-density trips, as well as long-
distance and seasonal travels. As a result, it is important to examine and integrate the cyclic and non-cyclic schedules to explore the
trade-off relationship between regularity and flexibility of train timetable services (Robenek et al., 2017; Robenek et al., 2018; Yin
et al., 2019). Even though cyclic train timetable only needs to consider fewer trains and shorter planning period than the non-cyclic
train timetable, the periodicity constraints considering variable trip times and dwell times and large train departure time windows
can greatly increase the difficulty in solving the PESP-based model, especially for long-distance railway corridors with heterogeneous
train traffic characteristics. In this paper, we formulate a new mathematical model for the cyclic train timetabling problem based on
the time-discretized time-space network modeling framework, where the resulting new integer programming model could be further
extended to handle the complex hybrid cyclic train timetabling problems.

To address the difficulty in finding the time-space paths for a large number of trains, researchers (such as Caprara et al., 2002)
have developed a range of efficient decomposition methods to solve the train timetabling problem. For instance, a typical rolling
horizon approach has been adopted in various studies including D’ Ariano and Pranzo (2009), Meng and Zhou (2011) and Zhan et
al., (2016). Another widely used decomposition method is Lagrangian relaxation and the related heuristics, and this research line,
represented by papers from Brénnlund et al. (1998), Caprara et al. (2002), Caprara et al. (2006) and Meng and Zhou (2014), aims to
dualize the “hard” track capacity constraints, so as to enable the use of efficient single-train path searching algorithms. In a very
recent study by Niu et al. (2018), the authors highlight a thorny modeling issue of solution symmetry in the context of Lagrangian
relaxation, and has been also systematically examined in a broader modeling framework of Branch-and-Price (Barnhart et al., 1998)
for general integer programming problems.

In this research, we aim to address several closely related modeling challenges in train timetabling. Specifically, we (1)
reformulate the cyclic train timetabling problem by introducing an extended time-discretized time-space network modeling
framework, where the special cyclic requirement is treated through a set of variable duplication constraints between the master
schedule and extended schedule across different periods. (2) we apply two dual decomposition approaches, namely, the Lagrangian
relaxation and Alternating Direction Method of Multipliers (ADMM), to invoke an modified version of efficient forward dynamic
programming to jointly optimize the master and period-specific schedules, (3) we also adopt a new linearization technique to
transform the quadratic penalty term in ADMM and the proposed method could serve as a theoretically sound foundation for
enhancing the existing one-pass priority rules within an iterative primal and dual solution search framework. Through various tests
on various illustrative and real-world large instances, we show the solution quality and computational efficiency of the proposed
approach, in comparison to the standard PESP model and CPLEX-based optimization results for the cyclic train timetabling problem.

This paper is organized further as follows. Section 2 provides a brief literature review on the cyclic train timetabling problem.
The problem statement and notations are introduced in Section 3. In Section 4, we propose a new integer programming model based
on the time-discretized time-space network, and the related reformulation methods. Section 5 presents the iterative ADMM and
Lagrangian relaxation-based solution procedures, as well as heuristic methods. This is followed by numerical experiments in Section
6. Finally, Section 7 provides the concluding remarks.
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2. Literature review on non-cyclic and cyclic train timetabling problems

This section briefly reviews the problem characteristics, modeling methods and solution algorithms for the optimization
problems being studied.

2.1 Train timetabling problem without handling special cyclic requirements

The railway planning process is usually carried out hierarchically (Lusby et al., 2011), where the optimization results of the line
planning problem at the strategic level are the input parameters for the train timetabling problem at the tactical level. The fundamental
elements determined in the line planning process includes train routes, frequencies, operation zones and stop patterns (Zhou and
Zhong, 2005; Qi et al., 2018). Once the line planning process is completed, a non-cyclic train timetabling problem typically aims to
optimize the arrival, departure and passing times of the trains at each station with various goals. In general, basic constraints
considered in the non-cyclic train timetabling problem include departure time windows, minimum and maximum running times,
minimum and maximum dwell times, safety headways, and prevention of illegal overtaking in the sections. Many previous studies
on the non-cyclic train timetabling problem adopt the time-discretized time-space network (Mees, 1991; Briannlund et al., 1998;
Caprara et al., 2002; Caprara et al., 2006; Cacchiani et al., 2008; Cacchiani et al., 2010; Harrod, 2011, 2012; Cacchiani et al., 2012;
Meng and Zhou, 2014; Liu and Zhou, 2016; Yue et al., 2016; Luan et al., 2017; Jiang et al., 2017) or time-space-state network (Zhou
etal.,2017; Xuetal., 2018; Meng and Zhou, 2019) modeling methods, while some other researcher also adopted the big-M modeling
method to linearize the “if-then” conditions for train conflicts (Higgins et al., 1996; Ghoseiri et al., 2004; Zhou and Zhong, 2005;
Zhou and Zhong, 2007; Mu and Dessouky, 2011; D’Ariano et al., 2017).

In particular, the train timetabling problem, based on time-discretized time-space network, can be formulated as a multi-
commodity network flow problem with side track capacity constraints (Mees, 1991; Brannlund et al., 1998; Caprara et al., 2002)
Specifically, Mees (1991) and Bréannlund (1998) divided the railway network into track sections or blocks, and the side track capacity
constraint for each track section or block was dualized by adopting the Lagrangian relaxation method. Caprara et al. (2002) further
introduced a more flexible train timetabling model for a single-track railway network with stations being split into two separate nodes
and the track sections between stations were treated as arcs. In addition, Harrod (2011, 2012) firstly proposed the concept of
hypergraph in the time-discretized time-space network to deal with the train conflicts on the transition at cells, by which the train
timetabling problem in the microscopic level for the North America single-track railway was studied.

A nice extension to the time-discretized time-space network modeling method is to introduce the third “state” dimension, which
results in the discretized time-space-state network modeling method. Zhou et al. (2017) proposed the three-dimensional space-time-
speed network modeling approach to achieve the integrated optimization of train timetabling problem and train speed profile with
the objective of minimizing total travel cost. In particular, they proposed the Lagrangian relaxation method to dualize the side track
capacity constraints, which resulted in a set of space-time-speed shortest path finding sub-problems. Besides, Xu et al. (2018)
embedded the locomotive assignment decisions in the “state” dimension of the time-space-state network, where they can optimize
the train timetabling and locomotive assignment problems simultaneously. Meng and Zhou (2019) incorporated passenger demand,
train service, and infrastructure and rolling stock capacity into a layered network for the integrated optimization of train service plan,
and passenger carrying states of the train teams were adopted as the “state” dimension to represent the dynamic pickup and drop-off
of passenger groups. Another widely used approach for non-cyclic train timetabling problem is the big-M modeling method.
Generally, the sequence of two trains is unknown at their commonly used infrastructure resources, and thus big-M modeling method
needs to model the “if-then” conflicting relationship between two trains by introducing a sufficiently larger number big-M (Higgins
et al., 1996). Constraint programming (Oliveira and Smith, 2000) and discrete event model (Dorfman and Medanic, 2004) were also
applied to deal with the non-cyclic train timetabling problem.

2.2 Cyclic train timetabling problem

Scheduling problems with cyclic requirements have a wide range of real-life applications, such as the cyclic job shop scheduling
problem (Bozejko and Wodecki, 2018), periodic vehicle routing and inventory vehicle routing problems (Mor and Speranza, 2018),
road traffic signal optimization (Li et al., 2015), course timetabling problem (Socha et al., 2002), service network design problem for
the road-rail intermodal freight transport in North-America railroads (Crainic and Laporte, 1997; Macharis and Bontekoning, 2004)
and cyclic train timetabling problem. The cyclic train timetabling problem not only contains all of the basic constraints in the non-
cyclic train timetabling problem, but also typically requires that a given frequency of train services should be repeated in each cycle
(Peeters, 2003; Kroon and Peeters, 2003; Caimi et al., 2017). In addition, train regularity plays a more important role in the cyclic
train timetabling problem. Since the introduction of the periodic event scheduling problem (PESP) in Serafini and Ukovich (1989),
this seminal work has been served as the modeling foundation for many variants of cyclic train timetabling problems (Huisman et
al., 2005; Harrod, 2012; Caimi et al., 2017). Inspired by the PESP modeling framework, many researchers have performed in-depth
studies for the cyclic train timetabling problem (Odijk, 1996; Lindner, 2000; Peeters, 2003; Liebchen, 2008; Goerigk and Schobel,
2013; Zhang and Nie, 2016; Herrigel et al., 2018), and the PESP model has been successfully applied to the European railway market
(Caimi et al., 2017), such as the Dutch railway (Kroon et al., 2009) and the Berlin Underground (Liebchen, 2006, 2008). Generally,
periodic event-activity network (PEAN) is constructed first to denote the constraints to be addressed in the PESP-based model, such
as the regularity requirements, and modulo variables are needed to map two connected events in PEAN into the same cycle (Peeters,
2003). In addition, Peeters (2003) proposed an equivalent cycle periodicity formulation (CPF) for the cyclic train timetabling problem
based on the special structure of PEAN.
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With respect to the complexity of the PESP model, Liebchen (2008) provided MAXSNP-hardness proofs for two variants of
the PESP model. There are a wide spectrum of solution algorithms for PESP, including the constraint generation algorithm (Odijk,
1996), genetic algorithm (Nachtigall and Voget, 1996), branch-and-bound method (Lindner, 2000), application of SAT solvers
(GroBmann et al., 2012; Kiimmling et al., 2015; Gatterman et al., 2016) and modulo simplex method (Nachtigall and Opitz, 2008;
Siebert and Goerigk, 2013; Goerigk and Schdbel, 2013). In particular, Liebchen (2004) studied a kind of cyclic train timetable with
symmetry property to speed-up the CPLEX solving process. Mathias (2008) developed integer programming formulations by
introducing the time discretization technique into the PESP model. Recently, Herrigel et al. (2018) proposed heuristic train grouping
strategies and solved the resulted CPF models sequentially.

Over the past few decades, several important aspects of the cyclic train timetable were addressed based on the PESP model.
The most intuitive one is to increase the flexibility of cyclic train timetable by allowing variable trip times. Both Kroon and Peeters
(2003) and Liebchen and Mohring (2007) proposed a method to split the trip arcs into shorter ones, so that the trip time differences
of trains can be reduced and illegal overtaking in the section were prevented. On the other hand, Zhang and Nie (2016) introduced a
non-collision constraint that enforced the sum of binary modulo variables of running activities and safety/regularity activities for two
trains in the same direction at two successive stations be equal to twice of the sum of two binary auxiliary variables, and thus the
sum of the associated binary modulo variables always equaled to 0, 2, or 4 which can effectively prevent the illegal overtaking of
two trains in the section. Yan and Goverde (2017) further improved the non-collision constraint in Zhang and Nie (2016) by replacing
these two binary auxiliary variables with one integer auxiliary variable, which can only take the values of 0, 1 and 2.

Since the design of cyclic train timetables focuses on providing convenient services for passengers, some researchers
incorporated passenger related costs into the timetable planning process. Specifically, Nachtigall and Voget (1996) designed a genetic
algorithm for the PESP model which aimed to minimize the passenger waiting times for transfer. Liebchen (2006, 2008) introduced
the first optimized cyclic train timetable for Berlin Underground with guaranteed maximum passenger transfer waiting times and
reduced maximum train dwell times. Cordone and Redaelli (2011) integrated the passenger discrete-choice model with CPF model
so that the total passenger demand captured by the trains was maximized. Siebert and Goerigk (2013) considered two methods to
generate PEAN for the public transit network, namely, frequency as attribute (FA) and frequency as multiplicity (FM). The passenger
paths were explicitly handled in their PESP models, which showed that passenger travel times can be improved by using their
extended PESP models. Burggraeve et al. (2017) designed line planning module and cyclic train timetabling module to iteratively
update the line plan and cyclic train timetable, where the line planning module aimed to optimize the passenger and operation costs
and the cyclic train timetabling module was used to generate robust timetables. Very recently, Robenek et al. (2017, 2018) studied
the hybrid cyclic train timetable, where the regularity of cyclic train timetable and flexibility of non-cyclic train timetable are nicely
combined to improve the passenger satisfaction. Moreover, Yin et al. (2019) developed a mixed-integer programming model based
on the PESP model to generate a hybrid and demand-responsive cyclic train timetable, which aimed to minimize the sum of weighted
total train travel time and total passenger waiting time considering rolling stock circulation and other practical constraints. Meanwhile,
they also proposed a set of performance indicators to systemically evaluate the operation efficiency and periodicity of the hybrid
cyclic train timetable. In addition, there is also a trend to extend the scope of cyclic train timetabling with network planning, line
planning and rolling stock/vehicle scheduling (Liebchen and Méhring, 2007; Kroon et al., 2013; Burggraeve et al., 2017; Yin et al.,
2019) to obtain system-level benefits.

Another two interesting aspects for cyclic train timetabling are capacity analysis and delay management. Instead of optimizing
the cyclic train timetable with fixed cycle length, Heydar et al. (2013), Petering et al. (2015), Zhang and Nie (2016) and Sparing and
Goverde (2017) set the cycle length as the objective to be minimized. This unique method provides a new perspective to analyze the
railway capacity with a range of factors. In addition, the delay management problem (Schobel, 2007; Liebchen et al., 2010;
Schachtebeck and Schobel, 2010) and stable/robust cyclic train timetabling problem (Sparing and Goverde, 2017; Yan and Goverde,
2017; Yan et al., 2019) were also studied by some researchers to improve the train service reliability. More recently, Yan et al. (2019)
proposed a new multi-objective optimization approach based on the PESP modeling framework to comprehensively improve the
quality of the cyclic train timetable from four aspects, including train journey time, train regularity deviation, timetable vulnerability
and number of overtakings. The delay management problem typically makes the wait-depart decisions on whether the connection
train/vehicle should depart on time or wait for the delayed feeder train/vehicle so that the passenger delay can be reduced. Moreover,
the stable/robust cyclic train timetabling problem could shed more light on improving the delay resistance ability of the train timetable
in case of primary train delays.

Apart from the above previous studies that solved the cyclic train timetabling problem based on the PESP model, two studies
also tried to deal with the periodicity constraints under the time-discretized time-space network modeling framework. Specifically,
Caprara et al. (2002) assumed that the same train timetable would be repeated every day, and a modulo operation, which is similar
to the PESP model with the cycle length of one day, was adopted such that the difference between the planned times of any two
nodes/events can be correctly calculated. Therefore, trains can cross the boundary between two days and all of the potential conflicts
can be captured. Furthermore, BeSinovi¢ et al. (2016) proposed a novel time-space path-based integer programming model for solving
the cyclic train timetabling problem at the macroscopic level. In particular, an efficient randomized multi-start greedy heuristic
algorithm was developed to iteratively minimize the total costs related to the cyclic train timetable, including the sum of train
cancellation cost, train running time, dwell time and connection time extension cost, and robustness cost. Moreover, at each iteration
of the greedy heuristic algorithm, a dynamic programming recursion approach with embedded modulo operation was adopted to find
the least cost time-space paths of all lines in a random line-by-line order. In this study, we present another attempt to model the cyclic

5



timetabling problem based on the extended time-discretized time-space network without using modulo variables/operation, and two
dual decomposition approaches are also developed to solve the resulting integer programming model.

Table 1 summarizes the recent studies on the non-cyclic and cyclic train timetabling problems, with three major highlights. First,
most previous work on the cyclic train timetabling problem is based on the PESP model, and researchers mainly focus on solving
cyclic train timetabling problem at the macroscopic level (i.e., a railway network with stations and sections). Second, the time-
discretized time-space network modeling approach, through the use of Lagrangian relaxation, is effective for solving real-life non-
cyclic train timetabling problem, at both macroscopic and microscopic levels. Finally, the research gap between computationally
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efficient time-space network-based algorithm and theoretically challenging cyclic timetabling problems can be observed.

Table 1
Summary of problem characteristics, modeling approaches and solution algorithms for non-cyclic and cyclic train timetabling problems
Publication Plapnmg Modeling Objective Solut}on V.anz'tble Largest instance solved
period approach algorithm trip time
Briannlund et al. . A double-track railway line with 17
(1998) Non-cyclic TSN Max total profit LR stations, 30 trains
Caprara et al. . A single-track railway line with 39
(2002) Non-cyclic TSN Max total profit LR v stations, 500 trains
Cacchiani et al. . Column A single-track railway line with up
(2008) Non-cyclic TSN Max total profit generation to 102 stations, 221 trains
. e An 86.4 km double-track mainline
Harrod (2011) Non-cyclic TSN Max total utility CPLEX with 100 trains
. . A cell-node-based railway network
Meng and Zhou Non-cyclic TSN Mm total deviation LR v with 85 nodes and 97 cells, 40
(2014) time .
trains
Jiang et al. . A double-track railway line with 23
(2017) Non-cyclic TSN Max total profit LR stations, 304 + 83 trains
Mene and Zhou A microscopic rail network with
(2015) Non-cyclic ~ TSSN Max total profit LR S 1032 nodes and 1614 cells, 100
trains
Odijk (1996) Cyelic PESP Feasible timetable Constraint A railway station with 6 platforms,
generation 12 trains
Nachtigall and Cvelic PESP Min passenger Genetic A railway network with 26 lines
Voget (1996) y waiting time algorithm and 37 stations
. . . Branch-and- A railway network with 297 nodes,
Lindner (2000) Cyclic PESP Min total cost bound 384 edges, and 89 lines
Kroon and . Dutch railway network with 250
Peeters (2003) Cyclic PESP General CADANS solver v trains in one hour
Licbchen (2008)  Cyclic PESP Mm total train idle CPLEX + A 144 km spbway network with 19
time heuristic transfer stations
Goerigk and . . . . A railway network with 134 lines
Schbel (2013) Cyclic PESP Min total slack time Modulo simplex v and 319 stations
Heydar et al. . Min cycle time and A single-track railway line with 70
(2013) Cyclic PESP local train dwell time CPLEX intermediate stations
. A part of the Dutch railway
Besinovic et al . . Randomlzed network with 15 macroscopic
' Cyclic TSN Min total cost multi-start greedy v . . .
(2016) heuristic timetable points (e. g., stations and
stops), 25 lines and 50 trains
Zhang and Nie . . . CPLEX + A double-track railway line with 23
(2016) Cyclic PESP Min cycle time heuristic v stations, 18 trains
Robenek et al. Hybrid PESP Max passenger Simulated A railway network with 47 stations
(2017) cyclic satisfaction annealing and 34 lines, 388 trains
Sparing and . . . CPLEX + A railway corridor with 18 train
Goverde (2017) Cyclic PESP Min cycle time heuristic v lines and 13 stations
Herrigel et al. . . CPLEX + A railway network with 186
(2018) Cyclic PESP Min total cost heuristic v operation points and 142 trains
This paper Cyclic TSN Min total journey time LR and ADMM v A double-track railway line with 23

stations, 36 trains

Note: TSN represents time-space network; TSSN represents time-space-state network; LR represents Lagrangian relaxation.

3. Problem statement and notations

In this paper, we study the cyclic train timetabling problem on a double-track railway corridor network N = (V, E) at the
macroscopic level, and the goal is to minimize the total journey times of all trains. Fig. 1 illustrates the relationship between the key
concepts of this study.
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Fig. 1. Relationship between the key concepts of this study

The set V consists of all of the stations in the railway network, and the set E contains the sections that connect two adjacent
stations. The cyclic train timetabling problem is to schedule a set of lines [ € L periodically for every cycle length T, and each line [
is associated with frequency f;, stop pattern and operation zones. The frequency f; requires that f; identical trains are scheduled with
an even time interval within the cycle T, which is called as the train regularity requirement. Specifically, the time intervals between
the arrival or departure times of any two trains belonging to the same line are the multiple of |T/f;]. In this study, for simplicity, we
do not allow the flexibility on the train regularity requirement that has been considered in Zhang and Nie (2016) from the capacity
analysis perspective. In addition, the train running times in the sections and dwell times in the stations are restricted with the
corresponding minimum and maximum values, and train acceleration and deceleration times can be accurately considered within the
minimum and maximum running times when the train stop pattern is given. The consideration of minimum and maximum running
times as well as acceleration and deceleration times could lead to large differences on the actual trip times between two trains running
in the same section. Hence, in order to prevent the illegal overtaking of two trains in the sections, we adopt a similar method of
splitting trip arcs in Kroon and Peeters (2003) and Liebchen and Md&hring (2007), where a dummy station is inserted in the middle
of the section that has long distance for possible illegal overtaking resulting in two dummy sections. In this case, the acceleration
and deceleration times are added to the minimum and maximum running times of the first and second dummy sections, respectively.
The seven types of safety headway requirements considered in this paper are illustrated in detail in Appendix A, where arrival and
departure times of two trains are separated according to those safety headway requirements. Note that those safety headway
requirements are adopted by mainly considering the safety rules for the high-speed railway corridor in China.
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(a) Cyclic train timetable with two lines (b) Cyclic train timetable in the time-discretized time-space network

Fig. 2. Expression of the cyclic train timetable with variable trip times in the time-discretized time-space network

Fig. 2 shows an example of the cyclic train timetable for a double-track railway corridor with two cycles. The railway corridor
contains four stations (i.e., stations A, B, C and D), and two lines (i.e., lines 1 and 2) with both frequencies are set to 1, and the cycle
length equals to 11 min. In particular, line 1 in the dark color has lower speed and it has a scheduled stop at station C for 1 min, while
line 2 in the red color has a higher speed and it runs from stations A to D without any stop. In addition, we consider possible variations
of trip times for lines 1 and 2 in section A-B, where their trip times are within the ranges [2, 3] and [1, 2] respectively. Hence, two
possible schedules are generated for each line, which is denoted by the solid and dash lines in Fig. 2(a) respectively. In order to
express the cyclic train timetabling problem within the time-discretized time-space network modeling framework, an equivalent
cyclic train diagram with discretized time intervals is depicted in Fig. 2(b). Specifically, we adopt the method in Caprara et al. (2002)
where each intermediate station is split into two dummy stations, and a dummy section is naturally formed between these two dummy
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stations to describe variable train dwell times. For instance, station B in Fig. 2(a) is split into two dummy stations B; and B, in Fig.
2(b). The process of constructing the time-space network can be illustrated by taking the time-space path of line 1 in Fig. 2(b) as an
example. Since line 1 has no scheduled stop at station B, a directed time-space arc is connected from station A to dummy station B,
denoting that the train travels from station A to station B. Note that, line 1 has a scheduled stop at station C, and dummy station B>
is connected to dummy station C; first, and another time-space arc connects dummy stations C; and C, denoting that the train stops
at station C for 1 min. By constructing the time-discretized time-space network for each train, the cyclic train timetabling problem is
now transformed into a multi-commodity flow problem with side track capacity constraints and the proof on the model reformulation
equivalency is given in Sec. 4.

Table 2 lists the general indices, sets, parameters and decision variables used in this paper to formulate the integrated

—
OO0 Nk W~

ke
W —

optimization model.

Table 2
Sets, indices, parameters and variables
Indices Definition
i,i'j,J Index of stations, i,i’,j,j' € V
@i Index of sections, (i,i") € E
l Index of lines
a,a Index of trains
t,t',t" Index of the time intervals in the master time-space network, t,t’,t"" € T
7,7, 7" Index of the time intervals in the extended time-space network, t,7’, 7" € T'
@i,¢t) Index of vertexes in the master time-space network, (i,t) € V'
@it th Index of arcs in the master time-space network, (i,i’,t,t") € E'
(i,7) Index of vertexes in the extended time-space network, (i,7) € V"'
@i, 1,1 Index of arcs in the extended time-space network, (i,i',7,7") € E"
Sets
%4 Set of stations, including the dummy stations
E Set of sections, including the dummy sections
L Set of lines
A Set of trains
A Set of trains belonging to line [
v’ Set of vertexes in the master time-space network
v Set of vertexes in the extended time-space network
|74 Set of vertexes in the master time-space network associated with train a
/4 Set of vertexes in the extended time-space network associated with train a
E' Set of arcs in the master time-space network
E" Set of arcs in the extended time-space network
E}, Set of arcs in the master time-space network associated with train a
Ej Set of arcs in the extended time-space network associated with train a
T Cycle length of the cyclic train timetable
T Set of discretized time intervals in the master time-space network
T, Set of discretized time intervals in the extended time-space network
uG,j, e Set of arcs in the master time-space network that are incompatible on section (j, j) at time t", and the set of

trains contained in U(j, j',t"") is influenced by the settings of headway safety constraints
Set of arcs in the extended time-space network that are incompatible on cell (j, j) at time 7"/, and the set of

1o a1 11
v'G.Je trains contained in U'(j, j',7'") is influenced by the settings of headway safety constraints
Parameters
0, Origin station of train a
D, Destination station of train a
[start,, end,] Departure time window of train a from its origin station O,
haas haas Raps Rpps Ppas Apa, hap - Safety headway between the two trains at the same station
ca(i,i',t,t" Travel cost of the time-space arc (i, i, t, t") for train a
p Penalty parameter in ADMM, p > 0
fi Frequency of train line [
wy The first train with the earliest departure time in line [
H Number of cycles for the master time-space network, where T,, = H-T and T, = 2H - T for a given value
of H

B Integer parameter to specify to number of copies of master schedule in the extended schedule, g € {0, -, H}
Qia Integer parameter to specify the order of train a in line [, q; , € {0, -, f; — 1}
Variables

S 0-1 time-space arc selection variable for the master schedule, = 1 if train a is assigned on time-space arc
xq (i, 1, t,t") N .

(i,i',t,t") ; = 0 otherwise

Yo (i, ', 7,7) 0-1 time-space arc selection variable for the extended schedule, = 1 if train a is assigned on time-space arc

(i,i',7,7") ; = 0 otherwise
A Lagrangian multipliers in associated with the track capacity constraints in the extended schedule
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4. Mathematical modeling
4.1 Modeling assumptions

Before introducing our proposed train timetabling models, we present some key modeling assumptions to facilitate the modeling
process.

(1) One minute is set as the minimum time interval in the time-discretized time-space network, and shorter time interval values
can be also applied if necessary.

(2) For trains belonging to the same line, their time-space trajectories are evenly distributed according to the time interval as a
function of the cycle length divided by line frequency.

(3) The double-track railway corridor is composed of a set of interconnected stations and segments at the macroscopic level,
and the safety headway requirements for the double-track railway corridor in China are adopted to ensure the safe headway between
any two trains.

(4) The physical length of trains are not considered, so we model trains as single objects moving in the double-track railway
corridor, and consider only trains running in one direction.

(5) Only those trains running in a single direction are considered so that those trains have no interaction with other trains running
in the opposite direction.

4.2 Cyclic train timetabling model
4.2.1 General time-space network model for train timetabling problem (M1)
Objective function:

min Z; = Z Z ca (0,1, t,t") - x, (0,1, t,t") (1)
a€A (i,i',t,t"EE,

Subject to:
Flow balance constraint:
—1 i' =0,t' = start,
xq (3,0, 6, t") — Z xa (i, t,6) =14 1 i'=D,t'=T , Ya €A )
i t:(i,i" bt EEL it:(i"it t)EEL 0 otherwise

Track capacity constraint:

x, (i, it <1, v(j,j ) EEt"eT 3)
a€cA (i,i",t,t"eu(y,j',t"")

Decision variables:
x.(,1',¢t,t") € {0,1}, Va €A, (i,i',tt") €EE “)

Model M1 is a standard binary integer programming model for the non-cyclic train timetabling problem based on the time-
discretized time-space network, and its mathematical form is essentially the same as the one in Caprara et al. (2002) except for the
defined objective function. The objective function in Eq. (1) is minimizing the total travel cost of all trains, and many optimization
goals can be represented by the travel costs, such as the train journey times and energy consumptions. In this paper, the travel costs
of the time-space arcs are specified as the corresponding train travel times such that model M1 aims to minimize the total train
journey times. Constraint (2) corresponds to the flow balance relationship, ensuring that one unique time-space path is selected by
each individual train. It should be noted that the feasible arc set E, for train a is used instead of original arc set E' in constraint (2),
so that the time-space arcs that train a can travel through can be customized to reduce the number of arcs to be examined, and the
pre-specified train stop requirements can also be honored accordingly. Constraint (3) is the track capacity constraint, which describes
the time-space resource usage constraints according to the safety headway requirements in Appendix A, where at most one single
train can occupy one of the time-space arcs in the clique U(j,j', t). Finally, constraint (4) specifies the domain of time-space arc
selection variables.

4.2.2 Cyclic train timetabling model based on extended time-space network (M2)

Now we proceed to the steps of timetable expansion and duplications illustrated in Fig. 1. The non-cyclic train timetabling
model M1 can be used to generate the master schedule in the master time-space network. For the PESP model, modulo variables are
introduced to map all train time-space paths into the same cycle (Peeters, 2003). Fig. 3 (a) shows an example of the cyclic train
timetable which contains two lines, where line 1 in the red color has a frequency of 2 and line 2 in the dark color has a frequency of
1. It can be seen that the cycle length equals to 10 min and the time-space path for the train of line 2 crosses the cyclic boundary T,
where part of the time-space path that is located outside of the cycle and it is mapped to the be beginning of the cyclic train timetable.
Inspired by the work in Heydar et al. (2013), we propose the concept of the master schedule, which expands the planning horizon
for H times of T resulting a master time-space network with the length of the planning horizon T,,, be equal to H - T. The value of H
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1 is set to the minimum possible integer value such that T, is greater than the maximum possible arrival times of all trains at their
2 destination stations.

3
Time horizon (min) Time horizon (min)
—_— —_—
10 10 5 20 25 30
N Y I N Y s o
D o- -0-0-Q
C, 6-o- -Q-@-0-0
C, &-0-9—h-a-0- Q-Q-@-0-9Q-0-Q-Q-Q
g g| B:o- -Q-0
2 2| B, 6- Q-0-0-0-0-0-0-0-¢
bl g
wn w
Line I Line 1/Line
A 6-0-0-0-0-Q=0=0-0=Q=Q=Q=0=0=0=Q=Q=Q=0=Q=0=0=0-Q=0=Q=0=Q=Q=0-0
\ Ul 2 |
r T, (indexed by ¢ and ¢') 7
(a) Original cyclic train timetable in the (b) Master schedule for the cyclic train timetable in the master
time-discretized time-space network time-space network
Time horizon (min!
0 10 15 20 25 30 35 40 45 50 55 60
N Y e
(’7:555}0?(1&56@;‘\‘ ( TZSE,Z&&JGE;‘\‘
T 210, Aml) A <010, A=Y
D o- —o—o—ﬂj—'oo— -0-0- —o—o—o—o—”;;lq—o—o—o— iQ\-oiré:"{c:zr:’gcz/—Q—o—o— -0-0-0=0=0=0=0=Q=0=9=0-0-Q=0=-Q=Q=Q=Q=Q=0=0=0~Q-0-Q=Q=0-Q=0=0=0
/? /? /? / 2 /? /? ,/‘ /‘
/
/
/
-0-0-0-0-0-0-0-0-04-0-0-0-0-0-0-0-0-0-0
0-Q-0-9-0-0-0-Q-Q=0=0-0-9-Q-0-Q-0-Q-Q-Q-Q-0-0
///
/
/
= -0-039-0-0-0-0-0-0-Q-0-0-0-0-Q-Q-Q-Q—0
-§ ~0-0-0-0-0-0-0-0-0-0-0-0-0-Q-0-Q-Q-0-0
@
A 9-0-0=0-0-Q=0=0-=0-0-8-0-0=0-0-3-0-d=0-0-3-0-0-0=0-d=0~¢-0=0-4-0=0-Q=@=4=0~F=0=6-0-0=0-0=Q=0-Q=Q=0-0~Q=0-0=Q=0-Q=Q=0=0=-0
(" Casea, condition (1a): ) (" Case b, condition (1bE): )
\@—7[:06[4,10), /31=0) \@—72';’0614,10), ,82=l)
e e — - >
! T, (indexed by 7 and 7") !
4 (c) Extended schedule for the cyclic train timetable in the extended time-space network
5 Fig. 3. Transformation of the original cyclic train timetable into the master and extended schedules
6
7 Moreover, Fig. 3 (b) shows the master schedule in the master time-space network corresponding to the cyclic train timetable in
8 Fig. 3(a). The maximum possible arrival time of the trains is equal to 22 min in Fig. 3(b), so the value of H is set to 3 and T,, is equal
9 to 30 min. Note that even though time-space paths of the trains can travel cross the cyclic boundaries in the master schedule, it is
10 required that the departure times of all trains are located within the range [0,T). In addition, the departure time window
11 [start,, end,] for the first train a of a line [ € L is set to [0, min{|T/f;],T — 1}], and other trains in the same line are evenly
12 distributed with the time interval |T/f;]|. For instance, the first and second trains of line 1 departs from station A at times 1 and 6
13 min respectively with an time interval of min{]10/2],10 — 1} = 5 min.
14 The time-space paths of the trains in the master schedule in the extended time-space network in Fig.3 (b) are now moving
15 forward in the time direction without looping back, similar to the handling of trains in a non-cyclic train timetable. To further
16 guarantee that there is no conflict in the cyclic train timetable, we propose the idea of duplicating the master schedule to multiple
17 copies (i.e., extended schedules) in the frame of the extended time-space network.
18 The length of the planning horizon T, for the extended time-space network is equal to 2H - T, and the trains in the master schedule
19 are copied by H + 1 times and each time has the offset of T. Fig. 3 (c) shows an example of the extended schedule for the master
20 schedule in Fig. 3(b), and the value of T, is equal to 60 min, and the train time-space paths are copied by 4 times. Obviously and
21 conceptually, it can be seen that there is no conflict, such as illegal overtaking within the section, over the whole planning horizon
22 of the extended time-space network. Hence, it can be guaranteed that the original cyclic train timetable is feasible. The master and
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extended schedules are coupled together, where the master schedule aims to use a similar manner of planning non-cyclic train
timetable to schedule trains and the extended schedule is to resolve the train conflicts in the cyclic train timetable. We will proceed
to Proposition 1 at the end of Section 4.2.2 for a formal proof.

Mathematically, two sets of time-space arc selection variables x, (i,i’, ¢, t") and y,(i,i’,7,7") are designed for the master and
extended schedules respectively. Note that time intervals in the master time-space network are indexed by t and t’ while time
intervals in the extended time-space network are indexed by 7 and 7’. In model M2, the objective function (5) aims to minimize the
total journey times of all trains in the extended schedule. Constraint (6) is the flow balance constraint that finds one unique time-
space path in the master time-space network for the first train w; of each line [ € L, where x,,,(i,{’, ¢, t") in constraint (6) represents
the binary time-space arc selection variable for the first train w;. Constraint (7) generates the time-space path for the rest trains in the
same line [ € L by shifting the time-space path of the first train w; with an offset of min{|T/f;|, T — 1}. The integer parameter q; ,
in constraint (7) specifies the order of train a in line I, and q; , is restricted to the set {1, -, f; — 1} such that the first train w; in line
l is excluded from constraint (7).

One of key contributions in our proposed reformulation is the variable splitting/duplication technique. Constraint (8) is the
consensus constraint between the master schedule and extended schedule, which simply duplicates the time-space paths of the trains
in the master schedule by H + 1 times in the extended schedule. Note that the integer parameter 8 in constraint (8) enforces the
number of copies of master schedule in the extended schedule, and it belongs to the set {0,---, H}. The form of constraint (8) is
similar to the nonanticipativity constraint, across the first-stage and second-stage decisions of the two-stage stochastic mixed integer
programming (SMIP) problems, in Crainic et al. (2011) and Boland et al. (2018) that has been well tackled by using the progressive
hedging approach to solve the two-stage SMIP problems. Note that, in our proposed model, because constraint (8) only performs the
duplication operation, there is no need to dualize it into the objective function. Constraint (9) is the track capacity constraint enforcing
that there is no conflict in the entire planning horizon of the extended time-space network. Constraints (10) and (11) define the
domain of binary time-space arc selection variables for the master and extended schedules.

minZz=z Z (i i, 7,7) Yo (i, 1,7, 7") ®)

a€A (ii't,1')eEY
Subject to:
Flow balance constraint:

-1 i'=0,,t" = start,
X, (5,1, 8, ") — Z Xy, (@5t ) =1 1 i =Dy, t' =Ty ViEL 6)
LEGi EEED, LG LT DEEY, 0 otherwise

Master schedule coupling constraint:

xq(i,1',t + quq -min{[T/fi, T — 1}, t' + qo - min{|T/£i], T — 13) = x,,, (i, ', ¢, ¢,

7
VieLa€A,Gi t,t")YEE, fi>1,q4€{l,,fi—1} @
Extended schedule duplication constraint:
Yo (0, i',1,7t") = x4 (i,i',t + BT, t' + BT), ®)
va€A, (it t')eE, Gi,t,t") €eE", €0, H,t=t+pT, 7' =t' + BT
Track capacity constraint:
v, i,1,7) <1, v(,j))EEt" €T, ©9)
a€A (i,i",r,reu’(j,j' ")
Domain of variables:
x.(,1',t,t") € {0,1}, Va €A, (i,i',tt") EE' (10)
v, i1, ") €{0,1}, Va €A (i, t,t") €EE" (1D

Proposition 1. A feasible extended schedule in the extended time-space network can always correspond to a feasible cyclic
train timetable, and vice versa.

Proof. Through the duplication operation in constraint (8), there are H + 1 copies of the time-space path of each train in the
extended time-space network which are evenly distributed by a time interval of T. Since H - T is larger than the maximum possible
arrival times of all trains to their destinations in the master schedule and the time-space paths of all trains in the master schedule are
duplicated by H + 1 times, it is always possible to map a pair of time-space arcs of the master schedule into the same cycle in the
extended schedule. More importantly, for the time-space arcs in the H*" cycle, i.e., the last cycle of the master schedule, all the other
time-space arcs located before the Ht" cycle can be shifted to the same Ht" cycle with at most (H — 1) - T offsets. Therefore, a cyclic
train timetable that has an identical form to the original cyclic train timetable can always be obtained in the H*" cycle of the extended
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schedule. Fig. 3 shows the transformation of the original cyclic train timetable into the extended schedule, where the train time-space
paths in the 3™ cycle of Fig. 3(c) is equivalent to the original cyclic train timetable in Fig. 3(a). We next show how the designed
duplication operation in the extended schedule, just as modulo variables in the PESP model, has the same ability in handling the
safety constraints of the cyclic train timetable.

Suppose k and k' are two different events and activity (k, k") belongs to the set of safety activities Agye in the PEAN of the
PESP model, my,m, € [0,T) are integer variables representing the planned times of events k and k', z,/, denotes the binary
modulo variable where z:, = 1ifm, > m and z;+ ), = 0 otherwise, and hy ;s is the minimum headway between events k and k'.
In the PESP model, safety constraint 7wy, — 1yr + 247, T € [hy ,r, T — hy ;1] enforces the feasibility of the cyclic train timetable
without conflicts. If we suppose , < 7,/ , the two safety constraints can be simplified as my — s + T = hy ;s with z,r, = 1 and
Tyt — Wy = hy s with z;, ,r = 0, which should be satisfied simultaneously in the cyclic train timetable.

Without loss of generality, the planned times of event k and k' in the master schedule are denoted by m* and 7,7, and 7" could
still be smaller than ;7 or vice versa. Moreover, the duplicated events for events k and k' with the planned times of n,‘;’,ﬁ =m +
BT,B € [0,H] and m;/ 5= w1+ BT, B € [0,H] are generated in the extended schedule, respectively. Table 3 lists the
correspondence relationship of the safety constraints between the extended schedule and PESP model with m;, < s, and two cases
corresponding to the two safety constraints can be stated as follows:

(1) If both conditions (1aE) and (1aL) are satisfied in the extended schedule, safety constraints (0a) is enforced in the PESP
model

Conditions (E) implies that T[,io is earlier than 7'[;,,0, 1e., n,‘j_o < 7'[;,‘0, while condition (L) means n,‘é‘o is later than 7'[;,’0, 1e.,
Teo > Ty . Condition (1aE) specifies that there is a largest integer ; € [0, H] such that 7w, | — mg 5 € [hy e, T) for mg g < i,
in the extended schedule, which implies that the absolute difference between 7'[:,,0 and my, g, 18 less than T and greater than or equal
to the minimum headway hy, /. Similarly, condition (1aL) requires that there is a smallest integer 83 € [0, H] such that nZ,‘ B~
T o € [hyyr, T) for mg o > nzfyo. Fig. 3 shows four events 1, 2, 3 and 4 with planned times of 7; = 6, m, =8, 13 = 2 and m, = 4,
where " = 6, 3" = 8, m3' = 22 and my"* = 4 in the master schedule and n{y =6, n{, =16, 5, =8, w5, = 22, w5, = 4,
ng, = 14, and w5, = 24 in the extended schedule. In addition, the headway hy , is set to 2 min and cycle length T equals to 10
min. Therefore, 15, — 7{, € [2,10) with §; = 0 and nf, — w3 € [2,10) with f; = 2 areidenticalto m, —m; = 2 and y — 115 =
2, respectively.

(2) If both conditions (1bE) and (1bL) are satisfied in the extended schedule, safety constraints (Ob) is enforced in the PESP
model

For conditions (1bE) and (1bL), there are a smallest integer 8, € [0, H] such that g 5 — nzljo € [y, T) for my o < ”Z’,o and
a largest integer 8, € [0, H] such that 7y , — n,‘irm € [y, T) for my o > ”:’,0' In Fig. 3, it can be shown that n{ ; — 5, € [2,10)
with 8, = 1 and 5, — m§, € [2,10) with 8, = 1 are identical to m; — m, + 10 = 2 and w3 — m, + 10 > 2, respectively.

In short, an extended schedule with H + 1 copies of the master schedule actually generates (H + 1) X (H + 1) precedence
constraints between each pair of events in the original cyclic train timetable, where two integers 5; and [, for condition (E) or 5
and 3, for condition (L) within the range [0, H] can always be found corresponding to the precedence relationships in constraints
(0a) and (0b), respectively. In addition, model M2 can avoid the usage of binary sequence variables in the big-M modeling method
to enforce the necessary headway requirements. Furthermore, compared to the time-space network formulation in Caprara et al.
(2002) that does not include multiple copies of the schedule, model M2 using the time-space network extension technique can
guarantee a conflict-free cyclic train timetable even when the train time-space path traverses across more than 2 cycles. On the other
hand, a master schedule which is actually equivalent to an extended schedule with only one copy cannot guarantee that all of the four
conditions in Table 3 are satisfied. Thus, an extended schedule is sufficient for ensuring a conflict-free cyclic train timetable.

Table 3
Correspondence relationship of the safety constraints between the extended schedule and PESP model with mj, < mr
Saf ints for PESP model Condition (E) Condition (L)
HEy consame o Mo < M1 for extended schedule o > T o for extended schedule
= 6, _ € , _ i e, . ,
Case a Ty — My = hy g (0a) B a;%{‘;}glx{”k 0~ i, € [k ,T)} (1aE) B3 3}31;%[?;? {"k B ~ Tho € [y 'T)} (laL)
= i e _ e’ , _ e e’ )
Caseb m —m +T = hyy (0b) B2 z}?z%[rg};?{nk,ﬁz s o € [hyr, TV} (IBE) B, al;;ge [rgllg]x{nk‘o e g, € [Pick ,T)} (1bL)

In addition, the objective function (5) minimizes the total travel costs of all trains in the extended schedule which is equivalent
to the optimization of the master schedule. Because the master schedule is the expansion of the original cyclic train timetable, and
the cyclic train timetable is also optimized. A detailed comparison of model M2 with the PESP-based cyclic train timetabling model
in Zhang and Nie (2016) which has the modified objective of minimizing the total train journey times is given in Appendix B. The
comparison results show that model M2 also has the ability to handle the same practical constraints except the relaxation of train
regularity, especially the non-collision and flexible overtaking constrains. In short, optimizing extended schedules in the extended
time-space network is equivalent to the optimization process of cyclic train timetables.
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4.2.3 Dual decomposition of model M2 with Lagrangian relaxation (M3)

We now move the two dual decomposition steps illustrated in Fig. 1. By using the Lagrangian relaxation method, the side track
capacity constraint (9) of Model M2 can be dualized into the objective function after introducing the Lagrangian multiplier 4; ;7 .17,
resulting in a new model M3. The new objective function (12) has an additional linear penalty term for the violation of side track
capacity constraint, and constraint (13) restricts the value of 4; ; .+ to be larger than 0.

Objective function:

min Z3 = ZZ + Aj,jl,,’__li Z ya(i: i’,T,T’) -1 (12)
(j.j)EE 1" €T, aed (ii’ T, )eu’ (.t

Subject to:

Constraints (6)-(8), (10)-(11) and (13).

/1]-’]-!’1_” >0, VU’]") I= E,‘[” € Te (13)

Model M3 consists of a set of train-specific sub-problems with the form of objective function in Eq. (14), which can be solved
by finding the least cost time-dependent shortest path for each train in the extended schedule with the time-space arc usage cost
¥.(i,i’,7,7") in Eq. (15). In addition, Eq. (16) specifies the usage cost ya*(i,i’, t,t") of the time-space arc (i,i’,t,t") in the master
schedule according to the duplication relationship between the extended and master schedules in Eq. (8). The values of Lagrangian

multipliers /1]1-(;/'1.[// and step size a® at the k*" iteration are updated in Eqs. (17) and (18), respectively. It should be noted that Eq. (17)
adopts the classical subgradient method to update the values of Lagrangian multipliers /1]’.‘;,;”, which has also been applied by some

previous research papers with discretized time-space network modeling framework, such as the work by Brannlund et al. (1998),
Caprara et al. (2002) and Meng and Zhou (2014).

z = Z a1, 7,7 v, (1,7, T) + Z Z Ajjra v, i1, 7)) — 1
(i.i’,T'T’)EE,’l’ (,JNEE TET, Gi' Te)EU' (G,j ') (14)
- Z Yo, i1, 7") - yo (i1, 7,7) — Z Z A jr
(i,i' t,7)EEY (,jNEE T €eT,
Ya(@,i',7,7") = (i, i, 7,7") + Z Z Ao, VG T,T) € EY (15)
(,jeE T €T (i,i' r,7)eu’ (j,j',7'")
H
va' @i, et") = Z Yol i, t + BT, t'+-T), Va€AGItt")€EEy, (16)
=0
A o = maxy 0,271 o + @ Z Z Va1, 1, 7) = 1|¢, V(G j)EETET, (17)
a€cA (i,i't,t)eu’(j,j' ')
ak=1/k+1) (18)

4.2.4 Dual decomposition of model M2 with ADMM through block coordinate descent (M4)

Several useful dual decomposition approaches have been developed to reduce the complexities in solving various linear and
non-linear optimization problems (Bertsekas, 1999; Boyd et al., 2011). Particularly, three typical dual decomposition techniques are
the Lagrangian relaxation (Fisher, 1981), Augmented Lagrangian relaxation (Fortin and Glowinski, 2000) and ADMM (Glowinski
and Marroco, 1975; Gabay and Mercier, 1976; Boyd et al., 2011). Lagrangian relaxation is a dual ascent method and it can dualize
the “hard” constraints into the objective function, and the original complicated problem can be decomposed into many easier and
independent sub-problems. Augmented Lagrangian relaxation further introduces an extra quadratic penalty term into the objective
function, in an attempt to improve the robustness and functional convexity of the Lagrangian relaxation. However, the quadratic
penalty term has made the variables coupled with each other, and it is difficult to update the variables in a parallel way and typically
requires quadratic programming solvers. By combing the Augmented Lagrangian relaxation with the block coordinate descent
method (Bertsekas, 1999), ADMM was developed where variables can be updated sequentially in a block-by-block manner. As a
result, ADMM has the inherent advantages of breaking symmetry and strong convexity while maintaining good problem
decomposition structure. Table 4 shows the detailed comparison between the above three dual decomposition approaches. In addition,
an illustrative example of ADMM with three blocks is provided in Appendix C. The theoretical convergence of applying ADMM in
integer programs is a very subtle issue, detailed discussions can be found at a very recent study by Boland et al. (2018) and a recent
working paper by Yao et al. (2019).
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Table 4
Characteristics of three dual decomposition approaches
Approaches Quadratic penalty terms Robust Decomposable  Fully parallel implementation
Lagrangian relaxation No No Yes Yes
Augmented Lagrangian relaxation Yes Yes No No
ADMM Yes Yes Yes No

In our specific timetabling application, ADMM also dualizes the side track capacity constraint (9) with a quadratic penalty term
be introduced into the objective function (19) of model M4 except for the linear penalty term of Lagrangian relaxation. Moreover,
Boyd et al. (2011), Crainic et al. (2011) and a recent study by Yao et al. (2019) applied ADMM or Augmented Lagrangian relaxation
to dualize the complicating equality constraints, such as the constraint (C2) of the illustrative example in Appendix C. In order to
show how to complicating inequality constraint (9) from a theoretical perspective, a continuous and non-negative slack variable
s;j'« € [0,1] is introduced to transform constraint (9) into an equality constraint, i.e., Yqea X(ii" 1,7ev' (j,j7 vy Ya (b U, T, T') + 8j jr o0 —

1= 0. The maximum value of s; ;s is set to 1 as the term Yea X(ii" r.2hev' (j,j ) Ya (i, ', 7,T") can be equal to 0 for any clique

U'(j,j',T""), and constraint (20) specifies the range of values of s; j .. Therefore, the quadratic term in Eq. (19) turns to the form of
1Zaea ZqiireanevGijren Yali i, T, T") + 8j 1 0 — 1||§ after introducing the slack variable s; ;s .». Models M4 and M3 share the same

jj' T
constraints, but the value of Lagrangian multiplier 4; ;s .+ is updated in Eq. (21) where the step size a is replaced by the penalty
parameter p. It should be noted that since model M3 can also directly handle the complicating inequality constraint (9) with the
requirements of A; ;7 .7 > 0 and 4; ;7 .7 is updated by Eq. (21), the slack variable s; js . is not needed to be introduced into the term
Z3 of Eq. (19). In addition, even though the mathematical form of Eq. (21) is similar to Eq. (17) that utilizes the subgradient method,
the dual update step size p used in Eq. (21) will lead to quite different performance between ADMM and the classical subgradient
method. In particular, the penalty parameter p is directly incorporated into the quadratic penalty term in Eq. (19) to regulate the scale
of penalty for violating the side track capacity constraints. Moreover, the value of penalty parameter p is adjusted in a different
manner compared to the adjustment of step size a in Eq. (18). The value of penalty parameter p is specifically increased adaptively
according to the violation of track capacity constraints at each iteration which will be introduced in detail in Sec. 5.1.

Objective function:
2

; p £y ’
m1nZ4=Z3+E Yo (i, i, 7,T) + 55510 =1 (19)
(,jNEE T""€eT, ||acA (i,i' r,t")eu’(j,j' 7' 2
Subject to:
Constraints (6)-(8), (10)-(11), (13) and (20).
0<s <1, V(,j)EETET, (20)
Ay = maxy 0, A e 4 p Yo, U 1T = 1|f, V() EE T ET, @1

a€cA (i,i',1,7)eu’(j,j' ')

An important property for applying ADMM to integer programming programs is that, when only binary variables are involved
in sub-problems with linear and separable structure, it is possible to linearize the quadratic penalty term in ADMM. Interested readers
can refer to Yao et al. (2019) for the handling of binary variables in ADMM for the vehicle routing application. In addition, this
technique has also been applied by Crainic et al. (2011) in the context of two-stage SMIP formulation after relaxing the
nonanticipativity constraint through Augmented Lagrangian relaxation , where the linearization could be performed as the relaxed
nonanticipativity constraint only consisted of binary variables. In the timetabling problem under consideration in this study, model
M4 involves only binary time-space arc selection variables, the quadratic penalty term in objective function (19) can be also reduced
to a fully linearized objective function in the time-space least cost path search. In the following, we consider how to first tackle the
challenges in the quadratic function (19) and then apply the block coordinate descent method to solve the sub-problem for each train.

Due to the rolling update scheme of ADMM, only one train is optimized each time with all the other trains’ time-space paths
being fixed. If the current train is denoted by a, the rest trains belong to the set A" = A/{a}. Note that another important feature for
the linearization of quadratic penalty term in Yao et al. (2019) is that the dualized constraint can be transformed into a constraint
with only binary variables that are in associated with the current train a. We use the constant n,(j, j', 7'") , and its short hand notation,
n,, in Eq. (22) to represent the number of trains in set A’ that occupy the discretized time-space resources of arc (j, j') at time 7"’.

. . . . 2 . . . .
By substituting n, into the quadratic term ||Saea i 0yev' (.70 Ya (i 8T T + 85 jr 0 — 1||2 of Eq. (19), it can be linearized as in

Eq. (23). Note that the transformation from [¥; ;' r.1yeu (j, 7.y Ya (is i’,r,r’)]2 into X i zeev' it o Yol i, 7,7") in Eq. (23) is due to
the fact that train a can chose at most one of the time-space arcs (i,i’,7,7’) in the set U'(j,j’,=""). Thus, at most one of the binary
time-space arc selection variables y, (i,i’,7,7") of train a in the set U’ (j,j’,t"") is equal to 1.

ng = Z Z yal(i, i’,T,T’), V(],j’) € E,T” € Te (22)

a’eA’ (ii' t,tHeu'(j,j' ")
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2

Yo, 0,7, 7) + 55500 =1

T
a€A (i,i’, 7,7)eu’ (j,j' ') 2
2
= Yo, 1,7, 7)) +ng +5; 510 — 1
@i’ T)eu' (' 2
2 (23)
. . 2
= v (@, i, T, )| +2 Z Vo (i, l’,r,r’)(na + 510 = 1) + (na +8j 1o = 1)
@i’ THeu'(jj'e") (AR ADETUCH E )
— . . . . 2
= Yo (@, 1,7, T") + 2 Z ¥a (i, i, 7,7 (ng + Sj ot — 1)+ (ng + sjjrar—1)
@' reHeu' (') @i r)eu' Gt
= Z Ya(i, 1, 7,7) (2ng + 2sj 1 o — 1) + (g + 5 j1 0 — 1)?

@@i'r,)eu’ (')

In order to determine the value of's; ; .+, a function Ls, 1 in Eq. (24) where s; ;s . is the only variable can be derived according

to Eq. (23). The symbol @ in Eq. (24) denotes the items in Eq. (23) that are irrelevant to s; j: .. Since s; jr . is a continuous variable,

JT J.],T
the theoretical global minimum value of szj, _, can be obtained at the point sj*’ 7o i1 Eq. (25). However, two cases shall be considered

» according to the value of n, and the condition that s; ;s .+ € [0, 1]. First, whenn, > 1,

to calculate the actual feasible value of sj*' I
« 18 less than or equal to 0. Moreover, it can be shown that the value of LS,-,-' _, will monotonically increase

the theoretical value of sj*_ e

within the range [0, 1] with n, > 1. Therefore, the optimum and feasible value of s/ . equals to 0, and Eq. (25) can be transformed

into Y irreeu'( i Yol i, 1, 7)(2ng — 1) + (ng — 1)* by setting s;7.» =0 . Second, when n, =0, s’ equals to 1-—

jiJ'
2aireeu' (i Ya(i, 1,7, 7") whose value belongs to the range [0, 1]. Thus, the value of quadratic term in Eq. (23) is equal to 0 after
substituting ng = 0 and s; ;7 . = 1 — Xi1,0eeu'( o) Yo (i, 1, 7,77) into Bq. (23). The linearized results of the quadratic term in Eq.
(23) for the two cases are expressed in Eq. (26).

Lsjpen = Syt + 28] Z Yo, i, 1, 7) +ng — 1+ Q 24)
i’ eHeu’'(,j' ")
S z Yo (@, i1, 7") —ng -
@i'rtHeu’(,j't'")
2
)i Ya(i, i, 1,720 — D+ (ng —1)? ng>1
ya(L; L" T,T’) + sj.j’,T” -1 = {Z(i,i’.T.T’)EU’(j,j’,‘[”) a a a na = 0 (26)
aeA (i,i' vl (j,j'r'") , 0 "

For the first case of n, = 1 with ||Seea X enev (e Yol i T T) + 8j 1 0 — 1||z = Yitren (e Va1, T, T)(2ng — 1) +
(ng — 1)%, we can also derive a set of train-specific sub-problems with the new objective function Z¢ in Eq. (27). The usage cost
Ya(i,i',7,7") of time-space arc (i,i’,7,7") in the extended schedule equals to ¢,(i,i',7,7") + X jner Dever, i r.yer' G ) A jr o +
p(2ng —1)/2]. For the second case of n, = 0 with ||Saea Xirzenev (7o) Ya (o i, T T + 85 j1 o — 1||§ = 0, there are no quadratic
penalty terms in Eq. (27) such that Z§ = Z(i,i',r,r')eE,;’ Ya(@, 0, 7,7') ¥ (0,1, 7,7") — X jyer Zovver, Aj i s where y,(,i',1,1t") =
ca(i, 1,7, 7") + X(j.j"er DarreT, il wahev' (jj' 7' 4, j - In short, the theoretical and unified form of y, (i, i',7,7") for the two cases can be
expressed as y,(i,i',7,7") = ¢ (L, i', T, T") + X(j,j")eE De"eT,i(i il w2 e’ (' o) {Aj,jr,rw + max{0, p(2n, — 1)/2}} in Eq. (28). Note that since
the linearized arc usage cost y;(i,i’,7,7') in Eq. (28) does not contain the slack variable Sjj'a"s constraint (20) is not needed to be
considered in model M4.

5.3’
@i’ 7,1)eEy U.j)EE T"ET, @i’ rt)eu' Gyt

7% = Z co(,i',t,7") y, (0,1, T, T") + Z Z Ai it gmn Z v (i, i' 1, 1) — 1

*ts z ¥ (i, i, 7,7)(2ng — 1) + (ng — 1)?
(.j)eEE t""eT, | (i,i' tx)eU’ (j,j' ")

= Z co(i,i,7,7")  y, (4,1, T, 7') + Z Z Z Va (@, 0,7, T") [lj’jl’,[u + g 2n, — 1)] @7

(i,i' t,r)eEY U.JjHee t"eT, (i,i' 7,7Hev’(j,j' ")

p
+E Z (Tla — 1)2 - Z A‘]’,j’,‘[”

(J,j))EE T €T, (j,j)EE T €T,
r(: ! s r p

= ve(i,i',t,7") v, (0,1, 7, 7") +3 Z Z (ng — 1% - Z Z Aj jr 1

(@i vt)eEy G.J")€EE T"'eT, G.JNEE T"ET,
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(c (ii’rr’)+z Z A n+£(2n -1)
“ G.jDeE ‘r”ETe:(i,i’,‘r,‘r’)EU’(j,j’,r”)[ prEn e ] ng=1

Yo, i',7,7') = -
c.(i,i',1,7") + Z Z Ajjr ot na =0
(j,j)EE &=1" eT,:(i,i" ,x)eu' (j,j' ')~
v(i,i',t,7") € EY (28)
=c,(i,i", 1,7 + Z Z {ﬂ_j'jlﬂ,n + max {0,%(271& - 1)}}, v(i,i' t,7') € EY

(J,jNEE " €eT,:(i,i’' r,7Heu’(j,j'x'")

However, our numerical experiments indicate that the revised form of y;(i,i’,7, ") in Eq. (29) can lead to better performance
of ADMM. Eq. (29) is equivalent to Eq. (28) when n, = 1, while Eq. (29) may reduce the value of y;(i,i’,7,7’) whenn, = 0
compared to Eq. (28), which implies that the current train a is more likely to be attracted to use the time-space arcs with no conflicts.
Note that Larsson and Yuan (2004), which utilized the disaggregate simplicial decomposition method to generate the linearized arc
costs for the Frank-Wolfe type sub-problems within the Augmented Lagrangian relaxation-based solution framework, also adopted
a similar form of linearized arc usage cost to the one in Eq. (29) for solving a large-scale multicommodity routing problem. Moreover,

the usage cost y(;”’ (i,i',t,t") of time-space arc (i,i’,t,t") in the master schedule is determined in Eq. (30). It can be shown that the
original non-linear objective function (19) with a quadratic penalty term is linearized by adding a term of
2 iNEE L ET, Dot )eU (. T max{0, Ajjror+pQ2ng —1)/ 2} into the (linear) time-space arc cost, which is one of the critical
differences between the Lagrangian relaxation and ADMM-based dual decomposition methods. As a result, an efficient forward
dynamic programming approach can be directly applied to solve each train-specific sub-problem of model M4. Note that each train
can be viewed as a block in ADMM, and the block coordinate descent property of ADMM (Bertsekas, 1999) requires the arc usage
costs ¥4 (i,i',7,7") in Eq. (29) need to be updated as soon as the time-dependent least cost path searching process for one train is
finished. Consequently, the potential impact of the time-space paths of other trains except the current train will be embedded into the
time-dependent least cost path searching process. In Appendix D, a hypothetic example is used to illustrate models M3 and M4 with
detailed calculation steps, where the potential symmetry issue in the Lagrangian relaxation and symmetry breaking mechanism in
ADMM are explained in details.

I 2 of 7 2 »of 7 p 2 2f 4 "
vo (i, i, 1,7") = c,(i,i",1,7") + Z Z max {0, Ajjr o + E(Zna — 1)}, v(i,i', t,17") € E/ (29)
U,jDeE T eT:(i,i' T, 7)eu’(j,j' 7'

H
Yo' (i 6 ) = Z o, i, t+ B -T,t'+B-T), va€eA (it t') €Ey, (30)
B=0

5. Solution methods

This section aims to introduce the algorithmic details of two solution methods. The first one is the ADMM-based solution
method in Sec. 5.1 for model M4, including the solution framework and the iterative algorithmic steps for the generation of upper
bound and lower bound solutions. The second one is the Lagrangian relaxation-based solution method in Sec. 5.2 for model M3,
which has been illustrated in detail in the previous work by Brannlund et al. (1998), Caprara et al. (2002) and Meng and Zhou (2014),
and thus we only introduce how to apply a priority rule-based heuristic to generate the upper bound solutions. Lastly, the time-
dependent least cost path algorithm with duplicated time-space variables to solve each train-specific sub-problem in models M3 and
M4 is illustrated in detail in Sec. 5.3.

5.1 ADMM-based solution method

Fig. 4 provides the conceptual illustration on the ADMM-based solution framework for iteratively updating of the best lower
and upper bounds. Some symbol definitions for the ADMM-based solution procedure are listed in Table 5, and the detailed solution
procedure of ADMM is then provided in Algorithm 1 (ADMM).

The solution procedure of Algorithm 1 (ADMM) consists of six steps. In Step 1, the initial values of iteration number k, penalty
parameter p, incremental amount of penalty parameter &, Lagrangian multipliers A]’f 141> AIC usage Ccosts ¥, (i,i",7,7") and
v (i,i',7,7"), best lower bound value Best_LB* and best upper bound value Best_UB*, and sequence of lines Seq are provided. In
Step 2, pure lower bound solution generation involves solving each train-specific sub-problem by using the time-dependent least cost
path algorithm with duplicated time-space variables (cf. Algorithm 3 (TDLCP)) in Sec. 5.3, where the time-space arc usage costs
in the extended schedule are set to v, (i,i’,7,7") in Eq. (15). Note that the quadratic penalty term is not considered when generating
the dual solution, which is due to the infeasibility of the dual solution and large penalty values for the violations of capacity constraints.
Moreover, the best lower bound value Best_LB* needs to be updated by the equation Best_LB* = max{Best_LB*, LB*} for every
lower bound solution with the lower bound value be equal to LB¥ at the k** ADMM iteration.

In Step 3 for generating the ADMM solution and updating the best upper bound value, the time-space arc usage costs in the
extended schedule are set to y,(i,i’,7,7') in Eq. (29) and the time-dependent least cost paths for the trains are computed in a
sequential line-by-line manner using Algorithm 3 (TDLCP) in Sec. 5.3. In particular, Fig. 5 illustrates the rolling update scheme of
ADMM in Step 3. Each row in Fig. 5 represents the update of one line each time, and the line number within the circle in each row
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means the current line that is to be optimized, while the lines within the rectangle are those lines with their time-space paths
temporarily being fixed at the current inner iteration. In particular, if the p*" line in the set Seq is to be optimized for finding the
time-dependent least cost path at the (k + 1) ADMM iteration, the time-space paths of the lines lps1s by, o+ L are fixed to the
values at the k' ADMM iteration, while the time-space paths of the lines Iy, L, -, l,_, are fixed to the values at the (k + 1th
ADMM iteration. In addition, it should be noted that arc usage costs y,(i,i’,7,7") need to be updated dynamically according to Eq.
(29) at each inner iteration so as to the symmetry between different lines can be broken. Furthermore, if the ADMM solution obtained
at the k" iteration is feasible with the upper bound value be equal to UB¥, a feasible cyclic train timetable is generated and the best
upper bound value shall be updated by the equation Best_UB* = min{Best_UB*, UB*}. In addition, we also calculate the Lagrangian
profit of each line | € L and a new line sequence Seq is obtained through sorting the lines in descending order by their Lagrangian
profits (Caprara et al., 2002; Meng and Zhou, 2014).

Initialization (Step 1)

v /111.‘;-1 .+ Lagrangian multipliers (Eq. 20)

.| ADMM to dualize the side track capacity
"|  constraints in Eq. (9) (model M4)

n, : Time-space resource consumption of all the other trains (Eq. 21)
Dual
decomposition

,ok+1 : Penalty parameter

Train-specific sub-problem solved by the Train-specific sub-problem solved by the
time-dependent least cost path algorithm | «---- time-dependent least cost path algorithm
(cf. Algorithm 3 (TDLCP)) in Sec. 5.3 (cf. Algorithm 3 (TDLCP)) in Sec. 5.3
A 4 A 4
Lower bound solution generation and ADMM solution generation and best
best lower bound updating (Step 2) upper bound updating (Step 3)

—_ ==

Optimality gap calculation (Step 4)

k=k+1
y

Lagrangian multipliers and penalty
parameter value updating (Step 5)

Output the best lower bound, best upper
bound, optimality gap and best upper
bound feasible solution

N eet algorithm termination Y
condition ? (Step 6)

\ 4

Fig. 4. ADMM-based solution framework for iteratively updating of the best lower and upper bounds (cf. Algorithm 1 (ADMM))

After updating the best lower bound value Best_LB* in Step 2 and best upper bound value Best_UB* in Step 3, the optimality
gap of ADMM GAP is calculated in Step 4 by the equation of 100% * (Best_UB* — Best_LB*)/Best_LB*. In Step 5, the values of
Lagrangian multipliers A{."Lﬁ_l,u are updated by Eq. (21) with the value of penalty parameter be equal to p*, and a heuristic rule
considering the violation of side track capacity constraints in Eq. (9) is designed to increase or retain the value of penalty parameter
p**1 at the (k + 1)" ADMM iteration, so that good feasible solutions satisfying the primal and dual feasibility requirements can
be obtained (Boyd et al., 2011; Yao et al., 2019). Finally, Step 6 determines whether to continue the iterative algorithmic process by

going to Step 2 or to terminate the ADMM algorithm after reaching the maximum iteration number K.

Table 5
Symbol definitions for the ADMM-based solution method
Symbol Definition
Seq Sequences of lines in set L
€ Incremental amount for increasing the value of penalty parameter p
u Weighting factor used in the condition of whether increasing the value of penalty parameter p or not
LB¥*,UB¥ Lower bound and upper bound values of ADMM at the k" iteration
Best_LB*,Best_UB* Best lower bound and upper bound values of ADMM
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Algorithm 1 (ADMM): iterative algorithmic steps of the ADMM-based solution method
Step 1. (Initialization)
Set iteration number k = 0, penalty parameter p = 2, Lagrangian multipliers /1]}-‘, 1 g1 = 2, arc usage costs ¥, G, 1,1 =cu(i,i',1,7")
and y;(i,i’,7,7") = c,(i,i’,7,7"), best lower bound Best_LB* = —oo, best upper bound Best_UB* = +oo, initial sequence of lines Seq,
incremental amount of penalty parameter €
Step 2. (Pure lower bound solution generation and best lower bound updating)
Update arc usage costs ¥, (i,i’,7,7") by Eq. (15)
Use Algorithm 3 (TDLCP) in Sec. 5.3 to find the time-dependent least cost paths for all the trains in the extended schedule
Calculate the lower bound LB¥ at the k" iteration and update the best lower bound Best_LB* = max{Best_LB*, LB*}
Step 3. (ADMM solution generation and best upper bound updating)
For cach line [ € Seq do
Update arc usage costs y;(i,i’,7,7") by Eq. (29)
Use Algorithm 3 (TDLCP) in Sec. 5.3 to find the time-dependent least cost paths for all the trains related to line [ in the extended
schedule
End for each line [ € Seq
If the current ADMM solution is feasible
Calculate the upper bound UB¥ at the k*" iteration and update the best upper bound Best_UB* = min{Best_UB*, UB*}
Calculate the Lagrangian profit for each line [ € L by the ratio of dividing free-flow travel time (i.e., the minimum travel time of the
train w; without considering the side track capacity constraints) by the corresponding least cost travel time in the dual solution of the
train w; (Caprara et al., 2002; Meng and Zhou, 2014).
Sort lines in descending order by their Lagrangian profits and generate new line sequence Seq
End If
Step 4. (Optimality gap calculation)
Compute the optimality gap GAP by the equation 100% * (Best_UB* — Best_LB*)/Best_LB*
Step 5. (Lagrangian multipliers and penalty parameter value updating)
Let k = k + 1, update the Lagrangian multipliers 25X,/ by Eq. (21) with the value of penalty parameter p* at the k" iteration

ii'T
k+1

Increase or retain the penalty parameter value p*™* according to the following condition (Yao et al., 2019):

violation; ji .n = max{O,Z Z Yo (G, i, 7,7 — 13}, v(,j'") EE,T" €T,
a€A (i,i' t,t)eu’(j,j'x'")

jr =
p = (j,jNEE T€T, (j,jNEE TET,

p*,  otherwise

k . 2 . .
pr+e, Z Z vmlatlonj' >u Z Z violation; jr .

where violation; js .s is the violation of track capacity constraints in the clique U’(j, j’, 7""), and € and u take the suitable values within

the ranges [1, 5] and [1, 4] after observing the general performance of the ADMM-based solution method, respectively.
Step 6. (Algorithm termination condition)
Terminate the ADMM algorithm if k reaches the maximum iteration number K; otherwise, go to Step 2.

lines Iteration k Iteration k+1

I AT TN O L R Ty ey

h hohils L lys Tl Iy l.i(:—‘_:) Lody e Dy Do Dy

l hobo bl o o bis ly h lzi'\,\z\,\' bl Do

ls hob bl Do D L b 13I'\,\:\,\' =t b Dy

Iy hob Lol o o D Ay ill L L L - o l\L|-1i(:':>
(::\) Line to be optimized E____________i Lines temporarily being fixed

Fig. 5. Illustration of the rolling update scheme of ADMM for the lines ordered in set Seq (Boyd et al., 2011; Yao et al., 2019)

5.2 Lagrangian relaxation-based solution method

The solution procedure of Lagrangian relaxation for model M3 is similar to that of ADMM, and readers can refer to Brannlund
et al. (1998), Caprara et al. (2002) and Meng and Zhou (2014) for detailed algorithmic steps of Lagrangian relaxation for the train
timetabling problem. Moreover, the upper bound feasible solution of Lagrangian relaxation can be derived by utilizing the dual
information with a priority rule-based heuristic algorithm (Brénnlund et al., 1998; Caprara et al., 2002; Meng and Zhou, 2014) in
Algorithm 2 (PRUB).
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Algorithm 2 (PRUB) includes four algorithmic steps. In Step 1, the value of Lagrangian profit for each line [ € L is calculated
by using the same method in Algorithm 1 (ADMM), and the priorities of lines are determined in Step 2 through sorting the lines in
descending order by the values of Lagrangian profits of the first train w; for each line [ € L. In Step 3, the time-space paths of the
lines are generated sequentially starting from the line with the highest priority. In particular, the arc usage costs are setto ¢, (i,i’,t,t'),
i.e., the travel time of the train on the time-space arc (i, i’,t,t"). Moreover, Algorithm 3 (TDLCP) of Sec. 5.3 is used to find the
time-dependent least cost path for the first train w; of line [, and the time-space paths of other related trains in the master and extended
schedules can be generated naturally according to constraints (7) and (8). In addition, the costs of the time-space arcs that conflict
with the time-space paths of the trains associated with the current line ! are set to a sufficiently large number (Meng and Zhou, 2014;
Wei et al., 2017), so that necessary headway requirements in Appendix A are guaranteed. The sequential search process in Step 3 is
iterated until all trains in the set of lines L are scheduled. Finally, the optimality gap of Lagrangian relaxation is updated in Step 4.

Algorithm 2 (PRUB): a priority rule-based heuristic for generating the upper bound solutions

Step 1. (Lagrangian profit calculation)
Obtain the Lagrangian profit for each line [ € L.

Step 2. (Line priority ranking)

Lines in set L are sorted in descending order by their Lagrangian profit values.

Step 3. (Sequential feasible time-space path generation)
Step 3.1 For the current line [ with the highest priority, use Algorithm 3 (TDLCP) in Sec. 5.3 to find the time-dependent least cost path
for the first train w; in line [, where the arc usage costs are set to ¢, (i,i',t,t") in Table 2.
Step 3.2 Generate the time-space paths for other related trains by constraints (7) and (8), and mark the associated conflicting time-space
arcs as infeasible to guarantee the necessary safety headways in Appendix A (Meng and Zhou, 2014; Wei et al., 2017).
Step 3.3 Repeat Steps 3.1 and 3.2 until all trains in the set of lines L are scheduled and go to Step 4.

Step 4. (Upper bound updating)
Update the best upper bound and calculate the corresponding optimality gap if the currently feasible solution has a smaller total travel
cost.

5.3 Time-dependent least cost path algorithm with duplicated time-space variables

The time-dependent least cost path algorithm based on the forward dynamic programming approach was proposed by
Ziliaskopoulos and Mahmassani (1993) and Chabini (1998) for the dynamic road transportation networks. The time-space paths of
each train a consists of waiting, travelling and dummy arcs. Waiting arcs from (0,4, T) to (O,, T + 1) allows train a to wait at the
origin station until train a departs from the origin station, which must be contained within the departure time window [start,, end,].
Moreover, by adopting the station splitting method in Caprara et al. (2002), a set of travelling arcs from (i, 7) to (i’,7") can be
constructed for train a with flexible travel times in the sections and dwell times in the stations. Dummy arcs from (D, 7) to (Dg, T +
1) connect the actual arrival time of train a at the destination station to the end time of planning horizon. Interested readers can
check more details for constructing the time-space network and the associated time-dependent least cost path algorithms in Pallottino
and Scutella (1998), Caprara et al. (2002), Meng and Zhou (2014), Zhou et al. (2018) and Tong et al. (2019).

The symbol definitions needed for the time-dependent least cost algorithm are provided in Table 7, and the detailed algorithmic
steps are then introduced. Eq. (31) describes the key label cost update condition in step 2 corresponding to the lines 14 to 18 of
Algorithm 3 (TDLCP), where the usage cost of the arc (i,i’,t,t") for the first train w; of line [ in the master schedule is calculated
by summing the arc usage costs of the arcs belonging to the same line [ and all of the duplicated time-space arcs/variables. In addition,
the forward dynamic programming in step 2 of Algorithm 3 (TDLCP) can obtain the time-dependent least cost path for the first
train w;, and the time-space paths of other trains in the same line [ can also be generated according to Egs. (7) and (8). Note that the
arc usage cost 7, ((,1,7,7") is used in Algorithm 3 (TDLCP) for the ADMM-based solution method, and yy, (i,i’,7,7") can be
replaced by y,,, (i, i, 7, ) directly for the Lagrangian relaxation-based solution method.

fi-1 H
0, (0, ) + Z Z r (it Qo \T/RL+ BTt + qua - IT/fl+ B T) < 0, (it)),  VIEL,i6t) € E), 31
q1,a=0 f=0
Table 7
Symbol definitions for the time-dependent least cost algorithm with duplicated time-space variables
Symbol Definition
a.(i,t) Label cost of time-space vertex (i, t) for train a
pred,(i',t") Predecessor of time-space vertex (i’,t") for train a
sum Regular parameter for storing the sum of time-space arc usage costs

Algorithm 3 (TDLCP): time-dependent least cost path algorithm in forward dynamic programming with duplicated time-space variables
1 Input: Physical railway network G = (V,E); cycle length T; frequency f; of train line I; origin station Oy, , destination station D, ,
departure time window [0, min{|T/f;], T — 1}] and revised time-space arc usage cost ¥, (i,i’,7,7") for the first train w; of line [ in the
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extended time-space network; number of cycles H for the master time-space network; length of planning period T, and T, for the master
and extended time-space networks

Output: least cost time-space paths of each train a € 4; in line [

Step 1. (Initialization)

Set the label cost of the time-space vertex oy, (i,t) = +oo, the time-space vertex predecessor pred,, (i,t) = (=1, —1), the label cost
0w, (0w, t) = 0,¥t =0, min{|T/f|,T — 1}

9  Step 2. (Label updating in forward dynamic programming)

10 For cachlinel € L do

0 I W

11 For each time t = 0 to Ty, do //search in the master schedule

12 For each outgoing arc (i,i',t,t") € Ey, of vertex (i,t) €}, do

13 sum =20

14 For each q;, = 0to f; — 1 and f = 0 to H do //calculate the sum of the arc usage costs in the extended schedule
15 t=t+quIT/fil+BT

16 v =t +qu T/fl+ BT

17 sum = sum + yy, (i,i',7,7")

18 End for each q;, =0tofy—1land f =0to H

19 If 6, (i, t) + sum < 0, (i'",t") // update label cost and vertex predecessor
20 oy, (', t") = oy, (i, t) + sum

21 pred,, (i',t") = (i,t)

22 End If

23 End for each outgoing arc (i,i',t,t") € E,,, of vertex (i,t) € Vy,

24 End for each time t = 0 to Tp,

25 End for eachlinel € L
26 Step 3. (Fetch the least cost time-space path for other related trains in the extended schedule for line 1)

27 Step 3.1 Find the time-space vertex (le, T*) with the least label cost at the destination station D,

28 Step 3.2 Back trace the time-space path for train w; with respect to the time-space vertex predecessors pred,,, (i',7")
29 Step 3.3 Generate the time-space paths for other related trains in the extended schedule by Egs. (14) and (15)

30 Step 3.4 Algorithm termination.

6. Numerical experiments

In this section, test cases based on the artificial and real-life railway networks are designed to test the efficiency and solution
quality of our proposed models and solution algorithms. The Lagrangian relaxation (i.e., LR-M3-C++) and ADMM (i.e., ADMM-
M4-C++)-based solution methods are implemented in C++ on the Visual Studio 2015 platform. Moreover, the modified PESP-based
cyclic train timetabling model in Zhang and Nie (2016) (see Appendix B) with the objective of minimizing the total train journey
times and fixed cycle length T is solved by CPLEX 12.8.0, MATLAB 2015b (i.e., PESP-CPLEX) to serve as the benchmarks. In
addition, all of the models and algorithms are tested on a desktop computer with 17-7700 @ 3.6 GHz CPU and 32 GB RAM.

6.1 Illustrative experiments based on the artificial railway network

The artificial railway network of a double-track railway corridor with 6 stations in Fig. 6 is adapted from Zhang and Nie (2016)
where Fig. 6(a) and Fig. 6(b) are corresponding to two different line plans. Fig. 6(a) shows heterogeneous train stop patterns which
are adverse to the capacity usage, while trains in Fig. 6(b) have more balanced train stop patterns. Moreover, total of 6 lines are
required to be scheduled in the network, and the frequency of each line is given in Fig. 6(a) and 6(b), respectively. As a result, both
of the two illustrative examples contain 10 trains, and two speed grades corresponding to the fast and slow trains are assigned to
those 10 trains. Besides, the distance in kilometers between every two adjacent stations is also labeled in Fig. 6 where the average
distance is 72 km. The input datasets, C++ source codes and cyclic train diagram visualization tool in Python for those two illustrative
examples can be downloaded from the GitHub website: https://github.com/YXZhangSWJTU/CyclicTrainTimetabling ETSN.

Basic parameters needed for the artificial railway network are provided in Table 8. In particular, the values of six different
headway retirements are given, and the minimum and maximum dwell times of the trains within the stations are restricted to the
range [1, 10] min, so that overtaking can be allowed at the stations. In addition, the acceleration and deceleration times for fast and
slow trains are specified as (3, 3) min and (2, 3) min, respectively. The speed range of fast and slow trains are specified as 280-300
km/h and 230-250 km/h, respectively. Specifically, the lines 1, 4 and 5 consist of fast trains and the trains in lines 2, 3 and 6 have
slower speed. For the illustrative example 1, the cycle length T is set to 120 min, while the cycle length T of the illustrative example
2 is set to 90 min. Furthermore, the values of the parameter H for those two illustrative examples are set to 3, and the lengths of T,
and T, for the illustrative example 1 are equal to 3 X 120 = 360 min and 2 X 3 X 120 = 720 min, respectively. For the illustrative
example 2, the lengths of T,,, and T, equal to 3 X 90 =270 min and 2 X 3 X 90 = 540 min, respectively. Besides, the number of trains
in Ty, is equal to the number of trains to be scheduled, while the number of trains in T, is equal to H + 1 = 4 times of the number of
trains in Ty,. For instance, the number of trains in T;,, of the illustrative example 1 with 6 lines is equal to 10, while the corresponding
number of trains in T, is equal to 4 X 10 =40. Moreover, the maximum number of iterations K for Lagrangian relaxation and ADMM
are set to 1000. We next perform a series of experiments based on the two illustrative examples on the number of lines and speed
differences.
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(a) Ilustrative example 1 with heterogeneous train stop patterns

(b) Ilustrative example 2 with more balanced train stop patterns

Fig. 6. Two illustrative examples based on the artificial railway network in Zhang and Nie (2016)

Table 8
Basic parameters for the artificial railway network

Parameters

Values (min)

hddf haa: hapf hpp: hpd: hpaf hdp
Minimum and maximum dwell times in stations
Acceleration and deceleration times

5,4,4,3,3,3,5
[1,10]
(3, 3) for fast trains, (2, 3) for slow trains

(1) Different number of lines

The experimental results for these two illustrative examples with different numbers of lines are provided in Tables 9-12. Please
note that since the number of lines is usually not equal to the corresponding number of trains, the information on the number of trains
is also provided in Tables 9-12 nearby the number of lines. Tables 9 and 10 include the lower bound and upper bound values,
computation times and optimality gaps for LR-M3-C++, ADMM-M4-C++ and PESP-CPLEX. In particular, two types of optimality
gaps are provided in Table 10 to systematically measure the quality of upper bound and lower bound solutions. The column “GAP”
represents the original optimality gap regarding the relative difference between the upper bound and lower bound values of the
corresponding method, while the column “BestGAP” denotes the best optimality gap whose value is calculated by adopting the best
lower bound value among those three methods. Table 11 lists the detailed compositions of total computation times of Lagrangian
relaxation and ADMM, including the computation times of the two main algorithmic steps for calculating the lower bound and upper
bound (ADMM) solutions and other algorithmic steps. In addition, Table 12 records the number of iterations and the corresponding
computation times needed for Lagrangian relaxation, ADMM and CPLEX to find the feasible and best solutions.

Five points can be drawn from the computational results in Tables 9-12. First, CPLEX can obtain optimal solutions for all of
the illustrative examples within short time periods, which can provide the best lower and upper bound values. Second, the quality of
lower bound and upper bound values of ADMM are slightly better than the Lagrangian relaxation which results in smaller original
optimality gaps (i.e., the column “GAP”) and best optimality gaps (i.e., the column “BestGAP”’) of ADMM. In particular, Lagrangian
relaxation obtain a feasible solution for the illustrative example 1 with 6 lines with the largest original and best optimality gaps of
8.3% and 3.6% , while ADMM can achieve a feasible solution with the original and best optimality gaps be equal to 2.33% and 0%,
respectively. Third, it can be seen from the best optimality gaps of ADMM in Table 10 that the upper bound values of ADMM are
very close to the optimal values of CPLEX and the lower bound values of ADMM are also good enough to achieve small optimality
gaps. Fourth, the computation times of Lagrangian relaxation and ADMM are proportional to the number of lines, while the
computation times of CPLEX can increase dramatically. In addition, both Lagrangian relaxation and ADMM spend most of their
computational efforts in calculating the lower bound and upper bound (ADMM) solutions, and these two algorithmic steps essentially
involve finding the time-dependent least cost paths for the trains in the extended time-space network. Finally, Table 12 shows that
all of the three methods can find their feasible and best solutions quite efficiently, while the embedded branch-and-cut algorithm of
CPLEX needs much more times to prove the optimality gaps of the corresponding best solutions.

Table 9
Lower bound and upper bound values (in minutes) of two illustrative examples with a different number of lines

# of lines (trains) LR-M3-C++ ADMM-M4-C++ PESP-CPLEX
Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound
Ilustrative 2(5 504.4 537 510 537 522 522
example | 4(8) 811.6 858 825 852 849 849
6 (10) 1010.2 1094 1032 1056 1056 1056
llustrative 24) 432.4 436 435.6 436 436 436
example 2 4(8) 873.4 883 879 883 883 883
6 (10) 1071.7 1118 1098.2 1111 1110 1110
Table 10
Computation times (in seconds) and optimality gaps of two illustrative examples with a different number of lines
# of lines (trains) LR-M3-C++ ADMM-M4-C++ PESP-CPLEX
CPUtime GAP (%) BestGAP CPUtime GAP (%) BestGAP CPUtime GAP (%) BestGAP
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Ilustrative 2(5) 6.07 6.46 2.87 4.51 5.29 2.87 0.17 0 0
example | 4 (8) 10.34 5.72 1.06 8.3 3.27 0.35 8.8 0 0
6 (10) 12.7 8.3 3.6 12 2.33 0 25.5 0 0
Ilustrative 2(4) 4.72 0.83 0 3.38 0.09 0 0.03 0 0
example 2 4(8) 8.22 1.1 0 6.66 0.46 0 2.8 0 0
6 (10) 10.31 4.32 0.72 9.64 1.17 0.09 88.31 0 0
Table 11

Computation times (in seconds) of lower bound and upper bound (ADMM) solutions of two illustrative examples with a different number of lines

LR-M3-C++ ADMM-M4-C++
# of lines (trains) Lower l?ound Upper bound Other steps Lower bound ADMM solution Other steps
solution solution solution
Tllustrative 2(5) 2.03 3.82 0.22 1.82 2.4 0.29
example 1 4(8) 3.77 6.38 0.19 3.34 4.58 0.38
6 (10) 5.21 7.31 0.18 491 6.71 0.38
lustrative 2 4 1.48 3.09 0.15 1.37 1.81 0.2
example 2 4(8) 3.13 4.91 0.18 2.73 3.64 029
6 (10) 4.19 5.99 0.13 4.02 5.31 0.31
Table 12
Feasible and best solution iterations as well as solution times (in seconds) of two illustrative examples with a different number of lines
# of lines (trains) LR-M3-Ci+ ADMM-M4-C++ PESP-CPLEX
Feaslt FeasTi Bestlt BestTi Feaslt FeasTi Bestlt BestTi FeasTi BestTi
Hustrative 2 ©) 1 0.01 1 0.01 20 0.09 21 0.09 0.00 0.17
example 1 4(8) 11 0.11 11 0.11 2 0.02 327 2.71 0.00 0.49
6 (10) 6 0.08 6 0.08 205 2.46 212 2.54 0.00 7.13
lustrative 2(4) 1 0.00 1 0.00 1 0.00 1 0.00 0.00 0.03
example 2 4(8) 3 0.02 12 0.1 6 0.04 15 0.1 0.00 0.01
6 (10) 794 8.19 794 8.19 36 0.35 36 0.35 0.00 3.69

Note: Feaslt represents feasible solution iteration; FeasTi represents feasible solution time; Bestlt represents best solution iteration; BestTi
represents best solution time.

(2) Speed differences between fast and slow trains

Since the speed differences between the fast and slow trains have a great impact on the difficulty in solving the cyclic train
timetabling problem, we increase the speed range of the slow train by a 10 km/h step size from 240-260 km/h to 280-300 km/h,
where the speed ranges of the fast trains are fixed to 280-300 km/h. Tables 13-15 show the lower bound and upper bound values,
computation times and optimality gaps of two illustrative examples with 6 lines under different slow train speed ranges.

First, CPLEX still shows efficient and effective performance in obtaining the optimal solutions for the two illustrative examples
with varying train speed range combinations. Second, it can be observed that Lagrangian relaxation cannot even obtain feasible
solutions for illustrative example 1 with the speed ranges of slow trains be equal to 250-270 km/h and 260-280 km/h, showing the
unstable performance of Lagrangian relaxation in achieving primal feasibility of the cyclic train timetabling problem. In addition,
the symmetry issues in cyclic train timetabling problem are more significant due to the large departure time windows of the trains,
which lead to the poor performance of priority rule-based heuristic in Lagrangian relaxation. By contrast, ADMM obtains good
feasible solutions with the original optimality gaps are less than or equal to 1.5% for all of the test cases which further prove the
advantages of symmetry breaking mechanism in ADMM. Moreover, both the best optimality gaps of Lagrangian relaxation and
ADMM for most of the cases are slightly improved compared to the corresponding original optimality gaps. Third, the solving times
of CPLEX decrease gradually as the speed differences between fast and slows trains are reduced, while there no obvious trend that
smaller speed differences between fast and slow trains can result in smaller optimality gaps for Lagrangian relaxation and ADMM
except for the solution results of ADMM in solving the illustrative example 1. Fourth, CPLEX spends fewer computation times in
obtaining the feasible solutions than ADMM for most of the cases, while ADMM requires fewer computation times to find the best
solutions than CPLEX except when the speed ranges of slow trains in illustrative example 2 are equal to 240-260 km/h, 270-290
km/h, and 280-300 km/h, where ADMM takes 649, 230, and 967 iterations to find the corresponding best solutions.

Table 13
Lower bound and upper bound values (in minutes) of two illustrative example with 6 lines under different slow train speed ranges
Slow train speed range LR-M3-C++ ADMM-M4-C++ PESP-CPLEX
(km/h) Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound
240-260 984.95 1029 1007 1019 1019 1019
Mlustrative 250-270 975.6 - 996.6 1003 1003 1003
example | 260-280 951.4 - 986.2 987 987 987
270-290 949.4 1006 977 977 977 977
280-300 925.8 989 968 968 968 968
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240-260 1040.85 1083 1062.85 1071 1066 1066

Ilustrative 250-270 1015.6 1069 1046.3 1062 1052 1052
example 2 260-280 993.8 1055 1032.82 1038 1037 1037
270-290 987.9 1023 1022 1023 1023 1023
280-300 963.45 1010 1010 1010 1010 1010
Table 14
Computation times (in seconds) and optimality gaps of two illustrative example with 6 lines under different slow train speed ranges
Slow train speed LR-M3-C++ ADMM-M4-C++ PESP-CPLEX
range (km/h) CPU time C(}O[/tf Be?(ty(;i)AP CPU time C(}(;/Z ;J Beiﬁ/%AP CPU time %‘2 f BCEE/%AP
240-260 14.45 4.47 0.98 12.93 1.19 0 10.7 0 0
Ilustrative 250-270 13.28 - - 12.13 0.64 0 6.1 0 0
example 1 260-280 12.33 - - 11.39 0.08 0 1.3 0 0
270-290 12.27 5.96 2.97 11.18 0 0 1.3 0 0
280-300 14.15 6.83 2.17 12.38 0 0 1 0 0
240-260 13.01 4.05 1.59 10.95 0.77 0.47 52 0 0
Ilustrative 250-270 10.7 5.26 1.62 9.83 1.5 0.95 5.3 0 0
example 2 260-280 10.33 6.16 1.74 9.71 0.5 0.1 1.1 0 0
270-290 10.62 3.55 0 9.18 0.1 0 0.6 0 0
280-300 11.05 4.83 0 10.05 0 0 0.8 0 0
Table 15
Feasible and best solution iterations as well as solution times (in seconds) of two illustrative with 6 lines under different slow train speed ranges
Slow train speed range LR-M3-C++ ADMM-M4-C++ PESP-CPLEX
(km/h) Feaslt FeasTi Bestlt BestTi Feaslt FeasTi Bestlt BestTi FeasTi BestTi
240-260 6 0.09 6 0.09 9 0.12 214 2.77 0.00 3.1
Ilustrative 250-270 - - - - 8 0.1 8 0.1 0.03 5.77
example 1 260-280 - - - - 1 0.01 1 0.01 0.00 0.12
270-290 4 0.05 4 0.05 1 0.01 1 0.01 0.02 1.3
280-300 4 0.06 25 0.35 1 0.01 1 0.01 0.00 1
240-260 54 0.7 55 0.72 6 0.07 649 7.11 0.00 3.9
Hlustrative 250-270 3 0.03 333 3.56 319 3.14 334 3.28 0.00 4.37
example 2 260-280 4 0.04 4 0.04 7 0.07 33 0.32 0.00 1.1
270-290 409 4.34 941 9.99 229 2.1 230 2.11 0.00 0.6
280-300 20 0.22 348 3.85 6 0.06 967 9.72 0.00 0.8

Note: Feaslt represents feasible solution iteration; FeasTi represents feasible solution time; Bestlt represents best solution iteration; BestTi
represents best solution time.

6.2 Real-life experiments based on the Beijing-Shanghai high-speed railway corridor

Beijing-Shanghai high-speed railway corridor in China is a double-track railway that consists of 23 stations and 22 segments,
and it has a length of 1318 km. Fig. 7 shows the structure of the Beijing-Shanghai high-speed railway corridor where the Beijing
South and Shanghai Honggiao stations are two major terminal stations, and the numbers beside each station show the cumulative
distance in kilometers starting from the Beijing South station. It can be seen from Fig. 7 that the segment from Cangzhou West station
to Dezhou East station has the maximum length of 104 km, and the average distance between the two stations is 59.91 km.

In this study, we only consider the trains running from Beijing South station to Shanghai Honggiao Station, and 12 scenarios
are designed with the number of lines ranges from 10 to 34. The scenarios 1-4 have the number of lines of 10, 12, 14 and 17,
respectively, and they adopt the line plan data in Zhang and Nie (2016). In addition, the speed ranges of trains in scenarios 1-4 are
set to 310-330 km/h. For the scenarios 5-12, they are generated based on the actual train timetable data of the Beijing-Shanghai high-
speed railway corridor where all trains run from Beijing South station to Shanghai Honggqiao station. Furthermore, the number of
lines in scenarios 5-12 are equal to 20, 22, 24, 26, 28, 30, 32 and 34, respectively. In particular, scenario 12 consists of 36 trains
including 2 fast trains and 34 slow trains. Moreover, the speed ranges of fast and slow trains in scenarios 5-12 are set to 310-330
km/h and 280-300 km/h, respectively. In addition, the parameters for headway requirements, minimum and maximum dwell times,
and acceleration and deceleration times are also set to the values in Table 8. Besides, the cycle lengths T of scenarios 1-4, scenarios
5-9 and scenarios 10-12 are set to 160 min, 300 min and 360 min, respectively. Therefore, the values of the parameter H for the 12
scenarios are all set to 3. Furthermore, the lengths of T,,, and T, for scenarios 1-4, 5-9 and 10-12 are equal to 480 min and 960 min,
900 min and 1800 min, and 1080 min and 2160 min, respectively. The maximum number of iterations K for Lagrangian relaxation
and ADMM are set to 1000 and the time limit of CPLEX is set to 10800 seconds for all of the test cases. Tables 16-19 list the detailed
experimental results of those 12 scenarios.

For scenarios 1-4, it can be shown that both Lagrangian relaxation and ADMM can obtain quite good solution results, while
ADMM achieves better lower bound and upper bound values than Lagrangian relaxation, and thus ADMM has smaller original
optimality gaps. However, when looking at the values of best optimality gaps in Table 17, it is found that the best optimality gaps of
Lagrangian relaxation are much smaller than the corresponding original optimality gaps. Moreover, CPLEX obtains optimal solutions
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for the first three test cases and closes to the optimal solution for the last test case, resulting in the best lower bound and upper bound
values and thus smallest original and best optimality gaps. On the other hand, the computation times of CPLEX grow sharply when
the number of lines increases gradually. By contrast, the computation times of Lagrangian relaxation and ADMM increase slowly
and the advantages of them are more obvious for scenarios 3 and 4. Moreover, the number of iterations for both Lagrangian relaxation
and ADMM to obtain the feasible and best solutions grows quickly as the number of lines increases, while most of the corresponding
feasible and best solution times are much smaller than those of CPLEX due to the high efficiency of Lagrangian relaxation and
ADMM in performing the computation tasks of each iteration. In addition, the computation times of CPLEX in obtaining the feasible
and best solutions also increase rapidly, especially for scenario 4 where the best solution time is even close to the time limit of 10800
seconds.
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Fig. 7. Structure of the Beijing-Shanghai high-speed railway corridor

In addition, Fig. 8 depicts the convergence process of the best lower bound and upper bound values of Lagrangian relaxation
and ADMM for scenario 4 including 17 lines and 18 trains with iteration number. At the initial stage, both the best lower bound
values of Lagrangian relaxation and ADMM increase rapidly from relatively small values. In Table 19, it can be shown that the
priority rule-based heuristic of Lagrangian relaxation takes 31 iterations to find a feasible solution, and the best upper bound solution
is found after another 755 iterations. On the other hand, when the value of penalty parameter p of ADMM is increased gradually
according to the method in Sec. 5.1, a good best upper bound which is equal to that of Lagrangian relaxation is obtained after 216
iterations. In addition, it can be also seen from Table 16 that the best lower bound value of ADMM is very close to that of CPLEX
and it is slightly better than that of Lagrangian relaxation, which is an important factor for the small optimality gap of ADMM.
Finally, the cyclic train diagram of scenario 4 obtained by ADMM is illustrated in Fig. 11, showing the feasibility of the cyclic train
timetabling model based on extended time-space network in Sec. 4.2.2.

Table 16
Lower bound and upper bound values (in minutes) of the nine scenarios with a different number of lines
Scenario # of lines LR-M3-C++ ADMM-M4-C++ PESP-CPLEX
(trains) Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

1 10 (11) 2392.6 2532 2532 2532 2532 2532
2 12 (13) 2993.99 3186 3184 3184 3184 3184
3 14 (15) 3502.74 3713 3713 3713 3713 3713
4 17 (18) 4218.5 4629 4554.6 4629 4559 4608
5 20 (22) 6148.84 7141 7098 7098 7093 7175
6 22 (24) 6628.65 7823 7766 7766 7761 7813
7 24 (26) 6968.35 - 8422 8452 8417 8463
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8 26 (28) 7401.54 - 9084 9180 9079 9286
9 28 (30) 7730.93 - 9739.7 9994 9735 -
10 30 (32) 8154.22 - 10408 10409 10397 -
11 32(34) 8376.38 - 11076 11095 11065 -
12 34 (36) 8565.79 - 11730 11786 11721 -

Table 17

Computation times (in seconds) and optimality gaps of the nine scenarios with a different number of lines

< ' 4 of lines LR-M3-C++ ADMM-M4-C++ PESP-CPLEX
cenarto (trains) CPU time C(}O[/tf Be?(t,/?)AP CPU time C(}O‘//z ;J Beiﬁ/%AP CPU time ?(2 f Beiﬁ/?)AP

1 10 (11) 89.69 5.83 0 61.4 0 0 13.1 0 0
2 12 (13) 107.95 6.41 0.06 82.1 0 0 152.5 0 0
3 14 (15) 120.72 6 0 94.53 0 0 637.34 0 0
4 17 (18) 138.89 9.73 1.54 122 1.63 1.54 10800 1.07 1.07
5 20 (22) 385.38 16.14 0.61 297.24 0 0 10800 1.16 1.08
6 22 (249) 415.88 18.02 0.73 322.86 0 0 10800 0.67 0.61
7 24 (26) 446.63 - - 480.5 0.36 0.36 10800 0.55 0.49
8 26 (28) 478.37 - - 527.05 1.06 1.06 10800 228 222
9 28 (30) 482.28 - - 549.44 2.61 2.61 10800 - -
10 30 (32) 678.95 - - 715.04 0.01 0.01 10800 - -
11 32(34) 695.37 - - 774.29 0.17 0.17 10800 - -
12 34 (36) 725.29 - - 816.58 0.48 0.48 10800 - -

Table 18

Computation times (in seconds) of lower bound and upper bound (ADMM) solutions of the nine scenarios with a different number of lines

. LR-M3-C++ ADMM-M4-C++
Scenario # of lines Lower bound Upper bound Lower bound
(trains) . . Other steps . ADMM solution Other steps
solution solution solution
1 10 (11) 28.92 57.13 3.64 20.58 39.02 1.8
2 12 (13) 37.32 69.62 1.01 22.96 56.54 2.6
3 14 (15) 43.39 76.35 0.98 26.47 65.22 2.84
4 17 (18) 54.26 83.64 0.99 33.87 84.82 3.31
5 20 (22) 135.58 248 1.8 85.73 204.84 6.67
6 22 (24) 149.22 264.89 1.77 92.59 222.56 7.71
7 24 (26) 161.48 283.35 1.8 158.59 313.96 7.95
8 26 (28) 178.15 298.41 1.81 170.07 337.43 19.55
9 28 (30) 184.2 296.36 1.72 178.21 362.51 8.72
10 30 (32) 247.66 429.04 2.25 231.06 472.89 11.09
11 32 (34) 257.9 435.29 2.18 249.33 513.29 11.67
12 34 (36) 273.5 449.6 2.19 261.77 541.96 12.85
Table 19
Feasible and best solution iterations as well as solution times (in seconds) of the nine scenarios with a different number of lines
Scenario # of lines LR-M3-C++ ADMM-M4-C++ PESP-CPLEX
(trains) Feaslt FeasTi Bestlt BestTi Feaslt FeasTi Bestlt BestTi FeasTi BestTi

1 10(11) 2 0.18 10 0.9 1 0.06 1 0.06 0.02 13.1
2 12 (13) 14 1.51 236 25.48 4 0.33 70 5.75 7.97 152.5
3 14 (15) 22 2.66 883 106.6 16 1.51 633 59.84 7.88 607.74
4 17 (18) 31 431 786 109.17 216 26.35 216 26.35 2638.03 9084.97
5 20 (22) 16 6.17 453 174.58 1 0.3 101 30.02 2228.26 6827.09
6 22 (24) 2 0.83 895 372.21 18 5.81 46 14.85 6513.36 8209.78
7 24 (26) - - - - 54 2595 54 2595 9178.57 10387.92
8 26 (28) - - - - 419 220.83 685 361.03 10163.78  10670.38
9 28 (30) - - - - 274 150.55 274 150.55 - -
10 30 (32) - - - - 19 13.59 19 13.59 - -
11 32 (34) - - - - 46 35.62 46 35.62 - -
12 34 (36) - - - - 169 138 169 138 - -

Note: Feaslt represents feasible solution

represents best solution time.

iteration; FeasTi represents feasible solution time; Bestlt represents best solution iteration; BestTi

For the scenarios 5-9, they show more difficulty in obtaining good feasible solutions due to a larger number of trains and cycle
length T. The original optimality gaps of Lagrangian relaxation for the scenarios 5 and 6 increase to about 16% and Lagrangian
relaxation even cannot generate feasible solutions for scenarios 7- 9. Furthermore, the best optimality gaps of Lagrangian relaxation
decrease to about 0.6% compared to the corresponding original optimality gaps, which further shows that the low quality of lower
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bound solutions of Lagrangian relaxation. Moreover, CPLEX reaches the time limit of 10800 seconds for all of the five scenarios

1
2 and the times for CPLEX to find the best upper solutions also increase rapidly. In addition, CPLEX cannot obtain a feasible solution
3 for scenario 9 with 28 lines. By contrast, ADMM not only achieves smaller original optimality gaps than CPLEX, but it also obtains
4 a feasible solution with a 2.61% original optimality gap for the last and most difficult test case. Furthermore, the computation times
5 of Lagrangian relaxation in calculating the lower bound solutions are slightly larger than those of ADMM, while ADMM requires
6 more times to update the ADMM solutions for scenarios 7-9 than Lagrangian relaxation for calculating the upper bound solutions.
7 Besides, both Lagrangian relaxation and ADMM are more likely to take more iterations to obtain the best solutions compared to
8 those of scenarios 1-4. The convergence curves of Lagrangian relaxation and ADMM for the scenario 9 with 30 trains are depicted
9 in Fig. 9, which show a similar convergence pattern with that of scenario 4 in Fig. 8. In particular, the priority rule-based heuristic
10 of Lagrangian relaxation fails to find a feasible solution for scenarios 9, and we only illustrate how the best lower bound values of
11 Lagrangian relaxation evolves with iteration number. Besides, Fig. 12 visualizes the cyclic train diagram of scenario 9 obtained by
12 ADMM, where the trains turn out to be slightly congested than that in Fig. 11.
13
4800 o
0 oo e ess e s s s
4000 ‘. -..----..- i i } ]
~ 3600 : LR optimality gap =9.73% ADMM optimality gap = 1.63%
=]
g 4
E 300 3
£ 2800
s 4
> 2400 2
° ]
Z 2000
21600
= H]
O 1200 :
800
400
0
SATOXOOATOXXOODATOROANTOXDATOOOANTOXNODATOXXOANATOVOA T OO
ANTFTOX— NN AANTO0OO NN —~="FTOXXOANNIT-TADA N OO AT NINOOAN T O
e A AN AN AN AN NN NN ANTETTTNMIDDNDINMNNNOO OO0V D
Iteration number
----- ADMM best lower bound ADMM best upper bound -+-+-+-+ LR best lower bound == == LR best upper bound
14
15 Fig. 8. Best lower bound and upper bound values of ADMM and LR for the scenario 4 with iteration number (17 lines, 18 trains)
16
10000 ey
4
o000 ADMM optimalit 2.61%
optimalir ap = Z.
B000 | e e
.g\ I sececcccccsccscsssccscsccccsccccccsccona’
g 7000 "
8 6000
= [
> 5000 [
o | B
£ 4000 |
2 3000 4
o i
2000 :
1000
0 ]
SATOXXOATONOATOXRXOODANTONODAITOXOANTOXDATOXNOANITOXXOAN T O 0O
ANT OO — NN T ANTO0OO NN —"TFTOXOOANNI-TDA T NOXOOANTTA NN OO AN T O
—— == AN AN AN AN NN NN NI ITTTNI DD IO DN
Iteration number
----- ADMM best lower bound ADMM best upper bound s+e++++=+ LR best lower bound
17
18 Fig. 9. Best lower bound and upper bound values of ADMM and LR for the scenario 9 with iteration number (28 lines, 30 trains)
19
20 For scenarios 10-12, they have the largest cycle length T and more trains to be scheduled. As a result, both Lagrangian relaxation
21 and CPLEX cannot find a feasible solution for all of the three scenarios. By contrast, ADMM can provide the best lower bound and
22 upper bound values for scenarios 10-12. Therefore, it can be concluded that the subgradient method and the priority rule-based
23 heuristic in Lagrangian relaxation as well as the embedded branch-and-cut algorithm in CPLEX do not have good scalability on
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larger scale problems, while ADMM still shows robust and good performance. Specifically, ADMM mainly has the advantages of
(1) the symmetry breaking mechanism, (2) simultaneously improvement on the primal and dual feasibility (Boyd et al., 2011; Yao
etal.,2019), (3) a special type of variable splitting technique to handle the periodicity constraints and (4) the efficient time-dependent

least cost path algorithm with duplicated time-space variables.
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Fig. 10. Best lower bound and upper bound values of ADMM and LR for the scenario 12 with iteration number (34 lines, 36 trains)
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Fig. 11. Cyclic train diagram for scenario 4 obtained by ADMM with 17 lines and 18 trains (the numbers above the lines are the line numbers)

Meanwhile, it can be observed in Figures 8-10 that both the best lower bound values of Lagrangian relaxation and ADMM
converge quite rapidly to the final values, and the best lower bound values of Lagrangian relaxation in Meng and Zhou (2014) also
shows a similar convergence pattern. Therefore, it can be concluded that the usage of the subgradient method of Lagrangian relaxation
in Eq. (17) and a similar method of ADMM in Eq. (21) for updating the values of Lagrangian multipliers have led to the rapid
convergence of best lower bound values. Furthermore, it can be shown from Table 19 that the best upper bound solutions of ADMM
for some scenarios turn out to be the feasible solutions found for the first time, while ADMM still needs a lot of iterations to improve
the initial feasible solutions for some other scenarios. Therefore, ADMM could be stuck at the local optimum solutions or stationary
points, and we believe it is necessary to perform intelligent branching operations within a branch-and-bound solution framework to
further reduce the optimality gap of ADMM (Fisher, 1981; Yang and Zhou, 2014). In addition, Fig. 13 illustrates the cyclic train
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diagram of scenario 12 obtained by ADMM, where there are almost no overtaking operations compared to the cyclic train diagram
in Fig. 12.
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Fig. 12. Cyclic train diagram for scenario 9 obtained by ADMM with 28 lines and 30 trains (the numbers above the lines are the line numbers)
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Fig. 13. Cyclic train diagram for scenario 12 obtained by ADMM with 34 lines and 36 trains (the numbers above the lines are the line numbers)

Beijing South s

7. Conclusion

In this study, a new cyclic train timetabling model based on the extended time-space network is proposed for the double-track
railway corridor at the macroscopic level. By considering the special specifications for the cyclic train timetabling problem that has
been well described in the PESP based integer programming model, the concepts of master and extended schedules are introduced
into the general time-space network model for the non-cyclic train timetabling problem. In particular, the master schedule allows the
trains to go through the cyclic boundary without using modulo variables in the PESP model, and the extended schedule with
duplicated time-space variables can guarantee a conflict-free cyclic train timetable. As a result, the new cyclic train timetabling
model is formulated with additional master schedule coupling and extended schedule duplication constraints. Moreover, the side
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track capacity constraints are dualized by using the two dual decomposition approaches including Lagrangian relaxation and ADMM.
The quadratic term in ADMM can be nicely linearized according to the property of binary time-space arc selection variables, where
the potential influences of all the other trains except the current train can be reflected directly with the rolling update scheme of time-
space arc usage costs in ADMM. In addition, each train-specific sub-problem in Lagrangian relaxation and ADMM can be solved
efficiently by adopting a modified version of the forward dynamic programming algorithm with duplicated time-space variables.
Besides, a set of illustrative and real-life experiments are performed to test the efficiency and effectiveness of the proposed new
cyclic train timetabling model and the solution algorithms, where the PESP model is solved by the CPLEX solver to serve as the
benchmarks. The test results show that the ADMM-based solution method outperforms the Lagrangian relaxation-based solution
method, where the priority rule in Lagrangian relaxation even cannot obtain a feasible solution for some difficult cases. Furthermore,
the symmetry breaking mechanism together with the penalty parameter value lifting strategy in ADMM can better achieve the primal
and dual feasibility of the problem (Boyd et al., 2011; Yao et al., 2019), where the optimality gaps of ADMM for most of the test
cases are relatively small. In particular, ADMM can obtain a near optimal solution for the most difficult case, while CPLEX cannot
generate a feasible solution with the time limit of 3 hours.

The future work of this study can be extended in several interesting directions. First, it is assumed that the time-space trajectories
of the trains belonging to the same line are evenly distributed, while slightly relaxation on this particular requirement can avoid
unnecessary train dwell times which is beneficial to the capacity utilization of the cyclic train timetable (Zhang and Nie, 2016; Yan
et al. 2019). Second, most of the previous research focuses on the cyclic train timetabling problem at the macroscopic level and very
limited number of research addresses the simultaneous routing and scheduling of trains in the cyclic train timetable (Petering et al.,
2015), where the proposed method in this study can be further extended to handle this issue (Meng and Zhou, 2014). Third, an
additional “state” dimension can be introduced into the cyclic train timetabling model based on the extended time-space network,
where the energy-efficient train movement (Wang et al., 2016; Zhou et al., 2017), time-varying passenger demand (Lu et al., 2018;
Shang et al., 2018, 2019; Meng and Zhou, 2019) and integration of locomotive assignment (Xu et al., 2018) can be also considered
in the cyclic train timetable. Fourth, the optimality gap of ADMM can be further reduced by incorporating it into a branch-and-bound
solution framework (Fisher, 1981; Yang and Zhou, 2014) and the values of Lagrangian multipliers can be updated with more effective
methods, such as the cutting plane method (Kallehauge et al., 2001; Kallehauge, 2008; Lubin et al., 2013) where the values of
Lagrangian multipliers may be not unique at each iteration. Fifth, the robust cyclic train timetabling problem can be studied for a
robust master schedule under day-dependent train travel times (Xing and Zhou, 2013), or for a robust cyclic train timetable with
scenario-based stochastic train travel times (Yang and Zhou, 2014).
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Appendix A. Headway requirements for the double-track high-speed railway corridor in China
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Train 1 Train 2 Train 1 Train 2 Train 1 Train 2
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Fig. Al. Seven types of headway requirements for the high-speed railway corridor in China

Fig. Al shows seven types of headway requirements between the arrival, departure and passing times of two trains (i.e., train 1
and train 2) in the same station. Specifically, the headway between two departure trains (hy4), headway between two arrival trains
(hgq), headway between one arrival train and one passing train (h,, ), headway between two passing trains (h,,,), headway between
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one passing trains and one departure train (h,,), headway between one passing train and one arrival train (hy,,) and headway between
one departure train and one passing train (hg).

Appendix B. Comparison of model M2 with the modified PESP-based cyclic train timetabling model in Zhang and Nie (2016)

The PESP-based model in Zhang and Nie (2016) is based on the periodic event-activity network. Specifically, the set of events
€ isindexed by i, j, i’ and j', which consists of the arrival events &, and the departure events £4,p. The set of activities A is indexed
by (i, /) that includes the running activities A, dwelling activities Agyer, passing activities A pqgs, safety activities Ag,pe and
regular activities A regular- The complete modified PESP-based model in Zhang and Nie (2016) with the objective of minimizing the

total train journey times and fixed cycle length T is listed as follows.
Objective function:

min Xije (B1)
(i-j)ef/lrunU"qdwell
Subject to:
Xij =W — 1 + ZijT: V(i,)) € Arun U Agwen Y dqpaSS U Asafe U C’qregular (B2)
Xij = 0, V(i,j) € quass (B3)
lij < Xij < Ujj, V(i,j) € C/qrun U c"lclwell (B4)
hij <x;j <T—hy, V(i,)) € Asafe (B5)
T K< X vipea (B6)
T sSXjs—+, LJ 1
f‘LJ f‘LJ 19) f‘l] f‘LJ regular
Zij = 0, V(i,j) € "qregular* B7)
Zij € {0:1}1 V(i,j) € ‘ﬂrun U c"ldwell v ‘ﬂsafe u c"lregular (BS)
0<m<T-1, Vi€e (B9)
0<x;<T-1, v(i,j) €A (B10)
zijtzpj + zip 2 = 2 X (Wi + vigrjjr ) V(i ), (i',)") € Arun, (6,1, (,J') € Asate U Aregular (B11)
=Xy + [(hl] + hi’j’) - lmthout] XS < — Loty (1,1") € Agwenrs (i), (i',)") € Asafe (B12)
Xii! + (u;/\i/’LthOut - uii’) X Sii’ < u;/\i/’LthOut’ v(l, l’) € o‘ldwelp (B13)
(zij + 2oy +zi) =2 X qurjjr = sy =0, V@D, (1)) € Asates (1, 1) € Aawens ()" € Apass (B14)
Sit = Z sajits V@), ()" € Asate, (1, 1) € Aqwenr (B15)

(]’J‘,)Ecﬂpass

The variable 7r; denotes the event time, and z;; is the binary modulo variable. Moreover, the variable x;; represents the duration
of activity (i, j) € A. The parameters u;; and [;; restrict the range of x;; for the running and dwelling activities, and the parameter
h;; specifies the headway value for the safe activity. In addition, the frequency of a regular activity is denoted by f;; and the non-
negative parameter K is introduced for the relaxation of regularity requirements. Readers can refer to Zhang and Nie (2016) for
detailed definitions of the variables and parameters. The modified objective of the model in Eq. (B1) is to minimize the total train
journey times ¥.(; /e, unUAqwen Xij» @0d mainly four categories of constraints are defined from constraints (B2) to (B15). In particular,
constraint (B9) restricts the event times to the range [0,T), and the safety constraint (B5) simultaneously enforces two safety
constraints 7; —m; = h;j and m; —7; + T = hyj or m; —m; = hy; and m; —; + T = hy; corresponding to before and after
precedence relationships for each pair of incompatible events i and j. The detailed comparison of model M2 with the modified PESP-
based model is summarized in Table B1. It can be concluded from Table B1 that model M2 can handle most of the practical
constraints in the modified PESP-based model of Zhang and Nie (2016) except the relaxation of regulatory requirement, where the
flexible overtaking in the stations are only possible when regularity is not strictly enforced.

Table B1
Comparison of model M2 with the modified PESP-based model in Zhang and Nie (2016)
Modified PESP-based model in Zhang and Nie (2016) Model M2 in this study

By splitting each intermediate station into two dummy stations and

Variable trip times and dwell times, constraint (B4) constructing the time-space arcs from (i, 7) to (i', ")

Safety headway requirements, constraint (B5) Track capacity constraint (16)
By inserting a dummy station in the middle of the sections with long
Prevention of illegal overtaking in the sections, constraint (B11) distance and trains can only pass through the corresponding dummy

stations with the minimum headway hy,,,
Relaxation of regularity requirement, constraint (B6) and flexible Not considered in model M2 and trains belonging to the same line are
overtaking in the stations, constraints (B12)-(B15) evenly distributed for simplicity
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Appendix C. An illustrative example of ADMM with three blocks

Based on the example in Boyd et al. (2011) that applies ADMM to solve an optimization problem with two blocks, we further
extend the example for solving a slightly more complicated optimization problem in Egs. (C1) and (C2) with three blocks x, y and
z, where A, B and D are the coefficient matrices and c is the constant term on the right-hand side.

min f(x) + g(¥) + h(2) (ChH

Ax+By+Dz=c (C2)

The equality constraint (C2) is dualized into the objective function with one linear term and one quadratic term by introducing
the Lagrangian multipliers 1 and penalty parameter p, and the resulting unconstrained optimization problem L, (x, y, z, 1) is denoted
in Eq. (C3). Egs. (C4)-(C7) illustrate the rolling update scheme for the three blocks x, y and z and the Lagrangian multipliers A,
where k represents the iteration number. Note that the update sequence of the three blocks is fixed in this example, and the value of
penalty parameter p can be lifted gradually to obtain good feasible solutions.

Ly, y,z,0) = f(x) +g(y) +h(2) + AT(Ax + By + Dz — c¢) + (p/2)||Ax + By + Dz — c||3 (C3)
x**1 = argmin, L, (x,y*, z*, 2¥) (C4)
y¥*t = argmin,, L,(x**1,y, z¥, 2%) (C5)
zK*1 = argmin, L,(x**1, yk*1, 7, 2%) (C6)
Qe+l .= )k + p(Axk+1 + Byk+1 + Dzk+1 — C) (C7)

Appendix D. Illustration of models M3 and M4 with a hypothetic example

Fig. D1 shows a hypothetic example for the illustration of models M3 and M4. A hypothetic railway network in Fig. D1 (a)
consists of two stations A and B with one section between them. In addition, two identical lines /; and [, need to be planned from
stations A to B and both of them have the frequency of 1. Two trains a; and a, can be generated in associated with lines [; and L,,
respectively. The earliest departure and preferred arrival times of those two trains are equal to 0 min and 1 min respectively, and the
section running times of them are fixed to 1 min. Besides, the values of safety headway parameters h,, and h,, are set to 1 min.
According to the above parameter settings, four candidate time-space paths can be generated for trains a; and a, in Fig. D1 (b). Note
that the absolute deviation from the preferred arrival time for each train are also penalized in the objective function, so that time-
space arcs can be associated with different costs. The goal is to minimize the sum of running times and the absolute deviation from
the preferred arrival times of those two trains.

Time horizon (min)
»

»

0 1 2 3 4
| | | | |
BQ
A B
L L]
0 ! ! s s s s
Train a = g S N 5 S
"o | | g ¢ & ¢ ¢
Train a, > 7
(a) Artificial railway network with two trains @, and a,
AC q Q

(b) Four candidate time-space paths for trains «; and a,
Fig. D1. A hypothetic example for the illustration of models M3 and M4

Table D1
Optimal upper bound feasible solution for the hypothetic example
Iteration 0: BQ - © Q
Trains a; chooses path 1 and time-space vertexes (A, 0) and (B, 1) are marked as
infeasible.
Path1:1+(1-1)=1
Iteration 1:
Trains a, chooses path 2.
Path2: 1+ (2-1)=2
.. . AQ 0 Q Q
Objective function value: 1 +2 = 3 0 1 2 3 4
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Table D1 gives the optimal upper bound feasible solution corresponding to the hypothetic example by the priority rule-based
sequential method. Train a is planned and it is assigned with the most favorable path 1 and the time-space vertexes (A, 0) and (B,
1) are marked as infeasible. Hence, train a, will choose path 2 instead with a cost of 2. Finally, the objective function value of the
upper bound solution is equal to 3.

Table D2 lists the detailed steps of applying model M3 to obtain the lower bound dual solutions. At the iteration 0, the step size
a® and resource costs of eight time-space vertexes are initialized with 1 and 0, respectively. The cost of each path is calculated by
summing three items, namely, arc travel time, absolute deviation from the preferred arrival time and the resource costs of the time-
space vertexes. For instance, the cost of path 1 is equal to 1 + (1 — 1) + A3 o + A} ; = 1, where the first item “1” is the arc travel
time, the second item “(1-1)” is the absolute deviation from the preferred arrival time and AOA‘O + /1%‘1 is the sum of the resource costs
of time vertexes (A, 0) and (B, 1). Due to path 1 has the least cost, both trains a, and a, choose path 1 and the objective function
value of the dual solution Z3 is equal to 2. After iteration 0, the step size a' and resource costs of all time-space vertexes at the
iteration 1 are updated according to Eqs. (23) and (24), respectively. By following the above calculation procedure, it can be obtained
that both trains a, and a, are assigned on path 1 and the objective function value Z3 equals to 3. Note that the optimality gap reaches
0 at iteration 1, however, the corresponding dual solution is not feasible because the identical path 2 is not used. In addition, another
iteration 2 is performed and the results show that the symmetry issue still exist and both trains a, and a, select path 2.

Table D2
Lower bound dual solution updating process for applying model M3 on the hypothetic example
Iteration 0:
a®=1 BQ 0 Q Q
Mo=0,13,=0,13,=0,235,=0,123,=0
Mo=0,4%,=0,23,=0,23;=0,43, =0

Path1: 1+ (1 — 1)+/12;,0+’1%.1 =1
Path2: 1+ (2—1)+ A3, + 13, =2
Path3: 1+ (3—1)+ A3, + 135 =3
Path4: 1+ (4— 1)+ 23, + A3, = 4

. . AQ Q Q Q Q
Path choices: both trains a; and a, choose the path 1 0 1 2 3 4
Z3=1+1=2
Iteration 1: BQ o o Q
al=1/2 '
Apo=1/2,24,=0,23,=0,245=0,24,=0
/11B,0 =0, /1}13,1 = 1/2’/1}13,2 =0, /1}13,3 =0, /1}3,4 =
Path1: 1+ (1 — 1)+ A3 + A5, =2
Path2: 1+ (2—1)+ A3, + A5, =2
Path3:1+ (3 —1)+ A3, + 155 =3
Path4: 1+ (4—1)+ 33+, =4 AQ o o) Q Q
Path choices: both trains a; and a, choose the path 1 0 1 2 3 4
Zy=2+42-240— 25, =3
Iteration 2: BQ Q ) Q
a?=1/3
Aao=5/6,23,=0,25,=0,255;=0,15,=0
Mo=0,15,=5/6,45,=0,255=0,15,=0
Path 1: 1+ (1 — 1) + A5, + A5, = 2.67
Path2: 1+ (2—-1)+ 25, + 2§, =2
Path3:1+ (3 —-1)+ 25, + 255 =3
Path4: 1+ (4—1)+ 53+ 25, =4 AQ o o) 0 Q
Path choices: both trains a; and a, choose the path 2 0 1 2 3 4

Z3=242-2,— 15, =233

By contrast, the symmetry issue can be well handled by model M4 with ADMM. Table D3 illustrates the calculation process of
ADMM with two iterations. The penalty parameter p and resource costs of eight time-space vertexes are initialized with 2 and 0,
respectively. At iteration 0, train a, is planned first and it can directly choose path 1 without any penalty due to no trains have been
planned yet. However, at iteration 1, train a, will not select path 1 because the train a, has already occupied path 1 and a penalty
term (2/2)(2 — 1+ 2 — 1) is embedded into the cost of path 1. Hence, the cost of path 1 increases from 1 to 3 and path 2 which has
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the cost of 2 turn out to be the least cost path for train a,. It can be seen that the rolling update scheme together with the linearized
penalty term in model M4 with ADMM can nicely avoid the symmetry issue in model M3 with Lagrangian relaxation, where
Lagrangian relaxation allow trains to simultaneously find their least costs paths with the same resource costs.

Table D3
Lower bound dual solution updating process for applying model M4 on the hypothetic example

Iteration 0:
p=2 BQ ) o} Q Q

M0=0,2,=023,=013;=0,23,=0
Mo=0,2%,=023,=0,23;=0,43,=0

Path1: 14+ (1—-1) +/1,9\,o +’1g.1 =1
Path2: 14+ (2 -1) +/1,9\,1 +’1g.2 =2
Path3: 1+ (3— 1)+ 13, + 155 = 3
Path4: 1+ (4 — 1) + 133 + 43, = 4
Path choices: trains a, chooses the path 1 0

NS}
W
EN

Iteration 1:
p=2 BQ Q Q Q

Aao=0,24,=0,23,=023=02,=0
Ao =025, =025, =0,25;=02},=0

Path 1: 1+ (1 -1 + A, + 25, +(2/2)2-1+2-1)=3
Path2: 1+ (2—-1)+ A4, + A5, =2
Path3: 1+ (3 —1)+ A4, +Af3 =3
Path4: 1+ (4— 1)+ A5+ Ap, = 4

. AQ Q Q Q
Path choices: train a, chooses the path 2 0 1 2 3 4
Z,=142=3
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