PMTest: A Fast and Flexible Testing Framework for
Persistent Memory Programs

Yizhou Wei

University of Virginia

Sihang Liu

University of Virginia

Abstract

Recent non-volatile memory technologies such as 3D XPoint
and NVDIMMs have enabled persistent memory (PM) sys-
tems that can manipulate persistent data directly in memory.
This advancement of memory technology has spurred the
development of a new set of crash-consistent software (CCS)
for PM - applications that can recover persistent data from
memory in a consistent state in the event of a crash (e.g.,
power failure). CCS developed for persistent memory ranges
from kernel modules to user-space libraries and custom ap-
plications. However, ensuring crash consistency in CCS is
difficult and error-prone. Programmers typically employ low-
level hardware primitives or transactional libraries to enforce
ordering and durability guarantees that are required for ensur-
ing crash consistency. Due to the reordering by the hardware,
programmers cannot fest whether the order specified in the
CCS will not result in an ordering that violates the crash
consistency requirement.

We believe that there is an urgent need for developing a
testing framework that helps programmers identify crash con-
sistency bugs in their CCS. We find that prior testing tools
lack generality, i.e., they work only for one specific CCS or
memory persistency model and/or introduce significant perfor-
mance overhead. To overcome these drawbacks, we propose
PMTest', a crash consistency testing framework that is both
flexible and fast. PMTest provides flexibility by providing two
basic assertion-like software checkers to test two fundamental
characteristics of all CCS: the ordering and durability guar-
antee. These checkers can also serve as the building blocks
of other application-specific, high-level checkers. PMTest
enables fast testing by deducing the persist order without
exhausting all possible orders. In the evaluation with eight

IPMTest is available at https://pmtest.persistentmemory.org.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

ASPLOS 19, April 13-17, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04. .. $15.00
https://doi.org/10.1145/3297858.3304015

Jishen Zhao
UC San Diego

Aasheesh Kolli Samira Khan
Penn State University University of Virginia
VMware Research

programs, PMTest not only identified 45 synthetic crash con-
sistency bugs, but also detected 3 new bugs in a file system
(PMFS) and in applications developed using a transactional
library (PMDK), while on average being 7.1 x faster than the
state-of-the-art tool.

CCS Concepts + Hardware — Emerging technologies; *
Software and its engineering — Software testing and de-
bugging.

Keywords Persistent Memory, Crash Consistency, Debug-
ging, Testing

ACM Reference Format:

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira
Khan. 2019. PMTest: A Fast and Flexible Testing Framework for
Persistent Memory Programs. In 2019 Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’19),
April 13-17, 2019, Providence, RI, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3297858.3304015

1 Introduction

Persistent Memory (PM) technologies offer the persistence
of disks combined with performance close to that of DRAM,
blurring the divide between memory and storage [34, 40,
45, 67]. PMs are expected to be placed alongside DRAM
on the system’s memory bus and be accessed via a byte-
addressable load/store interface, providing an opportunity
to manipulate persistent data directly in-place in memory.
Programs can recover their updated in-memory persistent
data even in the event of a crash (e.g., power failure). How-
ever, such a recovery requires a guarantee that persistent
data is always in a consistent state — a requirement referred
to as the crash consistency guarantee. A variety of applica-
tions have taken crash consistency into consideration. File
systems carefully orchestrate meta-data management to en-
sure that the files are recoverable [10, 16, 42, 63, 66, 73],
while databases use intricate logging mechanisms to provide
ACID guarantees for transactions [1, 2, 23, 50, 65]. Apart
from relying on file systems and databases for crash con-
sistency [1, 2, 10, 16, 23, 42, 50, 63, 65, 66, 73], the ad-
vent of PMs makes it possible for applications to manage
crash consistency directly using PM’s load/store interface
and thereby, improve performance by avoiding costly system
calls. For this reason, a variety of custom crash-consistent
applications [7, 17, 33, 70, 72] and user-space libraries (e.g.,
NV-Heaps [9], Mnemosyne [64], PMDK [33]) have been de-
veloped for PM systems. Moving forward, we expect that

