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Abstract 1 
The cyclic train timetabling problem aims to synchronize limited operational resources toward a master periodic schedule of 2 

transport services. By introducing an extended time-space network construct, this paper proposes a new type of integer programming 3 

model reformulation for the cyclic train timetabling problem on a double-track railway corridor at the macroscopic level. This 4 

reformulation method also holds the promises to be applied in a broader set of routing and scheduling problems with periodic activity 5 

requirements. We also hope that this space-time network extension technique, as a special version of variable splitting methods in 6 

the dual decomposition literature, could potentially bridge the modeling gaps between cyclic and non-cyclic timetables. Specifically, 7 

the existing mathematical programming model for the periodic event scheduling problem (PESP) is transformed into a multi-8 

commodity network flow model with two coupled schedule networks and side track capacity constraints. In addition, two dual 9 

decomposition methods including Lagrangian relaxation and Alternating Direction Method of Multipliers (ADMM), are adopted to 10 

dualize the side track capacity constraints. For each train-specific sub-problem in an iterative primal and dual optimization framework, 11 

we develop an enhanced version of forward dynamic programming to find the time-dependent least cost master schedule across the 12 

time-space network over multiple periods. ADMM-motivated heuristic methods with adjusted penalty parameters are also developed 13 

to obtain good upper bound solutions. Based on real-world instances from the Beijing-Shanghai high-speed railway corridor, we 14 

compare the numerical performance between the proposed reformulation and the PESP model that involves the standard optimization 15 

solver. 16 

 17 

Keywords: Cyclic train timetabling; extended time-space network; Lagrangian relaxation; ADMM 18 
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1. Introduction  1 

Railroad serves an important role in transporting long-distance passengers and massive goods using an economically attractive 2 

and environmentally friendly manner. As the passenger and freight demand for railroad transportation, in different parts of regional 3 

markets (e.g. US, China), has grown greatly in recent years (US Bureau of Transportation Statistics; Chinese National Bureau of 4 

Statistics), the railroad companies need to operate trains efficiently with limited infrastructure capacity, particularly through holistic 5 

optimization of train timetables and real time dispatching methods. The train timetabling problem has attracted much attention from 6 

researchers around the world, and we refer readers to Assad (1980), Cordeau et al. (1998), Huisman et al. (2005), Caprara et al. 7 

(2007), Harrod (2012) and Caimi et al. (2017) for excellent surveys on the train timetabling problems, while a majority of the efforts 8 

has focused on the category of non-cyclic train timetabling problems. For example, Heydar et al. (2013) reported that about one-9 

hundred published papers involved the non-cyclic train timetabling problem, while the number dropped to less than one third for the 10 

cyclic train timetabling problem. In addition, most of the cyclic train timetabling models are built within the periodic event scheduling 11 

problem (PESP) modeling framework proposed in Serafini and Ukovich (1989), and modulo variables are usually required to deal 12 

with the non-trivial periodicity constraints (Harrod, 2012; Caimi et al., 2017). In our research, we hope our proposed method could 13 

potentially bridge the modeling gaps between cyclic and non-cyclic train timetables, by introducing a time-space network extension 14 

technique to deal with the periodicity constraints without using modulo variables, as a special version of variable splitting methods 15 

in the dual decomposition literature. 16 

In general, the cyclic train timetabling problem determines the event times for the arrival, departure, and passing of the trains 17 

in each visited station that should be repeated in every cycle time, and it has the advantage of regularity and it is especially convenient 18 

for passengers to use the transfer service. In addition, PESP-based model usually requires that the event times are all less than the 19 

cycle length, and binary modulo variables will typically enforce two safety constraints for each pair of incompatible events 20 

corresponding to either before or after precedence relationships (see Appendix B). The non-cyclic train timetabling problem, on the 21 

other hand, is more flexible and it is suitable to serve time-varying passenger flows. In a real world case with complex railway 22 

passenger flow characteristics and network structures, such as the Beijing-Shanghai high-speed railway corridor in China, planners 23 

have to simultaneously consider a spectrum of demand patterns, ranging from short-distance-high-density trips, as well as long-24 

distance and seasonal travels. As a result, it is important to examine and integrate the cyclic and non-cyclic schedules to explore the 25 

trade-off relationship between regularity and flexibility of train timetable services (Robenek et al., 2017; Robenek et al., 2018; Yin 26 

et al., 2019). Even though cyclic train timetable only needs to consider fewer trains and shorter planning period than the non-cyclic 27 

train timetable, the periodicity constraints considering variable trip times and dwell times and large train departure time windows 28 

can greatly increase the difficulty in solving the PESP-based model, especially for long-distance railway corridors with heterogeneous 29 

train traffic characteristics. In this paper, we formulate a new mathematical model for the cyclic train timetabling problem based on 30 

the time-discretized time-space network modeling framework, where the resulting new integer programming model could be further 31 

extended to handle the complex hybrid cyclic train timetabling problems. 32 

To address the difficulty in finding the time-space paths for a large number of trains, researchers (such as Caprara et al., 2002) 33 

have developed a range of efficient decomposition methods to solve the train timetabling problem. For instance, a typical rolling 34 

horizon approach has been adopted in various studies including D’Ariano and Pranzo (2009), Meng and Zhou (2011) and Zhan et 35 

al., (2016). Another widely used decomposition method is Lagrangian relaxation and the related heuristics, and this research line, 36 

represented by papers from Brännlund et al. (1998), Caprara et al. (2002), Caprara et al. (2006) and Meng and Zhou (2014), aims to 37 

dualize the “hard” track capacity constraints, so as to enable the use of efficient single-train path searching algorithms. In a very 38 

recent study by Niu et al. (2018), the authors highlight a thorny modeling issue of solution symmetry in the context of Lagrangian 39 

relaxation, and has been also systematically examined in a broader modeling framework of Branch-and-Price (Barnhart et al., 1998) 40 

for general integer programming problems. 41 

In this research, we aim to address several closely related modeling challenges in train timetabling. Specifically, we (1) 42 

reformulate the cyclic train timetabling problem by introducing an extended time-discretized time-space network modeling 43 

framework, where the special cyclic requirement is treated through a set of variable duplication constraints between the master 44 

schedule and extended schedule across different periods.  (2) we apply two dual decomposition approaches, namely, the Lagrangian 45 

relaxation and Alternating Direction Method of Multipliers (ADMM), to invoke an modified version of efficient forward dynamic 46 

programming to jointly optimize the master and period-specific schedules, (3) we also adopt a new linearization technique to 47 

transform the quadratic penalty term in ADMM and the proposed method could serve as a theoretically sound foundation for 48 

enhancing the existing one-pass priority rules within an iterative primal and dual solution search framework.  Through various tests 49 

on various illustrative and real-world large instances, we show the solution quality and computational efficiency of the proposed 50 

approach, in comparison to the standard PESP model and CPLEX-based optimization results for the cyclic train timetabling problem. 51 

This paper is organized further as follows. Section 2 provides a brief literature review on the cyclic train timetabling problem. 52 

The problem statement and notations are introduced in Section 3. In Section 4, we propose a new integer programming model based 53 

on the time-discretized time-space network, and the related reformulation methods. Section 5 presents the iterative ADMM and 54 

Lagrangian relaxation-based solution procedures, as well as heuristic methods. This is followed by numerical experiments in Section 55 

6. Finally, Section 7 provides the concluding remarks. 56 
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2. Literature review on non-cyclic and cyclic train timetabling problems 1 

This section briefly reviews the problem characteristics, modeling methods and solution algorithms for the optimization 2 

problems being studied. 3 

2.1 Train timetabling problem without handling special cyclic requirements 4 

The railway planning process is usually carried out hierarchically (Lusby et al., 2011), where the optimization results of the line 5 

planning problem at the strategic level are the input parameters for the train timetabling problem at the tactical level. The fundamental 6 

elements determined in the line planning process includes train routes, frequencies, operation zones and stop patterns (Zhou and 7 

Zhong, 2005; Qi et al., 2018). Once the line planning process is completed, a non-cyclic train timetabling problem typically aims to 8 

optimize the arrival, departure and passing times of the trains at each station with various goals. In general, basic constraints 9 

considered in the non-cyclic train timetabling problem include departure time windows, minimum and maximum running times, 10 

minimum and maximum dwell times, safety headways, and prevention of illegal overtaking in the sections. Many previous studies 11 

on the non-cyclic train timetabling problem adopt the time-discretized time-space network (Mees, 1991; Brännlund et al., 1998; 12 

Caprara et al., 2002; Caprara et al., 2006; Cacchiani et al., 2008; Cacchiani et al., 2010; Harrod, 2011, 2012; Cacchiani et al., 2012; 13 

Meng and Zhou, 2014; Liu and Zhou, 2016; Yue et al., 2016; Luan et al., 2017; Jiang et al., 2017) or time-space-state network (Zhou 14 

et al., 2017; Xu et al., 2018; Meng and Zhou, 2019) modeling methods, while some other researcher also adopted the big-M modeling 15 

method to linearize the “if-then” conditions for train conflicts (Higgins et al., 1996; Ghoseiri et al., 2004; Zhou and Zhong, 2005; 16 

Zhou and Zhong, 2007; Mu and Dessouky, 2011; D’Ariano et al., 2017). 17 

In particular, the train timetabling problem, based on time-discretized time-space network, can be formulated as a multi-18 

commodity network flow problem with side track capacity constraints (Mees, 1991; Brännlund et al., 1998; Caprara et al., 2002) 19 

Specifically, Mees (1991) and Brännlund (1998) divided the railway network into track sections or blocks, and the side track capacity 20 

constraint for each track section or block was dualized by adopting the Lagrangian relaxation method. Caprara et al. (2002) further 21 

introduced a more flexible train timetabling model for a single-track railway network with stations being split into two separate nodes 22 

and the track sections between stations were treated as arcs. In addition, Harrod (2011, 2012) firstly proposed the concept of 23 

hypergraph in the time-discretized time-space network to deal with the train conflicts on the transition at cells, by which the train 24 

timetabling problem in the microscopic level for the North America single-track railway was studied. 25 

A nice extension to the time-discretized time-space network modeling method is to introduce the third “state” dimension, which 26 

results in the discretized time-space-state network modeling method. Zhou et al. (2017) proposed the three-dimensional space-time-27 

speed network modeling approach to achieve the integrated optimization of train timetabling problem and train speed profile with 28 

the objective of minimizing total travel cost. In particular, they proposed the Lagrangian relaxation method to dualize the side track 29 

capacity constraints, which resulted in a set of space-time-speed shortest path finding sub-problems. Besides, Xu et al. (2018) 30 

embedded the locomotive assignment decisions in the “state” dimension of the time-space-state network, where they can optimize 31 

the train timetabling and locomotive assignment problems simultaneously. Meng and Zhou (2019) incorporated passenger demand, 32 

train service, and infrastructure and rolling stock capacity into a layered network for the integrated optimization of train service plan, 33 

and passenger carrying states of the train teams were adopted as the “state” dimension to represent the dynamic pickup and drop-off 34 

of passenger groups. Another widely used approach for non-cyclic train timetabling problem is the big-M modeling method. 35 

Generally, the sequence of two trains is unknown at their commonly used infrastructure resources, and thus big-M modeling method 36 

needs to model the “if-then” conflicting relationship between two trains by introducing a sufficiently larger number big-M (Higgins 37 

et al., 1996). Constraint programming (Oliveira and Smith, 2000) and discrete event model (Dorfman and Medanic, 2004) were also 38 

applied to deal with the non-cyclic train timetabling problem.  39 

2.2 Cyclic train timetabling problem  40 

Scheduling problems with cyclic requirements have a wide range of real-life applications, such as the cyclic job shop scheduling 41 

problem (Bożejko and Wodecki, 2018), periodic vehicle routing and inventory vehicle routing problems (Mor and Speranza, 2018), 42 

road traffic signal optimization (Li et al., 2015), course timetabling problem (Socha et al., 2002), service network design problem for 43 

the road-rail intermodal freight transport in North-America railroads (Crainic and Laporte, 1997; Macharis and Bontekoning, 2004) 44 

and cyclic train timetabling problem. The cyclic train timetabling problem not only contains all of the basic constraints in the non-45 

cyclic train timetabling problem, but also typically requires that a given frequency of train services should be repeated in each cycle 46 

(Peeters, 2003; Kroon and Peeters, 2003; Caimi et al., 2017). In addition, train regularity plays a more important role in the cyclic 47 

train timetabling problem. Since the introduction of the periodic event scheduling problem (PESP) in Serafini and Ukovich (1989), 48 

this seminal work has been served as the modeling foundation for many variants of cyclic train timetabling problems (Huisman et 49 

al., 2005; Harrod, 2012; Caimi et al., 2017). Inspired by the PESP modeling framework, many researchers have performed in-depth 50 

studies for the cyclic train timetabling problem (Odijk, 1996; Lindner, 2000; Peeters, 2003; Liebchen, 2008; Goerigk and Schöbel, 51 

2013; Zhang and Nie, 2016; Herrigel et al., 2018), and the PESP model has been successfully applied to the European railway market 52 

(Caimi et al., 2017), such as the Dutch railway (Kroon et al., 2009) and the Berlin Underground (Liebchen, 2006, 2008). Generally, 53 

periodic event-activity network (PEAN) is constructed first to denote the constraints to be addressed in the PESP-based model, such 54 

as the regularity requirements, and modulo variables are needed to map two connected events in PEAN into the same cycle (Peeters, 55 

2003). In addition, Peeters (2003) proposed an equivalent cycle periodicity formulation (CPF) for the cyclic train timetabling problem 56 

based on the special structure of PEAN. 57 
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With respect to the complexity of the PESP model, Liebchen (2008) provided MAXSNP-hardness proofs for two variants of 1 

the PESP model. There are a wide spectrum of solution algorithms for PESP, including the constraint generation algorithm (Odijk, 2 

1996), genetic algorithm (Nachtigall and Voget, 1996), branch-and-bound method (Lindner, 2000), application of SAT solvers 3 

(Großmann et al., 2012; Kümmling et al., 2015; Gatterman et al., 2016)  and modulo simplex method (Nachtigall and Opitz, 2008; 4 

Siebert and Goerigk, 2013; Goerigk and Schöbel, 2013). In particular, Liebchen (2004) studied a kind of cyclic train timetable with 5 

symmetry property to speed-up the CPLEX solving process. Mathias (2008) developed integer programming formulations by 6 

introducing the time discretization technique into the PESP model. Recently, Herrigel et al. (2018) proposed heuristic train grouping 7 

strategies and solved the resulted CPF models sequentially. 8 

Over the past few decades, several important aspects of the cyclic train timetable were addressed based on the PESP model. 9 

The most intuitive one is to increase the flexibility of cyclic train timetable by allowing variable trip times. Both Kroon and Peeters 10 

(2003) and Liebchen and Möhring (2007) proposed a method to split the trip arcs into shorter ones, so that the trip time differences 11 

of trains can be reduced and illegal overtaking in the section were prevented. On the other hand, Zhang and Nie (2016) introduced a 12 

non-collision constraint that enforced the sum of binary modulo variables of running activities and safety/regularity activities for two 13 

trains in the same direction at two successive stations be equal to twice of the sum of two binary auxiliary variables, and thus the 14 

sum of the associated binary modulo variables always equaled to 0, 2, or 4 which can effectively prevent the illegal overtaking of 15 

two trains in the section. Yan and Goverde (2017) further improved the non-collision constraint in Zhang and Nie (2016) by replacing 16 

these two binary auxiliary variables with one integer auxiliary variable, which can only take the values of 0, 1 and 2. 17 

Since the design of cyclic train timetables focuses on providing convenient services for passengers, some researchers 18 

incorporated passenger related costs into the timetable planning process. Specifically, Nachtigall and Voget (1996) designed a genetic 19 

algorithm for the PESP model which aimed to minimize the passenger waiting times for transfer. Liebchen (2006, 2008) introduced 20 

the first optimized cyclic train timetable for Berlin Underground with guaranteed maximum passenger transfer waiting times and 21 

reduced maximum train dwell times. Cordone and Redaelli (2011) integrated the passenger discrete-choice model with CPF model 22 

so that the total passenger demand captured by the trains was maximized. Siebert and Goerigk (2013) considered two methods to 23 

generate PEAN for the public transit network, namely, frequency as attribute (FA) and frequency as multiplicity (FM). The passenger 24 

paths were explicitly handled in their PESP models, which showed that passenger travel times can be improved by using their 25 

extended PESP models. Burggraeve et al. (2017) designed line planning module and cyclic train timetabling module to iteratively 26 

update the line plan and cyclic train timetable, where the line planning module aimed to optimize the passenger and operation costs 27 

and the cyclic train timetabling module was used to generate robust timetables. Very recently, Robenek et al. (2017, 2018) studied 28 

the hybrid cyclic train timetable, where the regularity of cyclic train timetable and flexibility of non-cyclic train timetable are nicely 29 

combined to improve the passenger satisfaction. Moreover, Yin et al. (2019) developed a mixed-integer programming model based 30 

on the PESP model to generate a hybrid and demand-responsive cyclic train timetable, which aimed to minimize the sum of weighted 31 

total train travel time and total passenger waiting time considering rolling stock circulation and other practical constraints. Meanwhile, 32 

they also proposed a set of performance indicators to systemically evaluate the operation efficiency and periodicity of the hybrid 33 

cyclic train timetable. In addition, there is also a trend to extend the scope of cyclic train timetabling with network planning, line 34 

planning and rolling stock/vehicle scheduling (Liebchen and Möhring, 2007; Kroon et al., 2013; Burggraeve et al., 2017; Yin et al., 35 

2019) to obtain system-level benefits. 36 

Another two interesting aspects for cyclic train timetabling are capacity analysis and delay management. Instead of optimizing 37 

the cyclic train timetable with fixed cycle length, Heydar et al. (2013), Petering et al. (2015), Zhang and Nie (2016) and Sparing and 38 

Goverde (2017) set the cycle length as the objective to be minimized. This unique method provides a new perspective to analyze the 39 

railway capacity with a range of factors. In addition, the delay management problem (Schöbel, 2007; Liebchen et al., 2010; 40 

Schachtebeck and Schöbel, 2010) and stable/robust cyclic train timetabling problem (Sparing and Goverde, 2017; Yan and Goverde, 41 

2017; Yan et al., 2019) were also studied by some researchers to improve the train service reliability. More recently, Yan et al. (2019) 42 

proposed a new multi-objective optimization approach based on the PESP modeling framework to comprehensively improve the 43 

quality of the cyclic train timetable from four aspects, including train journey time, train regularity deviation, timetable vulnerability 44 

and number of overtakings. The delay management problem typically makes the wait-depart decisions on whether the connection 45 

train/vehicle should depart on time or wait for the delayed feeder train/vehicle so that the passenger delay can be reduced. Moreover, 46 

the stable/robust cyclic train timetabling problem could shed more light on improving the delay resistance ability of the train timetable 47 

in case of primary train delays. 48 

Apart from the above previous studies that solved the cyclic train timetabling problem based on the PESP model, two studies 49 

also tried to deal with the periodicity constraints under the time-discretized time-space network modeling framework. Specifically, 50 

Caprara et al. (2002) assumed that the same train timetable would be repeated every day, and a modulo operation, which is similar 51 

to the PESP model with the cycle length of one day, was adopted such that the difference between the planned times of any two 52 

nodes/events can be correctly calculated. Therefore, trains can cross the boundary between two days and all of the potential conflicts 53 

can be captured. Furthermore, Bešinović et al. (2016) proposed a novel time-space path-based integer programming model for solving 54 

the cyclic train timetabling problem at the macroscopic level. In particular, an efficient randomized multi-start greedy heuristic 55 

algorithm was developed to iteratively minimize the total costs related to the cyclic train timetable, including the sum of train 56 

cancellation cost, train running time, dwell time and connection time extension cost, and robustness cost. Moreover, at each iteration 57 

of the greedy heuristic algorithm, a dynamic programming recursion approach with embedded modulo operation was adopted to find 58 

the least cost time-space paths of all lines in a random line-by-line order. In this study, we present another attempt to model the cyclic 59 
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timetabling problem based on the extended time-discretized time-space network without using modulo variables/operation, and two 1 

dual decomposition approaches are also developed to solve the resulting integer programming model. 2 

Table 1 summarizes the recent studies on the non-cyclic and cyclic train timetabling problems, with three major highlights. First, 3 

most previous work on the cyclic train timetabling problem is based on the PESP model, and researchers mainly focus on solving 4 

cyclic train timetabling problem at the macroscopic level (i.e., a railway network with stations and sections). Second, the time-5 

discretized time-space network modeling approach, through the use of Lagrangian relaxation, is effective for solving real-life non-6 

cyclic train timetabling problem, at both macroscopic and microscopic levels. Finally, the research gap between computationally 7 

efficient time-space network-based algorithm and theoretically challenging cyclic timetabling problems can be observed. 8 

 9 
Table 1 10 
Summary of problem characteristics, modeling approaches and solution algorithms for non-cyclic and cyclic train timetabling problems 11 

Publication 
Planning 

period 

Modeling 

approach 
Objective 

Solution 

algorithm 

Variable 

trip time 
Largest instance solved  

Brännlund et al. 

(1998) 
Non-cyclic TSN Max total profit LR  

A double-track railway line with 17 

stations, 30 trains 

Caprara et al. 

(2002) 
Non-cyclic TSN Max total profit LR √ 

A single-track railway line with 39 

stations, 500 trains 

Cacchiani et al. 

(2008) 
Non-cyclic TSN Max total profit 

Column 

generation 
 

A single-track railway line with up 

to 102 stations, 221 trains 

Harrod (2011) Non-cyclic TSN Max total utility CPLEX  
An 86.4 km double-track mainline 

with 100 trains  

Meng and Zhou 

(2014) 
Non-cyclic TSN 

Min total deviation 

time 
LR √ 

A cell-node-based railway network 

with 85 nodes and 97 cells, 40 

trains 

Jiang et al. 

(2017) 
Non-cyclic TSN Max total profit LR  

A double-track railway line with 23 

stations, 304 + 83 trains 

Meng and Zhou 

(2019) 
Non-cyclic TSSN Max total profit LR √ 

A microscopic rail network with 

1032 nodes and 1614 cells, 100 

trains 

Odijk (1996) Cyclic PESP Feasible timetable  
Constraint 

generation 
 

A railway station with 6 platforms, 

12 trains 

Nachtigall and 

Voget (1996) 
Cyclic PESP 

Min passenger 

waiting time 

Genetic 

algorithm 
 

A railway network with 26 lines 

and 37 stations 

Lindner (2000) Cyclic PESP Min total cost 
Branch-and-

bound 
 

A railway network with 297 nodes, 

384 edges, and 89 lines 

Kroon and 

Peeters (2003) 
Cyclic PESP General CADANS solver √ 

Dutch railway network with 250 

trains in one hour 

Liebchen (2008) Cyclic PESP 
Min total train idle 

time 

CPLEX + 

heuristic 
 

A 144 km subway network with 19 

transfer stations 

Goerigk and 

Schöbel (2013) 
Cyclic PESP Min total slack time Modulo simplex √ 

A railway network with 134 lines 

and 319 stations 

Heydar et al. 

(2013) 
Cyclic PESP 

Min cycle time and 

local train dwell time 
CPLEX  

A single-track railway line with 70 

intermediate stations 

Bešinović et al. 

(2016) 
Cyclic TSN Min total cost 

Randomized 

multi-start greedy 

heuristic 
√ 

A part of the Dutch railway 

network with 15 macroscopic 

timetable points (e. g., stations and 

stops), 25 lines and 50 trains 

Zhang and Nie 

(2016) 
Cyclic PESP Min cycle time 

CPLEX + 

heuristic 
√ 

A double-track railway line with 23 

stations, 18 trains 

Robenek et al. 

(2017) 

Hybrid 

cyclic 
PESP 

Max passenger 

satisfaction 

Simulated 

annealing 
 

A railway network with 47 stations 

and 34 lines, 388 trains 

Sparing and 

Goverde (2017) 
Cyclic PESP Min cycle time 

CPLEX + 

heuristic 
√ 

A railway corridor with 18 train 

lines and 13 stations 

Herrigel et al. 

(2018) 
Cyclic PESP Min total cost 

CPLEX + 

heuristic 
√ 

A railway network with 186 

operation points and 142 trains 

This paper Cyclic TSN Min total journey time LR and ADMM √ 
A double-track railway line with 23 

stations, 36 trains 

Note: TSN represents time-space network; TSSN represents time-space-state network; LR represents Lagrangian relaxation. 12 
 13 

3. Problem statement and notations 14 

In this paper, we study the cyclic train timetabling problem on a double-track railway corridor network 𝑁 = (𝑉, 𝐸) at the 15 

macroscopic level, and the goal is to minimize the total journey times of all trains. Fig. 1 illustrates the relationship between the key 16 

concepts of this study. 17 
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Extended schedule Dual decomposition with 

Lagrangian relaxation

Sec. 4.2.3

Dual decomposition with 

ADMM through block 

coordinate descent

Sec. 4.2.4

Non-trivial periodicity 

contraints 

Time discretization

Sec. 3.1

Original cyclic timetable 

expansion

Sec. 4.2.2

Master schedule 

duplication

Sec. 4.2.2

Cyclic train 

timetabling model 

reformulation

Master 

schedule Augmentation

ADMM-based solution 

method

Sec. 5.1

Time-dependent least cost path 

algorithm with duplicated 

time-space variables

Sec. 5.3

Linearization

ADMM-based 

solution framework

 1 

Fig. 1.  Relationship between the key concepts of this study 2 
 3 

The set 𝑉 consists of all of the stations in the railway network, and the set 𝐸 contains the sections that connect two adjacent 4 

stations. The cyclic train timetabling problem is to schedule a set of lines 𝑙 ∈ 𝐿 periodically for every cycle length 𝑇, and each line 𝑙 5 

is associated with frequency 𝑓𝑙, stop pattern and operation zones. The frequency 𝑓𝑙 requires that 𝑓𝑙 identical trains are scheduled with 6 

an even time interval within the cycle 𝑇, which is called as the train regularity requirement. Specifically, the time intervals between 7 

the arrival or departure times of any two trains belonging to the same line are the multiple of ⌊𝑇 𝑓𝑙⁄ ⌋. In this study, for simplicity, we 8 

do not allow the flexibility on the train regularity requirement that has been considered in Zhang and Nie (2016) from the capacity 9 

analysis perspective. In addition, the train running times in the sections and dwell times in the stations are restricted with the 10 

corresponding minimum and maximum values, and train acceleration and deceleration times can be accurately considered within the 11 

minimum and maximum running times when the train stop pattern is given. The consideration of minimum and maximum running 12 

times as well as acceleration and deceleration times could lead to large differences on the actual trip times between two trains running 13 

in the same section. Hence, in order to prevent the illegal overtaking of two trains in the sections, we adopt a similar method of 14 

splitting trip arcs in Kroon and Peeters (2003) and Liebchen and Möhring (2007), where a dummy station is inserted in the middle 15 

of the section that has long distance for possible illegal overtaking resulting in two dummy sections. In this case, the acceleration 16 

and deceleration times are added to the minimum and maximum running times of the first and second dummy sections, respectively. 17 

The seven types of safety headway requirements considered in this paper are illustrated in detail in Appendix A, where arrival and 18 

departure times of two trains are separated according to those safety headway requirements. Note that those safety headway 19 

requirements are adopted by mainly considering the safety rules for the high-speed railway corridor in China. 20 

 21 
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(a) Cyclic train timetable with two lines (b) Cyclic train timetable in the time-discretized time-space network  22 
Fig. 2. Expression of the cyclic train timetable with variable trip times in the time-discretized time-space network 23 

 24 

Fig. 2 shows an example of the cyclic train timetable for a double-track railway corridor with two cycles. The railway corridor 25 

contains four stations (i.e., stations A, B, C and D), and two lines (i.e., lines 1 and 2) with both frequencies are set to 1, and the cycle 26 

length equals to 11 min. In particular, line 1 in the dark color has lower speed and it has a scheduled stop at station C for 1 min, while 27 

line 2 in the red color has a higher speed and it runs from stations A to D without any stop. In addition, we consider possible variations 28 

of trip times for lines 1 and 2 in section A-B, where their trip times are within the ranges [2, 3] and [1, 2] respectively. Hence, two 29 

possible schedules are generated for each line, which is denoted by the solid and dash lines in Fig. 2(a) respectively. In order to 30 

express the cyclic train timetabling problem within the time-discretized time-space network modeling framework, an equivalent 31 

cyclic train diagram with discretized time intervals is depicted in Fig. 2(b). Specifically, we adopt the method in Caprara et al. (2002) 32 

where each intermediate station is split into two dummy stations, and a dummy section is naturally formed between these two dummy 33 
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stations to describe variable train dwell times. For instance, station B in Fig. 2(a) is split into two dummy stations B1 and B2 in Fig. 1 

2(b). The process of constructing the time-space network can be illustrated by taking the time-space path of line 1 in Fig. 2(b) as an 2 

example. Since line 1 has no scheduled stop at station B, a directed time-space arc is connected from station A to dummy station B2 3 

denoting that the train travels from station A to station B. Note that, line 1 has a scheduled stop at station C, and dummy station B2 4 

is connected to dummy station C1 first, and another time-space arc connects dummy stations C1 and C2 denoting that the train stops 5 

at station C for 1 min. By constructing the time-discretized time-space network for each train, the cyclic train timetabling problem is 6 

now transformed into a multi-commodity flow problem with side track capacity constraints and the proof on the model reformulation 7 

equivalency is given in Sec. 4. 8 

Table 2 lists the general indices, sets, parameters and decision variables used in this paper to formulate the integrated 9 

optimization model. 10 

 11 
Table 2 12 
Sets, indices, parameters and variables 13 

Indices Definition 

𝑖, 𝑖′, 𝑗, 𝑗′ Index of stations, 𝑖, 𝑖′, 𝑗, 𝑗′ ∈ 𝑉 

(𝑖, 𝑖′) Index of sections, (𝑖, 𝑖′) ∈ 𝐸 

𝑙 Index of lines 

𝑎, 𝑎′ Index of trains 

𝑡, 𝑡′, 𝑡′′ Index of the time intervals in the master time-space network, 𝑡, 𝑡′, 𝑡′′ ∈ 𝑇 

𝜏, 𝜏′, 𝜏′′ Index of the time intervals in the extended time-space network, 𝜏, 𝜏′, 𝜏′′ ∈ 𝑇′ 
(𝑖, 𝑡) Index of vertexes in the master time-space network, (𝑖, 𝑡) ∈ 𝑉′ 
(𝑖, 𝑖′, 𝑡, 𝑡′) Index of arcs in the master time-space network, (𝑖, 𝑖′, 𝑡, 𝑡′) ∈ 𝐸′ 
(𝑖, 𝜏) Index of vertexes in the extended time-space network, (𝑖, 𝜏) ∈ 𝑉′′ 
(𝑖, 𝑖′, 𝜏, 𝜏′) Index of arcs in the extended time-space network, (𝑖, 𝑖′, 𝜏, 𝜏′) ∈ 𝐸′′ 
Sets  

𝑉 Set of stations, including the dummy stations 

𝐸 Set of sections, including the dummy sections 

𝐿 Set of lines 

𝐴 Set of trains 

𝐴𝑙 Set of trains belonging to line 𝑙 
𝑉′ Set of vertexes in the master time-space network 

𝑉′′ Set of vertexes in the extended time-space network 

𝑉𝑎
′ Set of vertexes in the master time-space network associated with train 𝑎 

𝑉𝑎
′′ Set of vertexes in the extended time-space network associated with train 𝑎 

𝐸′ Set of arcs in the master time-space network 

𝐸′′ Set of arcs in the extended time-space network 

𝐸𝑎
′  Set of arcs in the master time-space network associated with train 𝑎 

𝐸𝑎
′′ Set of arcs in the extended time-space network associated with train 𝑎 

𝑇 Cycle length of the cyclic train timetable 

𝑇𝑚 Set of discretized time intervals in the master time-space network 

𝑇𝑒 Set of discretized time intervals in the extended time-space network 

𝑈(𝑗, 𝑗′, 𝑡′′) 
Set of arcs in the master time-space network that are incompatible on section (𝑗, 𝑗′) at time 𝑡′′, and the set of 

trains contained in 𝑈(𝑗, 𝑗′, 𝑡′′) is influenced by the settings of headway safety constraints 

𝑈′(𝑗, 𝑗′, 𝜏′′) 
Set of arcs in the extended time-space network that are incompatible on cell (𝑗, 𝑗′) at time 𝜏′′, and the set of 

trains contained in 𝑈′(𝑗, 𝑗′, 𝜏′′) is influenced by the settings of headway safety constraints 

Parameters  

𝑂𝑎 Origin station of train 𝑎 

𝐷𝑎 Destination station of train 𝑎 

[𝑠𝑡𝑎𝑟𝑡𝑎, 𝑒𝑛𝑑𝑎] Departure time window of train 𝑎 from its origin station 𝑂𝑎 

ℎ𝑑𝑑 , ℎ𝑎𝑎, ℎ𝑎𝑝, ℎ𝑝𝑝, ℎ𝑝𝑑 , ℎ𝑝𝑎, ℎ𝑑𝑝 Safety headway between the two trains at the same station 

𝑐𝑎(𝑖, 𝑖
′, 𝑡, 𝑡′) Travel cost of the time-space arc (𝑖, 𝑖′, 𝑡, 𝑡′) for train 𝑎 

𝜌 Penalty parameter in ADMM, 𝜌 > 0 

𝑓𝑙  Frequency of train line 𝑙  
𝑤𝑙 The first train with the earliest departure time in line 𝑙 

𝐻 
Number of cycles for the master time-space network, where 𝑇𝑚 = 𝐻 ∙ 𝑇  and 𝑇𝑒 = 2𝐻 ∙ 𝑇 for a given value 

of 𝐻 

𝛽 Integer parameter to specify to number of copies of master schedule in the extended schedule, 𝛽 ∈ {0,⋯ ,𝐻}  
𝑞𝑙,𝑎 Integer parameter to specify the order of train 𝑎 in line 𝑙, 𝑞𝑙,𝑎 ∈ {0,⋯ , 𝑓𝑙 − 1} 
Variables  

𝑥𝑎(𝑖, 𝑖
′, 𝑡, 𝑡′) 

0-1 time-space arc selection variable for the master schedule, = 1 if train 𝑎 is assigned on time-space arc 

(𝑖, 𝑖′, 𝑡, 𝑡′) ; = 0 otherwise 

𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) 

0-1 time-space arc selection variable for the extended schedule, = 1 if train 𝑎 is assigned on time-space arc 

(𝑖, 𝑖′, 𝜏, 𝜏′) ; = 0 otherwise 

𝜆𝑗,𝑗′,𝜏 Lagrangian multipliers in associated with the track capacity constraints in the extended schedule 
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 1 

4. Mathematical modeling 2 

4.1 Modeling assumptions 3 

Before introducing our proposed train timetabling models, we present some key modeling assumptions to facilitate the modeling 4 

process. 5 

(1) One minute is set as the minimum time interval in the time-discretized time-space network, and shorter time interval values 6 

can be also applied if necessary. 7 

(2) For trains belonging to the same line, their time-space trajectories are evenly distributed according to the time interval as a 8 

function of the cycle length divided by line frequency. 9 

(3) The double-track railway corridor is composed of a set of interconnected stations and segments at the macroscopic level, 10 

and the safety headway requirements for the double-track railway corridor in China are adopted to ensure the safe headway between 11 

any two trains. 12 

(4) The physical length of trains are not considered, so we model trains as single objects moving in the double-track railway 13 

corridor, and consider only trains running in one direction. 14 

(5) Only those trains running in a single direction are considered so that those trains have no interaction with other trains running 15 

in the opposite direction. 16 

4.2 Cyclic train timetabling model 17 

4.2.1 General time-space network model for train timetabling problem (M1) 18 

Objective function: 19 

min 𝑍1 = ∑ ∑ 𝑐𝑎(𝑖, 𝑖
′, 𝑡, 𝑡′) ∙ 𝑥𝑎(𝑖, 𝑖

′, 𝑡, 𝑡′)

(𝑖,𝑖′,𝑡,𝑡′)∈𝐸𝑎
′𝑎∈𝐴

 (1) 

Subject to:  20 

Flow balance constraint: 21 

∑ 𝑥𝑎(𝑖, 𝑖
′, 𝑡, 𝑡′)

𝑖,𝑡:(𝑖,𝑖′,𝑡,𝑡′)∈𝐸𝑎
′

− ∑ 𝑥𝑎(𝑖
′, 𝑖, 𝑡′, 𝑡)

𝑖,𝑡:(𝑖′,𝑖,𝑡′,𝑡)∈𝐸𝑎
′

= {
−1
1
0
  
𝑖′ = 𝑂𝑎 , 𝑡

′ = 𝑠𝑡𝑎𝑟𝑡𝑎
𝑖′ = 𝐷𝑎, 𝑡

′ = 𝑇
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑎 ∈ 𝐴 (2) 

Track capacity constraint: 22 

∑ ∑ 𝑥𝑎(𝑖, 𝑖
′, 𝑡, 𝑡′)

(𝑖,𝑖′,𝑡,𝑡′)∈𝑈(𝑗,𝑗′,𝑡′′)𝑎∈𝐴

≤ 1, ∀(𝑗, 𝑗′) ∈ 𝐸, 𝑡′′ ∈ 𝑇 (3) 

Decision variables: 23 

𝑥𝑎(𝑖, 𝑖
′, 𝑡, 𝑡′) ∈ {0, 1}, ∀𝑎 ∈ 𝐴, (𝑖, 𝑖′, 𝑡, 𝑡′) ∈ 𝐸′ (4) 

Model M1 is a standard binary integer programming model for the non-cyclic train timetabling problem based on the time-24 

discretized time-space network, and its mathematical form is essentially the same as the one in Caprara et al. (2002) except for the 25 

defined objective function. The objective function in Eq. (1) is minimizing the total travel cost of all trains, and many optimization 26 

goals can be represented by the travel costs, such as the train journey times and energy consumptions. In this paper, the travel costs 27 

of the time-space arcs are specified as the corresponding train travel times such that model M1 aims to minimize the total train 28 

journey times. Constraint (2) corresponds to the flow balance relationship, ensuring that one unique time-space path is selected by 29 

each individual train. It should be noted that the feasible arc set 𝐸𝑎
′  for train a is used instead of original arc set 𝐸′ in constraint (2), 30 

so that the time-space arcs that train 𝑎 can travel through can be customized to reduce the number of arcs to be examined, and the 31 

pre-specified train stop requirements can also be honored accordingly. Constraint (3) is the track capacity constraint, which describes 32 

the time-space resource usage constraints according to the safety headway requirements in Appendix A, where at most one single 33 

train can occupy one of the time-space arcs in the clique 𝑈(𝑗, 𝑗′, 𝑡). Finally, constraint (4) specifies the domain of time-space arc 34 

selection variables. 35 

4.2.2 Cyclic train timetabling model based on extended time-space network (M2) 36 

Now we proceed to the steps of timetable expansion and duplications illustrated in Fig. 1. The non-cyclic train timetabling 37 

model M1 can be used to generate the master schedule in the master time-space network. For the PESP model, modulo variables are 38 

introduced to map all train time-space paths into the same cycle (Peeters, 2003). Fig. 3 (a) shows an example of the cyclic train 39 

timetable which contains two lines, where line 1 in the red color has a frequency of 2 and line 2 in the dark color has a frequency of 40 

1. It can be seen that the cycle length equals to 10 min and the time-space path for the train of line 2 crosses the cyclic boundary 𝑇, 41 

where part of the time-space path that is located outside of the cycle and it is mapped to the be beginning of the cyclic train timetable. 42 

Inspired by the work in Heydar et al. (2013), we propose the concept of the master schedule, which expands the planning horizon 43 

for 𝐻 times of 𝑇 resulting a master time-space network with the length of the planning horizon 𝑇𝑚 be equal to 𝐻 ∙ 𝑇. The value of 𝐻 44 
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is set to the minimum possible integer value such that 𝑇𝑚 is greater than the maximum possible arrival times of all trains at their 1 

destination stations.  2 

 3 
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 4 
Fig. 3. Transformation of the original cyclic train timetable into the master and extended schedules 5 

 6 

Moreover, Fig. 3 (b) shows the master schedule in the master time-space network corresponding to the cyclic train timetable in 7 

Fig. 3(a). The maximum possible arrival time of the trains is equal to 22 min in Fig. 3(b), so the value of 𝐻 is set to 3 and 𝑇𝑚 is equal 8 

to 30 min. Note that even though time-space paths of the trains can travel cross the cyclic boundaries in the master schedule, it is 9 

required that the departure times of all trains are located within the range [0, 𝑇) . In addition, the departure time window 10 

[𝑠𝑡𝑎𝑟𝑡𝑎 , 𝑒𝑛𝑑𝑎] for the first train 𝑎 of a line 𝑙 ∈ 𝐿 is set to [0,min{⌊𝑇 𝑓𝑙⁄ ⌋, 𝑇 − 1}] , and other trains in the same line are evenly 11 

distributed with the time interval ⌊𝑇 𝑓𝑙⁄ ⌋. For instance, the first and second trains of line 1 departs from station A at times 1 and 6 12 

min respectively with an time interval of min{⌊10 2⁄ ⌋, 10 − 1} = 5 min. 13 

The time-space paths of the trains in the master schedule in the extended time-space network in Fig.3 (b) are now moving 14 

forward in the time direction without looping back, similar to the handling of trains in a non-cyclic train timetable. To further 15 

guarantee that there is no conflict in the cyclic train timetable, we propose the idea of duplicating the master schedule to multiple 16 

copies (i.e., extended schedules) in the frame of the extended time-space network. 17 

The length of the planning horizon 𝑇𝑒 for the extended time-space network is equal to 2𝐻 ∙ 𝑇, and the trains in the master schedule 18 

are copied by 𝐻 + 1 times and each time has the offset of 𝑇. Fig. 3 (c) shows an example of the extended schedule for the master 19 

schedule in Fig. 3(b), and the value of 𝑇𝑒 is equal to 60 min, and the train time-space paths are copied by 4 times. Obviously and 20 

conceptually, it can be seen that there is no conflict, such as illegal overtaking within the section, over the whole planning horizon 21 

of the extended time-space network. Hence, it can be guaranteed that the original cyclic train timetable is feasible. The master and 22 
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extended schedules are coupled together, where the master schedule aims to use a similar manner of planning non-cyclic train 1 

timetable to schedule trains and the extended schedule is to resolve the train conflicts in the cyclic train timetable. We will proceed 2 

to Proposition 1 at the end of Section 4.2.2 for a formal proof. 3 

Mathematically, two sets of time-space arc selection variables 𝑥𝑎(𝑖, 𝑖
′, 𝑡, 𝑡′) and 𝑦𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′)  are designed for the master and 4 

extended schedules respectively. Note that time intervals in the master time-space network are indexed by 𝑡 and 𝑡′  while time 5 

intervals in the extended time-space network are indexed by 𝜏 and 𝜏′. In model M2, the objective function (5) aims to minimize the 6 

total journey times of all trains in the extended schedule. Constraint (6) is the flow balance constraint that finds one unique time-7 

space path in the master time-space network for the first train 𝑤𝑙  of each line 𝑙 ∈ 𝐿, where 𝑥𝑤𝑙(𝑖, 𝑖
′, 𝑡, 𝑡′) in constraint (6) represents 8 

the binary time-space arc selection variable for the first train 𝑤𝑙 . Constraint (7) generates the time-space path for the rest trains in the 9 

same line 𝑙 ∈ 𝐿 by shifting the time-space path of the first train 𝑤𝑙  with an offset of min{⌊𝑇 𝑓𝑙⁄ ⌋, 𝑇 − 1}. The integer parameter 𝑞𝑙,𝑎 10 

in constraint (7) specifies the order of train 𝑎 in line 𝑙, and 𝑞𝑙,𝑎 is restricted to the set {1,⋯ , 𝑓𝑙 − 1} such that the first train 𝑤𝑙  in line 11 

𝑙 is excluded from constraint (7). 12 

One of key contributions in our proposed reformulation is the variable splitting/duplication technique. Constraint (8) is the 13 

consensus constraint between the master schedule and extended schedule, which simply duplicates the time-space paths of the trains 14 

in the master schedule by 𝐻 + 1 times in the extended schedule. Note that the integer parameter 𝛽 in constraint (8) enforces the 15 

number of copies of master schedule in the extended schedule, and it belongs to the set {0,⋯ ,𝐻}. The form of constraint (8) is 16 

similar to the nonanticipativity constraint, across the first-stage and second-stage decisions of the two-stage stochastic mixed integer 17 

programming (SMIP) problems, in Crainic et al. (2011) and Boland et al. (2018) that has been well tackled by using the progressive 18 

hedging approach to solve the two-stage SMIP problems. Note that, in our proposed model, because constraint (8) only performs the 19 

duplication operation, there is no need to dualize it into the objective function. Constraint (9) is the track capacity constraint enforcing 20 

that there is no conflict in the entire planning horizon of the extended time-space network. Constraints (10) and (11) define the 21 

domain of binary time-space arc selection variables for the master and extended schedules. 22 

 23 

min 𝑍2 = ∑ ∑ 𝑐𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝐸𝑎
′′𝑎∈𝐴

∙ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) (5) 

Subject to:  24 

Flow balance constraint: 25 

∑ 𝑥𝑤𝑙(𝑖, 𝑖
′, 𝑡, 𝑡′)

𝑖,𝑡:(𝑖,𝑖′,𝑡,𝑡′)∈𝐸𝑤𝑙
′

− ∑ 𝑥𝑤𝑙(𝑖
′, 𝑖, 𝑡′, 𝑡)

𝑖,𝑡:(𝑖′,𝑖,𝑡′ ,𝑡)∈𝐸𝑤𝑙
′

= {
−1
1
0
  

𝑖′ = 𝑂𝑤𝑙 , 𝑡
′ = 𝑠𝑡𝑎𝑟𝑡𝑎

𝑖′ = 𝐷𝑤𝑙 , 𝑡
′ = 𝑇𝑚

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑙 ∈ 𝐿 (6) 

Master schedule coupling constraint: 26 

𝑥𝑎(𝑖, 𝑖
′, 𝑡 + 𝑞𝑙,𝑎 ∙ min{⌊𝑇 𝑓𝑙⁄ ⌋, 𝑇 − 1}, 𝑡′ + 𝑞𝑙,𝑎 ∙ min{⌊𝑇 𝑓𝑙⁄ ⌋, 𝑇 − 1}) = 𝑥𝑤𝑙(𝑖, 𝑖

′, 𝑡, 𝑡′), 

  ∀𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴𝑙 , (𝑖, 𝑖
′, 𝑡, 𝑡′) ∈ 𝐸′, 𝑓𝑙 > 1, 𝑞𝑙,𝑎 ∈ {1,⋯ , 𝑓𝑙 − 1} 

(7) 

Extended schedule duplication constraint: 27 

𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) = 𝑥𝑎(𝑖, 𝑖

′, 𝑡 + 𝛽𝑇, 𝑡′ + 𝛽𝑇), 
  ∀𝑎 ∈ 𝐴, (𝑖, 𝑖′, 𝑡, 𝑡′) ∈ 𝐸′, (𝑖, 𝑖′, 𝜏, 𝜏′) ∈ 𝐸′′, 𝛽 ∈ {0,⋯ ,𝐻}, 𝜏 = 𝑡 + 𝛽𝑇, 𝜏′ = 𝑡′ + 𝛽𝑇 

(8) 

Track capacity constraint: 28 

∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴

≤ 1, ∀(𝑗, 𝑗′) ∈ 𝐸, 𝜏′′ ∈ 𝑇𝑒 (9) 

Domain of variables: 29 

𝑥𝑎(𝑖, 𝑖
′, 𝑡, 𝑡′) ∈ {0, 1}, ∀𝑎 ∈ 𝐴, (𝑖, 𝑖′, 𝑡, 𝑡′) ∈ 𝐸′ (10) 

𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) ∈ {0, 1}, ∀𝑎 ∈ 𝐴, (𝑖, 𝑖′, 𝜏, 𝜏′) ∈ 𝐸′′ (11) 

 30 

Proposition 1. A feasible extended schedule in the extended time-space network can always correspond to a feasible cyclic 31 

train timetable, and vice versa. 32 

 33 

Proof. Through the duplication operation in constraint (8), there are 𝐻 + 1 copies of the time-space path of each train in the 34 

extended time-space network which are evenly distributed by a time interval of 𝑇. Since 𝐻 ∙ 𝑇 is larger than the maximum possible 35 

arrival times of all trains to their destinations in the master schedule and the time-space paths of all trains in the master schedule are 36 

duplicated by 𝐻 + 1 times, it is always possible to map a pair of time-space arcs of the master schedule into the same cycle in the 37 

extended schedule. More importantly, for the time-space arcs in the 𝐻𝑡ℎ cycle, i.e., the last cycle of the master schedule, all the other 38 

time-space arcs located before the 𝐻𝑡ℎ cycle can be shifted to the same 𝐻𝑡ℎ cycle with at most (𝐻 − 1) ∙ 𝑇 offsets. Therefore, a cyclic 39 

train timetable that has an identical form to the original cyclic train timetable can always be obtained in the 𝐻𝑡ℎ cycle of the extended 40 
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schedule. Fig. 3 shows the transformation of the original cyclic train timetable into the extended schedule, where the train time-space 1 

paths in the 3rd cycle of Fig. 3(c) is equivalent to the original cyclic train timetable in Fig. 3(a). We next show how the designed 2 

duplication operation in the extended schedule, just as modulo variables in the PESP model, has the same ability in handling the 3 

safety constraints of the cyclic train timetable. 4 

Suppose 𝑘 and 𝑘′ are two different events and activity (𝑘, 𝑘′) belongs to the set of safety activities 𝒜safe in the PEAN of the 5 

PESP model, 𝜋𝑘 , 𝜋𝑘′ ∈ [0, 𝑇)  are integer variables representing the planned times of events 𝑘  and 𝑘′ , 𝑧𝑘′,𝑘  denotes the binary 6 

modulo variable where  𝑧𝑘′,𝑘 = 1 if 𝜋𝑘′ > 𝜋𝑘 and 𝑧𝑘′,𝑘 = 0 otherwise, and  ℎ𝑘,𝑘′  is the minimum headway between events 𝑘 and 𝑘′. 7 

In the PESP model, safety constraint 𝜋𝑘 − 𝜋𝑘′ + 𝑧𝑘′,𝑘𝑇 ∈ [ℎ𝑘,𝑘′ , 𝑇 − ℎ𝑘,𝑘′] enforces the feasibility of the cyclic train timetable 8 

without conflicts. If we suppose 𝜋𝑘 < 𝜋𝑘′ , the two safety constraints can be simplified as 𝜋𝑘 − 𝜋𝑘′ + 𝑇 ≥ ℎ𝑘,𝑘′  with 𝑧𝑘′,𝑘 = 1 and 9 

𝜋𝑘′ − 𝜋𝑘 ≥ ℎ𝑘,𝑘′ with 𝑧𝑘,𝑘′ = 0, which should be satisfied simultaneously in the cyclic train timetable. 10 

Without loss of generality, the planned times of event 𝑘 and 𝑘′ in the master schedule are denoted by 𝜋𝑘
𝑚 and 𝜋𝑘′

𝑚 , and 𝜋𝑘
𝑚 could 11 

still be smaller than 𝜋𝑘′
𝑚  or vice versa. Moreover, the duplicated events for events 𝑘 and 𝑘′ with the planned times of 𝜋𝑘,𝛽

𝑒 = 𝜋𝑘
𝑚 +12 

𝛽𝑇, 𝛽 ∈ [0, 𝐻]  and 𝜋𝑘′,𝛽
𝑒 = 𝜋𝑘′

𝑚 + 𝛽𝑇, 𝛽 ∈ [0, 𝐻]  are generated in the extended schedule, respectively. Table 3 lists the 13 

correspondence relationship of the safety constraints between the extended schedule and PESP model with 𝜋𝑘 < 𝜋𝑘′, and two cases 14 

corresponding to the two safety constraints can be stated as follows: 15 

(1) If both conditions (1aE) and (1aL) are satisfied in the extended schedule, safety constraints (0a) is enforced in the PESP 16 

model 17 

Conditions (E) implies that 𝜋𝑘,0
𝑒  is earlier than 𝜋𝑘′,0

𝑒 , i.e., 𝜋𝑘,0
𝑒 < 𝜋𝑘′,0

𝑒 , while condition (L) means 𝜋𝑘,0
𝑒  is later than 𝜋𝑘′,0

𝑒 , i.e., 18 

𝜋𝑘,0
𝑒 > 𝜋𝑘′,0

𝑒 . Condition (1aE) specifies that there is a largest integer 𝛽1 ∈ [0, 𝐻] such that 𝜋𝑘′,0
𝑒 − 𝜋𝑘,𝛽1

𝑒 ∈ [ℎ𝑘,𝑘′ , 𝑇) for 𝜋𝑘,0
𝑒 < 𝜋𝑘′,0

𝑒  19 

in the extended schedule, which implies that the absolute difference between 𝜋𝑘′,0
𝑒  and 𝜋𝑘,𝛽1

𝑒  is less than 𝑇 and greater than or equal 20 

to the minimum headway ℎ𝑘,𝑘′ . Similarly, condition (1aL) requires that there is a smallest integer 𝛽3 ∈ [0, 𝐻] such that 𝜋𝑘′,𝛽3
𝑒 −21 

𝜋𝑘,0
𝑒 ∈ [ℎ𝑘,𝑘′ , 𝑇) for 𝜋𝑘,0

𝑒 > 𝜋𝑘′,0
𝑒 . Fig. 3 shows four events 1, 2, 3 and 4 with planned times of 𝜋1 = 6, 𝜋2 = 8, 𝜋3 = 2 and 𝜋4 = 4, 22 

where 𝜋1
𝑚 = 6, 𝜋2

𝑚 = 8 , 𝜋3
𝑚 = 22 and 𝜋4

𝑚 = 4 in the master schedule and 𝜋1,0
𝑒 = 6, 𝜋1,1

𝑒 = 16, 𝜋2,0
𝑒 = 8 , 𝜋3,0

𝑒 = 22, 𝜋4,0
𝑒 = 4, 23 

𝜋4,1
𝑒 = 14, and 𝜋4,2

𝑒 = 24 in the extended schedule. In addition, the headway ℎ𝑘,𝑘′  is set to 2 min and cycle length 𝑇 equals to 10 24 

min. Therefore, 𝜋2,0
𝑒 − 𝜋1,0

𝑒 ∈ [2,10) with 𝛽1 = 0 and 𝜋4,2
𝑒 − 𝜋3,0

𝑒 ∈ [2,10) with 𝛽3 = 2 are identical to 𝜋2 − 𝜋1 ≥ 2 and 𝜋4 − 𝜋3 ≥25 

2, respectively. 26 

(2) If both conditions (1bE) and (1bL) are satisfied in the extended schedule, safety constraints (0b) is enforced in the PESP 27 

model 28 

For conditions (1bE) and (1bL), there are a smallest integer 𝛽2 ∈ [0, 𝐻] such that 𝜋𝑘,𝛽2
𝑒 − 𝜋𝑘′,0

𝑒 ∈ [ℎ𝑘,𝑘′ , 𝑇) for 𝜋𝑘,0
𝑒 < 𝜋𝑘′,0

𝑒  and 29 

a largest integer 𝛽4 ∈ [0, 𝐻] such that 𝜋𝑘,0
𝑒 − 𝜋𝑘′,𝛽4

𝑒 ∈ [ℎ𝑘,𝑘′ , 𝑇) for 𝜋𝑘,0
𝑒 > 𝜋𝑘′,0

𝑒 . In Fig. 3, it can be shown that 𝜋1,1
𝑒 − 𝜋2,0

𝑒 ∈ [2,10) 30 

with 𝛽2 = 1 and 𝜋3,0
𝑒 − 𝜋4,1

𝑒 ∈ [2,10) with 𝛽4 = 1 are identical to 𝜋1 − 𝜋2 + 10 ≥ 2 and 𝜋3 − 𝜋4 + 10 ≥ 2, respectively. 31 

In short, an extended schedule with 𝐻 + 1 copies of the master schedule actually generates (𝐻 + 1) × (𝐻 + 1) precedence 32 

constraints between each pair of events in the original cyclic train timetable, where two integers 𝛽1 and 𝛽2 for condition (E) or 𝛽3 33 

and 𝛽4 for condition (L) within the range [0, 𝐻] can always be found corresponding to the precedence relationships in constraints 34 

(0a) and (0b), respectively. In addition, model M2 can avoid the usage of binary sequence variables in the big-M modeling method 35 

to enforce the necessary headway requirements. Furthermore, compared to the time-space network formulation in Caprara et al. 36 

(2002) that does not include multiple copies of the schedule, model M2 using the time-space network extension technique can 37 

guarantee a conflict-free cyclic train timetable even when the train time-space path traverses across more than 2 cycles. On the other 38 

hand, a master schedule which is actually equivalent to an extended schedule with only one copy cannot guarantee that all of the four 39 

conditions in Table 3 are satisfied. Thus, an extended schedule is sufficient for ensuring a conflict-free cyclic train timetable. 40 

 41 
Table 3 42 
Correspondence relationship of the safety constraints between the extended schedule and PESP model with 𝜋𝑘 < 𝜋𝑘′ 43 

Safety constraints for PESP model 
Condition (E) Condition (L) 

𝜋𝑘,0
𝑒 < 𝜋𝑘′,0

𝑒
 for extended schedule 𝜋𝑘,0

𝑒 > 𝜋𝑘′,0
𝑒  for extended schedule 

Case a 𝜋𝑘′ − 𝜋𝑘 ≥ ℎ𝑘,𝑘′ (0a) 𝛽1 = arg max
𝛽1∈[0,𝐻]

{𝜋𝑘′,0
𝑒 − 𝜋𝑘,𝛽1

𝑒 ∈ [ℎ𝑘,𝑘′ , 𝑇)} (1aE) 𝛽3 = arg min
𝛽3∈[0,𝐻]

{𝜋𝑘′,𝛽3
𝑒 − 𝜋𝑘,0

𝑒 ∈ [ℎ𝑘,𝑘′ , 𝑇)} (1aL) 

Case b 𝜋𝑘 − 𝜋𝑘′ + 𝑇 ≥ ℎ𝑘,𝑘′ (0b) 𝛽2 = arg min
𝛽2∈[0,𝐻]

{𝜋𝑘,𝛽2
𝑒 − 𝜋𝑘′,0

𝑒 ∈ [ℎ𝑘,𝑘′ , 𝑇)} (1bE) 𝛽4 = arg max
𝛽4∈[0,𝐻]

{𝜋𝑘,0
𝑒 − 𝜋𝑘′,𝛽4

𝑒 ∈ [ℎ𝑘,𝑘′ , 𝑇)} (1bL) 

 44 

In addition, the objective function (5) minimizes the total travel costs of all trains in the extended schedule which is equivalent 45 

to the optimization of the master schedule. Because the master schedule is the expansion of the original cyclic train timetable, and 46 

the cyclic train timetable is also optimized. A detailed comparison of model M2 with the PESP-based cyclic train timetabling model 47 

in Zhang and Nie (2016) which has the modified objective of minimizing the total train journey times is given in Appendix B. The 48 

comparison results show that model M2 also has the ability to handle the same practical constraints except the relaxation of train 49 

regularity, especially the non-collision and flexible overtaking constrains. In short, optimizing extended schedules in the extended 50 

time-space network is equivalent to the optimization process of cyclic train timetables. 51 
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4.2.3 Dual decomposition of model M2 with Lagrangian relaxation (M3) 1 

We now move the two dual decomposition steps illustrated in Fig. 1. By using the Lagrangian relaxation method, the side track 2 

capacity constraint (9) of Model M2 can be dualized into the objective function after introducing the Lagrangian multiplier 𝜆𝑗,𝑗′,𝜏′′ , 3 

resulting in a new model M3. The new objective function (12) has an additional linear penalty term for the violation of side track 4 

capacity constraint, and constraint (13) restricts the value of 𝜆𝑗,𝑗′,𝜏′′  to be larger than 0. 5 

Objective function: 6 

min 𝑍3 = 𝑍2 + ∑ ∑ 𝜆𝑗,𝑗′,𝜏′′ [∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴

− 1]

𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

 (12) 

Subject to:  7 

Constraints (6)-(8), (10)-(11) and (13). 8 

𝜆𝑗,𝑗′,𝜏′′ > 0, ∀(𝑗, 𝑗′) ∈ 𝐸, 𝜏′′ ∈ 𝑇𝑒 (13) 

Model M3 consists of a set of train-specific sub-problems with the form of objective function in Eq. (14), which can be solved 9 

by finding the least cost time-dependent shortest path for each train in the extended schedule with the time-space arc usage cost 10 

𝛾𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) in Eq. (15). In addition, Eq. (16) specifies the usage cost 𝛾𝑎

𝑚(𝑖, 𝑖′, 𝑡, 𝑡′) of the time-space arc (𝑖, 𝑖′, 𝑡, 𝑡′) in the master 11 

schedule according to the duplication relationship between the extended and master schedules in Eq. (8). The values of Lagrangian 12 

multipliers 𝜆𝑗,𝑗′,𝜏′′
𝑘+1  and step size 𝛼𝑘 at the 𝑘𝑡ℎ iteration are updated in Eqs. (17) and (18), respectively. It should be noted that Eq. (17) 13 

adopts the classical subgradient method to update the values of Lagrangian multipliers 𝜆𝑗,𝑗′,𝜏′′
𝑘+1 , which has also been applied by some 14 

previous research papers with discretized time-space network modeling framework, such as the work by Brännlund et al. (1998), 15 

Caprara et al. (2002) and Meng and Zhou (2014). 16 

𝑍3
𝑎 = ∑ 𝑐𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′) ∙ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝐸𝑎
′′

+ ∑ ∑ 𝜆𝑗,𝑗′,𝜏′′ [ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)

− 1]

𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

 

= ∑ 𝛾𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) ∙ 𝑦𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝐸𝑎
′′

− ∑ ∑ 𝜆𝑗,𝑗′,𝜏′′

𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

 

 

(14) 

𝛾𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) = 𝑐𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′) + ∑ ∑ 𝜆𝑗,𝑗′,𝜏′′

𝜏′′∈𝑇𝑒:(𝑖,𝑖
′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)(𝑗,𝑗′)∈𝐸

, ∀(𝑖, 𝑖′, 𝜏, 𝜏′) ∈ 𝐸𝑎
′′ (15) 

𝛾𝑎
𝑚(𝑖, 𝑖′, 𝑡, 𝑡′) = ∑ 𝛾𝑎(𝑖, 𝑖

′, 𝑡 + 𝛽 ⋅ 𝑇, 𝑡′ + 𝛽 ⋅ 𝑇)

𝐻

𝛽=0

, ∀𝑎 ∈ 𝐴, (𝑖, 𝑖′, 𝑡, 𝑡′) ∈ 𝐸𝑤𝑙
′  (16) 

𝜆𝑗,𝑗′,𝜏′′
𝑘+1 = max{0, 𝜆𝑗,𝑗′,𝜏′′

𝑘 + 𝛼𝑘 [∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴

− 1]} , ∀(𝑗, 𝑗′) ∈ 𝐸, 𝜏′′ ∈ 𝑇𝑒 (17) 

𝛼𝑘 = 1/(𝑘 + 1) (18) 

 17 

4.2.4 Dual decomposition of model M2 with ADMM through block coordinate descent (M4) 18 

Several useful dual decomposition approaches have been developed to reduce the complexities in solving various linear and 19 

non-linear optimization problems (Bertsekas, 1999; Boyd et al., 2011). Particularly, three typical dual decomposition techniques are 20 

the Lagrangian relaxation (Fisher, 1981), Augmented Lagrangian relaxation (Fortin and Glowinski, 2000) and ADMM (Glowinski 21 

and Marroco, 1975; Gabay and Mercier, 1976; Boyd et al., 2011). Lagrangian relaxation is a dual ascent method and it can dualize 22 

the “hard” constraints into the objective function, and the original complicated problem can be decomposed into many easier and 23 

independent sub-problems. Augmented Lagrangian relaxation further introduces an extra quadratic penalty term into the objective 24 

function, in an attempt to improve the robustness and functional convexity of the Lagrangian relaxation. However, the quadratic 25 

penalty term has made the variables coupled with each other, and it is difficult to update the variables in a parallel way and typically 26 

requires quadratic programming solvers. By combing the Augmented Lagrangian relaxation with the block coordinate descent 27 

method (Bertsekas, 1999), ADMM was developed where variables can be updated sequentially in a block-by-block manner. As a 28 

result, ADMM has the inherent advantages of breaking symmetry and strong convexity while maintaining good problem 29 

decomposition structure. Table 4 shows the detailed comparison between the above three dual decomposition approaches. In addition, 30 

an illustrative example of ADMM with three blocks is provided in Appendix C. The theoretical convergence of applying ADMM in 31 

integer programs is a very subtle issue, detailed discussions can be found at a very recent study by Boland et al. (2018) and a recent 32 

working paper by Yao et al. (2019). 33 

 34 

 35 

 36 
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Table 4 1 
Characteristics of three dual decomposition approaches 2 

Approaches Quadratic penalty terms Robust Decomposable Fully parallel implementation 

Lagrangian relaxation No No Yes Yes 

Augmented Lagrangian relaxation Yes Yes No No 

ADMM Yes Yes Yes No 

 3 

In our specific timetabling application, ADMM also dualizes the side track capacity constraint (9) with a quadratic penalty term 4 

be introduced into the objective function (19) of model M4 except for the linear penalty term of Lagrangian relaxation. Moreover, 5 

Boyd et al. (2011), Crainic et al. (2011) and a recent study by Yao et al. (2019) applied ADMM or Augmented Lagrangian relaxation 6 

to dualize the complicating equality constraints, such as the constraint (C2) of the illustrative example in Appendix C. In order to 7 

show how to complicating inequality constraint (9) from a theoretical perspective, a continuous and non-negative slack variable 8 

𝑠𝑗,𝑗′,𝜏′′ ∈ [0, 1] is introduced to transform constraint (9) into an equality constraint, i.e., ∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴 + 𝑠𝑗,𝑗′,𝜏′′ −9 

1 = 0. The maximum value of 𝑠𝑗,𝑗′,𝜏′′  is set to 1 as the term ∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴  can be equal to 0 for any clique 10 

𝑈′(𝑗, 𝑗′, 𝜏′′), and constraint (20) specifies the range of values of 𝑠𝑗,𝑗′,𝜏′′. Therefore, the quadratic term in Eq. (19) turns to the form of 11 

‖∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴 + 𝑠𝑗,𝑗′,𝜏′′ − 1‖2

2
 after introducing the slack variable 𝑠𝑗,𝑗′,𝜏′′. Models M4 and M3 share the same 12 

constraints, but the value of Lagrangian multiplier 𝜆𝑗,𝑗′ ,𝜏′′  is updated in Eq. (21) where the step size 𝛼 is replaced by the penalty 13 

parameter 𝜌. It should be noted that since model M3 can also directly handle the complicating inequality constraint (9) with the 14 

requirements of 𝜆𝑗,𝑗′ ,𝜏′′ > 0 and 𝜆𝑗,𝑗′,𝜏′′  is updated by Eq. (21), the slack variable 𝑠𝑗,𝑗′,𝜏′′ is not needed to be introduced into the term 15 

𝑍3 of Eq. (19). In addition, even though the mathematical form of Eq. (21) is similar to Eq. (17) that utilizes the subgradient method, 16 

the dual update step size 𝜌 used in Eq. (21) will lead to quite different performance between ADMM and the classical subgradient 17 

method. In particular, the penalty parameter 𝜌 is directly incorporated into the quadratic penalty term in Eq. (19) to regulate the scale 18 

of penalty for violating the side track capacity constraints. Moreover, the value of penalty parameter 𝜌 is adjusted in a different 19 

manner compared to the adjustment of step size 𝛼 in Eq. (18). The value of penalty parameter 𝜌 is specifically increased adaptively 20 

according to the violation of track capacity constraints at each iteration which will be introduced in detail in Sec. 5.1. 21 

Objective function: 22 

min 𝑍4 = 𝑍3 +
𝜌

2
∑ ∑ ‖∑ ∑ 𝑦𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴

+ 𝑠𝑗,𝑗′,𝜏′′ − 1‖

2

2

𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

 (19) 

Subject to:  23 

Constraints (6)-(8), (10)-(11), (13) and (20). 24 

0 ≤ 𝑠𝑗,𝑗′,𝜏′′ ≤ 1, ∀(𝑗, 𝑗′) ∈ 𝐸, 𝜏′′ ∈ 𝑇𝑒 (20) 

𝜆𝑗,𝑗′,𝜏′′
𝑘+1 = max{0, 𝜆𝑗,𝑗′,𝜏′′

𝑘 + 𝜌 [∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴

− 1]} , ∀(𝑗, 𝑗′) ∈ 𝐸, 𝜏′′ ∈ 𝑇𝑒 (21) 

An important property for applying ADMM to integer programming programs is that, when only binary variables are involved 25 

in sub-problems with linear and separable structure, it is possible to linearize the quadratic penalty term in ADMM. Interested readers 26 

can refer to Yao et al. (2019) for the handling of binary variables in ADMM for the vehicle routing application. In addition, this 27 

technique has also been applied by Crainic et al. (2011) in the context of two-stage SMIP formulation after relaxing the 28 

nonanticipativity constraint through Augmented Lagrangian relaxation , where the linearization could be performed as the relaxed 29 

nonanticipativity constraint only consisted of binary variables. In the timetabling problem under consideration in this study, model 30 

M4 involves only binary time-space arc selection variables, the quadratic penalty term in objective function (19) can be also reduced 31 

to a fully linearized objective function in the time-space least cost path search. In the following, we consider how to first tackle the 32 

challenges in the quadratic function (19) and then apply the block coordinate descent method to solve the sub-problem for each train. 33 

Due to the rolling update scheme of ADMM, only one train is optimized each time with all the other trains’ time-space paths 34 

being fixed. If the current train is denoted by 𝑎, the rest trains belong to the set 𝐴′ = 𝐴/{𝑎}. Note that another important feature for 35 

the linearization of quadratic penalty term in Yao et al. (2019) is that the dualized constraint can be transformed into a constraint 36 

with only binary variables that are in associated with the current train 𝑎. We use the constant 𝑛𝑎(𝑗, 𝑗
′, 𝜏′′) , and its short hand notation, 37 

𝑛𝑎, in Eq. (22) to represent the number of trains in set 𝐴′ that occupy the discretized time-space resources of arc (𝑗, 𝑗′) at time 𝜏′′. 38 

By substituting 𝑛𝑎 into the quadratic term ‖∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴 + 𝑠𝑗,𝑗′,𝜏′′ − 1‖2

2
 of Eq. (19), it can be linearized as in 39 

Eq. (23). Note that the transformation from [∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′) ]

2
 into ∑ 𝑦𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′)(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)  in Eq. (23) is due to 40 

the fact that train 𝑎 can chose at most one of the time-space arcs (𝑖, 𝑖′, 𝜏, 𝜏′) in the set 𝑈′(𝑗, 𝑗′, 𝜏′′). Thus, at most one of the binary 41 

time-space arc selection variables 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) of train 𝑎 in the set 𝑈′(𝑗, 𝑗′, 𝜏′′) is equal to 1. 42 

𝑛𝑎 = ∑ ∑ 𝑦𝑎′(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎′∈𝐴′

, ∀(𝑗, 𝑗′) ∈ 𝐸, 𝜏′′ ∈ 𝑇𝑒 (22) 
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‖∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) + 𝑠𝑗,𝑗′,𝜏′′

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴

− 1‖

2

2

 

= ‖ ∑ 𝑦𝑎(𝑖, 𝑖
′ , 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)

+ 𝑛𝑎 + 𝑠𝑗,𝑗′,𝜏′′ − 1‖

2

2

 

= [ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)

]

2

+ 2 ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)(𝑛𝑎 + 𝑠𝑗,𝑗′,𝜏′′ − 1)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)

+ (𝑛𝑎 + 𝑠𝑗,𝑗′,𝜏′′ − 1)
2
 

= ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)

+ 2 ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)(𝑛𝑎 + 𝑠𝑗,𝑗′,𝜏′′ − 1)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)

+ (𝑛𝑎 + 𝑠𝑗,𝑗′,𝜏′′ − 1)
2 

= ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)

(2𝑛𝑎 + 2𝑠𝑗,𝑗′,𝜏′′ − 1) + (𝑛𝑎 + 𝑠𝑗,𝑗′,𝜏′′ − 1)
2 

(23) 

In order to determine the value of 𝑠𝑗,𝑗′,𝜏′′ , a function 𝐿𝑠𝑗,𝑗′,𝜏′′  in Eq. (24) where 𝑠𝑗,𝑗′,𝜏′′ is the only variable can be derived according 1 

to Eq. (23). The symbol 𝑄 in Eq. (24) denotes the items in Eq. (23) that are irrelevant to 𝑠𝑗,𝑗′,𝜏′′. Since 𝑠𝑗,𝑗′,𝜏′′ is a continuous variable, 2 

the theoretical global minimum value of 𝐿𝑠𝑗,𝑗′,𝜏′′ can be obtained at the point 𝑠𝑗,𝑗′,𝜏′′
∗  in Eq. (25). However, two cases shall be considered 3 

to calculate the actual feasible value of 𝑠𝑗,𝑗′,𝜏′′
∗  according to the value of 𝑛𝑎 and the condition that 𝑠𝑗,𝑗′,𝜏′′ ∈ [0, 1]. First, when 𝑛𝑎 ≥ 1, 4 

the theoretical value of 𝑠𝑗,𝑗′,𝜏′′
∗  is less than or equal to 0. Moreover, it can be shown that the value of 𝐿𝑠𝑗,𝑗′,𝜏′′  will monotonically increase 5 

within the range [0, 1] with 𝑛𝑎 ≥ 1. Therefore, the optimum and feasible value of 𝑠𝑗,𝑗′,𝜏′′
∗  equals to 0, and Eq. (25) can be transformed 6 

into ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)(2𝑛𝑎 − 1)(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′) + (𝑛𝑎 − 1)

2  by setting 𝑠𝑗,𝑗′,𝜏′′ = 0 . Second, when 𝑛𝑎 = 0 , 𝑠𝑗,𝑗′,𝜏′′
∗  equals to 1 −7 

∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)  whose value belongs to the range [0, 1]. Thus, the value of quadratic term in Eq. (23) is equal to 0 after 8 

substituting 𝑛𝑎 = 0 and 𝑠𝑗,𝑗′,𝜏′′ = 1 − ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)  into Eq. (23). The linearized results of the quadratic term in Eq. 9 

(23) for the two cases are expressed in Eq. (26). 10 

𝐿𝑠𝑗,𝑗′,𝜏′′ = 𝑠𝑗,𝑗′,𝜏′′
2 + 2𝑠𝑗,𝑗′,𝜏′′ [ ∑ 𝑦𝑎(𝑖, 𝑖

′ , 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)

+ 𝑛𝑎 − 1] + 𝑄 (24) 

𝑠𝑗,𝑗′,𝜏′′
∗ = 1 − ∑ 𝑦𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)

− 𝑛𝑎 (25) 

‖∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) + 𝑠𝑗,𝑗′,𝜏′′

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴

− 1‖

2

2

= {
∑ 𝑦𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′)(2𝑛𝑎 − 1)
(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)

+ (𝑛𝑎 − 1)
2

0

    𝑛𝑎 ≥ 1
    𝑛𝑎 = 0

 

 

(26) 

For the first case of 𝑛𝑎 ≥ 1 with ‖∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) + 𝑠𝑗,𝑗′,𝜏′′(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴 − 1‖

2

2
= ∑ 𝑦𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′)(2𝑛𝑎 − 1)(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′) +11 

(𝑛𝑎 − 1)
2, we can also derive a set of train-specific sub-problems with the new objective function 𝑍4

𝑎 in Eq. (27). The usage cost 12 

𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) of time-space arc (𝑖, 𝑖′, 𝜏, 𝜏′) in the extended schedule equals to 𝑐𝑎(𝑖, 𝑖

′ , 𝜏, 𝜏′) + ∑ ∑ [𝜆𝑗,𝑗′,𝜏′′ +𝜏′′∈𝑇𝑒:(𝑖,𝑖
′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)(𝑗,𝑗′)∈𝐸13 

𝜌(2𝑛𝑎 − 1) 2⁄ ]. For the second case of 𝑛𝑎 = 0 with ‖∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) + 𝑠𝑗,𝑗′,𝜏′′(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴 − 1‖

2

2
= 0, there are no quadratic 14 

penalty terms in Eq. (27) such that 𝑍4
𝑎 = ∑ 𝛾𝑎

′(𝑖, 𝑖′, 𝜏, 𝜏′) ∙ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)(𝑖,𝑖′,𝜏,𝜏′)∈𝐸𝑎

′′ − ∑ ∑ 𝜆𝑗,𝑗′,𝜏′′𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸 , where 𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) =15 

𝑐𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) + ∑ ∑ 𝜆𝑗,𝑗′,𝜏′′𝜏′′∈𝑇𝑒:(𝑖,𝑖

′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)(𝑗,𝑗′)∈𝐸 . In short, the theoretical and unified form of 𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) for the two cases can be 16 

expressed as 𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) = 𝑐𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′) + ∑ ∑ {𝜆𝑗,𝑗′,𝜏′′ +max{0, 𝜌(2𝑛𝑎 − 1) 2⁄ }}𝜏′′∈𝑇𝑒:(𝑖,𝑖
′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)(𝑗,𝑗′)∈𝐸  in Eq. (28). Note that since 17 

the linearized arc usage cost 𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) in Eq. (28) does not contain the slack variable 𝑠𝑗,𝑗′,𝜏′′, constraint (20) is not needed to be 18 

considered in model M4. 19 

𝑍4
𝑎 = ∑ 𝑐𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′) ∙ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝐸𝑎
′′

+ ∑ ∑ 𝜆𝑗,𝑗′,𝜏′′ [ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)

− 1]

𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

 

+
𝜌

2
∑ ∑ [ ∑ 𝑦𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′)(2𝑛𝑎 − 1)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)

+ (𝑛𝑎 − 1)
2]

𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

 

= ∑ 𝑐𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) ∙ 𝑦𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝐸𝑎
′′

+ ∑ ∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) [𝜆𝑗,𝑗′,𝜏′′ +

𝜌

2
(2𝑛𝑎 − 1)]

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

 

+
𝜌

2
∑ ∑ (𝑛𝑎 − 1)

2

𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

− ∑ ∑ 𝜆𝑗,𝑗′,𝜏′′

𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

 

= ∑ 𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) ∙ 𝑦𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝐸𝑎
′′

+
𝜌

2
∑ ∑ (𝑛𝑎 − 1)

2

𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

− ∑ ∑ 𝜆𝑗,𝑗′,𝜏′′

𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

 

 

(27) 
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𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) =

{
 

 𝑐𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) +∑ ∑ [𝜆𝑗,𝑗′,𝜏′′ +

𝜌

2
(2𝑛𝑎 − 1)]

𝜏′′∈𝑇𝑒:(𝑖,𝑖
′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)(𝑗,𝑗′)∈𝐸

𝑐𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) +∑ ∑ 𝜆𝑗,𝑗′,𝜏′′

𝜏′′∈𝑇𝑒:(𝑖,𝑖
′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)(𝑗,𝑗′)∈𝐸

    𝑛𝑎 ≥ 1
    𝑛𝑎 = 0

,

∀(𝑖, 𝑖′, 𝜏, 𝜏′) ∈ 𝐸𝑎
′′ 

= 𝑐𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) + ∑ ∑ {𝜆𝑗,𝑗′,𝜏′′ +max {0,

𝜌

2
(2𝑛𝑎 − 1)}}

𝜏′′∈𝑇𝑒:(𝑖,𝑖
′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)(𝑗,𝑗′)∈𝐸

, ∀(𝑖, 𝑖′, 𝜏, 𝜏′) ∈ 𝐸𝑎
′′ 

 

 

(28) 

However, our numerical experiments indicate that the revised form of 𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) in Eq. (29) can lead to better performance 1 

of ADMM. Eq. (29) is equivalent to Eq. (28) when 𝑛𝑎 ≥ 1, while Eq. (29) may reduce the value of 𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) when 𝑛𝑎 = 0 2 

compared to Eq. (28), which implies that the current train 𝑎 is more likely to be attracted to use the time-space arcs with no conflicts. 3 

Note that Larsson and Yuan (2004), which utilized the disaggregate simplicial decomposition method to generate the linearized arc 4 

costs for the Frank-Wolfe type sub-problems within the Augmented Lagrangian relaxation-based solution framework, also adopted 5 

a similar form of linearized arc usage cost to the one in Eq. (29) for solving a large-scale multicommodity routing problem. Moreover, 6 

the usage cost 𝛾𝑎
𝑚′
(𝑖, 𝑖′, 𝑡, 𝑡′) of time-space arc (𝑖, 𝑖′, 𝑡, 𝑡′) in the master schedule is determined in Eq. (30). It can be shown that the 7 

original non-linear objective function (19) with a quadratic penalty term is linearized by adding a term of  8 
∑ ∑ max{0, 𝜆𝑗,𝑗′,𝜏′′ + 𝜌(2𝑛𝑎 − 1) 2⁄ }(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)(𝑗,𝑗′)∈𝐸,𝜏′′∈𝑇𝑒  into the (linear) time-space arc cost, which is one of the critical 9 

differences between the Lagrangian relaxation and ADMM-based dual decomposition methods. As a result, an efficient forward 10 

dynamic programming approach can be directly applied to solve each train-specific sub-problem of model M4. Note that each train 11 

can be viewed as a block in ADMM, and the block coordinate descent property of ADMM (Bertsekas, 1999) requires the arc usage 12 

costs 𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) in Eq. (29) need to be updated as soon as the time-dependent least cost path searching process for one train is 13 

finished. Consequently, the potential impact of the time-space paths of other trains except the current train will be embedded into the 14 

time-dependent least cost path searching process. In Appendix D, a hypothetic example is used to illustrate models M3 and M4 with 15 

detailed calculation steps, where the potential symmetry issue in the Lagrangian relaxation and symmetry breaking mechanism in 16 

ADMM are explained in details. 17 

𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) = 𝑐𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′) + ∑ ∑ max {0, 𝜆𝑗,𝑗′,𝜏′′ +
𝜌

2
(2𝑛𝑎 − 1)}

𝜏′′∈𝑇𝑒:(𝑖,𝑖
′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)(𝑗,𝑗′)∈𝐸

, ∀(𝑖, 𝑖′, 𝜏, 𝜏′) ∈ 𝐸𝑎
′′ (29) 

𝛾𝑎
𝑚′
(𝑖, 𝑖′, 𝑡, 𝑡′) = ∑ 𝛾𝑎

′(𝑖, 𝑖′, 𝑡 + 𝛽 ⋅ 𝑇, 𝑡′ + 𝛽 ⋅ 𝑇)

𝐻

𝛽=0

, ∀𝑎 ∈ 𝐴, (𝑖, 𝑖′, 𝑡, 𝑡′) ∈ 𝐸𝑤𝑙
′  (30) 

 18 

5. Solution methods 19 

This section aims to introduce the algorithmic details of two solution methods. The first one is the ADMM-based solution 20 

method in Sec. 5.1 for model M4, including the solution framework and the iterative algorithmic steps for the generation of upper 21 

bound and lower bound solutions. The second one is the Lagrangian relaxation-based solution method in Sec. 5.2 for model M3, 22 

which has been illustrated in detail in the previous work by Brännlund et al. (1998), Caprara et al. (2002) and Meng and Zhou (2014), 23 

and thus we only introduce how to apply a priority rule-based heuristic to generate the upper bound solutions. Lastly, the time-24 

dependent least cost path algorithm with duplicated time-space variables to solve each train-specific sub-problem in models M3 and 25 

M4 is illustrated in detail in Sec. 5.3. 26 

5.1 ADMM-based solution method 27 

Fig. 4 provides the conceptual illustration on the ADMM-based solution framework for iteratively updating of the best lower 28 

and upper bounds. Some symbol definitions for the ADMM-based solution procedure are listed in Table 5, and the detailed solution 29 

procedure of ADMM is then provided in Algorithm 1 (ADMM). 30 

The solution procedure of Algorithm 1 (ADMM) consists of six steps. In Step 1, the initial values of iteration number 𝑘, penalty 31 

parameter 𝜌 , incremental amount of penalty parameter 𝜀 , Lagrangian multipliers 𝜆𝑗,𝑗′,𝜏′′
𝑘 , arc usage costs 𝛾𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′)  and 32 

𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′), best lower bound value 𝐵𝑒𝑠𝑡_𝐿𝐵∗ and best upper bound value 𝐵𝑒𝑠𝑡_𝑈𝐵∗, and sequence of lines 𝑆𝑒𝑞 are provided. In 33 

Step 2, pure lower bound solution generation involves solving each train-specific sub-problem by using the time-dependent least cost 34 

path algorithm with duplicated time-space variables (cf. Algorithm 3 (TDLCP)) in Sec. 5.3, where the time-space arc usage costs 35 

in the extended schedule are set to 𝛾𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) in Eq. (15). Note that the quadratic penalty term is not considered when generating 36 

the dual solution, which is due to the infeasibility of the dual solution and large penalty values for the violations of capacity constraints. 37 

Moreover, the best lower bound value 𝐵𝑒𝑠𝑡_𝐿𝐵∗ needs to be updated by the equation 𝐵𝑒𝑠𝑡_𝐿𝐵∗ = max {𝐵𝑒𝑠𝑡_𝐿𝐵∗, 𝐿𝐵𝑘} for every 38 

lower bound solution with the lower bound value be equal to 𝐿𝐵𝑘  at the 𝑘𝑡ℎ ADMM iteration. 39 

In Step 3 for generating the ADMM solution and updating the best upper bound value, the time-space arc usage costs in the 40 

extended schedule are set to 𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) in Eq. (29) and the time-dependent least cost paths for the trains are computed in a 41 

sequential line-by-line manner using Algorithm 3 (TDLCP) in Sec. 5.3. In particular, Fig. 5 illustrates the rolling update scheme of 42 

ADMM in Step 3. Each row in Fig. 5 represents the update of one line each time, and the line number within the circle in each row 43 
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means the current line that is to be optimized, while the lines within the rectangle are those lines with their time-space paths 1 

temporarily being fixed at the current inner iteration. In particular, if the 𝑝𝑡ℎ line in the set 𝑆𝑒𝑞 is to be optimized for finding the 2 

time-dependent least cost path at the (𝑘 + 1)𝑡ℎ ADMM iteration, the time-space paths of the lines 𝑙𝑝+1, 𝑙𝑝+2, ⋯ , 𝑙|𝐿| are fixed to the 3 

values at the 𝑘𝑡ℎ ADMM iteration, while the time-space paths of the lines 𝑙1, 𝑙2, ⋯ , 𝑙𝑝−1 are fixed to the values at the (𝑘 + 1)𝑡ℎ 4 

ADMM iteration. In addition, it should be noted that arc usage costs 𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) need to be updated dynamically according to Eq. 5 

(29) at each inner iteration so as to the symmetry between different lines can be broken. Furthermore, if the ADMM solution obtained 6 

at the 𝑘𝑡ℎ iteration is feasible with the upper bound value be equal to 𝑈𝐵𝑘 , a feasible cyclic train timetable is generated and the best 7 

upper bound value shall be updated by the equation 𝐵𝑒𝑠𝑡_𝑈𝐵∗ = min {𝐵𝑒𝑠𝑡_𝑈𝐵∗, 𝑈𝐵𝑘}. In addition, we also calculate the Lagrangian 8 

profit of each line 𝑙 ∈ 𝐿 and a new line sequence 𝑆𝑒𝑞 is obtained through sorting the lines in descending order by their Lagrangian 9 

profits (Caprara et al., 2002; Meng and Zhou, 2014). 10 

 11 
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 12 
Fig. 4. ADMM-based solution framework for iteratively updating of the best lower and upper bounds (cf. Algorithm 1 (ADMM)) 13 

 14 

After updating the best lower bound value 𝐵𝑒𝑠𝑡_𝐿𝐵∗ in Step 2 and best upper bound value 𝐵𝑒𝑠𝑡_𝑈𝐵∗ in Step 3, the optimality 15 

gap of ADMM 𝐺𝐴𝑃 is calculated in Step 4 by the equation of 100% ∗ (𝐵𝑒𝑠𝑡_𝑈𝐵∗ − 𝐵𝑒𝑠𝑡_𝐿𝐵∗) 𝐵𝑒𝑠𝑡_𝐿𝐵∗⁄ . In Step 5, the values of 16 

Lagrangian multipliers 𝜆𝑖,𝑖′,𝜏′′
𝑘+1  are updated by Eq. (21) with the value of penalty parameter be equal to  𝜌𝑘 , and a heuristic rule 17 

considering the violation of side track capacity constraints in Eq. (9) is designed to increase or retain the value of penalty parameter 18 

 𝜌𝑘+1 at the  (𝑘 + 1)𝑡ℎ ADMM iteration, so that good feasible solutions satisfying the primal and dual feasibility requirements can 19 

be obtained (Boyd et al., 2011; Yao et al., 2019). Finally, Step 6 determines whether to continue the iterative algorithmic process by 20 

going to Step 2 or to terminate the ADMM algorithm after reaching the maximum iteration number 𝐾. 21 

 22 
Table 5 23 
Symbol definitions for the ADMM-based solution method 24 

Symbol Definition 

𝑆𝑒𝑞 Sequences of lines in set 𝐿 

𝜀 Incremental amount for increasing the value of penalty parameter 𝜌 

𝜇 Weighting factor used in the condition of whether increasing the value of penalty parameter 𝜌 or not 

𝐿𝐵𝑘 , 𝑈𝐵𝑘 Lower bound and upper bound values of ADMM at the 𝑘𝑡ℎ iteration 

𝐵𝑒𝑠𝑡_𝐿𝐵∗, 𝐵𝑒𝑠𝑡_𝑈𝐵∗ Best lower bound and upper bound values of ADMM 

 25 
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Algorithm 1 (ADMM): iterative algorithmic steps of the ADMM-based solution method 

Step 1. (Initialization) 

Set iteration number 𝑘 = 0, penalty parameter 𝜌 = 2, Lagrangian multipliers 𝜆𝑗,𝑗′,𝜏′′
𝑘 = 2, arc usage costs 𝛾𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′) = 𝑐𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) 

and 𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) = 𝑐𝑎(𝑖, 𝑖

′, 𝜏, 𝜏′), best lower bound 𝐵𝑒𝑠𝑡_𝐿𝐵∗ = −∞, best upper bound 𝐵𝑒𝑠𝑡_𝑈𝐵∗ = +∞, initial sequence of lines 𝑆𝑒𝑞, 

incremental amount of penalty parameter 𝜀 

Step 2. (Pure lower bound solution generation and best lower bound updating) 

  Update arc usage costs 𝛾𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′) by Eq. (15) 

  Use Algorithm 3 (TDLCP) in Sec. 5.3 to find the time-dependent least cost paths for all the trains in the extended schedule 

  Calculate the lower bound 𝐿𝐵𝑘 at the 𝑘𝑡ℎ iteration and update the best lower bound 𝐵𝑒𝑠𝑡_𝐿𝐵∗ = max {𝐵𝑒𝑠𝑡_𝐿𝐵∗, 𝐿𝐵𝑘} 
Step 3. (ADMM solution generation and best upper bound updating) 

For each line 𝑙 ∈ 𝑆𝑒𝑞 do 

 Update arc usage costs 𝛾𝑎
′(𝑖, 𝑖′, 𝜏, 𝜏′) by Eq. (29) 

Use Algorithm 3 (TDLCP) in Sec. 5.3 to find the time-dependent least cost paths for all the trains related to line 𝑙 in the extended 

schedule 

End for each line 𝑙 ∈ 𝑆𝑒𝑞  

If the current ADMM solution is feasible 

 Calculate the upper bound 𝑈𝐵𝑘 at the 𝑘𝑡ℎ iteration and update the best upper bound 𝐵𝑒𝑠𝑡_𝑈𝐵∗ = min {𝐵𝑒𝑠𝑡_𝑈𝐵∗, 𝑈𝐵𝑘} 
Calculate the Lagrangian profit for each line 𝑙 ∈ 𝐿 by the ratio of dividing free-flow travel time (i.e., the minimum travel time of the 

train 𝑤𝑙 without considering the side track capacity constraints) by the corresponding least cost travel time in the dual solution of the 

train 𝑤𝑙 (Caprara et al., 2002; Meng and Zhou, 2014). 

Sort lines in descending order by their Lagrangian profits and generate new line sequence 𝑆𝑒𝑞 

End If 

Step 4. (Optimality gap calculation) 

Compute the optimality gap 𝐺𝐴𝑃 by the equation 100% ∗ (𝐵𝑒𝑠𝑡_𝑈𝐵∗ − 𝐵𝑒𝑠𝑡_𝐿𝐵∗) 𝐵𝑒𝑠𝑡_𝐿𝐵∗⁄  

Step 5. (Lagrangian multipliers and penalty parameter value updating) 

Let 𝑘 = 𝑘 + 1, update the Lagrangian multipliers 𝜆𝑖,𝑖′,𝜏′′
𝑘+1  by Eq. (21) with the value of penalty parameter  𝜌𝑘 at the  𝑘𝑡ℎ iteration 

Increase or retain the penalty parameter value  𝜌𝑘+1 according to the following condition (Yao et al., 2019): 

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑗,𝑗′,𝜏′′ = max {0,∑ ∑ 𝑦𝑎(𝑖, 𝑖
′, 𝜏, 𝜏′)

(𝑖,𝑖′,𝜏,𝜏′)∈𝑈′(𝑗,𝑗′,𝜏′′)𝑎∈𝐴

− 1}, ∀(𝑗, 𝑗′) ∈ 𝐸, 𝜏′′ ∈ 𝑇𝑒 

 𝜌𝑘+1 = {
 𝜌𝑘 + 𝜀, ∑ ∑ 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑗,𝑗′,𝜏′′

2

𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

≥ 𝜇 ∑ ∑ 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑗,𝑗′,𝜏′′

𝜏′′∈𝑇𝑒(𝑗,𝑗′)∈𝐸

 𝜌𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑗,𝑗′,𝜏′′ is the violation of track capacity constraints in the clique 𝑈′(𝑗, 𝑗′, 𝜏′′), and 𝜀 and 𝜇 take the suitable values within 

the ranges [1, 5] and [1, 4] after observing the general performance of the ADMM-based solution method, respectively. 

Step 6. (Algorithm termination condition) 

Terminate the ADMM algorithm if 𝑘 reaches the maximum iteration number 𝐾; otherwise, go to Step 2. 

 1 
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 2 

Fig. 5. Illustration of the rolling update scheme of ADMM for the lines ordered in set 𝑆𝑒𝑞 (Boyd et al., 2011; Yao et al., 2019) 3 
 4 

5.2 Lagrangian relaxation-based solution method 5 

The solution procedure of Lagrangian relaxation for model M3 is similar to that of ADMM, and readers can refer to Brännlund 6 

et al. (1998), Caprara et al. (2002) and Meng and Zhou (2014) for detailed algorithmic steps of Lagrangian relaxation for the train 7 

timetabling problem. Moreover, the upper bound feasible solution of Lagrangian relaxation can be derived by utilizing the dual 8 

information with a priority rule-based heuristic algorithm (Brännlund et al., 1998; Caprara et al., 2002; Meng and Zhou, 2014) in 9 

Algorithm 2 (PRUB). 10 
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Algorithm 2 (PRUB) includes four algorithmic steps. In Step 1, the value of Lagrangian profit for each line 𝑙 ∈ 𝐿 is calculated 1 

by using the same method in Algorithm 1 (ADMM), and the priorities of lines are determined in Step 2 through sorting the lines in 2 

descending order by the values of Lagrangian profits of the first train 𝑤𝑙  for each line 𝑙 ∈ 𝐿. In Step 3, the time-space paths of the 3 

lines are generated sequentially starting from the line with the highest priority. In particular, the arc usage costs are set to 𝑐𝑎(𝑖, 𝑖
′, 𝑡, 𝑡′), 4 

i.e., the travel time of the train on the time-space arc (𝑖, 𝑖′, 𝑡, 𝑡′). Moreover, Algorithm 3 (TDLCP) of Sec. 5.3 is used to find the 5 

time-dependent least cost path for the first train 𝑤𝑙  of line 𝑙, and the time-space paths of other related trains in the master and extended 6 

schedules can be generated naturally according to constraints (7) and (8). In addition, the costs of the time-space arcs that conflict 7 

with the time-space paths of the trains associated with the current line 𝑙 are set to a sufficiently large number (Meng and Zhou, 2014; 8 

Wei et al., 2017), so that necessary headway requirements in Appendix A are guaranteed. The sequential search process in Step 3 is 9 

iterated until all trains in the set of lines 𝐿 are scheduled. Finally, the optimality gap of Lagrangian relaxation is updated in Step 4. 10 

 11 
Algorithm 2 (PRUB): a priority rule-based heuristic for generating the upper bound solutions 

Step 1. (Lagrangian profit calculation) 

Obtain the Lagrangian profit for each line 𝑙 ∈ 𝐿. 

Step 2. (Line priority ranking) 

Lines in set 𝐿 are sorted in descending order by their Lagrangian profit values. 

Step 3. (Sequential feasible time-space path generation) 

Step 3.1 For the current line 𝑙 with the highest priority, use Algorithm 3 (TDLCP) in Sec. 5.3 to find the time-dependent least cost path 

for the first train 𝑤𝑙 in line 𝑙, where the arc usage costs are set to 𝑐𝑎(𝑖, 𝑖
′, 𝑡, 𝑡′) in Table 2. 

Step 3.2 Generate the time-space paths for other related trains by constraints (7) and (8), and mark the associated conflicting time-space 

arcs as infeasible to guarantee the necessary safety headways in Appendix A (Meng and Zhou, 2014; Wei et al., 2017). 

Step 3.3 Repeat Steps 3.1 and 3.2 until all trains in the set of lines 𝐿 are scheduled and go to Step 4. 

Step 4. (Upper bound updating) 

Update the best upper bound and calculate the corresponding optimality gap if the currently feasible solution has a smaller total travel 

cost. 

 12 

5.3 Time-dependent least cost path algorithm with duplicated time-space variables 13 

The time-dependent least cost path algorithm based on the forward dynamic programming approach was proposed by 14 

Ziliaskopoulos and Mahmassani (1993) and Chabini (1998) for the dynamic road transportation networks. The time-space paths of 15 

each train 𝑎 consists of waiting, travelling and dummy arcs. Waiting arcs from (𝑂𝑎 , 𝜏) to (𝑂𝑎 , 𝜏 + 1)  allows train 𝑎 to wait at the 16 

origin station until train 𝑎 departs from the origin station, which must be contained within the departure time window [𝑠𝑡𝑎𝑟𝑡𝑎, 𝑒𝑛𝑑𝑎]. 17 

Moreover, by adopting the station splitting method in Caprara et al. (2002), a set of travelling arcs from (𝑖, 𝜏) to (𝑖′, 𝜏′) can be 18 

constructed for train 𝑎 with flexible travel times in the sections and dwell times in the stations. Dummy arcs from (𝐷𝑎 , 𝜏) to (𝐷𝑎 , 𝜏 +19 

1)  connect the actual arrival time of train 𝑎 at the destination station to the end time of planning horizon. Interested readers can 20 

check more details for constructing the time-space network and the associated time-dependent least cost path algorithms in Pallottino 21 

and Scutella (1998), Caprara et al. (2002), Meng and Zhou (2014), Zhou et al. (2018) and Tong et al. (2019). 22 

The symbol definitions needed for the time-dependent least cost algorithm are provided in Table 7, and the detailed algorithmic 23 

steps are then introduced. Eq. (31) describes the key label cost update condition in step 2 corresponding to the lines 14 to 18 of 24 

Algorithm 3 (TDLCP), where the usage cost of the arc (𝑖, 𝑖′, 𝑡, 𝑡′) for the first train 𝑤𝑙  of line 𝑙 in the master schedule is calculated 25 

by summing the arc usage costs of the arcs belonging to the same line 𝑙 and all of the duplicated time-space arcs/variables. In addition, 26 

the forward dynamic programming in step 2 of Algorithm 3 (TDLCP) can obtain the time-dependent least cost path for the first 27 

train 𝑤𝑙 , and the time-space paths of other trains in the same line 𝑙 can also be generated according to Eqs. (7) and (8). Note that the 28 

arc usage cost 𝑟𝑤𝑙
′ (𝑖, 𝑖′, 𝜏, 𝜏′) is used in Algorithm 3 (TDLCP) for the ADMM-based solution method, and 𝛾𝑤𝑙

′ (𝑖, 𝑖′, 𝜏, 𝜏′) can be 29 

replaced by 𝛾𝑤𝑙(𝑖, 𝑖
′, 𝜏, 𝜏′) directly for the Lagrangian relaxation-based solution method. 30 

 31 

𝜎𝑤𝑙(𝑖, 𝑡) + ∑ ∑𝑟𝑤𝑙
′ (𝑖, 𝑖′, 𝑡 + 𝑞𝑙,𝑎 ⋅ ⌊𝑇 𝑓𝑙⁄ ⌋ + 𝛽 ⋅ 𝑇, 𝑡′ + 𝑞𝑙,𝑎 ⋅ ⌊𝑇 𝑓𝑙⁄ ⌋ + 𝛽 ⋅ 𝑇)

𝐻

𝛽=0

𝑓𝑙−1

 𝑞𝑙,𝑎=0

< 𝜎𝑤𝑙(𝑖
′, 𝑡′), ∀𝑙 ∈ 𝐿, (𝑖, 𝑖′, 𝑡, 𝑡′) ∈ 𝐸𝑤𝑙

′  (31) 

 32 
Table 7 33 
Symbol definitions for the time-dependent least cost algorithm with duplicated time-space variables   34 

Symbol Definition 

𝜎𝑎(𝑖, 𝑡) Label cost of time-space vertex (𝑖, 𝑡) for train 𝑎 

𝑝𝑟𝑒𝑑𝑎(𝑖
′, 𝑡′) Predecessor of time-space vertex (𝑖′, 𝑡′) for train 𝑎 

𝑠𝑢𝑚 Regular parameter for storing the sum of time-space arc usage costs 

 35 
Algorithm 3 (TDLCP): time-dependent least cost path algorithm in forward dynamic programming with duplicated time-space variables 

1 Input: Physical railway network 𝐺 = (𝑉, 𝐸); cycle length 𝑇; frequency 𝑓𝑙  of train line 𝑙 ; origin station 𝑂𝑤𝑙 , destination station 𝐷𝑤𝑙 , 

departure time window [0,min{⌊𝑇 𝑓𝑙⁄ ⌋, 𝑇 − 1}] and revised time-space arc usage cost 𝛾𝑤𝑙
′ (𝑖, 𝑖′, 𝜏, 𝜏′) for the first train 𝑤𝑙 of line 𝑙 in the 2 

3 

4 
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extended time-space network; number of cycles 𝐻 for the master time-space network; length of planning period 𝑇𝑚 and 𝑇𝑒 for the master 

and extended time-space networks 

5 Output: least cost time-space paths of each train 𝑎 ∈ 𝐴𝑙 in line 𝑙 
6 Step 1. (Initialization) 

7 Set the label cost of the time-space vertex 𝜎𝑤𝑙(𝑖, 𝑡) = +∞, the time-space vertex predecessor 𝑝𝑟𝑒𝑑𝑤𝑙(𝑖, 𝑡) = (−1,−1), the label cost 

𝜎𝑤𝑙(𝑂𝑤𝑙 , 𝑡) = 0, ∀𝑡 = 0,⋯ ,min{⌊𝑇 𝑓𝑙⁄ ⌋, 𝑇 − 1} 8 

9 Step 2. (Label updating in forward dynamic programming) 

10 For each line 𝑙 ∈ 𝐿 do 

11 For each time 𝑡 = 0 to 𝑇𝑚 do //search in the master schedule 

12               For each outgoing arc (𝑖, 𝑖′, 𝑡, 𝑡′) ∈ 𝐸𝑤𝑙
′  of vertex (𝑖, 𝑡) ∈ 𝑉𝑤𝑙

′   do 

13                       𝑠𝑢𝑚 = 0 

14                      For each  𝑞𝑙,𝑎 = 0 to 𝑓𝑙 − 1 and 𝛽 = 0 to 𝐻 do //calculate the sum of the arc usage costs in the extended schedule 

15 𝜏 = 𝑡 + 𝑞𝑙,𝑎 ∙ ⌊𝑇 𝑓𝑙⁄ ⌋ + 𝛽 ∙ 𝑇 

16 𝜏′ = 𝑡′ + 𝑞𝑙,𝑎 ∙ ⌊𝑇 𝑓𝑙⁄ ⌋ + 𝛽 ∙ 𝑇 

17                             𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝛾𝑤𝑙
′ (𝑖, 𝑖′, 𝜏, 𝜏′) 

18                      End for each  𝑞𝑙,𝑎 = 0 to 𝑓𝑙 − 1 and 𝛽 = 0 to 𝐻 

19                      If 𝜎𝑤𝑙(𝑖, 𝑡) + 𝑠𝑢𝑚 < 𝜎𝑤𝑙(𝑖
′, 𝑡′) // update label cost and vertex predecessor 

20                             𝜎𝑤𝑙(𝑖
′, 𝑡′) = 𝜎𝑤𝑙(𝑖, 𝑡) + 𝑠𝑢𝑚 

21                             𝑝𝑟𝑒𝑑𝑤𝑙(𝑖
′, 𝑡′) = (𝑖, 𝑡) 

22                      End If 

23               End for each outgoing arc (𝑖, 𝑖′, 𝑡, 𝑡′) ∈ 𝐸𝑤𝑙
′  of vertex (𝑖, 𝑡) ∈ 𝑉𝑤𝑙

′  

24 End for each time 𝑡 = 0 to 𝑇𝑚 

25 End for each line 𝑙 ∈ 𝐿 

26 Step 3. (Fetch the least cost time-space path for other related trains in the extended schedule for line 𝒍) 
27 Step 3.1 Find the time-space vertex (𝐷𝑤𝑙 , 𝜏

∗) with the least label cost at the destination station 𝐷𝑤𝑙  

28 Step 3.2 Back trace the time-space path for train 𝑤𝑙 with respect to the time-space vertex predecessors 𝑝𝑟𝑒𝑑𝑤𝑙(𝑖
′, 𝜏′) 

29 Step 3.3 Generate the time-space paths for other related trains in the extended schedule by Eqs. (14) and (15) 

30 Step 3.4 Algorithm termination. 

 1 

6. Numerical experiments 2 

In this section, test cases based on the artificial and real-life railway networks are designed to test the efficiency and solution 3 

quality of our proposed models and solution algorithms. The Lagrangian relaxation (i.e., LR-M3-C++) and ADMM (i.e., ADMM-4 

M4-C++)-based solution methods are implemented in C++ on the Visual Studio 2015 platform. Moreover, the modified PESP-based 5 

cyclic train timetabling model in Zhang and Nie (2016) (see Appendix B) with the objective of minimizing the total train journey 6 

times and fixed cycle length 𝑇 is solved by CPLEX 12.8.0, MATLAB 2015b (i.e., PESP-CPLEX) to serve as the benchmarks. In 7 

addition, all of the models and algorithms are tested on a desktop computer with i7-7700 @ 3.6 GHz CPU and 32 GB RAM. 8 

6.1 Illustrative experiments based on the artificial railway network 9 

The artificial railway network of a double-track railway corridor with 6 stations in Fig. 6 is adapted from Zhang and Nie (2016) 10 

where Fig. 6(a) and Fig. 6(b) are corresponding to two different line plans. Fig. 6(a) shows heterogeneous train stop patterns which 11 

are adverse to the capacity usage, while trains in Fig. 6(b) have more balanced train stop patterns. Moreover, total of 6 lines are 12 

required to be scheduled in the network, and the frequency of each line is given in Fig. 6(a) and 6(b), respectively. As a result, both 13 

of the two illustrative examples contain 10 trains, and two speed grades corresponding to the fast and slow trains are assigned to 14 

those 10 trains. Besides, the distance in kilometers between every two adjacent stations is also labeled in Fig. 6 where the average 15 

distance is 72 km. The input datasets, C++ source codes and cyclic train diagram visualization tool in Python for those two illustrative 16 

examples can be downloaded from the GitHub website: https://github.com/YXZhangSWJTU/CyclicTrainTimetabling_ETSN. 17 

Basic parameters needed for the artificial railway network are provided in Table 8. In particular, the values of six different 18 

headway retirements are given, and the minimum and maximum dwell times of the trains within the stations are restricted to the 19 

range [1, 10] min, so that overtaking can be allowed at the stations. In addition, the acceleration and deceleration times for fast and 20 

slow trains are specified as (3, 3) min and (2, 3) min, respectively. The speed range of fast and slow trains are specified as 280-300 21 

km/h and 230-250 km/h, respectively. Specifically, the lines 1, 4 and 5 consist of fast trains and the trains in lines 2, 3 and 6 have 22 

slower speed. For the illustrative example 1, the cycle length T is set to 120 min, while the cycle length T of the illustrative example 23 

2 is set to 90 min. Furthermore, the values of the parameter 𝐻 for those two illustrative examples are set to 3, and the lengths of 𝑇𝑚 24 

and 𝑇𝑒 for the illustrative example 1 are equal to 3 × 120 = 360 min and 2 × 3 × 120 = 720 min, respectively. For the illustrative 25 

example 2, the lengths of 𝑇𝑚 and 𝑇𝑒 equal to 3 × 90 = 270 min and 2 × 3 × 90 = 540 min, respectively. Besides, the number of trains 26 

in 𝑇𝑚 is equal to the number of trains to be scheduled, while the number of trains in 𝑇𝑒 is equal to 𝐻 + 1 = 4 times of the number of 27 

trains in 𝑇𝑚. For instance, the number of trains in 𝑇𝑚 of the illustrative example 1 with 6 lines is equal to 10, while the corresponding 28 

number of trains in 𝑇𝑒 is equal to 4 × 10 = 40. Moreover, the maximum number of iterations 𝐾 for Lagrangian relaxation and ADMM 29 

are set to 1000. We next perform a series of experiments based on the two illustrative examples on the number of lines and speed 30 

differences. 31 

https://github.com/YXZhangSWJTU/CyclicTrainTimetabling_ETSN


21 

 

 1 

(a) Illustrative example 1 with heterogeneous train stop patterns   
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(b) Illustrative example 2 with more balanced train stop patterns   
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 2 
Fig. 6. Two illustrative examples based on the artificial railway network in Zhang and Nie (2016) 3 

 4 
Table 8 5 
Basic parameters for the artificial railway network   6 

Parameters Values (min) 

ℎ𝑑𝑑 , ℎ𝑎𝑎, ℎ𝑎𝑝, ℎ𝑝𝑝, ℎ𝑝𝑑 , ℎ𝑝𝑎, ℎ𝑑𝑝 5, 4, 4, 3, 3, 3, 5  

Minimum and maximum dwell times in stations [1, 10] 

Acceleration and deceleration times (3, 3) for fast trains, (2, 3) for slow trains 

 7 
(1) Different number of lines 8 

The experimental results for these two illustrative examples with different numbers of lines are provided in Tables 9-12. Please 9 

note that since the number of lines is usually not equal to the corresponding number of trains, the information on the number of trains 10 

is also provided in Tables 9-12 nearby the number of lines. Tables 9 and 10 include the lower bound and upper bound values, 11 

computation times and optimality gaps for LR-M3-C++, ADMM-M4-C++ and PESP-CPLEX. In particular, two types of optimality 12 

gaps are provided in Table 10 to systematically measure the quality of upper bound and lower bound solutions. The column “GAP” 13 

represents the original optimality gap regarding the relative difference between the upper bound and lower bound values of the 14 

corresponding method, while the column “BestGAP” denotes the best optimality gap whose value is calculated by adopting the best 15 

lower bound value among those three methods. Table 11 lists the detailed compositions of total computation times of Lagrangian 16 

relaxation and ADMM, including the computation times of the two main algorithmic steps for calculating the lower bound and upper 17 

bound (ADMM) solutions and other algorithmic steps. In addition, Table 12 records the number of iterations and the corresponding 18 

computation times needed for Lagrangian relaxation, ADMM and CPLEX to find the feasible and best solutions. 19 

Five points can be drawn from the computational results in Tables 9-12. First, CPLEX can obtain optimal solutions for all of 20 

the illustrative examples within short time periods, which can provide the best lower and upper bound values. Second, the quality of 21 

lower bound and upper bound values of ADMM are slightly better than the Lagrangian relaxation which results in smaller original 22 

optimality gaps (i.e., the column “GAP”) and best optimality gaps (i.e., the column “BestGAP”) of ADMM. In particular, Lagrangian 23 

relaxation obtain a feasible solution for the illustrative example 1 with 6 lines with the largest original and best optimality gaps of 24 

8.3% and 3.6% , while ADMM can achieve a feasible solution with the original and best optimality gaps be equal to 2.33% and 0%, 25 

respectively. Third, it can be seen from the best optimality gaps of ADMM in Table 10 that the upper bound values of ADMM are 26 

very close to the optimal values of CPLEX and the lower bound values of ADMM are also good enough to achieve small optimality 27 

gaps. Fourth, the computation times of Lagrangian relaxation and ADMM are proportional to the number of lines, while the 28 

computation times of CPLEX can increase dramatically. In addition, both Lagrangian relaxation and ADMM spend most of their 29 

computational efforts in calculating the lower bound and upper bound (ADMM) solutions, and these two algorithmic steps essentially 30 

involve finding the time-dependent least cost paths for the trains in the extended time-space network. Finally, Table 12 shows that 31 

all of the three methods can find their feasible and best solutions quite efficiently, while the embedded branch-and-cut algorithm of 32 

CPLEX needs much more times to prove the optimality gaps of the corresponding best solutions. 33 

 34 
Table 9 35 
Lower bound and upper bound values (in minutes) of two illustrative examples with a different number of lines  36 

# of lines (trains) 
LR-M3-C++ ADMM-M4-C++ PESP-CPLEX 

Lower bound  Upper bound  Lower bound  Upper bound  Lower bound  Upper bound  

Illustrative 

example 1 

2 (5) 504.4 537 510 537 522 522 

4 (8) 811.6 858 825 852 849 849 

6 (10) 1010.2 1094 1032 1056 1056 1056 

Illustrative 

example 2 

2 (4) 432.4 436 435.6 436 436 436 

4 (8) 873.4 883 879 883 883 883 

6 (10) 1071.7 1118 1098.2 1111 1110 1110 

 37 
Table 10 38 
Computation times (in seconds) and optimality gaps of two illustrative examples with a different number of lines 39 

# of lines (trains) 
LR-M3-C++ ADMM-M4-C++ PESP-CPLEX 

CPU time GAP (%)  BestGAP CPU time GAP (%) BestGAP CPU time GAP (%)  BestGAP 
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(%) (%) (%) 

Illustrative 

example 1 

2 (5) 6.07 6.46 2.87 4.51 5.29 2.87 0.17 0 0 

4 (8) 10.34 5.72 1.06 8.3 3.27 0.35 8.8 0 0 

6 (10) 12.7 8.3 3.6 12 2.33 0 25.5 0 0 

Illustrative 

example 2 

2 (4) 4.72 0.83 0 3.38 0.09 0 0.03 0 0 

4 (8) 8.22 1.1 0 6.66 0.46 0 2.8 0 0 

6 (10) 10.31 4.32 0.72 9.64 1.17 0.09 88.31 0 0 

 1 
Table 11 2 
Computation times (in seconds) of lower bound and upper bound (ADMM) solutions of two illustrative examples with a different number of lines 3 

# of lines (trains) 

LR-M3-C++ ADMM-M4-C++ 

Lower bound 

solution 

Upper bound 

solution 
Other steps 

Lower bound 

solution 
ADMM solution Other steps 

Illustrative 

example 1 

2 (5) 2.03 3.82 0.22 1.82 2.4 0.29 

4 (8) 3.77 6.38 0.19 3.34 4.58 0.38 

6 (10) 5.21 7.31 0.18 4.91 6.71 0.38 

Illustrative 

example 2 

2 (4) 1.48 3.09 0.15 1.37 1.81 0.2 

4 (8) 3.13 4.91 0.18 2.73 3.64 0.29 

6 (10) 4.19 5.99 0.13 4.02 5.31 0.31 

 4 
Table 12 5 
Feasible and best solution iterations as well as solution times (in seconds) of two illustrative examples with a different number of lines 6 

# of lines (trains) 
LR-M3-C++ ADMM-M4-C++ PESP-CPLEX 

FeasIt FeasTi BestIt BestTi FeasIt FeasTi BestIt  BestTi FeasTi BestTi 

Illustrative 

example 1 

2 (5) 1 0.01 1 0.01 20 0.09 21 0.09 0.00 0.17 

4 (8) 11 0.11 11 0.11 2 0.02 327 2.71 0.00 0.49 

6 (10) 6 0.08 6 0.08 205 2.46 212 2.54 0.00 7.13 

Illustrative 

example 2 

2 (4) 1 0.00 1 0.00 1 0.00 1 0.00 0.00 0.03 

4 (8) 3 0.02 12 0.1 6 0.04 15 0.1 0.00 0.01 

6 (10) 794 8.19 794 8.19 36 0.35 36 0.35 0.00 3.69 

Note: FeasIt represents feasible solution iteration; FeasTi represents feasible solution time; BestIt represents best solution iteration; BestTi 7 
represents best solution time. 8 
 9 

 (2) Speed differences between fast and slow trains 10 

Since the speed differences between the fast and slow trains have a great impact on the difficulty in solving the cyclic train 11 

timetabling problem, we increase the speed range of the slow train by a 10 km/h step size from 240-260 km/h to 280-300 km/h, 12 

where the speed ranges of the fast trains are fixed to 280-300 km/h. Tables 13-15 show the lower bound and upper bound values, 13 

computation times and optimality gaps of two illustrative examples with 6 lines under different slow train speed ranges. 14 

First, CPLEX still shows efficient and effective performance in obtaining the optimal solutions for the two illustrative examples 15 

with varying train speed range combinations. Second, it can be observed that Lagrangian relaxation cannot even obtain feasible 16 

solutions for illustrative example 1 with the speed ranges of slow trains be equal to 250-270 km/h and 260-280 km/h, showing the 17 

unstable performance of Lagrangian relaxation in achieving primal feasibility of the cyclic train timetabling problem. In addition, 18 

the symmetry issues in cyclic train timetabling problem are more significant due to the large departure time windows of the trains, 19 

which lead to the poor performance of priority rule-based heuristic in Lagrangian relaxation. By contrast, ADMM obtains good 20 

feasible solutions with the original optimality gaps are less than or equal to 1.5% for all of the test cases which further prove the 21 

advantages of symmetry breaking mechanism in ADMM. Moreover, both the best optimality gaps of Lagrangian relaxation and 22 

ADMM for most of the cases are slightly improved compared to the corresponding original optimality gaps. Third, the solving times 23 

of CPLEX decrease gradually as the speed differences between fast and slows trains are reduced, while there no obvious trend that 24 

smaller speed differences between fast and slow trains can result in smaller optimality gaps for Lagrangian relaxation and ADMM 25 

except for the solution results of ADMM in solving the illustrative example 1. Fourth, CPLEX spends fewer computation times in 26 

obtaining the feasible solutions than ADMM for most of the cases, while ADMM requires fewer computation times to find the best 27 

solutions than CPLEX except when the speed ranges of slow trains in illustrative example 2 are equal to 240-260 km/h, 270-290 28 

km/h, and 280-300 km/h, where ADMM takes 649, 230, and 967 iterations to find the corresponding best solutions. 29 

 30 
Table 13 31 
Lower bound and upper bound values (in minutes) of two illustrative example with 6 lines under different slow train speed ranges 32 

Slow train speed range 

(km/h) 

LR-M3-C++ ADMM-M4-C++ PESP-CPLEX 

Lower bound  Upper bound  Lower bound  Upper bound  Lower bound  Upper bound  

Illustrative 

example 1 

240-260 984.95 1029 1007 1019 1019 1019 

250-270 975.6 - 996.6 1003 1003 1003 

260-280 951.4 - 986.2 987 987 987 

270-290 949.4 1006 977 977 977 977 

280-300 925.8 989 968 968 968 968 
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Illustrative 

example 2 

240-260 1040.85 1083 1062.85 1071 1066 1066 

250-270 1015.6 1069 1046.3 1062 1052 1052 

260-280 993.8 1055 1032.82 1038 1037 1037 

270-290 987.9 1023 1022 1023 1023 1023 

280-300 963.45 1010 1010 1010 1010 1010 

  1 
Table 14 2 
Computation times (in seconds) and optimality gaps of two illustrative example with 6 lines under different slow train speed ranges 3 

Slow train speed 

range (km/h) 

LR-M3-C++ ADMM-M4-C++ PESP-CPLEX 

CPU time 
GAP 

(%)  

BestGAP 

(%) 
CPU time 

GAP 

(%) 

BestGAP 

(%) 
CPU time   

GAP 

(%)  

BestGAP 

(%) 

Illustrative 

example 1 

240-260 14.45 4.47 0.98 12.93 1.19 0 10.7 0 0 

250-270 13.28 - - 12.13 0.64 0 6.1 0 0 

260-280 12.33 - - 11.39 0.08 0 1.3 0 0 

270-290 12.27 5.96 2.97 11.18 0 0 1.3 0 0 

280-300 14.15 6.83 2.17 12.38 0 0 1 0 0 

Illustrative 

example 2 

240-260 13.01 4.05 1.59 10.95 0.77 0.47 5.2 0 0 

250-270 10.7 5.26 1.62 9.83 1.5 0.95 5.3 0 0 

260-280 10.33 6.16 1.74 9.71 0.5 0.1 1.1 0 0 

270-290 10.62 3.55 0 9.18 0.1 0 0.6 0 0 

280-300 11.05 4.83 0 10.05 0 0 0.8 0 0 

 4 
Table 15 5 
Feasible and best solution iterations as well as solution times (in seconds) of two illustrative with 6 lines under different slow train speed ranges 6 

Slow train speed range 

(km/h) 

LR-M3-C++ ADMM-M4-C++ PESP-CPLEX 

FeasIt FeasTi BestIt BestTi FeasIt FeasTi BestIt  BestTi FeasTi BestTi 

Illustrative 

example 1 

240-260 6 0.09 6 0.09 9 0.12 214 2.77 0.00 3.1 

250-270 - - - - 8 0.1 8 0.1 0.03 5.77 

260-280 - - - - 1 0.01 1 0.01 0.00 0.12 

270-290 4 0.05 4 0.05 1 0.01 1 0.01 0.02 1.3 

280-300 4 0.06 25 0.35 1 0.01 1 0.01 0.00 1 

Illustrative 

example 2 

240-260 54 0.7 55 0.72 6 0.07 649 7.11 0.00 3.9 

250-270 3 0.03 333 3.56 319 3.14 334 3.28 0.00 4.37 

260-280 4 0.04 4 0.04 7 0.07 33 0.32 0.00 1.1 

270-290 409 4.34 941 9.99 229 2.1 230 2.11 0.00 0.6 

280-300 20 0.22 348 3.85 6 0.06 967 9.72 0.00 0.8 

Note: FeasIt represents feasible solution iteration; FeasTi represents feasible solution time; BestIt represents best solution iteration; BestTi 7 
represents best solution time. 8 
 9 
6.2 Real-life experiments based on the Beijing-Shanghai high-speed railway corridor 10 

Beijing-Shanghai high-speed railway corridor in China is a double-track railway that consists of 23 stations and 22 segments, 11 

and it has a length of 1318 km. Fig. 7 shows the structure of the Beijing-Shanghai high-speed railway corridor where the Beijing 12 

South and Shanghai Hongqiao stations are two major terminal stations, and the numbers beside each station show the cumulative 13 

distance in kilometers starting from the Beijing South station. It can be seen from Fig. 7 that the segment from Cangzhou West station 14 

to Dezhou East station has the maximum length of 104 km, and the average distance between the two stations is 59.91 km. 15 

In this study, we only consider the trains running from Beijing South station to Shanghai Hongqiao Station, and 12 scenarios 16 

are designed with the number of lines ranges from 10 to 34. The scenarios 1-4 have the number of lines of 10, 12, 14 and 17, 17 

respectively, and they adopt the line plan data in Zhang and Nie (2016). In addition, the speed ranges of trains in scenarios 1-4 are 18 

set to 310-330 km/h. For the scenarios 5-12, they are generated based on the actual train timetable data of the Beijing-Shanghai high-19 

speed railway corridor where all trains run from Beijing South station to Shanghai Hongqiao station. Furthermore, the number of 20 

lines in scenarios 5-12 are equal to 20, 22, 24, 26, 28, 30, 32 and 34, respectively. In particular, scenario 12 consists of 36 trains 21 

including 2 fast trains and 34 slow trains. Moreover, the speed ranges of fast and slow trains in scenarios 5-12 are set to 310-330 22 

km/h and 280-300 km/h, respectively. In addition, the parameters for headway requirements, minimum and maximum dwell times, 23 

and acceleration and deceleration times are also set to the values in Table 8. Besides, the cycle lengths 𝑇 of scenarios 1-4, scenarios 24 

5-9 and scenarios 10-12 are set to 160 min, 300 min and 360 min, respectively. Therefore, the values of the parameter 𝐻 for the 12 25 

scenarios are all set to 3. Furthermore, the lengths of 𝑇𝑚 and 𝑇𝑒 for scenarios 1-4, 5-9 and 10-12 are equal to 480 min and 960 min, 26 

900 min and 1800 min, and 1080 min and 2160 min, respectively. The maximum number of iterations 𝐾 for Lagrangian relaxation 27 

and ADMM are set to 1000 and the time limit of CPLEX is set to 10800 seconds for all of the test cases. Tables 16-19 list the detailed 28 

experimental results of those 12 scenarios. 29 

For scenarios 1-4, it can be shown that both Lagrangian relaxation and ADMM can obtain quite good solution results, while 30 

ADMM achieves better lower bound and upper bound values than Lagrangian relaxation, and thus ADMM has smaller original 31 

optimality gaps. However, when looking at the values of best optimality gaps in Table 17, it is found that the best optimality gaps of 32 

Lagrangian relaxation are much smaller than the corresponding original optimality gaps. Moreover, CPLEX obtains optimal solutions 33 
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for the first three test cases and closes to the optimal solution for the last test case, resulting in the best lower bound and upper bound 1 

values and thus smallest original and best optimality gaps. On the other hand, the computation times of CPLEX grow sharply when 2 

the number of lines increases gradually. By contrast, the computation times of Lagrangian relaxation and ADMM increase slowly 3 

and the advantages of them are more obvious for scenarios 3 and 4. Moreover, the number of iterations for both Lagrangian relaxation 4 

and ADMM to obtain the feasible and best solutions grows quickly as the number of lines increases, while most of the corresponding 5 

feasible and best solution times are much smaller than those of CPLEX due to the high efficiency of Lagrangian relaxation and 6 

ADMM in performing the computation tasks of each iteration. In addition, the computation times of CPLEX in obtaining the feasible 7 

and best solutions also increase rapidly, especially for scenario 4 where the best solution time is even close to the time limit of 10800 8 

seconds. 9 
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Fig. 7. Structure of the Beijing-Shanghai high-speed railway corridor 12 
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In addition, Fig. 8 depicts the convergence process of the best lower bound and upper bound values of Lagrangian relaxation 14 

and ADMM for scenario 4 including 17 lines and 18 trains with iteration number. At the initial stage, both the best lower bound 15 

values of Lagrangian relaxation and ADMM increase rapidly from relatively small values. In Table 19, it can be shown that the 16 

priority rule-based heuristic of Lagrangian relaxation takes 31 iterations to find a feasible solution, and the best upper bound solution 17 

is found after another 755 iterations. On the other hand, when the value of penalty parameter 𝜌 of ADMM is increased gradually 18 

according to the method in Sec. 5.1, a good best upper bound which is equal to that of Lagrangian relaxation is obtained after 216 19 

iterations. In addition, it can be also seen from Table 16 that the best lower bound value of ADMM is very close to that of CPLEX 20 

and it is slightly better than that of Lagrangian relaxation, which is an important factor for the small optimality gap of ADMM. 21 

Finally, the cyclic train diagram of scenario 4 obtained by ADMM is illustrated in Fig. 11, showing the feasibility of the cyclic train 22 

timetabling model based on extended time-space network in Sec. 4.2.2. 23 

 24 
Table 16 25 
Lower bound and upper bound values (in minutes) of the nine scenarios with a different number of lines  26 

Scenario 
# of lines  

(trains) 

LR-M3-C++ ADMM-M4-C++ PESP-CPLEX 

Lower bound  Upper bound  Lower bound  Upper bound  Lower bound  Upper bound  

1 10 (11) 2392.6 2532 2532 2532 2532 2532 

2 12 (13) 2993.99 3186 3184 3184 3184 3184 

3 14 (15) 3502.74 3713 3713 3713 3713 3713 

4 17 (18) 4218.5 4629 4554.6 4629 4559 4608 

5 20 (22) 6148.84 7141 7098 7098 7093 7175 

6 22 (24) 6628.65 7823 7766 7766 7761 7813 

7 24 (26) 6968.35 - 8422 8452 8417 8463 



25 

 

8 26 (28) 7401.54 - 9084 9180 9079 9286 

9 28 (30) 7730.93 - 9739.7 9994 9735 - 

10 30 (32) 8154.22 - 10408 10409 10397 - 

11 32 (34) 8376.38 - 11076 11095 11065 - 

12 34 (36) 8565.79 - 11730 11786 11721 - 

 1 
Table 17 2 
Computation times (in seconds) and optimality gaps of the nine scenarios with a different number of lines 3 

Scenario 
# of lines 

(trains) 

LR-M3-C++ ADMM-M4-C++ PESP-CPLEX 

CPU time  
GAP  

(%)  

BestGAP 

(%) 
CPU time  

GAP  

(%) 

BestGAP 

(%) 
CPU time 

GAP  

(%)  

BestGAP 

(%) 

1 10 (11) 89.69 5.83 0 61.4 0 0 13.1 0 0 

2 12 (13) 107.95 6.41 0.06 82.1 0 0 152.5 0 0 

3 14 (15) 120.72 6 0 94.53 0 0 637.34 0 0 

4 17 (18) 138.89 9.73 1.54 122 1.63 1.54 10800 1.07 1.07 

5 20 (22) 385.38 16.14 0.61 297.24 0 0 10800 1.16 1.08 

6 22 (24) 415.88 18.02 0.73 322.86 0 0 10800 0.67 0.61 

7 24 (26) 446.63 - - 480.5 0.36 0.36 10800 0.55 0.49 

8 26 (28) 478.37 - - 527.05 1.06 1.06 10800 2.28 2.22 

9 28 (30) 482.28 - - 549.44 2.61 2.61 10800 - - 

10 30 (32) 678.95 - - 715.04 0.01 0.01 10800 - - 

11 32 (34) 695.37 - - 774.29 0.17 0.17 10800 - - 

12 34 (36) 725.29 - - 816.58 0.48 0.48 10800 - - 

 4 
Table 18 5 
Computation times (in seconds) of lower bound and upper bound (ADMM) solutions of the nine scenarios with a different number of lines 6 

Scenario 
# of lines 

(trains) 

LR-M3-C++ ADMM-M4-C++ 

Lower bound 

solution 

Upper bound 

solution 
Other steps 

Lower bound 

solution 
ADMM solution Other steps 

1 10 (11) 28.92 57.13 3.64 20.58 39.02 1.8 

2 12 (13) 37.32 69.62 1.01 22.96 56.54 2.6 

3 14 (15) 43.39 76.35 0.98 26.47 65.22 2.84 

4 17 (18) 54.26 83.64 0.99 33.87 84.82 3.31 

5 20 (22) 135.58 248 1.8 85.73 204.84 6.67 

6 22 (24) 149.22 264.89 1.77 92.59 222.56 7.71 

7 24 (26) 161.48 283.35 1.8 158.59 313.96 7.95 

8 26 (28) 178.15 298.41 1.81 170.07 337.43 19.55 

9 28 (30) 184.2 296.36 1.72 178.21 362.51 8.72 

10 30 (32) 247.66 429.04 2.25 231.06 472.89 11.09 

11 32 (34) 257.9 435.29 2.18 249.33 513.29 11.67 

12 34 (36) 273.5 449.6 2.19 261.77 541.96 12.85 

 7 
Table 19 8 
Feasible and best solution iterations as well as solution times (in seconds) of the nine scenarios with a different number of lines 9 

Scenario  
# of lines 

(trains) 

LR-M3-C++ ADMM-M4-C++ PESP-CPLEX 

FeasIt FeasTi BestIt BestTi FeasIt FeasTi BestIt  BestTi FeasTi BestTi 

1 10 (11) 2 0.18 10 0.9 1 0.06 1 0.06 0.02 13.1 

2 12 (13) 14 1.51 236 25.48 4 0.33 70 5.75 7.97 152.5 

3 14 (15) 22 2.66 883 106.6 16 1.51 633 59.84 7.88 607.74 

4 17 (18) 31 4.31 786 109.17 216 26.35 216 26.35 2638.03 9084.97 

5 20 (22) 16 6.17 453 174.58 1 0.3 101 30.02 2228.26 6827.09 

6 22 (24) 2 0.83 895 372.21 18 5.81 46 14.85 6513.36 8209.78 

7 24 (26) - - - - 54 25.95 54 25.95 9178.57 10387.92 

8 26 (28) - - - - 419 220.83  685 361.03 10163.78 10670.38 

9 28 (30) - - - - 274 150.55 274 150.55 - - 

10 30 (32) - - - - 19 13.59 19 13.59 -   - 

11 32 (34) - - - - 46 35.62 46 35.62 - - 

12 34 (36) - - - - 169 138  169 138 - - 

Note: FeasIt represents feasible solution iteration; FeasTi represents feasible solution time; BestIt represents best solution iteration; BestTi 10 
represents best solution time. 11 
 12 

For the scenarios 5-9, they show more difficulty in obtaining good feasible solutions due to a larger number of trains and cycle 13 

length 𝑇. The original optimality gaps of Lagrangian relaxation for the scenarios 5 and 6 increase to about 16% and Lagrangian 14 

relaxation even cannot generate feasible solutions for scenarios 7- 9. Furthermore, the best optimality gaps of Lagrangian relaxation 15 

decrease to about 0.6% compared to the corresponding original optimality gaps, which further shows that the low quality of lower 16 
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bound solutions of Lagrangian relaxation. Moreover, CPLEX reaches the time limit of 10800 seconds for all of the five scenarios 1 

and the times for CPLEX to find the best upper solutions also increase rapidly. In addition, CPLEX cannot obtain a feasible solution 2 

for scenario 9 with 28 lines. By contrast, ADMM not only achieves smaller original optimality gaps than CPLEX, but it also obtains 3 

a feasible solution with a 2.61% original optimality gap for the last and most difficult test case. Furthermore, the computation times 4 

of Lagrangian relaxation in calculating the lower bound solutions are slightly larger than those of ADMM, while ADMM requires 5 

more times to update the ADMM solutions for scenarios 7-9 than Lagrangian relaxation for calculating the upper bound solutions. 6 

Besides, both Lagrangian relaxation and ADMM are more likely to take more iterations to obtain the best solutions compared to 7 

those of scenarios 1-4. The convergence curves of Lagrangian relaxation and ADMM for the scenario 9 with 30 trains are depicted 8 

in Fig. 9, which show a similar convergence pattern with that of scenario 4 in Fig. 8. In particular, the priority rule-based heuristic 9 

of Lagrangian relaxation fails to find a feasible solution for scenarios 9, and we only illustrate how the best lower bound values of 10 

Lagrangian relaxation evolves with iteration number. Besides, Fig. 12 visualizes the cyclic train diagram of scenario 9 obtained by 11 

ADMM, where the trains turn out to be slightly congested than that in Fig. 11. 12 

 13 

 14 
Fig. 8. Best lower bound and upper bound values of ADMM and LR for the scenario 4 with iteration number (17 lines, 18 trains) 15 

 16 

 17 
 Fig. 9. Best lower bound and upper bound values of ADMM and LR for the scenario 9 with iteration number (28 lines, 30 trains) 18 

 19 

For scenarios 10-12, they have the largest cycle length 𝑇 and more trains to be scheduled. As a result, both Lagrangian relaxation 20 

and CPLEX cannot find a feasible solution for all of the three scenarios. By contrast, ADMM can provide the best lower bound and 21 

upper bound values for scenarios 10-12. Therefore, it can be concluded that the subgradient method and the priority rule-based 22 

heuristic in Lagrangian relaxation as well as the embedded branch-and-cut algorithm in CPLEX do not have good scalability on 23 
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larger scale problems, while ADMM still shows robust and good performance. Specifically, ADMM mainly has the advantages of 1 

(1) the symmetry breaking mechanism, (2) simultaneously improvement on the primal and dual feasibility (Boyd et al., 2011; Yao 2 

et al., 2019), (3) a special type of variable splitting technique to handle the periodicity constraints and (4) the efficient time-dependent 3 

least cost path algorithm with duplicated time-space variables.  4 
 5 

 6 
Fig. 10. Best lower bound and upper bound values of ADMM and LR for the scenario 12 with iteration number (34 lines, 36 trains) 7 

 8 

 9 
Fig. 11. Cyclic train diagram for scenario 4 obtained by ADMM with 17 lines and 18 trains (the numbers above the lines are the line numbers) 10 

 11 

Meanwhile, it can be observed in Figures 8-10 that both the best lower bound values of Lagrangian relaxation and ADMM 12 

converge quite rapidly to the final values, and the best lower bound values of Lagrangian relaxation in Meng and Zhou (2014) also 13 

shows a similar convergence pattern. Therefore, it can be concluded that the usage of the subgradient method of Lagrangian relaxation 14 

in Eq. (17) and a similar method of ADMM in Eq. (21) for updating the values of Lagrangian multipliers have led to the rapid 15 

convergence of best lower bound values. Furthermore, it can be shown from Table 19 that the best upper bound solutions of ADMM 16 

for some scenarios turn out to be the feasible solutions found for the first time, while ADMM still needs a lot of iterations to improve 17 

the initial feasible solutions for some other scenarios. Therefore, ADMM could be stuck at the local optimum solutions or stationary 18 

points, and we believe it is necessary to perform intelligent branching operations within a branch-and-bound solution framework to 19 

further reduce the optimality gap of ADMM (Fisher, 1981; Yang and Zhou, 2014). In addition, Fig. 13 illustrates the cyclic train 20 
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diagram of scenario 12 obtained by ADMM, where there are almost no overtaking operations compared to the cyclic train diagram 1 

in Fig. 12. 2 

 3 

 4 
Fig. 12. Cyclic train diagram for scenario 9 obtained by ADMM with 28 lines and 30 trains (the numbers above the lines are the line numbers) 5 

  6 

 7 
Fig. 13. Cyclic train diagram for scenario 12 obtained by ADMM with 34 lines and 36 trains (the numbers above the lines are the line numbers) 8 

 9 

7. Conclusion 10 

In this study, a new cyclic train timetabling model based on the extended time-space network is proposed for the double-track 11 

railway corridor at the macroscopic level. By considering the special specifications for the cyclic train timetabling problem that has 12 

been well described in the PESP based integer programming model, the concepts of master and extended schedules are introduced 13 

into the general time-space network model for the non-cyclic train timetabling problem. In particular, the master schedule allows the 14 

trains to go through the cyclic boundary without using modulo variables in the PESP model, and the extended schedule with 15 

duplicated time-space variables can guarantee a conflict-free cyclic train timetable. As a result, the new cyclic train timetabling 16 

model is formulated with additional master schedule coupling and extended schedule duplication constraints. Moreover, the side 17 
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track capacity constraints are dualized by using the two dual decomposition approaches including Lagrangian relaxation and ADMM. 1 

The quadratic term in ADMM can be nicely linearized according to the property of binary time-space arc selection variables, where 2 

the potential influences of all the other trains except the current train can be reflected directly with the rolling update scheme of time-3 

space arc usage costs in ADMM. In addition, each train-specific sub-problem in Lagrangian relaxation and ADMM can be solved 4 

efficiently by adopting a modified version of the forward dynamic programming algorithm with duplicated time-space variables. 5 

Besides, a set of illustrative and real-life experiments are performed to test the efficiency and effectiveness of the proposed new 6 

cyclic train timetabling model and the solution algorithms, where the PESP model is solved by the CPLEX solver to serve as the 7 

benchmarks. The test results show that the ADMM-based solution method outperforms the Lagrangian relaxation-based solution 8 

method, where the priority rule in Lagrangian relaxation even cannot obtain a feasible solution for some difficult cases. Furthermore, 9 

the symmetry breaking mechanism together with the penalty parameter value lifting strategy in ADMM can better achieve the primal 10 

and dual feasibility of the problem (Boyd et al., 2011; Yao et al., 2019), where the optimality gaps of ADMM for most of the test 11 

cases are relatively small. In particular, ADMM can obtain a near optimal solution for the most difficult case, while CPLEX cannot 12 

generate a feasible solution with the time limit of 3 hours. 13 

The future work of this study can be extended in several interesting directions. First, it is assumed that the time-space trajectories 14 

of the trains belonging to the same line are evenly distributed, while slightly relaxation on this particular requirement can avoid 15 

unnecessary train dwell times which is beneficial to the capacity utilization of the cyclic train timetable (Zhang and Nie, 2016; Yan 16 

et al. 2019). Second, most of the previous research focuses on the cyclic train timetabling problem at the macroscopic level and very 17 

limited number of research addresses the simultaneous routing and scheduling of trains in the cyclic train timetable (Petering et al., 18 

2015), where the proposed method in this study can be further extended to handle this issue (Meng and Zhou, 2014). Third, an 19 

additional “state” dimension can be introduced into the cyclic train timetabling model based on the extended time-space network, 20 

where the energy-efficient train movement (Wang et al., 2016; Zhou et al., 2017), time-varying passenger demand (Lu et al., 2018; 21 

Shang et al., 2018, 2019; Meng and Zhou, 2019) and integration of locomotive assignment (Xu et al., 2018) can be also considered 22 

in the cyclic train timetable. Fourth, the optimality gap of ADMM can be further reduced by incorporating it into a branch-and-bound 23 

solution framework (Fisher, 1981; Yang and Zhou, 2014) and the values of Lagrangian multipliers can be updated with more effective 24 

methods, such as the cutting plane method (Kallehauge et al., 2001; Kallehauge, 2008; Lubin et al., 2013) where the values of 25 

Lagrangian multipliers may be not unique at each iteration. Fifth, the robust cyclic train timetabling problem can be studied for a 26 

robust master schedule under day-dependent train travel times (Xing and Zhou, 2013), or for a robust cyclic train timetable with 27 

scenario-based stochastic train travel times (Yang and Zhou, 2014). 28 

 29 

Acknowledgments 30 

This work is supported by National Key Research and Development Program of China (No. 2017YFB1200700-1), National 31 

Natural Science Foundation of China (No. 61603317, No. U1834209, No. 71871188) and the Open Fund Project of Chongqing Key 32 

Laboratory of Traffic & Transportation (2018TE01). The first author is deeply grateful for the financial support from the China 33 

Scholarship Council (201707000080). The last author is partially funded by National Science Foundation–United States under NSF 34 

Grant No. CMMI 1663657. “Real-time Management of Large Fleets of Self-Driving Vehicles Using Virtual Cyber Tracks”. 35 

 36 

Appendix A. Headway requirements for the double-track high-speed railway corridor in China 37 
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Fig. A1. Seven types of headway requirements for the high-speed railway corridor in China 40 

 41 

Fig. A1 shows seven types of headway requirements between the arrival, departure and passing times of two trains (i.e., train 1 42 

and train 2) in the same station. Specifically, the headway between two departure trains (ℎ𝑑𝑑), headway between two arrival trains 43 

(ℎ𝑎𝑎), headway between one arrival train and one passing train (ℎ𝑎𝑝), headway between two passing trains (ℎ𝑝𝑝), headway between 44 
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one passing trains and one departure train (ℎ𝑝𝑑), headway between one passing train and one arrival train (ℎ𝑝𝑎) and headway between 1 

one departure train and one passing train (ℎ𝑑𝑝). 2 

 3 

Appendix B. Comparison of model M2 with the modified PESP-based cyclic train timetabling model in Zhang and Nie (2016) 4 

The PESP-based model in Zhang and Nie (2016) is based on the periodic event-activity network. Specifically, the set of events 5 

𝜀 is indexed by 𝑖, 𝑗, 𝑖′ and 𝑗′, which consists of the arrival events 𝜀arr and the departure events 𝜀dep. The set of activities 𝒜 is indexed 6 

by (𝑖, 𝑗) that includes the running activities 𝒜run, dwelling activities 𝒜dwell, passing activities 𝒜pass, safety activities 𝒜safe and 7 

regular activities 𝒜regular. The complete modified PESP-based model in Zhang and Nie (2016) with the objective of minimizing the 8 

total train journey times and fixed cycle length 𝑇 is listed as follows. 9 

Objective function: 10 

min ∑ 𝑥𝑖𝑗
(𝑖,𝑗)∈𝒜run∪𝒜dwell

. (B1) 

Subject to:  11 
𝑥𝑖𝑗 = 𝜋𝑗 − 𝜋𝑖 + 𝑧𝑖𝑗𝑇, ∀(𝑖, 𝑗) ∈ 𝒜run ∪𝒜dwell ∪𝒜pass ∪𝒜safe ∪𝒜regular (B2) 

𝑥𝑖𝑗 = 0, ∀(𝑖, 𝑗) ∈ 𝒜pass (B3) 

𝑙𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝒜run ∪𝒜dwell (B4) 

ℎ𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑇 − ℎ𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝒜safe (B5) 
𝑇

𝑓𝑖𝑗
−
𝐾

𝑓𝑖𝑗
≤ 𝑥𝑖𝑗 ≤

𝑇

𝑓𝑖𝑗
+
𝐾

𝑓𝑖𝑗
, ∀(𝑖, 𝑗) ∈ 𝒜regular (B6) 

𝑧𝑖𝑗 = 0, ∀(𝑖, 𝑗) ∈ 𝒜regular∗ (B7) 

𝑧𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝒜run ∪𝒜dwell ∪𝒜safe ∪𝒜regular (B8) 

0 ≤ 𝜋𝑖 ≤ 𝑇 − 1, ∀𝑖 ∈ 𝜀 (B9) 

0 ≤ 𝑥𝑖𝑗 ≤ 𝑇 − 1, ∀(𝑖, 𝑗) ∈ 𝒜 (B10) 

𝑧𝑖𝑗 + 𝑧𝑖′𝑗′ + 𝑧𝑖𝑖′ + 𝑧𝑗𝑗′ = 2 × (𝑤𝑖𝑖′𝑗𝑗′ + 𝑣𝑖𝑖′𝑗𝑗′), ∀(𝑖, 𝑗), (𝑖′, 𝑗′) ∈ 𝒜run, (𝑖, 𝑖
′), (𝑗, 𝑗′) ∈ 𝒜safe ∪𝒜regular (B11) 

−𝑥𝑖𝑖′ + [(ℎ𝑖𝑗 + ℎ𝑖′𝑗′) − 𝑙𝑖𝑖′
𝑤𝑖𝑡ℎ𝑜𝑢𝑡] × 𝑠𝑖𝑖′ ≤ −𝑙𝑖𝑖′

𝑤𝑖𝑡ℎ𝑜𝑢𝑡 , ∀(𝑖, 𝑖′) ∈ 𝒜dwell∗, (𝑖, 𝑗), (𝑖
′, 𝑗′) ∈ 𝒜safe (B12) 

𝑥𝑖𝑖′ + (𝑢𝑖𝑖′
𝑤𝑖𝑡ℎ𝑜𝑢𝑡 − 𝑢𝑖𝑖′) × 𝑠𝑖𝑖′ ≤ 𝑢𝑖𝑖′

𝑤𝑖𝑡ℎ𝑜𝑢𝑡 , ∀(𝑖, 𝑖′) ∈ 𝒜dwell∗  (B13) 

(𝑧𝑖𝑗 + 𝑧𝑖′𝑗′ + 𝑧𝑖𝑖′) − 2 × 𝑞𝑖𝑖′𝑗𝑗′ − 𝑠𝑖𝑖′𝑗𝑗′ = 0, ∀(𝑖, 𝑗), (𝑖′, 𝑗′) ∈ 𝒜safe, (𝑖, 𝑖
′) ∈ 𝒜dwell∗ , (𝑗, 𝑗

′) ∈ 𝒜pass (B14) 

𝑠𝑖𝑖′ = ∑ 𝑠𝑖𝑖′𝑗𝑗′

(𝑗,𝑗′)∈𝒜pass

, ∀(𝑖, 𝑗), (𝑖′, 𝑗′) ∈ 𝒜safe, (𝑖, 𝑖
′) ∈ 𝒜dwell∗ (B15) 

The variable 𝜋𝑖 denotes the event time, and 𝑧𝑖𝑗  is the binary modulo variable. Moreover, the variable 𝑥𝑖𝑗  represents the duration 12 

of activity (𝑖, 𝑗) ∈ 𝒜. The parameters 𝑢𝑖𝑗 and 𝑙𝑖𝑗  restrict the range of 𝑥𝑖𝑗  for the running and dwelling activities, and the parameter 13 

ℎ𝑖𝑗 specifies the headway value for the safe activity. In addition, the frequency of a regular activity is denoted by 𝑓𝑖𝑗 and the non-14 

negative parameter 𝐾 is introduced for the relaxation of regularity requirements. Readers can refer to Zhang and Nie (2016) for 15 

detailed definitions of the variables and parameters. The modified objective of the model in Eq. (B1) is to minimize the total train 16 

journey times ∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝒜run∪𝒜dwell
, and mainly four categories of constraints are defined from constraints (B2) to (B15). In particular, 17 

constraint (B9) restricts the event times to the range [0, 𝑇), and the safety constraint (B5) simultaneously enforces two safety 18 

constraints 𝜋𝑗 − 𝜋𝑖 ≥ ℎ𝑖𝑗  and 𝜋𝑖 − 𝜋𝑗 + 𝑇 ≥ ℎ𝑖𝑗  or 𝜋𝑖 − 𝜋𝑗 ≥ ℎ𝑖𝑗  and 𝜋𝑗 − 𝜋𝑖 + 𝑇 ≥ ℎ𝑖𝑗  corresponding to before and after 19 

precedence relationships for each pair of incompatible events 𝑖 and 𝑗. The detailed comparison of model M2 with the modified PESP-20 

based model is summarized in Table B1. It can be concluded from Table B1 that model M2 can handle most of the practical 21 

constraints in the modified PESP-based model of Zhang and Nie (2016) except the relaxation of regulatory requirement, where the 22 

flexible overtaking in the stations are only possible when regularity is not strictly enforced. 23 

 24 
Table B1 25 
Comparison of model M2 with the modified PESP-based model in Zhang and Nie (2016) 26 

Modified PESP-based model in Zhang and Nie (2016) Model M2 in this study 

Variable trip times and dwell times, constraint (B4) 
By splitting each intermediate station into two dummy stations and 

constructing the time-space arcs from (𝑖, 𝜏) to (𝑖′, 𝜏′) 
Safety headway requirements, constraint (B5) Track capacity constraint (16) 

Prevention of illegal overtaking in the sections, constraint (B11) 

By inserting a dummy station in the middle of the sections with long 

distance and trains can only pass through the corresponding dummy 

stations with the minimum headway ℎ𝑝𝑝 

Relaxation of regularity requirement, constraint (B6) and flexible 

overtaking in the stations, constraints (B12)-(B15) 

Not considered in model M2 and trains belonging to the same line are 

evenly distributed for simplicity 

 27 
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Appendix C. An illustrative example of ADMM with three blocks 1 

Based on the example in Boyd et al. (2011) that applies ADMM to solve an optimization problem with two blocks, we further 2 

extend the example for solving a slightly more complicated optimization problem in Eqs. (C1) and (C2) with three blocks 𝑥, 𝑦 and 3 

𝑧, where 𝐴, 𝐵 and 𝐷 are the coefficient matrices and 𝑐 is the constant term on the right-hand side. 4 

min 𝑓(𝑥) + 𝑔(𝑦) + ℎ(𝑧) (C1) 

𝐴𝑥 + 𝐵𝑦 + 𝐷𝑧 = 𝑐 (C2) 

The equality constraint (C2) is dualized into the objective function with one linear term and one quadratic term by introducing 5 

the Lagrangian multipliers 𝜆 and penalty parameter 𝜌, and the resulting unconstrained optimization problem 𝐿𝜌(𝑥, 𝑦, 𝑧, 𝜆) is denoted 6 

in Eq. (C3). Eqs. (C4)-(C7) illustrate the rolling update scheme for the three blocks 𝑥, 𝑦 and 𝑧 and the Lagrangian multipliers 𝜆, 7 

where 𝑘 represents the iteration number. Note that the update sequence of the three blocks is fixed in this example, and the value of 8 

penalty parameter 𝜌 can be lifted gradually to obtain good feasible solutions. 9 

𝐿𝜌(𝑥, 𝑦, 𝑧, 𝜆) =  𝑓(𝑥) + 𝑔(𝑦) + ℎ(𝑧) + 𝜆𝑇(𝐴𝑥 + 𝐵𝑦 + 𝐷𝑧 − 𝑐) + (𝜌 2⁄ )‖𝐴𝑥 + 𝐵𝑦 + 𝐷𝑧 − 𝑐‖2
2 (C3) 

𝑥𝑘+1 ∶= 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐿𝜌(𝑥, 𝑦
𝑘 , 𝑧𝑘 , 𝜆𝑘) (C4) 

𝑦𝑘+1 ∶= 𝑎𝑟𝑔𝑚𝑖𝑛𝑦 𝐿𝜌(𝑥
𝑘+1, 𝑦, 𝑧𝑘 , 𝜆𝑘) (C5) 

𝑧𝑘+1 ∶= 𝑎𝑟𝑔𝑚𝑖𝑛𝑧 𝐿𝜌(𝑥
𝑘+1, 𝑦𝑘+1, 𝑧, 𝜆𝑘) (C6) 

𝜆𝑘+1 ∶= 𝜆𝑘 + 𝜌(𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 + 𝐷𝑧𝑘+1 − 𝑐) (C7) 

 10 

Appendix D. Illustration of models M3 and M4 with a hypothetic example 11 

Fig. D1 shows a hypothetic example for the illustration of models M3 and M4. A hypothetic railway network in Fig. D1 (a) 12 

consists of two stations A and B with one section between them. In addition, two identical lines 𝑙1 and 𝑙2 need to be planned from 13 

stations A to B and both of them have the frequency of 1. Two trains 𝑎1 and 𝑎2 can be generated in associated with lines 𝑙1 and 𝑙2, 14 

respectively. The earliest departure and preferred arrival times of those two trains are equal to 0 min and 1 min respectively, and the 15 

section running times of them are fixed to 1 min. Besides, the values of safety headway parameters ℎ𝑑𝑑 and ℎ𝑎𝑎 are set to 1 min. 16 

According to the above parameter settings, four candidate time-space paths can be generated for trains 𝑎1 and 𝑎2 in Fig. D1 (b). Note 17 

that the absolute deviation from the preferred arrival time for each train are also penalized in the objective function, so that time-18 

space arcs can be associated with different costs. The goal is to minimize the sum of running times and the absolute deviation from 19 

the preferred arrival times of those two trains. 20 

 21 

A B

Train a1

Train a2

0 11

0 11

A

B

(a) Artificial railway network with two trains a1 and a2   

(b) Four candidate time-space paths for trains a1 and a2
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 22 
Fig. D1. A hypothetic example for the illustration of models M3 and M4 23 

 24 
Table D1 25 
Optimal upper bound feasible solution for the hypothetic example 26 

Iteration 0: 

Trains 𝑎1 chooses path 1 and time-space vertexes (A, 0) and (B, 1) are marked as 

infeasible. 

Path 1: 1 + (1 − 1) = 1 

 

Iteration 1: 

Trains 𝑎2 chooses path 2. 

Path 2:  1 + (2 − 1) = 2 

 

Objective function value: 1 + 2 = 3 0 1 2 3 4
A

B
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 1 

Table D1 gives the optimal upper bound feasible solution corresponding to the hypothetic example by the priority rule-based 2 

sequential method. Train 𝑎1 is planned and it is assigned with the most favorable path 1 and the time-space vertexes (A, 0) and (B, 3 

1) are marked as infeasible. Hence, train 𝑎2 will choose path 2 instead with a cost of 2. Finally, the objective function value of the 4 

upper bound solution is equal to 3. 5 

Table D2 lists the detailed steps of applying model M3 to obtain the lower bound dual solutions. At the iteration 0, the step size 6 

𝛼0 and resource costs of eight time-space vertexes are initialized with 1 and 0, respectively. The cost of each path is calculated by 7 

summing three items, namely, arc travel time, absolute deviation from the preferred arrival time and the resource costs of the time-8 

space vertexes. For instance, the cost of path 1 is equal to 1 + (1 − 1) + 𝜆A,0
0 + 𝜆B,1

0 = 1, where the first item “1” is the arc travel 9 

time, the second item “(1-1)” is the absolute deviation from the preferred arrival time and 𝜆A,0
0 + 𝜆B,1

0  is the sum of the resource costs 10 

of time vertexes (A, 0) and (B, 1). Due to path 1 has the least cost, both trains 𝑎1 and 𝑎2 choose path 1 and the objective function 11 

value of the dual solution 𝑍3
0 is equal to 2. After iteration 0, the step size 𝛼1 and resource costs of all time-space vertexes at the 12 

iteration 1 are updated according to Eqs. (23) and (24), respectively. By following the above calculation procedure, it can be obtained 13 

that both trains 𝑎1 and 𝑎2 are assigned on path 1 and the objective function value 𝑍3
1 equals to 3. Note that the optimality gap reaches 14 

0 at iteration 1, however, the corresponding dual solution is not feasible because the identical path 2 is not used. In addition, another 15 

iteration 2 is performed and the results show that the symmetry issue still exist and both trains 𝑎1 and 𝑎2 select path 2. 16 
 17 
Table D2 18 
Lower bound dual solution updating process for applying model M3 on the hypothetic example 19 

Iteration 0: 

𝛼0 = 1 

𝜆A,0
0 = 0, 𝜆A,1

0 = 0, 𝜆A,2
0 = 0, 𝜆A,3

0 = 0, 𝜆A,4
0 = 0 

𝜆B,0
0 = 0, 𝜆B,1

0 = 0, 𝜆B,2
0 = 0, 𝜆B,3

0 = 0, 𝜆B,4
0 = 0 

 

Path 1: 1 + (1 − 1) + 𝜆A,0
0 + 𝜆B,1

0 = 1 

Path 2: 1 + (2 − 1) + 𝜆A,1
0 + 𝜆B,2

0 = 2 

Path 3: 1 + (3 − 1) + 𝜆A,2
0 + 𝜆B,3

0 = 3 

Path 4: 1 + (4 − 1) + 𝜆A,3
0 + 𝜆B,4

0 = 4 

Path choices: both trains 𝑎1 and 𝑎2 choose the path 1 

𝑍3
0 = 1 + 1 = 2 

0 1 2 3 4
A

B

 

 

Iteration 1: 

𝛼1 = 1/2 

𝜆A,0
1 = 1/2, 𝜆A,1

1 = 0, 𝜆A,2
1 = 0, 𝜆A,3

1 = 0, 𝜆A,4
1 = 0 

𝜆B,0
1 = 0, 𝜆B,1

1 = 1/2, 𝜆B,2
1 = 0, 𝜆B,3

1 = 0, 𝜆B,4
1 = 0 

 

Path 1: 1 + (1 − 1) + 𝜆A,0
1 + 𝜆B,1

1 = 2 

Path 2: 1 + (2 − 1) + 𝜆A,1
1 + 𝜆B,2

1 = 2 

Path 3: 1 + (3 − 1) + 𝜆A,2
1 + 𝜆B,3

1 = 3 

Path 4: 1 + (4 − 1) + 𝜆A,3
1 + 𝜆B,4

1 = 4 

Path choices: both trains 𝑎1 and 𝑎2 choose the path 1 

𝑍3
1 = 2 + 2 − 𝜆A,0

1 − 𝜆B,1
1 = 3 

0 1 2 3 4
A

B

 

 

Iteration 2: 

𝛼2 = 1/3 

𝜆A,0
2 = 5/6, 𝜆A,1

2 = 0, 𝜆A,2
2 = 0, 𝜆A,3

2 = 0, 𝜆A,4
2 = 0 

𝜆B,0
2 = 0, 𝜆B,1

2 = 5/6, 𝜆B,2
2 = 0, 𝜆B,3

2 = 0, 𝜆B,4
2 = 0 

 

Path 1: 1 + (1 − 1) + 𝜆A,0
2 + 𝜆B,1

2 = 2.67 

Path 2: 1 + (2 − 1) + 𝜆A,1
2 + 𝜆B,2

2 = 2 

Path 3: 1 + (3 − 1) + 𝜆A,2
2 + 𝜆B,3

2 = 3 

Path 4: 1 + (4 − 1) + 𝜆A,3
2 + 𝜆B,4

2 = 4 

Path choices: both trains 𝑎1 and 𝑎2 choose the path 2 

𝑍3
2 = 2 + 2 − 𝜆A,0

2 − 𝜆B,1
2 = 2.33 

0 1 2 3 4
A

B

 

 20 

By contrast, the symmetry issue can be well handled by model M4 with ADMM. Table D3 illustrates the calculation process of 21 

ADMM with two iterations. The penalty parameter 𝜌 and resource costs of eight time-space vertexes are initialized with 2 and 0, 22 

respectively. At iteration 0, train 𝑎1 is planned first and it can directly choose path 1 without any penalty due to no trains have been 23 

planned yet. However, at iteration 1, train 𝑎2 will not select path 1 because the train 𝑎1 has already occupied path 1 and a penalty 24 

term (2 2⁄ )(2 − 1 + 2 − 1) is embedded into the cost of path 1. Hence, the cost of path 1 increases from 1 to 3 and path 2 which has 25 
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the cost of 2 turn out to be the least cost path for train 𝑎2. It can be seen that the rolling update scheme together with the linearized 1 

penalty term in model M4 with ADMM can nicely avoid the symmetry issue in model M3 with Lagrangian relaxation, where 2 

Lagrangian relaxation allow trains to simultaneously find their least costs paths with the same resource costs. 3 

 4 
Table D3 5 
Lower bound dual solution updating process for applying model M4 on the hypothetic example 6 

Iteration 0: 

𝜌 = 2 

𝜆A,0
0 = 0, 𝜆A,1

0 = 0, 𝜆A,2
0 = 0, 𝜆A,3

0 = 0, 𝜆A,4
0 = 0 

𝜆B,0
0 = 0, 𝜆B,1

0 = 0, 𝜆B,2
0 = 0, 𝜆B,3

0 = 0, 𝜆B,4
0 = 0 

 

Path 1: 1 + (1 − 1) + 𝜆A,0
0 + 𝜆B,1

0 = 1 

Path 2: 1 + (2 − 1) + 𝜆A,1
0 + 𝜆B,2

0 = 2 

Path 3: 1 + (3 − 1) + 𝜆A,2
0 + 𝜆B,3

0 = 3 

Path 4: 1 + (4 − 1) + 𝜆A,3
0 + 𝜆B,4

0 = 4 

Path choices: trains 𝑎1 chooses the path 1 

 
0 1 2 3 4

A

B

 

Iteration 1: 

𝜌 = 2 

𝜆A,0
1 = 0, 𝜆A,1

1 = 0, 𝜆A,2
1 = 0, 𝜆A,3

1 = 0, 𝜆A,4
1 = 0 

𝜆B,0
1 = 0, 𝜆B,1

1 = 0, 𝜆B,2
1 = 0, 𝜆B,3

1 = 0, 𝜆B,4
1 = 0 

 

Path 1: 1 + (1 − 1) + 𝜆A,0
1 + 𝜆B,1

1 + (2 2⁄ )(2 − 1 + 2 − 1) = 3 

Path 2: 1 + (2 − 1) + 𝜆A,1
1 + 𝜆B,2

1 = 2 

Path 3: 1 + (3 − 1) + 𝜆A,2
1 + 𝜆B,3

1 = 3 

Path 4: 1 + (4 − 1) + 𝜆A,3
1 + 𝜆B,4

1 = 4 

Path choices: train 𝑎2 chooses the path 2 

𝑍4 = 1 + 2 = 3 
0 1 2 3 4

A

B

 

 7 

References 8 

Assad, A. A., 1980. Models for rail transportation. Transportation Research Part A: General, 14(3), 205-220. 9 

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., Vance, P. H., 1998. Branch-and-price: Column generation for 10 

solving huge integer programs. Operations research, 46(3), 316-329. 11 

Bertsekas, D. P., 1999. Nonlinear programming. Belmont: Athena scientific. 12 

Bešinović, N., Goverde, R. M., Quaglietta, E., Roberti, R., 2016. An integrated micro–macro approach to robust railway timetabling. 13 

Transportation Research Part B: Methodological, 87, 14-32. 14 

Brännlund, U., Lindberg, P. O., Nou, A., Nilsson, J. E., 1998. Railway timetabling using Lagrangian relaxation. Transportation 15 

science, 32(4), 358-369. 16 

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., 2011. Distributed optimization and statistical learning via the alternating 17 

direction method of multipliers. Foundations and Trends® in Machine learning, 3(1), 1-122. 18 

Boland, N., Christiansen, J., Dandurand, B., Eberhard, A., Linderoth, J., Luedtke, J., Oliveira, F., 2018. Combining Progressive 19 

Hedging with a Frank--Wolfe Method to Compute Lagrangian Dual Bounds in Stochastic Mixed-Integer Programming. SIAM 20 

Journal on Optimization, 28(2), 1312-1336. 21 

Bożejko, W., Wodecki, M., 2018. On Cyclic Job Shop Scheduling Problem. In 2018 IEEE 22nd International Conference on 22 

Intelligent Engineering Systems (INES). 000265-000270. 23 

Burggraeve, S., Bull, S. H., Vansteenwegen, P., Lusby, R. M., 2017. Integrating robust timetabling in line plan optimization for 24 

railway systems. Transportation Research Part C: Emerging Technologies, 77, 134-160. 25 

Cordeau, J. F., Toth, P., Vigo, D., 1998. A survey of optimization models for train routing and scheduling. Transportation science, 26 

32(4), 380-404. 27 

Chabini, I., 1998. Discrete dynamic shortest path problems in transportation applications: Complexity and algorithms with optimal 28 

run time. Transportation Research Record: Journal of the Transportation Research Board, 1645, 170–175. 29 

Caprara, A., Fischetti, M., Toth, P., 2002. Modeling and solving the train timetabling problem. Operations research, 50(5), 851-861. 30 

Caprara, A., Monaci, M., Toth, P., Guida, P. L. 2006. A Lagrangian heuristic algorithm for a real-world train timetabling problem. 31 

Discrete applied mathematics, 154(5), 738-753. 32 

Caprara, A., Kroon, L., Monaci, M., Peeters, M., Toth, P., 2007. Passenger railway optimization. Handbooks in operations research 33 

and management science, 14, 129-187. 34 

Cacchiani, V., Caprara, A., Toth, P., 2008. A column generation approach to train timetabling on a corridor. 4OR, 6(2), 125-142. 35 

Cacchiani, V., Caprara, A., Toth, P., 2010. Scheduling extra freight trains on railway networks. Transportation Research Part B: 36 

Methodological, 44(2), 215-231. 37 



34 

 

Cacchiani, V., Caprara, A., Fischetti, M., 2012. A Lagrangian heuristic for robustness, with an application to train timetabling. 1 

Transportation Science, 46(1), 124-133. 2 

Caimi, G., Kroon, L., and Liebchen, C., 2017. Models for railway timetable optimization: Applicability and applications in practice. 3 

Journal of Rail Transport Planning & Management, 6(4), 285-312. 4 

Chinese National Bureau of Statistics, http://www.stats.gov.cn/. 5 

Cordone, R., Redaelli, F., 2011. Optimizing the demand captured by a railway system with a regular timetable. Transportation 6 

Research Part B: Methodological, 45(2), 430-446. 7 

Crainic, T. G., Laporte, G., 1997. Planning models for freight transportation. European journal of operational research, 97(3), 409-8 

438. 9 

Crainic, T. G., Fu, X., Gendreau, M., Rei, W., Wallace, S. W., 2011. Progressive hedging‐based metaheuristics for stochastic network 10 

design. Networks, 58(2), 114-124. 11 

D’Ariano, A., Pranzo, M., 2009. An advanced real-time train dispatching system for minimizing the propagation of delays in a 12 

dispatching area under severe disturbances. Networks and Spatial Economics, 9(1), 63-84. 13 

D’Ariano, A., Meng, L., Centulio, G., Corman, F., 2017. Integrated stochastic optimization approaches for tactical scheduling of 14 

trains and railway infrastructure maintenance. Computers & Industrial Engineering. 15 

Dorfman, M. J., Medanic, J., 2004. Scheduling trains on a railway network using a discrete event model of railway traffic. 16 

Transportation Research Part B: Methodological, 38(1), 81-98. 17 

Fisher, M. L., 1981. The Lagrangian relaxation method for solving integer programming problems. Management science, 27(1), 1-18 

18. 19 

Fortin, M., Glowinski, R., 2000. Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems. 20 

Elsevier. 21 

Gabay, D., Mercier, B., 1976. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. 22 

Computers & Mathematics with Applications, 2(1), 17-40. 23 

Gattermann, P., Großmann, P., Nachtigall, K., Schöbel, A., 2016. Integrating Passengers' Routes in Periodic Timetabling: A SAT 24 

approach. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 25 

2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 26 

Ghoseiri, K., Szidarovszky, F., Asgharpour, M. J., 2004. A multi-objective train scheduling model and solution. Transportation 27 

research part B: Methodological, 38(10), 927-952. 28 

Glowinski, R., Marroco, A., 1975. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une 29 

classe de problèmes de Dirichlet non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation 30 

Mathématique et Analyse Numérique, 9(R2), 41-76. 31 

Goerigk, M., Schöbel, A., 2013. Improving the modulo simplex algorithm for large-scale periodic timetabling. Computers & 32 

Operations Research, 40(5), 1363-1370. 33 

Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P., 2012. Solving periodic event scheduling problems 34 

with SAT. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. 35 

Springer, Berlin, Heidelberg. 36 

Harrod, S., 2011. Modeling Network Transition Constraints with Hypergraphs. Transportation Science, 45(1), 81-97. 37 

Harrod, S., 2012. A tutorial on fundamental model structures for railway timetable optimization. Surveys in Operations Research 38 

and Management Science, 17(2), 85-96. 39 

Heydar, M., Petering, M. E., Bergmann, D. R., 2013. Mixed integer programming for minimizing the period of a cyclic railway 40 

timetable for a single track with two train types. Computers & Industrial Engineering, 66(1), 171-185. 41 

Herrigel, S., Laumanns, M., Szabo, J., Weidmann, U., 2018. Periodic railway timetabling with sequential decomposition in the PESP 42 

model. Journal of Rail Transport Planning & Management. 43 

Higgins, A., Kozan, E., Ferreira, L., 1996. Optimal scheduling of trains on a single line track. Transportation research part B: 44 

Methodological, 30(2), 147-161. 45 

Huisman, D., Kroon, L. G., Lentink, R. M., and Vromans, M. J., 2005. Operations research in passenger railway transportation.  46 

Statistica Neerlandica, 59(4), 467-497. 47 

Jiang, F., Cacchiani, V., Toth, P., 2017. Train timetabling by skip-stop planning in highly congested lines. Transportation Research 48 

Part B: Methodological, 104, 149-174. 49 

Kallehauge, B., Larsen, J., Madsen, O. B., 2001. Lagrangean duality applied on vehicle routing with time windows-experimental 50 

results. Technical Report IMM-REP-2000-8, Informatics and Mathematical Modelling, Technical University of Denmark, 51 

DTU Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby. 52 

Kallehauge, B., 2008. Formulations and exact algorithms for the vehicle routing problem with time windows. Computers & 53 

Operations Research, 35(7), 2307-2330. 54 

Kroon, L. G., Peeters, L. W., 2003. A variable trip time model for cyclic railway timetabling. Transportation Science, 37(2), 198-55 

212. 56 

Kroon, L., Huisman, D., Abbink, E., Fioole, P.-J., Fischetti, M., Maroti, G., Schrijver, A., Steenbeek, A., Ybema, R., 2009. The new 57 

Dutch timetable: the OR revolution. Interfaces 39 (1), 6–17. 58 

Kroon, L. G., Peeters, L. W., Wagenaar, J. C., Zuidwijk, R. A., 2013. Flexible connections in pesp models for cyclic passenger 59 

railway timetabling. Transportation Science, 48(1), 136-154. 60 

http://www.stats.gov.cn/


35 

 

Kümmling, M., Großmann, P., Nachtigall, K., Opitz, J., Weiß, R., 2015. A state-of-the-art realization of cyclic railway timetable 1 

computation. Public Transport, 7(3), 281-293. 2 

Larsson, T., Yuan, D., 2004. An augmented lagrangian algorithm for large scale multicommodity routing. Computational 3 

Optimization and Applications, 27(2), 187-215. 4 

Liebchen, C., 2004. Symmetry for periodic railway timetables. Electronic Notes in Theoretical Computer Science, 92, 34-51. 5 

Liebchen, C., 2006. Periodic Timetable Optimization in Public Transport. PhD thesis. TU Berlin. 6 

Liebchen, C., Möhring, R. H., 2007. The modeling power of the periodic event scheduling problem: railway timetables—and beyond. 7 

In Algorithmic methods for railway optimization. Springer, Berlin, Heidelberg. 8 

Liebchen, C., 2008. The first optimized railway timetable in practice. Transportation Science, 42(4), 420-435. 9 

Liebchen, C., Schachtebeck, M., Schöbel, A., Stiller, S., Prigge, A., 2010. Computing delay resistant railway timetables. Computers 10 

& Operations Research, 37(5), 857-868. 11 

Lindner, T., 2000. Train schedule optimization in public rail transport. Mathematics—Key Technology for the Future: Joint Projects 12 

Between Universities and Industry, 703-716. 13 

Li, P., Mirchandani, P., Zhou, X., 2015. Solving simultaneous route guidance and traffic signal optimization problem using space-14 

phase-time hypernetwork. Transportation Research Part B: Methodological, 81, 103-130. 15 

Liu, J., Zhou, X., 2016. Capacitated transit service network design with boundedly rational agents. Transportation Research Part B: 16 

Methodological, 93, 225-250. 17 

Lu, K., Han, B., Zhou, X., 2018. Smart urban transit systems: from integrated framework to interdisciplinary perspective. Urban Rail 18 

Transit, 4(2), 49-67. 19 

Lubin, M., Martin, K., Petra, C. G., Sandıkçı, B., 2013. On parallelizing dual decomposition in stochastic integer programming. 20 

Operations Research Letters, 41(3), 252-258. 21 

Luan, X., Miao, J., Meng, L., Corman, F., Lodewijks, G., 2017. Integrated optimization on train scheduling and preventive 22 

maintenance time slots planning. Transportation Research Part C: Emerging Technologies, 80, 329-359. 23 

Lusby, R. M., Larsen, J., Ehrgott, M., Ryan, D., 2011. Railway track allocation: models and methods. OR spectrum, 33(4), 843-883 24 

Macharis, C., Bontekoning, Y. M., 2004. Opportunities for OR in intermodal freight transport research: A review. European Journal 25 

of operational research, 153(2), 400-416. 26 

Mees, A. I., 1991. Railway scheduling by network optimization. Mathematical and Computer Modelling, 15(1), 33-42. 27 

Meng, L., Zhou, X., 2011. Robust single-track train dispatching model under a dynamic and stochastic environment: a scenario-28 

based rolling horizon solution approach. Transportation Research Part B: Methodological, 45(7), 1080-1102. 29 

Meng, L., Zhou, X., 2014. Simultaneous train rerouting and rescheduling on an N-track network: A model reformulation with 30 

network-based cumulative flow variables. Transportation Research Part B: Methodological, 67, 208-234. 31 

Meng, L., Zhou, X., 2019. An integrated train service plan optimization model with variable demand: A team-based scheduling 32 

approach with dual cost information in a layered network. Transportation Research Part B: Methodological, 125, 1-28. 33 

Mathias, K., 2008. Models for Periodic Timetabling Thesis. Erasmus Research Institute of Management (ERIM). 34 

Mor, A., Speranza, M. G., 2018. Vehicle routing problems over time: a survey. < https://www.researchgate.net/publication/ 35 

328743816_Vehicle_routing_problems_over_time_a_survey > (last accessed, 11/19/2018). 36 

Mu, S., Dessouky, M., 2011. Scheduling freight trains traveling on complex networks. Transportation Research Part B: 37 

Methodological, 45(7), 1103-1123. 38 

Nachtigall, K., Voget, S., 1996. A genetic algorithm approach to periodic railway synchronization. Computers & Operations 39 

Research, 23(5), 453-463. 40 

Nachtigall, K., Opitz, J., 2008. Solving periodic timetable optimisation problems by modulo simplex calculations. In OASIcs-41 

OpenAccess Series in Informatics (Vol. 9). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 42 

Niu, H., Zhou, X., Tian, X., 2018. Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting 43 

Lagrangian decomposition approach for solution symmetry breaking. Transportation Research Part B: Methodological, 107, 44 

70-101. 45 

Oliveira, E., Smith, B. M., 2000. A job-shop scheduling model for the single-track railway scheduling problem, School of Computing 46 

Research Report, University of Leeds, England. 47 

Odijk, M. A., 1996. A constraint generation algorithm for the construction of periodic railway timetables. Transportation Research 48 

Part B: Methodological, 30(6), 455-464. 49 

Pallottino, S., Scutella, M. G., 1998. Shortest path algorithms in transportation models: classical and innovative aspects. In 50 

Equilibrium and advanced transportation modelling. Springer, Boston, MA. 245-281. 51 

Peeters, L., 2003. Cyclic Railway Timetable Optimization TRAIL Thesis Series. Erasmus Research Institute of Management. 52 

Petering, M. E., Heydar, M., Bergmann, D. R., 2015. Mixed-integer programming for railway capacity analysis and cyclic, combined 53 

train timetabling and platforming. Transportation Science, 50(3), 892-909. 54 

Qi, J., Yang, L., Di, Z., Li, S., Yang, K., Gao, Y., 2018. Integrated optimization for train operation zone and stop plan with passenger 55 

distributions. Transportation Research Part E: Logistics and Transportation Review, 109, 151-173. 56 

Robenek, T., Azadeh, S. S., Maknoon, Y., Bierlaire, M., 2017. Hybrid cyclicity: Combining the benefits of cyclic and non-cyclic 57 

timetables. Transportation Research Part C: Emerging Technologies, 75, 228-253. 58 

Robenek, T., Azadeh, S. S., Maknoon, Y., de Lapparent, M., Bierlaire, M., 2018. Train timetable design under elastic passenger 59 

demand. Transportation Research Part B: Methodological, 111, 19-38. 60 



36 

 

Serafini, P., Ukovich, W., 1989. A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics, 1 

2(4), 550-581. 2 

Schöbel, A., 2007. Integer programming approaches for solving the delay management problem. In Algorithmic methods for railway 3 

optimization. Springer, Berlin, Heidelberg. 4 

Schachtebeck, M., Schöbel, A., 2010. To wait or not to wait—and who goes first? Delay management with priority decisions. 5 

Transportation Science, 44(3), 307-321. 6 

Shang, P., Li, R., Liu, Z., Yang, L., Wang, Y., 2018. Equity-oriented skip-stopping schedule optimization in an oversaturated urban 7 

rail transit network. Transportation Research Part C: Emerging Technologies, 89, 321-343. 8 

Shang, P., Li, R., Guo, J., Xian, K., Zhou, X., 2019. Integrating Lagrangian and Eulerian observations for passenger flow state 9 

estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach. Transportation 10 

Research Part B: Methodological, 121, 135-167. 11 

Siebert, M., Goerigk, M., 2013. An experimental comparison of periodic timetabling models. Computers & Operations Research, 12 

40(10), 2251-2259. 13 

Socha, K., Knowles, J., Sampels, M., 2002. A max-min ant system for the university course timetabling problem. In International 14 

Workshop on Ant Algorithms. Springer, Berlin, Heidelberg. 1-13. 15 

Sparing, D., Goverde, R. M., 2017. A cycle time optimization model for generating stable periodic railway timetables. Transportation 16 

Research Part B: Methodological, 98, 198-223. 17 

Tong, L., Pan, Y., Shang, P., Guo, J., Xian, K., Zhou, X, 2019. Open-source public transportation mobility simulation engine 18 

DTALite-S: A discretized space–time network-based modeling framework for bridging multi-agent simulation and 19 

optimization. Urban Rail Transit, 1-16. 20 

US Bureau of Transportation Statistics, United States Department of Transportation. https://www.bts.gov/. 21 

Wang, Y., Zhang, M., Ma, J., Zhou, X., 2016. Survey on driverless train operation for urban rail transit systems. Urban Rail Transit, 22 

2(3-4), 106-113. 23 

Wei, Y., Avcı, C., Liu, J., Belezamo, B., Aydın, N., Li, P. T., Zhou, X., 2017. Dynamic programming-based multi-vehicle 24 

longitudinal trajectory optimization with simplified car following models. Transportation Research Part B: Methodological, 25 

106, 102-129. 26 

Xing, T., Zhou, X., 2013. Reformulation and solution algorithms for absolute and percentile robust shortest path problems. IEEE 27 

Transactions on Intelligent Transportation Systems, 14(2), 943-954. 28 

Xu, X., Li, C. L., Xu, Z., 2018. Integrated train timetabling and locomotive assignment. Transportation Research Part B: 29 

Methodological, 117, 573-593. 30 

Yao, Y., Zhu, X., Dong, H., Wu, S., Wu, H., Tong, L. C., Zhou, X., 2019. An ADMM-based Problem Decomposition Scheme for 31 

Vehicle Routing Problem with Time Windows. https://www.researchgate.net/publication/333560037_An_ADMM-32 

based_Problem_Decomposition_Scheme_for_Vehicle_Routing_Problem_with_Time_Windows (last accessed, 06/14/2019). 33 

Yang, L., Zhou, X., 2014. Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time 34 

path problem. Transportation Research Part B: Methodological, 59, 22-44. 35 

Yan, F., Goverde, R. M., 2017. Railway timetable optimization considering robustness and overtakings. In Proceedings of the5th 36 

IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2017, 291–296. 37 

Yan, F., Bešinović, N., Goverde, R. M. P., 2019. Multi-objective periodic railway timetabling on dense heterogeneous railway 38 

corridors. Transportation Research Part B: Methodological, 125, 52-75. 39 

Yin, Y., Li, D., Bešinović, N., Cao, Z., 2019. Hybrid demand‐driven and cyclic timetabling considering rolling stock circulation for 40 

a bidirectional railway line. Computer‐Aided Civil and Infrastructure Engineering, 34(2), 164-187. 41 

Yue, Y., Wang, S., Zhou, L., Tong, L., Saat, M. R., 2016. Optimizing train stopping patterns and schedules for high-speed passenger 42 

rail corridors. Transportation Research Part C: Emerging Technologies, 63, 126-146. 43 

Zhan, S., Kroon, L. G., Zhao, J., Peng, Q., 2016. A rolling horizon approach to the high speed train rescheduling problem in case of 44 

a partial segment blockage. Transportation Research Part E: Logistics and Transportation Review, 95, 32-61. 45 

Zhang, X., Nie, L., 2016. Integrating capacity analysis with high-speed railway timetabling: A minimum cycle time calculation 46 

model with flexible overtaking constraints and intelligent enumeration. Transportation Research Part C: Emerging 47 

Technologies, 68, 509-531. 48 

Zhou, X., Zhong, M. 2005. Bicriteria train scheduling for high-speed passenger railroad planning applications. European Journal of 49 

Operational Research, 167(3), 752-771. 50 

Zhou, X., Zhong, M., 2007. Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced 51 

lower bounds. Transportation Research Part B: Methodological, 41(3), 320-341. 52 

Zhou, X., Tong, L., Mahmoudi, M., Zhuge, L., Yao, Y., Zhang, Y., Shang, P., Shi, T., 2018. Open-source VRPLite package for 53 

vehicle routing with pickup and delivery: a path finding engine for scheduled transportation systems. Urban Rail Transit, 4 (2), 54 

68–85. 55 

Zhou, L., Tong, L. C., Chen, J., Tang, J., Zhou, X., 2017. Joint optimization of high-speed train timetables and speed profiles: A 56 

unified modeling approach using time-space-speed grid networks. Transportation Research Part B: Methodological, 97, 157-57 

181. 58 

Ziliaskopoulos, A.K., Mahmassani, H.S., 1993. Time-dependent, shortest-path algorithm for real-time intelligent vehicle highway 59 

system applications. Transportation Research Record. 94–94. 60 

https://www.bts.gov/
https://www.researchgate.net/publication/333560037_An_ADMM-based_Problem_Decomposition_Scheme_for_Vehicle_Routing_Problem_with_Time_Windows
https://www.researchgate.net/publication/333560037_An_ADMM-based_Problem_Decomposition_Scheme_for_Vehicle_Routing_Problem_with_Time_Windows

